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Abstract

The spectral properties of up to four interacting electrons confined within a
quasi~one dimensional system of finite length are determined by numerical diago-
nalization. The ground state energy as a function of the number of the electrons
and the lengths of the system is investigated. The energetically lowest lying ex-
citations are identified with vibrational and tunneling modes of the charge distri-
bution. The limits of a dilute, Wigner-type arrangement of the electrons, and a
dense, more homogeneous distribution are discussed.

1 Introduction

Interaction effects play a crucial role in the understanding of the electric transport in
very small condensed matter systems [1]. Most prominent are the Coulomb blockade and
the single-electron oscillations in quantum mechanical tunneling of electrons through
very small tunnel junctions [2], and the resonance-like oscillations of the conductance of:
quantum dots at milli-Kelvin temperatures [3]. They are commeonly discussed in terms of
the tunneling resistances and capacitances [4, 5]. However, the microscopic justification
of the latter is not obvious [6, 7].

One possibility to investigate whether or not a capacitance can be defined for small
systems is to compare the quantum mechanical ground state energy E; of several, N,
interacting confined electrons with the charging energy of a capacitor. In this paper
we present results for Ep obtained by numerical diagonalization of the corresponding
Hamiltonian. In contrast to previous work for harmonic confinement {8, 9] which was
restricted to /N < 2 we consider rectangular confinement and N < 4.

In addition we discuss the spectral properties, especially in the asymptotic regions of
low (Wigner electron lattice) and high density (alinost homogeneous charge distribution).
We identify two kinds of elementary excitations, namely vibrational and tunneling modes
that are related to the Coulomb repulsion, and the exchange interaction, respectively.

We conclude from our microscopic results that for the system parameters realized
in inversion layer based quantum dots the quantum mechanics of the electron—electron
interaction cannot be neglected.
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2 Interacting electrons in a square well potential

We consider N—electrons within a 1D square well of length L. We use the interaction

potential
1

—_— 1
(z—a)t+ A2 )
which behaves Coulombically at large distances. A is a measure for the width of the

electron wave functions in transversal direction. For most of our results A/L = 2-107* <
1. Then, the energy eigenvalues of the Hamiltonian

V(z,z') «

H = Eg"p (QTBHU + ) (2)

depend only weakly on A. Ey = e?/ap is the Hartree energy, ap = eh?fme? the
Bohr radius, € the relative dielectric constant and m the electron mass. The relative
importance of the the kinetic energy of the electrons within the square well,

Ho=3 enctscno (3)

n,e
(&, x n?), and the interaction energy,
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changes with the system length. The total electron spin S is conserved. All eigenvalues
have degeneracy 25 +1.

The interaction matrix elements Vj,n;n,n, are real, and do not depend on the spin
state 0. They fulfill the symmetry relations Vi, nynany = Vagnanana = Varmanang = Vagnanang-
Furthermore, Vi,ngngny = 0 if 2 ;7 = odd. For A/L <1

—— " dg (n(@ML) + C) ful@) fsle) -
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f.; is the Fourier transform of the product ¢}, ()n, () of the one—electron eigenfunctions
of Hy,and C = 0.577 the Euler constant.

The numerical diagonalization requires a restriction of the number of considered one
particle states ¢t | 0) to 1 < n < M. Their anti-symmetrized products form a
complete N-particle basis, which includes also the spin degree of freedom. It can easily
been generated for arbitrary N using a binary code representation. Although the size
of the Hamiltonian matrix, given by the binomial coefficient R = (2M)!/N!(2M — N)!,
is rapidly increasing with N there are only relatively few non-vanishing elements. It is
very economic to determine only the latter. Applying two creation operators to a certain
(¥ —2)-particle state, generates an V- —particle state with proper sign, which corresponds
to a certain row of the Hamiltonian matrix. Creating from the same (N — 2)-particle
state a (different or the same) N-particle state identifies a certain column. Indepen-
dent summation over all possible two-particle excitations and subsequent summation
over all (N — 2)-particle states generates eventually all non-vanishing elements of the
Hamiltonian matrix. In our calculations B < 10* even when using Lanczos procedures.
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Figure 1: Energy spectra for dif-
ferent electron numbers for a sys-
tem of length 9.45ap in atomic en-
ergy units Er. The ground state
energies Eq are substracted. The
low lying eigenvalues form mul-
tiplets with very small internal
level separations which are not re-
- solved in the figure. The corre-
3 2 3 s sponding states differ in the total
Number of Particles —m spin quantum number.
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® Figure 2: Ground state energies
o per particle Eg/N multiplied by
Ljap versus the particle number
N in atomic units for L = 6.61ag
: (0) L = 16.1ap (o) L = 94.5ap
. (A) L =944.8ap (+). (x) denote
X the energy of N electrons at fixed,
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3 The Eigenvalue Spectrum

Typical examples of N—electron spectra are shown in Figure 1. Not only the average
total number of levels per energy interval is considerably increasing with N , but also
their density within certain energy regions. The lowest eigenvalues form multiplets that
are energetically extremely narrow when L 3> Nag. The total number of states within
each multiplet, including degeneracies, is 2V .

Figure 2 shows the dependence of Ey/N on N for different L. The data are multiplied
by L in order to eliminate the trivial L-dependence. Eo(N) is not proportional to
N(N —1), as expected for the classical charging model. For the smaller systems the
contribution of the kinetic energy leads to considerable deviations. On the other hand,
for very large L, one can approximate Ep(N) by the Coulomb energy of N electrons
at equal distances ry = L/(N — 1) (Wigner lattice).

