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Abstract
Randomized clinical trials with time-to-event endpoints are frequently stopped
after a prespecified number of events has been observed. This practice leads to
dependent data and nonrandom censoring, which can in general not be solved
by conditioning on the underlying baseline information. In case of staggered
study entry, matters are complicated substantially. The present paper demon-
strates that the study design at hand entails general independent censoring in the
counting process sense, provided that the analysis is based on study time infor-
mation only. To illustrate that the filtrationsmust not use abundant information,
we simulated data of event-driven trials and evaluated them by means of Cox
regression models with covariates for the calendar times. The Breslow curves of
the cumulative baseline hazard showed considerable deviations, which implies
that the analysis is disturbed by conditioning on the calendar time variables. A
second simulation study further revealed that Efron’s classical bootstrap, unlike
the (martingale-based) wild bootstrap, may lead to biased results in the given
setting, as the assumption of random censoring is violated. This is exemplified
by an analysis of data on immunotherapy in patients with advanced, previously
treated nonsmall cell lung cancer.
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1 INTRODUCTION

In contrast to other clinical studies, time-to-event stud-
ies are driven by the effective sample size, that is, the
number of observed events, rather than by the number
of recruited subjects. If the number of events is planned
in advance, the respective study is called “event-driven.”
Many examples of such trials can be found in the literature,
see, for example, Elisei et al. (2013) in the field of oncol-
ogy, Sitbon et al. (2015) and McLaughlin et al. (2015) in
the pulmonary vascular area, Husain et al. (2019) address-
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ing diabetes and cardiovascular disease, and, in light of the
ongoing COVID-19 pandemic, Baden et al. (2021).
The difference between effective and actual sample size

is usually caused by right-censoring, which masks the
time between the end of the observation period and the
event of interest. Supposing simultaneous entry times,
simple type I censoring is a consequence of a prespec-
ified time point at which a trial ends, whereas simple
type II censoring occurs in case that the follow-up period is
stopped after a fixed number of events has been observed
(Andersen, 2005). For the analysis of a study that is subject
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to the latter, it is important to note that the acquired
data include dependencies, since the time point of the
last observed event determines the information on every
subsequent occurrence: It is only known that censored
events must have happened after this time point (or not
at all, depending on the event of interest). There are no
further consequences for the analysis if all subjects enter
the study at the same time: The common time-to-event
methods are valid under the assumption of indepen-
dent censoring in the counting process sense (Andersen
et al., 1993, p. 139), which is a substantially less restric-
tive requirement than that of random censoring. Loosely
speaking, independent censoring applies if the intensity of
the observable counting process corresponds to the inten-
sity in the (hypothetical) model without censoring, except
for a (predictable) at-risk indicator. It is easy to see that this
condition is fulfilled in event-driven trials with simultane-
ous entry, that is, trials subject to simple type II censoring
(Aalen et al., 2008, p. 59). Settings that additionally involve
external left-truncation (or delayed entry) are likewise cov-
ered by the respective considerations (cf. Aalen et al., 2008,
p. 32) and are not of interest here.
In case of staggered study entry, the situation is not as

clear, though. This scenario ismore relevant in the practice
of clinical trials and of higher complexity than the situa-
tion with one common entry time: Due to the projection
of the event times onto the study time scale, an additional
source of randomness is introduced, and the previous con-
siderations are no longer justified. The specific case of
event-driven trials with staggered entry is not regarded in
any of the literature sources we reviewed, and even though
there seems to be no formal proof showing that the com-
mon time-to-event methods are valid, they are still often
applied.What ismore, care needs to be takenwhen search-
ing for literature on the topic, as some authors consider
a different definition of independent censoring than the
one we adhere to in the following (cf. eg, O’Quigley, 2008,
p. 122; Kleinbaum and Klein, 2012, p. 38). An overview of
the different concepts of censoring according to Andersen
et al. (1993) is given in Andersen (2005). It is further worth
mentioning that independent right-censoring is still a rel-
evant subject in the literature, see, for instance, Overgaard
and Hansen (2021) for a recent discussion on the topic.
In this paper, we make use of the counting process

representation of time-to-event data to demonstrate that
event-driven trials with staggered entry entail independent
censoring in the counting process sense. An essential con-
dition is that all calendar time information is excluded
from the analysis, which ensures that the sequence of the
events is concealed. By means of simulations, we reveal
two potential issues with the analysis of studies conducted
in the described setting in order tomake statisticians aware
of biased outcomes and ways to avoid them. First, we illus-

