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Abstract. In this paper the m-dimensional extension IF,.. of the finite field IF, of
order ¢ is investigated from an algebraic point of view. Looking upon the additive
group (IF_., +) as a cyclic module over the principal ideal domain IF [x], we
introduce a new family of polynomials over IF, which are the additive analogues of
the cyclotomic polynomials. Two methods to calculate these polynomials are
proposed. In combination with algorithms to compute cyclotomic polynomials, we
obtain, at least theoretically, a method to determine all elements in IF,.. of a given
additive and multiplicative order; especially the generators of both cyclic structures,
namely the generators of primitive normal bases in IF .. over IF, are characterized
as the set of roots of a certain polynomial over IF,.
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Introduction

Let g > 1 be a prime power, IF, the finite field of order ¢ and IF [x] the ring of
polynomials over IF, in the indeterminate x. The m-dimensional extension IF,.. over
IF, is a Galois extension with cyclic Galois group of order m which 1s generated by
the Frobenius automorphism a:]qu —IF o —of

Being a cyclic group of order g™ — 1, the multiplicative group (IF},, ") is a cyclic
are called primitive roots of the first kind.

A normal basis of IF . over IF, is a basis of the form (o, a%,..., 24" ). o is called
a free root in IF ., over IF_. It is well known that there always do exist normal bases
in IF,. over IF, (see e.g. [6, 10]). In [10] all quoted facts concerning finite fields may
be found. Generators of normal bases are called primitive roots of the second kind
in [3].

The following result has its origin in O. Ore’s publications [14] and [15]. It is
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that the multiplicative and additive groups of the extension IF .. over IF, are very
similar.

(1.1) Theorem. Let f:= .ZO fx* be a polynomial of [F [x] and let «€F .. The scalar
multiplication*:IF [x] x F . = ..

(fr3)= foai= T fa

turns the additiv? group (Iqu,_+) into a_ﬁnite, cyclic module over I [ x], its generators
are exactly the free roots in It .. over IF,.

We introduce the following notation (c.f. [14], [15] and [9]):

(1.2) Definitions.
(1) The kernel of the mapping ¥ ,:IF [ x]—IFm, f — foais called the annihilator ideal
of o; the monic generator of kernel (¥,) is called the additive order of « over IF,,.

(i) The polynomial F:= Y fx% of IF [x] is called the associated g-polynomial of
n i=0

fi= Z fixt.
i=0

The generators of the two cyclic module structures are very important for
representing and computing the elements of finite fields. Therefore they have an
essential role in applications, e.g. coding theory or cryptography (see e.g. [1], [2],
[10], [11], [13]).

In order to keep this paper self-contained, we will prove some results on finite
cyclic modules over principal ideal domains in Sect. 2. The application of these facts
to finite fields will imply some known theorems from [9] and [10].

In [3], [5] and [9] advantage is taken of the analogy of both group structures
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a sufficient condition for primitive roots (see [8], also used in [4] and [7]) to the
additive group (IF,.., +). Consequently one obtains a sufficient condition for free
roots. Both conditions (Vinogradov criterion and the additive analogue) are

Lo
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(1.3) Theorem (Lenstra and Schoof [9]). For every prime power g > 1 and every
positive integer m> 1 there exists a primitive normal basis in I . over IF, ie. a
normal basis which is nonprntpn’ hv a primitive root.

LRI8S sl U

In this paper further known results on cyclic groups will be applied to (IF .., +)
as a module over IF, [ x]: In Sect. 3, generalizing the cyclotomic polynomials, we will
obtain a new class of polynomials over IF,[ x] which we have called n-polynomials.
The roots of a m-polynomial are exactly the elements in IF .. of a given additive order
over IF,. By using the M6bius inversion formula we obtain an explicit representation
for z-polynomials. As this representation is merely of theoretical interest, we discuss
a recursive algorithm to calculate 7-polynomials in Sect. 4. This algorithm is the
analogue of the already known method to compute cyclotomic polynomlals over
the field of rational numbers quickly (c.f. [11]).