In Figure 3 Ep/N is shown as a function of ry. Pronounced deviations from the
Coulombic 1/L behavior occur below r, < ~ 50ap. These deviations cannot be
attributed to a simple additive influence of the kinetic part of the Hamiltonian.
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Figure 3: Ground state energy
per particle Ey/N multiplied by
Lfap versus the mean particle

distance s = L/(N —1). Ground
3f state energies of the correspond-
L ing non-interacting systems were

w

subtracted. Data for N = 2,
N = 3 and N = 4 are shown
(from bottom to top). Deviations

(Eq = non interacting Groundstate Energylsl/(Neag)}
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&wr Figure 4: Energy difference be-
- o8} tween the two lowest multiplets,
o ol 01, multiplied by L/ap versus the
ok mean particle distance r,. Data
ol for N=2, N=3and N =4
1 | are shown (from bottom to top).
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00 e 200 300 400 500 a2 600 0 decreases stronger than ~ 1}
Particle Distance ry —= for N=2 and 3.

For L > Nag certain aspects of the spectra can be understood using the Wigner
crystal picture. In this limit, the electron density shows N approximately equidistant
peaks within L. One type of excitation is phonon like due to the Coulomb forces between
these charge density maxima.

For charge clouds at equal distance r, the typical phonon frequencies should behave
~ 7% with v = 3/2 or = 1 if é—function like or Gaussian charge distributions with a
variance inversely proportional to the phonon frequency, respectively, are assumed. The
energy of the lowest excitation of vibrational type is given by the distance Q between
the lowest two multiplets in our spectra. Figure 4 shows 1L/ap as function of r, for
different N. The behavior at large r, is consistent with » > 1, indicating that the charge
density distributions are more localized than Gaussians. For ry £z ~ 100ap the strong
deviations from the asymptotic behavior signalize the breakdown of the Wigner crystal.

Fach of the multiplets consists of a series of energy levels that are (25 - 1) —fold
degenerate since the corresponding states are simultaneously eigenstates of S?. They
transform according to the irreducible representation A, of the permutation group Py
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' -6 ® e Figure 5: Logarithm of the energy
3 o ® difference A between the ground
3 » fa : . state and the first excited state
- a0 within the lowest multiplet ver-
-1 °op sus the system length for N = 2,
" e M=11(0),N=3, M =13 (o),
. and N =4, M = 10 (A). From

o 5 10 15 2 the slope of the data we estimate

Systemlength ~——e— Lo 1.5ap.

(Pauli principle). However, when exchanging spatial coordinates, only, they transform
according to anyirreducible representation of Py since H does not contain spin operators.

In general, the states are not simple products of spatial and spin parts, as is shown
for N =3 in [10]. The quantum number of the total spin increases with increasing
energy within each multiplet, in agreement with the theorem of Lieb and Mattis [11] for
1D interacting electrons.

For a better understanding of the level structure within one multiplet we consider
the configuration space of dimensionality LN . The modulus of the N-particle proba-
bility amplitude has maxima there at N! different points corresponding to the number
permutations of N particles. The eigenfunctions can be approximately identified with
linear combinations of states |j>, with 1 < j < N!, each of them corresponding to
one of the N! maxima. The coefficients for the linear combination are determined
by the respective irreducible representation of Py. The differences between the energy
expectation values are proportional to the finite overlap integrals between the states
[7> . Assuming an asymptotic exponential decay of the }i> wave functions suggests
A o exp(~L/La), where A is the energy difference between the ground state and the
first excited state within the lowest multiplet. L, is a characteristic length scale beyond
which the non-interacting spectrum is changed into the multiplet structure characteris-
tic for the influence of the Coulomb interaction. The tunneling energies A depend on X,
due to the finiteness of the height of the potential barrier between different maxima of
the N-electron probability amplitude given approximately by V(z,z) x A~? (eq. (1)).

In Figure 5 the L-dependence of In(A/Fy) is plotted for different N . From the
slope of the linear part of the data we obtain La = 1.5¢g.

4 Conclusion

We have calculated numerically the energy spectra of up to N = 4 electrons confined
within a quasi-one dimensional potential well of finite length. We demonstrated that the
Eo(N) deviates from the classically expected N*-behavior due to the quantum mechan-
ical influences of the kinetic energy, and the formation of & Wigner-lattice like structure
for small and large L, respectively. For low electron numbers it is only a limited range
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of variables where a capacitance-type of behavior can be obtained.

We discussed the dependence of the energies for the lowest (vibrational and tunreling
mode) excitations. Deviations from the Wigner-type arrangement due to the influence of
the kinetic energy part is found for quite large system sizes r;. The ground state energy
cannot be obtained by adding kinetic and potential energy eigenvalues separately. It
turns out that exponentially decaying states |j> describe our data well down to system
lengths L = La = 1.5ap (Figure 5), although the single particle charge density can be
expected to be more or less homogeneous for L < N -100ap (Figure 4).

Given the geometry and the electron numbers in the AlGaAs/GaAs-based quantum
dots showing the resonance-like conductance oscillations [3] (area of the dot ~ 2-10°nm?,
number of electrons & 10? effective mass & 0.07m, dielectric constant ~ 10) one can
estimate a mean distance of r. & 2ap such that L = r, < r1,r2. Although in general,
especially at lower electron density [12], quantum mechanical effects cannot be discarded
for the understanding of the conductance oscillations, we conclude from the results of
our investigations (Fig. 2) that for this relatively high density the physical situation
can be approximately described by a semi-classical picture taking into account only the
Coulombic part of the electron-electron interaction.
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