trate the adverse effect on the analysis if calendar times
are included in spite of the condition mentioned earlier.
Besides, a second simulation study shows that for small
sample sizes, techniques which require random censoring
can cause substantial bias in the context of event-driven
trials with staggered entry. Even though the study popula-
tion in a clinical trial is typically larger than the samples
for which our simulations revealed deviations, the subsets
considered in interim analysesmay verywell be affected by
the mentioned bias: Interim analyses are often also event-
driven, while taking only a fraction of the final sample
size into account. As an example, we consider the OAK
study (NCT02008227; Rittmeyer et al., 2017), a random-
ized phase III study investigating cancer immunotherapy
in patients with advanced, previously treated nonsmall cell
lung cancer.
The remainder of this manuscript is structured as

follows: In Section 2, we introduce the notation while
summarizing the counting process representation of time-
to-event data and clarifying the formal definition of
independent censoring. Section 3 outlines the proof that
demonstrates independent censoring in event-driven trials
with staggered entry. The simulation studies are presented
in Sections 4 and 5, and in Section 6, we analyze a data
subset of the OAK study. Eventually, Section 7 comprises a
discussion of the consequences for practical applications.

2 COUNTING PROCESSES AND
INDEPENDENT CENSORING

Throughout this paper, we adhere to the notation used by
Andersen et al. (1993).
Let 𝒯 = [0, 𝜏] be the study time interval, where 𝜏 is a

given terminal time. Consider a probability space (Ω,ℱ, 𝑃)

and let the (common) hazard rate 𝛼(𝑡) determine each
participant’s absolutely continuous survival time 𝑇𝑖 (𝑖 =

1, … , 𝑛), that is, the duration of the time period between
study entry and the occurrence of the event of interest. In
addition, let 𝐶𝑖 be the censoring time of the 𝑖th subject,
which is also defined on the study time scale.
We first focus on a hypothetical model where the data

are not censored, as indicated by the superscript “𝑐” (for
“complete”). This model provides the framework to define
the true parameters of interest. We consider the right-
continuous counting process {𝑁𝑐(𝑡), 𝑡 ∈ 𝒯}, which jumps
at the times of the events and is constant otherwise, or
more formally, 𝑁𝑐(𝑡) =

∑𝑛

𝑖=1
𝟙{𝑇𝑖 ≤ 𝑡}, where 𝟙{⋅} denotes

the indicator function, 𝑁𝑐(0) = 0 and 𝑁𝑐(𝑡) < ∞ for all
𝑡 ∈ 𝒯. By definition,𝑁𝑐 is adapted to the filtration (ℱ𝑐

𝑡 )𝑡∈𝒯
that is generated by the counting process itself, such that
the past ℱ𝑐

𝑡− includes all the information available just
prior to time 𝑡. The (predictable) intensity process 𝜆ℱ𝑐 is
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further defined by 𝜆ℱ𝑐
(𝑡) 𝑑𝑡 = 𝑃(𝑑𝑁𝑐(𝑡) = 1 ∣ ℱ𝑐

𝑡−), where
𝑑𝑁𝑐(𝑡) refers to the increment of 𝑁𝑐 over the infinitesi-
mal interval [𝑡, 𝑡 + 𝑑𝑡). As Aalen (1978) showed with his
“multiplicative intensity model,” 𝜆ℱ𝑐

(𝑡) can be expressed
as the product of the at-risk process𝑌𝑐(𝑡) =

∑𝑛

𝑖=1
𝟙{𝑇𝑖 ≥ 𝑡}

and the hazard rate 𝛼(𝑡).
The next step is to extend the described model such that

censored data are accommodated. The required concepts
are those actually used for the analysis of time-to-event
data. Suppose that we do not know the individual values of
the event and censoring times 𝑇𝑖 and 𝐶𝑖 , but only observe
their minimum as well as the value of the indicator 𝟙{𝑇𝑖 ≤
𝐶𝑖} (𝑖 = 1, … , 𝑛). Thus, it is necessary to define an adjusted
càdlàg counting process {𝑁(𝑡), 𝑡 ∈ 𝒯} that jumps at the
times of observed events only, that is, 𝑁(𝑡) =