Theorem (1.3) says that the (g™ — 1)th cyc]otomlc polynomial in IF [x]
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divisor of degree greater than 0. This is the polynomial with roots being exactly the
generators of primitive normal bases. The algorithms mentioned above in
combination with the Euclidean algorithm in particular give at least a theoretical
method to compute this (in most cases pure) nontrivial factor of the (¢™ — 1)th
cyclotomic polynomial and consequently a method to calculate primitive (and free)
roots in general.

2. Finite, Cyclic Models over Principal Ideal Domains

In this section M denotes a finite, cyclic module over a principal ideal domain R
satisfying | R| = oc. We first introduce some notation:

For an element x of M let (x):= {raz:reR} be the R-submodule of M generated
by % Anng(x):= {reR:rz=0} denotes the annihilator ideal of «. The generator
Ordpg (%) of Anng () is called the R-order of 2. The generator of Anng (M):={reR:rx=0
for all xe M} is denoted by Ordg(M).

Ordg (2) and Ordg (M) are uniquely determined modulo the group of units in R.
Being a module over R, {«) is isomorphic to the factor module R/Anng ().

As we are only interested in ring elements of the form r = Ordg ({) for a suitable

(e M, we may assume, without loss of generality, that R/(r) is finite for all re R — {0}.
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generdtors of the module R/(r).
To be able to determine @g(r) for all reR — {0}, we first list some elementary
properties which can be found in many algebra books (e.g. [6], [12]).

(2.1) Lemma.

(i) Let r be an element of R — {0}. The generators of the R-module R/(r) are exactly
the units of the ring R/(r).

(ii) Let a,beR — {0}, then gcd(a,b) =1 if-and only if a + (b) is a unit in R/(b).

(iii) Chinese remainder theorem: Let a,,...,a, be elements of R— {0} satisfying
ged(a;, a;) = 1 for alli # j. Then for every n-tuple (by, ..., b,) in R" there exists an xeR,
such that x = b;mod (a;) for alli = 1,...,n. Moreover, x is uniquely determined modulo

We are now able to compute @g(r) for all reR — {0} by using the prime
decomposition of r in R.

(2. 2) Theorem.
(1) @gla)=1ifand only if a is a unit in R.
(if) Let a,be R — {0} with ged (a,b) = 1, then @g(ab) = Dgl(a) Dg(b).
(i) Ifa=p*wherek = 1andpis irreducible in R, then @g(a) = |R/Ap*)| — |R/(p* ™).
(iv) Let [] p¥ be the prime decomposition of acR — {0}, ged (p;, p;) = 1 for i #j and
=1 t
kiz 1 for all i. Then @gla)= [T (IR/(p¥) — |RApETH]).
i=1
Proof.
(1) follows immediately from (2.1)(i) and the definition of @y,
(11) is an application of (2.1)(ii) and (iii):
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By using (2.1)(1i) it is easy to see that the element x + (ab) is a unit in R/(ab) if and
it

nn}v if v -+ (n\ and x + ”1\ are N sin R/(a) and R/(h) regnectiy ‘/el\/
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Conversely, let (u + (a), v + (b)) be a pair of units of R/(a) x R/(b). According to
(2.1)(1) there exists a unique element y modulo a-b satisfying y =umoda and
y =vmoda. Hence y + (a) and y + (b) are units in R/(a) and R/(b) respectively.

(i) follows from (2.1)(ii) since the elements a + (p*) of R/(p") divided by p + (p*) are
in one-to-one correspondence with the elements of R/(p* 1).
(iv) follows by induction from (i1) and (iii). [

FUR S LI LY. 4

in [6]. We skip the easy proof.

(2.3) Theorem. Let A:= Ordg(M), then:

(1) Every R-submodule N of M is cyclic and Ordg(N) is a divisor of A.

(ii) Modulo the group of units in R, for every divisor r of A there exists exactly one
R-submodule U, of M satisfying Ordg(U,)=r.

