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Recent experimental progress allows detailed measure-
ment of excited levels of small quantum dots by non-
linear transport [1]. A parabolic con"ning potential
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is regarded as most realistic [2]. The e!ective mass
mH and the dielectric constant i are material parameters,
and x

j
(p

j
) are electron positions (momenta) in two

dimensions. All of the eigenstates of H are simultaneously
eigenstates to SK 2, with eigenvalues S(S#1).

In the limit of strong interactions or, equivalently, low
particle densities, where the electrons form a Wigner
molecule (WM) [3], the pocket state method (PSM) has
been used to determine the energy spectra [4]. Up to now
this method was restricted to quantum dots of low sym-
metries, like polygons [5]. Here, we extend this method
to allow for azimuthally symmetric quantum dots and
compare the results with those obtained by exact quan-
tum Monte Carlo (QMC) [3].

It seems tempting to separate out the conserved overall
rotations associated with total angular momentum l.
However, the remaining normal coordinates then would
no more represent identical quantum particles obeying
Pauli's principle but linear combinations of such par-
ticles. Within the PSM it is crucial to know the result of
particle permutations in order to assign the correct total

spins S to the eigenstates by group theoretical arguments
[4].

Therefore, we treat all of the possible particle ex-
changes on an equal footing, including rotations if they
correspond to permutations. Depending on the geometry
of the WM, rotations by 2p/p with p'1 leave the elec-
tron places invariant so that the Pauli principle relates
l with S. Up to N)8 the WM in (1) is known [3] to be
quite symmetric: the electrons form one spatial shell
(N)5) so that p"N, or one central electron occupies
the center (i.e. p"N!1).

It is crucial for the pocket state approximation that
lowest spin sensitive excitations are smaller in energy
than charge (plasmon) excitations. In the cases of unsym-
metric quantum dots this is ful"lled due to their exponen-

tial decay &exp!Jr
4

with reducing density } plas-
mons decrease only according to a power law &r~3@2

4
for Coulomb repulsions. With their slightly faster decay
1/2I&r~2

4
the rotational excitations justify the PSM.

Entries of the pocket state matrix t
R
"p2/8p2I asso-

ciated with rotations by 2p/p ensure lowest rotational
excitation energies &l2/2I (the momentum of inertia
I follows from the radial charge density distribution). We
measure the interaction strength by y"1/(1#t/t

R
) with

t being the nearest-neighbour integral (which exponenti-
ally dominates over any of the higher-order exchanges,
apart from zero modes). The limit yP1 corresponds to
a rigid WM and strong interactions. In this limit, the
PSM becomes exact. The lower bound for possible values
for y can be estimated as y'1/(1#(p2/4)p) since 2t
cannot exceed the Fermi energy in the non-interacting
limit.

                                                                       
                         



Fig. 1. Low-energy levels using pocket states versus y for N"3
in units of t

R
.

Fig. 2. Low-energy levels using pocket states versus y for N"5
in units of t

R
.

For weak interactions the ground state for N"3 (cf.
Fig. 1) is unpolarized, S"1

2
. A transition into the spin

polarized ground state S"3
2

is found above a critical
interaction strength. Assuming Coulomb interactions we
estimate this transition to occur when u

0
(0.5 meV.

This spin polarization is an exact consequence of the
correlations and not the result of a mean "eld approxi-
mation or of a magnetic "eld. It should show up as a &spin
blockade' [6], even in linear transport for transitions
between the N"2 and N"3 ground states. This result
has also been obtained in QMC calculations [3].

For N"4 (not shown) we con"rm that the Hund's
rule result S"1 stays ground state for all interaction
strengths [3]. Fig. 2 shows the low-energy levels for
N"5, that were not obtained previously. The ground
state remains unpolarized S"1

2
up to strong interac-

tions, though its character changes. The polarized state,
however, approaches the ground state and can therefore
cause negative di!erential conductances in the non-linear
transport [6] at su$ciently small con"nement energies.

Acknowledgements

I would like to thank Charles Cre$eld, Reinhold Egg-
er, Hermann Grabert, and John Je!erson for useful dis-

cussions, and the University of Freiburg and the King's
College London for kind hospitalities. Support from the
DFG (through SFB 276) and the EPSRC (UK) is ac-
knowledged.

References

[1] L.P. Kouwenhoven et al., in: L.L. Sohn, L.P. Kouwenhoven,
G. SchoK n (Eds.), Mesoscopic Electron Transport, NATO-
ASI Series E; Vol. 345, Kluwer Academic Publishers, Dor-
drecht, 1997, and references therein.

[2] U. Merkt, Physica B 189 (1993) 165.
[3] R. Egger, W. HaK usler, C.H. Mak, H. Grabert, Phys. Rev.

Lett. 82 (1999) 3320.
[4] W. HaK usler, Z. Phys. B 99 (1996) 551.
[5] C.E. Cre$eld, W. HaK usler, J.H. Je!erson, S. Sarkar, Phys.

Rev. B 59 (1999) 10 719.
[6] D. Weinmann, W. HaK usler, B. Kramer, Phys. Rev. Lett. 74

(1995) 984.

                                         1785