∑𝑛

𝑖=1
𝟙{𝑇𝑖 ≤

𝑡, 𝑇𝑖 ≤ 𝐶𝑖}. As before, we assume that𝑁(0) = 0,𝑁(𝑡) < ∞

for all 𝑡 ∈ 𝒯, and that 𝑁 is adapted to a filtration (ℱ𝑡)𝑡∈𝒯
with corresponding past ℱ𝑡−. The latter includes merely
observable information that has been obtained before time
𝑡. One may further extend the filtration by baseline infor-
mation. Analogously to the definition above, the intensity
process associated with 𝑁 is characterized by 𝜆ℱ(𝑡) 𝑑𝑡 =

𝑃(𝑑𝑁(𝑡) = 1 ∣ ℱ𝑡−). If we assume random censoring, that
is, (stochastic) independence between the survival and
censoring times, Aalen’s multiplicative intensity model
is still valid with respect to the adapted at-risk process
𝑌(𝑡) =

∑𝑛

𝑖=1
𝟙{𝑇𝑖 ≥ 𝑡, 𝐶𝑖 ≥ 𝑡}. However, randomcensoring

is not fulfilled for event-driven censoring, which is why we
consider a less restrictive notion that still permits sound
inference for time-to-event data.
To establish this notion, a third filtration (𝒢𝑡)𝑡∈𝒯 has

to be defined: 𝒢𝑡− complements the past ℱ𝑐
𝑡− with details

about the censoring process, such that both the uncen-
sored and the observable representation of the data are
considered. (ℱ𝑡)𝑡∈𝒯 is therefore nestedwithin (𝒢𝑡)𝑡∈𝒯 and
the counting process 𝑁 is adapted to (ℱ𝑡)𝑡∈𝒯 as well as
(𝒢𝑡)𝑡∈𝒯 . By the law of total expectation, it can be shown
that the intensities relative to (ℱ𝑡)𝑡∈𝒯 and (𝒢𝑡)𝑡∈𝒯 are
generally not equal (Aalen et al., 2008, pp. 56–57).
Independent censoring defines a very general condition

that still allows to obtain unbiased results. A censoring pro-
cess is independent in the sense of Andersen et al. (1993) if
it does not provide any information that alters the inten-
sity of a subject at risk, or in more formal terms, if for all
𝑖 ∈ {1, … , 𝑛} and for all 𝑡 ∈ 𝒯,

𝜆𝒢
𝑖
(𝑡) = 𝜆ℱ

𝑐

𝑖
(𝑡), (1)

where 𝜆𝒢
𝑖
(𝑡) 𝑑𝑡 = 𝑃(𝑇𝑖 ∈ [𝑡, 𝑡 + 𝑑𝑡) ∣ 𝒢𝑡−) and 𝜆ℱ

𝑐

𝑖
(𝑡) 𝑑𝑡 =

𝑃(𝑇𝑖 ∈ [𝑡, 𝑡 + 𝑑𝑡) ∣ ℱ𝑐
𝑡−) (Andersen et al., 1993, p. 139).

This condition has very useful implications: Assuming
that Equation (1) holds, and that the hazard 𝛼(𝑡) is (ℱ𝑡)-
predictable for 𝑡 ∈ 𝒯, it is easy to see that the multiplica-

tive intensity model is valid for the observable intensity 𝜆ℱ
(Aalen et al., 2008, p. 60).

3 INDEPENDENT CENSORING IN
EVENT-DRIVEN TRIALSWITH
STAGGERED ENTRY

In the further course of this paper, wewill focus on the spe-
cific case of type II censoring with staggered patient entry.
To the best of our knowledge, there are no sources that pro-
vide evidence for the validity of independent censoring in
this context. Most literature sources that address incom-
plete observations merely cover random censoring, and
elsewhere, the definition of independent censoring is not
consistent with the one considered here (cf. the discussion
in Martinussen and Scheike, 2006, pp. 52–57).
Before dealing with the proof that Equation (1) is indeed

satisfied in event-driven trials with staggered entry, one
should be aware of the need to switch between two differ-
ent time scales and the challenges that come along with it:
On the one hand, censoring times are determined by the
chronological sequence of the events in case of type II cen-
soring, and as subjects enter successively, we need to work
on the calendar time scale in order to characterize the data
in the study setting at hand. However, for the analysis of
time-to-event data, the study time scale of Section 2 has to
be considered. The issue here is that it is not clear what
consequences follow from the dependence structure of the
data after the switch to the new time scale.