(iii) For every divisor r of A there are exactly @g(r) elements of R-order r in M
Moreover, one has

TIUCT

Y. @r(r)=|M|=|R/(A)]

where r runs over a cgmplete svstem nf pairwise non-associate divisors of A.

By applying (2.2) to the cyclic module structures in finite ficlds, we obtain some
well known results:

For aelFY,. let ord (2):= Ordz(2) = min {neN:a" = 1} be the multiplicative order
of «. Accordlng to (2.1) the number of prlmltlve roots in IFY,. is equal to the number
of unitsin the ring Z/(q™ — 1)Z, hence @z =: ¢ is the well known Euler-function from
number theory. Furthermore, (2.2) yields

(2.4) Corollary. Let a be a divisor of q™ — 1. Then the number of elements of order a
in IF}.. is equal to
k

o(a) = ﬂ(lll |=1Z-D=a]]01

i=1
k
where || pi is the prime decomposition of a. In particular @(q™ — 1) is the number of
i=1
primitive roots in I

We are now going to investigate the additive group (IF,.., +) as cyclic module
over IF [ x] and will again obtain some known facts (see [ 10, Chap. 3.4] and [9]).

Let Ord(ﬁ) Ordp. H(ﬂ) denote the additive order of B. According to (1.2) (i) this
is the monic polynomial of least degree satisfying gof =0. Furthermore, let
D= D

q[-x]

As the group of units in IF [x] is isomorphic to IF} and as Ord(FF ) = x™ — 1,

the additive orders of elements in IF,.. correspond to the monic divisors of x™ — 1

in IF [x]. We obtain o o

(2.5) Corollary. Let f be a monic divisor of x™ — 1 in IF [ x] with prime decomposition
frifs f* Then the number of elements in IF - whlch have additive order f over
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IF, is equal to
= [T UE,IxIAS ] — 1L D) = g8/ ]_[ q ¢,
i=1
(Here deg f denotes the degree of f.)

We close this section with the Mobius inversion formula (c.f. [6]) which will be
applied in Sect. 3.

(2.6) Theorem (Mébius inversion formula). Let h and H be two mappings of R into
a (multiplicatively written) abelian group G. Then for every be R — {0}

H(b)=[]h(r) if and only if h(b) = [ [ H(r)*=®"

rib rlb
where
] I, ifaisaunitin R
(@ 0, ifaisnot square-free
a):= . . .
Hr (—1)%, otherwise, with k denoting the number of
distinct irreducible divisors of a

is the Mophius ﬁnqcagn in R {wn‘h r as in ( ) ( ) running over a cgmnlg[e system

of pairwise non-associate dmsors of b).

3. A Characterization of the Elements in qu", over qu

The algebraic structure of F_,, over IF, essentially depends on the following three

(1) The divisors of m are in one-to-one correspondence with the fields that lie
between IF , and IF,. The degree deg(2) of the minimal polynomial of x€lF ,,
is a divisor of m and the field generated by IF, and « is equal to IF , where
s =deg(x). Thus « is called a defining element of IF , over IF,.

{2) The divisors of ¢™ — 1 by (2.3) are in one-to-one correspondence with the
subgroups of IF,. Every x in IFY, has a multiplicative order ord (x) which is a

nositive divisor nf n — 1
po ! 1.

131

(3) The monic divisors of the polynomial x™ — 1 'in IF [ x] by (2.3) are in one-to-one
correspondence with the IF,[x]- submodules of IF .. Every x€lF ,, has an
additive order Ord (x) which is a monic divisor of x™ — 1.

Therefore the role of « in IF,. is described by the triple (deg(x), ord («), Ord(«)).
We define ord (0):= . The following Lemma (3.2) (c.f. [9]) shows that the degree
of x is already specified by the quantities ord () and Ord(x) respectively. First

some r\(\f atinn ic rannirad
LR IWtauun s ivyyuiica,

(3.1) Notation. Let a be a positive divisor of ¢" — 1 and f a monic divisor of
x" — 1inIF [x]. We denote by ord (¢g):= min {keIN:¢* = 1 mod a} the multiplicative
order of g in the group of units of Z/aZ and by Ord ;(x):= min {keN:x* = 1 mod [}
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the multiplicative order of x in the group of units of IF [ x]/(f) respectively. (Because
of ged (a,q) = 1 and ged(f, x) =1 these terms are well-defined.)