Theorem 1. Consider a study with 𝑛 subjects and suppose
that their event times are independent. Let 𝑠𝑖 and 𝑡𝑖 denote
the calendar times of study entry and the event of interest
for subject 𝑖, such that 𝑠𝑖 < 𝑡𝑖 (𝑖 = 1, … , 𝑛). Let further 𝑡(1) <
𝑡(2) < ⋯ < 𝑡(𝑛) be the ordered event times (in calendar time
scale), assuming no ties. We suppose that the trial is event-
driven, that is, the observation period is specified to end at
time 𝑡(𝑚) for a fixed value of𝑚with 0 < 𝑚 < 𝑛. Then, it holds
for all 𝑖 ∈ {1, … , 𝑛} and for all 𝑡 ∈ 𝒯 that 𝜆𝒢

𝑖
(𝑡) = 𝜆ℱ

𝑐

𝑖
(𝑡).

Figure 1 shows the possible scenarios in the case where
𝑛 = 2 and 𝑚 = 1. With respect to the study time scale,
the survival and censoring times are given by 𝑇𝑖 = 𝑡𝑖 − 𝑠𝑖
and 𝐶𝑖 = min(𝑡1, 𝑡2) − 𝑠𝑖 (𝑖 = 1, 2), so that the observable
information under these conditions can be represented as

(
min (𝑇1, 𝐶1), 𝟙{𝑇1 ≤ 𝐶1}

)
,

(
min (𝑇2, 𝐶2), 𝟙{𝑇2 ≤ 𝐶2}

)
,

=
(
min (𝑡1, 𝑡2) − 𝑠1, 𝟙{𝑡1 ≤ 𝑡2}

)
,

(
min (𝑡1, 𝑡2) − 𝑠2, 𝟙{𝑡2 ≤ 𝑡1}

)
.

This illustrates that the data of both subjects are deter-
mined by each other, and thus, we refer to this particular
setting as a “maximal dependence case” (for 𝑛 = 2).
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F IGURE 1 Possible study scenarios in the maximal dependence case (𝑛 = 2,𝑚 = 1). Squares represent events, while circles indicate
censoring

Proof. To prove independent censoring in the general con-
text of event-driven trials with staggered entry, we consider
the intensity processes relative to (ℱ𝑐

𝑡 )𝑡∈𝒯 and (𝒢𝑡)𝑡∈𝒯 ,
which are based on the study time scale. The former
intensity is defined by

𝜆ℱ
𝑐

𝑖
(𝑢) 𝑑𝑢 = 𝑃

(
𝑇𝑖 ∈ [𝑢, 𝑢 + 𝑑𝑢) ||{(𝟙{𝑇𝑗 ≤ 𝑣}

)
𝑗=1,…,𝑛

∶ 𝑣 < 𝑢
})

= 𝟙{𝑇𝑖 ≥ 𝑢} 𝑃(𝑇𝑖 ∈ [𝑢, 𝑢 + 𝑑𝑢) ∣ 𝑇𝑖 ≥ 𝑢),

where the last equivalence results from the independence
of the uncensored event times. Moreover, the second
intensity process

𝜆𝒢
𝑖
(𝑢) 𝑑𝑢 = 𝑃 (𝑇𝑖 ∈ [𝑢, 𝑢 + 𝑑𝑢) ||{(
𝟙{𝑇𝑗 ≤ 𝑣}, 𝟙{𝐶𝑗 ≥ 𝑣}

)
𝑗=1,…,𝑛

∶ 𝑣 < 𝑢
})

can also be expressed as the product of 𝟙{𝑇𝑖 ≥ 𝑢} and

𝑃(𝑇𝑖 ∈ [𝑢, 𝑢 + 𝑑𝑢) || 𝑇𝑖 ≥ 𝑢,

{
(
𝟙{𝑇𝑗 ≤ 𝑣}, 𝟙{𝐶𝑘 ≥ 𝑣}

)
𝑗=1,…,𝑖−1,𝑖+1,…,𝑛

𝑘=1,…,𝑛

∶ 𝑣 < 𝑢}).

Without loss of generality, set 𝑖 = 1. To prove that
𝜆𝒢
1
(𝑢) 𝑑𝑢 = 𝜆ℱ

𝑐

1
(𝑢) 𝑑𝑢, the data are represented using cal-

endar times, that is, 𝑇𝑗 = 𝑡𝑗 − 𝑠𝑗 and 𝐶𝑗 = 𝑡(𝑚) − 𝑠𝑗 (𝑗 =

1,… , 𝑛). Keep in mind, however, that the values of 𝑡𝑗 and
𝑠𝑗 are not used in the analysis. We therefore need to show
that 𝑃(𝑡1 − 𝑠1 ∈ [𝑢, 𝑢 + 𝑑𝑢) ∣ 𝑡1 − 𝑠1 ≥ 𝑢) is equal to

𝑃(𝑡1 − 𝑠1 ∈ [𝑢, 𝑢 + 𝑑𝑢) || 𝑡1 − 𝑠1 ≥ 𝑢,

{
(
𝟙{𝑡𝑗 − 𝑠𝑗 ≤ 𝑣}, 𝟙{𝑡(𝑚) − 𝑠𝑘 ≥ 𝑣}

)
𝑗=2,…,𝑛
𝑘=1,…,𝑛

∶ 𝑣 < 𝑢}), (2)

or equivalently, that the condition on the set

(∗) = {
(
𝟙{𝑡𝑗 − 𝑠𝑗 ≤ 𝑣}, 𝟙{𝑡(𝑚) − 𝑠𝑘 ≥ 𝑣}

)
𝑗=2,…,𝑛
𝑘=1,…,𝑛

∶ 𝑣 < 𝑢}

does not imply further information on 𝑡1 − 𝑠1 in both
the cases where 𝑡(𝑚) = 𝑡1 and 𝑡(𝑚) ≠ 𝑡1. The subse-
quent proof is divided into the two respective scenarios,
accordingly.

Case 1. First suppose that 𝑡(𝑚) = 𝑡1. This means that
the indicator 𝟙{𝑡(𝑚) − 𝑠1 ≥ 𝑣} = 𝟙{𝑡1 − 𝑠1 ≥ 𝑣}, with 𝑣 <

𝑢, becomes redundant given the condition 𝑡1 − 𝑠1 ≥ 𝑢 in
(2). The set (∗) can therefore be reduced to {(𝟙{𝑡𝑗 − 𝑠𝑗 ≤

𝑣}, 𝟙{𝑡1 − 𝑠𝑗 ≥ 𝑣})𝑗=2,…,𝑛 ∶ 𝑣 < 𝑢}.

With respect to the second indicator function in the
expression above, it holds that

𝑡1 − 𝑠𝑗 ≥ 𝑣

⟺ 𝑡1 − 𝑠1 ≥ 𝑣 + 𝑠𝑗 − 𝑠1.

This inequality could possibly allow inference on 𝑡1 − 𝑠1
in case there is a 𝑗 ∈ {2, … , 𝑛} and some 𝑣 < 𝑢 such that
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𝑡1 − 𝑠𝑗 ≥ 𝑣 as well as 𝑣 + 𝑠𝑗 − 𝑠1 > 𝑢: One would be able
to conclude that 𝑡1 − 𝑠1 > 𝑢 if the calendar times 𝑡1, 𝑠1,
and 𝑠𝑗 were available, meaning that independent censor-
ing would no longer apply. As the calendar times are not
taken into account, though, the required information is
only available if it is conveyed by the study time vari-
ables 𝑇𝑖 and 𝐶𝑖 (𝑖 = 1, … , 𝑛). Through the characterization
𝑠𝑗 − 𝑠1 = 𝑡1 − 𝑠1 − (𝑡1 − 𝑠𝑗) = 𝑇1 − 𝐶𝑗 , we can deduce
that

𝑣 + 𝑠𝑗 − 𝑠1>𝑢

⟺ 𝑇1>𝑢 + 𝐶𝑗 − 𝑣.

Nevertheless, it is still not possible to confirm whether
𝑇1 > 𝑢 solely by the knowledge of the past. To see this, note
that the inequality 𝑇1 > 𝑢 + 𝐶𝑗 − 𝑣 can only be verified
through 𝟙{𝑇1 ≥ 𝑤} = 1 for an observed time point𝑤 > 𝑢 +

𝐶𝑗 − 𝑣. But we assumed that 𝐶𝑗 = 𝑡1 − 𝑠𝑗 ≥ 𝑣 earlier, and
thus,𝑤 > 𝑢, or in other words, the past does not include𝑤.
It follows that the knowledge of the censoring times does
not affect the probability in Equation (2), and (∗) can be
further reduced to {(𝟙{𝑡𝑗 − 𝑠𝑗 ≤ 𝑣})𝑗=2,…,𝑛 ∶ 𝑣 < 𝑢}.
Conditioning on the remaining indicator functions will

not alter (2) either, since the event times are independent
by assumption. As a result, we find that the intensity 𝜆1 is
not affected by the condition on (∗) if 𝑡(𝑚) = 𝑡1.