(3.2) Lemma. Let x2€lfy, a:= ord(x) and f:=Ord(x). Then deg(a)=ord,(q)=
Ord ((x).

Proof. If d = ord,(g), then by definition d is the smallest positive integer satisfying
a|q’ — 1. Consequently « is a defining element of IF . and deg () is equal to d.

If e = Ord «(x), then by definition e is the smallest positive integer satisfying
f1x¢—1 and therefore minimal with (x* —1pa=a —a=0. So {(¢°)> is the
Galois-group over {IF, >, the field generated by IF, and « (as in the first section,
o denotes the Frobenius-automorphism of F,. over IF,). This also yields
e=deg(x). []

After having proved that « is characterized by the pair (ord(a«), Ord (), we are
now going to discuss a problem L. Carlitz partially has dealt with in {3].

(3.3) Problem. Let (a,f) be a pair with a|g™ — 1, f|x™—1 (f monic). Do there
exist elements « in IF . over IF, with ord(x) = a and Ord (x) = f?

Lemma (3.2) yields a necessary condition on the pair and therefore shows that
(3.3) cannot hold in general. We call a pair (a, f) satisfying ord,(q) = Ord ;(x) a
nontrivial one.

Theorem (1.3) of Lenstra and Schoof implies that there always exist elements
of the rype (g™ — 1,x™ — 1) in IF .. over IF,.

In this section we want to show, how at least theoretically one can compute
all primitive and free roots (generators of primitive normal bases) in IF_,, over I,
and, more generally, all clements of a given nontrivial type (a, ). We are therefore
going to introduce a new family of polynomials, being the additive analogues of
the cyclotomic polynomials.

24 AN ad Ao ..,..f A
J.H) otation and uc;u iion.

(i) For a divisor a of ¢" — 1 let
B,:={a2€lF ,ord(x)=a} and Q(ax): =[] (x—p.

BeBq
Q(a; x) is called the ath cyclotomic polynomial in TF [ x].
(ii) For a monic divisor f of x™ — 1 in IF [x] let
Api={aelF,:Ord(@)=f} and P(fix):= [] (x—p).
peAs
We call P(f;x) the n-polynomial over IF, belonging to f.

Next we state a well known theorem which is proved in [10] by applying the

Mahiug inversion fnrmn] a.
LYAVN UYL YWl OiNV/L) it

(3.5) Theorem. Let a be a divisor of ¢™ — 1. The polynomial Q(a; x) is an element

of ¥ [x]. It splits in [ [x] into the product of - factors of degree @(a) and

nd

Vil

Qla; x) = [ [ (x* — 1)yseid

d|a

{0
\

7
satisfies

where u denotes the Mébius function in Z.
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Similarly, considering the additive group (FF .., +) as an IF,[x] - module, one
gets the following result:

(3.6) Theorem. Let f be a monic divisor of x™ — 1 in IF [x]. The polynomial P(f;x)
is an element of IF [ x].

It splits in IF [x] into the product of
Ord(x) and satisfies
PUfixi= [T By

elf

emonic

where E denotes the associated g-polynomial belonging to e (see (1.2) (iii)) and p,
denotes the Mobius function in the ring IF,[x].

Proof. Because of ged (x,x™ — 1) =1 the polynomial x is a unit in IF [x]/(x™— 1)
and therefore induces with o — xex = % an IF,[x]-module automorphism on IF ..
For this reason the conjugates of z have the same additive order as x. Hence, for
any monic divisor f of x™—1, the set A, = {«€F,.|Ord(2)=f} is a union of
classes of conjugate clements and therefore being a product of irreducible
polynomials in IF [x], P(f;x) itself is a member of IF,[x].