Case 2. To complete the proof, it remains to show that (∗)
also does not add information on 𝑡1 − 𝑠1 in the case where
𝑡(𝑚) ≠ 𝑡1. The censoring times 𝑡(𝑚) − 𝑠𝑘 are not related to
the event time 𝑡1 − 𝑠1 for any 𝑘 ∈ {2, … , 𝑛} and thus, we can
limit our considerations to 𝑡(𝑚) − 𝑠1. The associated indica-
tor function 𝟙{𝑡(𝑚) − 𝑠1 ≥ 𝑣} only reveals that 𝑡1 − 𝑠1 > 𝑢 if
the past indicates both 𝑡(𝑚) − 𝑠1 ≥ 𝑣 for some 𝑣 < 𝑢, and
𝑣 + 𝑡1 − 𝑡(𝑚) > 𝑢, since

𝑡(𝑚) − 𝑠1 ≥ 𝑣

⟺ 𝑡1 − 𝑠1 ≥ 𝑣 + 𝑡1 − 𝑡(𝑚).

Once again, the knowledge of the calendar times might
hint that 𝑡1 − 𝑠1 > 𝑢. The given information on the event
times is however restricted to the study time variables 𝑇𝑖
and 𝐶𝑖 (𝑖 = 1, … , 𝑛). Thus, we rewrite the difference 𝑡1 −
𝑡(𝑚) as 𝑡1 − 𝑠1 − (𝑡(𝑚) − 𝑠1) = 𝑇1 − 𝐶1. This means

𝑣 + 𝑡1 − 𝑡(𝑚) > 𝑢,

⟺ 𝑇1 > 𝑢 + 𝐶1 − 𝑣,

and in case the relation above holds true, we have no
knowledge thereof unless the past includes time 𝑤 > 𝑢 +

𝐶1 − 𝑣. (All that is known before 𝑤 is that 𝑇1 exceeds the
time point just prior to the currently observed one.) The
assumption𝐶1 = 𝑡(𝑚) − 𝑠1 ≥ 𝑣 implies that𝑤 > 𝑢, though,
and hence, the past does not suffice to provide the nec-
essary information. In summary, the censoring times are
dispensable in (∗). The set {(𝟙{𝑡𝑗 − 𝑠𝑗 ≤ 𝑣})𝑗=2,…,𝑛 ∶ 𝑣 < 𝑢}

remains instead, and it finally follows by the independence
of the event times that the condition on (∗) also does not
change (2) in the case where 𝑡(𝑚) ≠ 𝑡1.
We conclude that the filtration 𝒢𝑢− does not contribute

any additional information on the event times in compari-
son toℱ𝑐

𝑢−. Thus, Equation (1) can be confirmed. □

The proof above shows that it is crucial not to condition
on 𝑠𝑖 and 𝑡𝑖 (𝑖 = 1, … , 𝑛) at any point during the analysis
of event-driven trials with staggered entry. Otherwise, one
might be able to predict the event time of interest, and
the relevant arguments for independent censoring do not
apply any longer.

4 SIMULATION STUDY I

In order to illustrate the consequences of our findings, we
simulated different scenarios of event-driven trials with
staggered patient entry and analyzed the data while taking
the respective calendar times into account. As implied by
the proof in the previous section, such an approach might
distort the intensity of the observable counting process.
Our main intent was therefore to detect any effects on the
outcomes of the analysis.
The study scenarios we considered for this purpose

were based on the parameter combinations (𝑛,𝑚) ∈

{(600, 300), (300, 150), (50, 25), (50, 10), (26, 13)}, where 𝑛

denotes the number of trial participants and𝑚 is the num-
ber of observed events before censoring was imposed. We
expected that potential effects become clearer for rather
low values of 𝑛 and 𝑚, since, heuristically, small sample
sizes increase the dependencewithin the data. In each sim-
ulated study, the subjects were randomly assigned to one
of two equal-sized groups (eg, treatment vs. control), with
their event times modeled such that a prespecified haz-
ard ratio was achieved. Our investigations involved both
exponentially andWeibull distributed event times, in com-
bination with hazard ratios of 0.8, 1, as well as 1.2. The
event times in the control group were generated using
a scale parameter of 1 for the exponential settings, and
shape and scale parameters of 0.5 and 1 for the Weibull
scenarios. Moreover, for the entry times, we considered a
uniform distribution over the interval between 0 and the
𝑚∕𝑛 quantile of the respective event time distribution. The
rationale behind this boundary was to reduce the proba-
bility of subject entries after the end of the observation
period.
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1742 RÜHL et al.

As a next step, the generated data were fitted to a “stan-
dard” Cox regression model that only included a single
covariate for the treatment group. This model served as
a reference, representing the case where the analysis is
conducted under independent censoring, so that our simu-
lations also allowed us to examine the practical application
of survival methods to event-driven trials with staggered
entry. In order to identify the consequences of condi-
tioning on calendar time variables, we investigated two
additional, fairly unconventional models. A practical sit-
uation where such conditions become relevant has been
described by Meyer et al. (2020), who suggested to subdi-
vide trials that were interrupted by the onset of COVID-19
into stages based on calendar times. It should be empha-
sized that we do not propose the application of calendar
time-basedmodels in the given setting, but rather consider
them to examine potential bias that may result from dis-
turbed intensities. The first of themodelswe examinedwill
be referred to as “Model 1” hereinafter, and apart from a
covariate for the group, it also included a second predic-
tor reflecting the calendar time of a subject’s entry into
the study. The information resulting thereof might not be
sufficient to interfere with the analysis, though, which is
why we considered a third covariate in “Model 2.” The
value of this covariate describes the number of subjects
already recruited at each new trial admission, and together
with the participants’ entry times, it provides amore direct
approximation of the information that is conveyed by the
counting processes and the corresponding calendar times.
Our idea was to illustrate the impact of conditioning on

calendar time information by comparing the Breslow esti-
mate of the cumulative baseline hazard that is derived from
the Standard Model to the estimates based on Model 1 and
Model 2, respectively.
To that end, we simulated each of the mentioned study

scenarios 100,000 times and summarized the outcomes by
means of the mean and median bias of the Breslow esti-
mates at selected time points as well as their root mean
square errors.
There happen to be cases where all of the subjects

whose events were observed (or all except for one of them)
belonged to the same treatment group. This is due to the
small values of the parameter𝑚, and as a consequence, the
hazard ratio was estimated to be extremely high or low. To
ensuremeaningful results, we excluded the respective iter-
ations (see Table 1 for the results in the small sample size
settingswithWeibull distributed event times and anunder-
lying treatment hazard ratio of 1; the complete outcomes
are available in Web Appendix A).
While the mean bias of the Breslow estimates in Model

1 only exceeds that in the Standard Model for particu-
larly small sample sizes, the deviations are multiple times
higher in model 2 (with the Monte Carlo standard errors

taken into account; see Web Appendix A). We found the
differences to be especially large at later time points and
for smaller values of 𝑛 and 𝑚. What is most interesting,
though, is that throughout all considered scenarios and
time points, the extent of the median bias and the root
mean square error in the two calendar time models are
notably higher as compared to the Standard Model.
The outcomes in the exponential settingwith𝑛 = 50 and

𝑚 = 10 are additionally visualized in Figure 2. As can be
seen, the median of the Breslow curves is quite close to
the true one in the standard model, except for later time
points where the amount of available data decreases. For
instance, only 10% of the subjects are followed up over a
time span that exceeds 0.3316. In Models 1 and 2, on the
other hand, the median curves run clearly below the true
cumulative baseline hazard right from the beginning. The
mean curve in Model 2 further overestimates the true one
by far, as there are some individual scenarios with very
extreme slope. The curves have similar properties in the
remaining scenarios, but the bias is themost obvious in the
settingswhere𝑚 = 10 and 𝑛 = 50 (see Figure 3 for the case
with Weibull distributed event times; the shadow plots for
the other scenarios can be found inWebAppendix A). This
demonstrates how conditioning on calendar times affects
the outcomes of the analysis.
Besides, we also investigated the partial likelihood esti-

mates of the hazard ratio in the different models directly.
The outcomes are summarized by means of the mean and
median bias of the estimated treatment log hazard ratios,
their root mean square error, and themean coverage of the
individual confidence intervals.
Table 2 shows the results in the small sample size

settings where the underlying hazard ratio between the
treatment groups equals 1. As implied by the last three
columns, the differences between the estimates in the dis-
tinct models are rather small overall. Throughout every
considered scenario, the median bias hardly deviates from
0, whereas the mean bias tends to increase slightly from
the tandard Model over Model 1 to Model 2. The increase
is likewise reflected by the root mean square errors, which
are more pronounced for the settings where 𝑛 and 𝑚 are
small. With regard to the coverage, the results are in gen-
eral quite close to each other. Even though the underlying
confidence intervals become wider from model to model,
the coverage declines slightly, and once again, the differ-
ences are somewhat more marked for smaller values of
the parameters 𝑛 and 𝑚. All of the mentioned relations
apply regardless of whether iterations with less than two
observed events in one group are excluded or not. We also
did not notice any differences between exponential and
Weibull distributed event times.
Lastly, the outcomes for the covariates that are addition-

ally regarded inModel 1 andModel 2, namely, the calendar
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RÜHL et al. 1743