The second assertion follows immediately from the facts that the number of
elements of A, is Cqul to CD(f (see (2.3)) and that the number of elements in
every conjugacy class in 4, is equal to Ord x) (see (3.2)).

By using the ring IF,[x], the group ({ fg ~* j gelF, [x] — {0},-)and the formula

fixm—1 fed;y j}xm -'1
f monic monic

we finally may deduce the representation of P(f;x) from (2.3) and (2.6).
Forevery monic divisor f of x™ — 1 in[F,[x] we set h( f):= P(f; x). Furthermore,

let U = {2€lF_.:f2 =0} denote the unique submodule of IF,.. belonging to f. By

definition the elements of U, have an additive order dividing f and therefore

coincide with the set of roots of the polynomials P(e; x) where e is a monic divisor
of finlF [x].

On the other hand, every element « of order e dividing f lies in U, whence
U, 1s exactly the set of roots of the associated q;pol‘,nomlal Fof f(cf (1.2) (i)

We therefore obtain

Setting H(f):= F and using the Md&bius inversion formula (2.6), we obtain the
desired representation of P(f;x). O

The following theorem is a direct consequence of (3.5), (3.6) and (3.2).
(3.7) Theorem. Let (a, ) be a nontrivial pair belonging to IF,. over F,

(i) The intersection A, N B, is exactly the set of elements in IF, .. over F, having
multiplicative order a and additive order f.
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(1) This set consists exactly of the roots of the polynomial R(a, f; x):= ged (Q(a; x),
P(f:x))
WAL RAY Y
A, B, is non-empty if and only if R(a, f;x) # 1.

(i) A, B, is a union of classes of conjugate elements with respect to the Galois
qroup of]F over IF,.

Los nese D

2 So e it -.i\... - 8 T Y EAY ~
(iv) The cardinality of Afr D, 1S a muitipie 0f Ura AXj = O1G d{g).
a

)}
In our notation, Theorem (1.3) of Lenstra and Schoof may now be stated as follows:

(3.8) Theorem. For every prime power g > 1 and every positive integer m > 1 the
greatest common divisor R(@™ — 1,x™ — 1;x) of Q(¢g™ — 1;x) and P(x™— 1;x) has
degree greater than Q.

We close this section with some examples which dmong other things show that

nere UU Clel llClU CXLCIISIUIIS Wll[l I]UIllflVld.l pdl[b \u j} bdllblylilg |1‘If( \Dal = U
Therefore Theorem (1.3) cannot be generalized to all nontrivial pairs.

(3.9) Example. We investigate the extension IF,, over IF, and first calculate all
p‘l"1m1ﬁ\IP normal bases with (3.5), (3.6) and (3.7).

aizaxsa Vi 2272212828 VAESKNS Y L LAz

Because of 2* — 1 =35and x*— 1= (x— 1) we obtain

Px*—Lx)=x3+x*+x+x+1=(x*+ x>+ D) x*+ X+ x> +x+1)
d

an
[+ 53

i

0015 x)=x 4+ x"+ X+ x*+ P+ x+1=x*+ x>+ ) (x* + x+ 1)

The greatest common divisor of these polynomia]s is x* + x? + 1, hence there
exist exaCu_y four elements which are pi‘lmmvc and free in IF 16 OVEr FZ.

In the Table 1 we have listed all irreducible polynomials of degree 1,2 or 4 1n
IF,[x] with corresponding multiplicative and additive orders of their roots.
Examining all non-trivial pairs, we see that there are no elements of the type

(5, x>+ x4+ x+ 1),

Table 1

Root of Mult. order Additive order
x4 15 x*—1

xPaxt x4 x+1 5 x*—1
x*4+x+1 15 x4 x+1
x>+ x+1 3 x?+1

x+1 1 x—1

X x 1

(3.10) Erample Let ¢ > 1 be any odd prime power and let m = 2.

Then x? — 1 = (x — 1)(x + 1). Any defining element of IF . over IF, has additive
order x + 1 or x> + 1. (Note that x — 1 is different from x + 1 as IF, by assumption
has odd characteristic.) Let « be a prlmmve root of IF. If (x + I)Joc =o' 4+a=0,
then ¢ '= —1, whence ord(z)=¢*—1 is a leISOI’ of 2g—2. This is a
contradiction and we obtain that there do not exist elements in IF, over IF, of
nontrivial type (> — 1, x + 1).

Consequently, any primitive root in I, is a free root over IF,.
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4. A Recursive Method for Calculating 7-Polynomials

In H. Liineburg [11, §14] a quick method to compute cyclotomic polynomials over
the field of rational numbers is presented. In this section, advantage will be taken
of a similar strategy to describe how n-polynomials can be calculated recursively.

If f is a monic divisor of x™ — 1 in IF [x], we will call an element « of A, (cf.
(3.4) (ii)) a generating root of f. Furthermore we denote by P, the n-polynomial
P(f: x). By defining

(fOg)x):=1(G(x))

we introduce a new multiplication in IF [x] (again G denotes the associated
g-polynomial belonging to g).

(4.1) Lemma. Let f and g be monic divisors of x™ — 1 such that fg|x™ — 1. Then P,
is a divisor of P, Oyg.

Proof. By definition the roots of P, are exactly the generating roots of fg. We
therefore have to show that « is also a root of P,Og for any o in A,

Because of the fact that Ord () = fg, the element geoa is a generating root of f
and consequently a root of P, The definition of  in (1.1) yields P (goa)=
PAG() = (P,Og)a). O

The recursive calculation of 7-polynomials is essentially based on the following

results (4.2) and (4.3).

(4.2) Theorem. Let f be a proper monic divisor of x™ — 1 and g be an irreducible
divisor of x™ — 1 in IF [x] satisfying ged (f,g) = 1.
Then fg is a divisor of x™ — 1 and one has P;P,;,= P ;(Og.

Proof. Let B be a root of P,. That means Ord(f)=f. By assumption we have
ged (f,g) = 1. Hence g induces with « — gox an IF,[ x]-module — automorphism on
the submodule U ;= {ael .|fex=0; and therefore 1n particular a byection on
the set A, of generating roots of f. This shows that g is also a root of P,. Thus
0= P, (g°p)= P (G(B)) = (P,Og)(B) and therefore P, divides P,(Og.

As P, and P, are relatively prime, together with (4.1) we obtain that likewise
their product is a divisor of P,(Og. As PP, and P;(Og are monic polynomials,
now it suffices to show that their degrees are equal.

With (2.1), (2.2), the assumption that f and g are relatively prime and the fact
that deg(P;)=|A,| = @,(f), one gets

deg (P, P() = @ fg) + @f) = OLNPL9) + Pf) = P P[9) + 1),

Furthermore, considering that g is irreducible, with (2.2) (iii) we obtain @,(g) =
g% — 1 and therefore

deg (P, P() = @, f)q*=.
On the other hand, according to deg (G) = ¢*** and the definition of ©, we have
deg (P, Og) = deg(P,)-deg(G) = @,(f)q*=?.
This proves (4.2). [

(4.3) Theorem. Let f,g and fg be monic divisors of x™ — 1.
If every irreducible divisor of g is a divisor of f, one has P, = P Og.
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Proof. According to (4.1) the polynomial P,, is a civisor of P, (Og. As both
polynomials are monic, it again suffices to prove the equality of their degrees. We
have (see also the proof of (4.2))

deg (P, Og) = @,(f)q"?.

Furthermore, by (2.3), (2.5) in connection with (3.4) (ii) and the assumptions

deg (P ) = @fg) = g/ [] (1—q )

hifg

[
Hoarfrcda.

— qdeg(f)qdeg(g) 1_[ (1 . q—deg(h)) — (pq(f‘)qdeg(g)'
hif

hirred.

This proves (4.3). [

Now let f be a monic divisor of x™ —1 over IF [x]. The following procedure
shows, how to obtain P, by applying (4.2) and (4.3), provided that the prime
decomposition of f is given.

If / has no muitiple roots which is valid in any case, provided that the
characteristic of IF, does not divide m, we calculate P, with the help of (4.2). Let
fif5..f, be the decomposition of f into irreducible polynomials in IF [x]. By
(3.6) one gets

Py =Fxyx~1

(F, is the associated g-polynomial of f,.)
In the case t = 1 we have finished. Otherwise f, and f, satisfy the assumptions
of (4.2) which yields P, P, ,, =P, Of, and therefore

Pflfz = (Pfl G>fZ)Pf_ll'
Recursively we obtain

Pflfz“'f:-lpflfz;"fz = Pflfz"'ft—lefl

and therefore

Pr=PF =Py, Qf!)Pf_z}z“-f:.-x‘

Il f has multiple roots, e.g. f=1(f)g where t(f) is the square-free part of f, we
use the above algorithm to determine P, ., and then use (4.3) to calculate P, by

P.szr(f).q:Pr(f)@g'

(4.4) Example. Let ¢ =2 and m = 6. We want to determine all primitive and free
roots in [F¢, over IF,.

1. Step — (Determination of Q¢ ;(x):= Q(63; x), the 63rd cyclotomic polynomial over
IF,): ,
We use the algorithm in [11, §14].
(1a) 63 =327,

(1b) Qi(x)=x*+x+1.
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(I¢c) in(x):sz(x):Qa(x7)'Q3(x)~1
=xP2 x4 x4t x+ L
(1d) Q63(x) = Q5,(x?)

—x3O x4 L

2. Step - (Determination of P _,):
We use the algorithm above.

(2a) x®—1=(x+ )*x*+x + 1)? over FF,.

(2b} P, =(x*+xyx'=x+1

(2¢) Poavi =P, rixss,=((x+ DO +x+DHx+1)""
=(x*+x2+x+ D) (x+ D) P =x+x*+ 1

(2d) Po ,=(+x+ 100+ D=x*+x>+(x2+x)?2+1

3. Step
Determination of ged (Qy,, P« _ ) with the Euclidean algorithm yields

ged(QeyProy ) =X+ x"7+ x4 x4+ x% +x7+xP +xP 4+ 1.

Factorization of this polynomial over IF, gives
26d (Qg3 Prosy) = (x4 x° + DH(x® 4+ x° +x7 +x + D{(x° +x° + x* + x + 1),

We obtain that there are exactly 18 primitive and free roots in IFy, over IF,.
The corresponding minimal polynomials are (x° + x> + 1), (PH+xP+xT+x+1)
and (x® + x>+ x* + x + 1).

We conclude our investigations with some remarks:

Consider again IF .. over I, and assume that the characteristic p of IF, does
not divide m. Let f:=x™ — 1. If ¢ is the number of different irreducible factors of
f in TF [x], we have to do 2' divisions and multiplications by applying the
representation of P, in (3.6). Following (4.2), the number of recursion steps is equal
to t. But in each of these steps the operation © which contains the composition
and a division of polynomials has to be performed. (If the division is left out in
each step, it is easy to see that we finally obtain a representation of P, as a quotient
of products of g-polynomials. This representation coincides with (3.6).)

The algorithm to compute cyclotomic polynomials in [11] is very efficient since
the recursion contains a composition of polynomials of the simple form x* (see
also Example (4.4)). As mentioned above, for n-polynomials the situation is more
complex.

By (3.6) the n-polynomial P(f; x) has degree @,(f). Using (2.5) it is not difficult

to show that this number is at least (¢ — 1)™. Therefore it would be of certain
practical interest to have some knowledge about the number of non-zero coeffici-
ents of this polynomial. In our example the number of terms of P _, is comparable
with the number of terms of Q5. By the analogy of (3.5) and (3.6) this might also

hold in general.
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