TABLE 1 Bias of the Breslow estimators at selected time points (Weibull scenarios with hazard ratio 1)

Scenario
Distribution 𝒏 𝒎 Time Measure of bias Standard Model Model 1 Model 2
Weibull 50 25 0.20 Mean bias 0.00719 0.00503 0.03234

Median bias −0.01245 −0.04391 −0.04878
RMSE 0.14982 0.24269 0.41598

0.45 Mean bias 0.03311 0.03284 0.08215
Median bias −0.00461 −0.03989 −0.04422
RMSE 0.24494 0.36744 0.67557

0.70 Mean bias 0.03774 0.03928 0.10083
Median bias −0.02197 −0.05401 −0.05407
RMSE 0.32263 0.45241 0.79559

Weibull 50 10 0.03 Mean bias 0.01094 0.00138 0.07112
(1034 excluded iterationsa) Median bias −0.00859 −0.04163 −0.04837

RMSE 0.10663 0.20163 8.42391
0.05 Mean bias 0.02570 0.01440 0.10420

Median bias −0.00620 −0.04226 −0.05025
RMSE 0.17141 0.26164 9.02352

0.07 Mean bias 0.03267 0.02099 0.12607
Median bias −0.00917 −0.04829 −0.05604
RMSE 0.23794 0.31989 10.00564

Weibull 26 13 0.20 Mean bias 0.02025 0.03434 0.81749
(4 excluded iterations)a Median bias −0.02054 −0.08097 −0.08725

RMSE 0.23050 1.29029 94.21344
0.45 Mean bias 0.06895 0.09690 1.28769

Median bias −0.01100 −0.07965 −0.08390
RMSE 0.41094 1.44409 113.91960

0.70 Mean bias 0.07190 0.10951 1.44727
Median bias −0.03226 −0.10163 −0.09843
RMSE 0.50253 1.52040 114.97777

Abbreviation: RMSE, root mean square error.
aIterations with less than two observed events in one treatment group are excluded.

F IGURE 2 Shadow plot of the Breslow estimators in the exponential scenario with hazard ratio 1, 𝑛 = 50, and𝑚 = 10. The white line
shows the true cumulative baseline hazard, the solid and dashed black lines represent the mean and median of the simulated Breslow
estimators, respectively. For greater clarity, the shadow lines are restricted to a random sample of size 2000, excluding 1032 iterations with less
than two observed events in one treatment group
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1744 RÜHL et al.

F IGURE 3 Shadow plot of the Breslow estimators in the Weibull scenario with hazard ratio 1, 𝑛 = 50, and𝑚 = 10. The white line shows
the true cumulative baseline hazard, the solid and dashed black lines represent the mean and median of the simulated Breslow estimators,
respectively. For greater clarity, the shadow lines are restricted to a random sample of size 2000, excluding 1032 iterations with less than two
observed events in one treatment group

TABLE 2 Bias of the estimated log hazard ratios (scenarios with hazard ratio 1)

Scenario
Distribution 𝒏 𝒎 Measure of bias Standard Model Model 1 Model 2
Exponential 50 25 Mean bias 0.00130 0.00142 0.00199

Median bias 0.00137 0.00097 0.00093
RMSE 0.41187 0.42149 0.43517
Coverage 0.95511 0.95193 0.94823

Exponential 50 10 Mean bias 0.00665 0.00687 0.00701
(1032 excluded iterations)a Median bias 0.00233 0.00297 0.00450

RMSE 0.65962 0.67233 0.69416
Coverage 0.98131 0.97872 0.97418

Exponential 26 13 Mean bias −0.00299 −0.00279 −0.00200
(4 excluded iterations)a Median bias −0.00130 −0.00008 −0.00086

RMSE 0.59677 0.62824 0.67787
Coverage 0.95929 0.95326 0.94575

Weibull 50 25 Mean bias 0.00262 0.00282 0.00274
Median bias 0.00139 0.00155 0.00285
RMSE 0.41109 0.42120 0.43426
Coverage 0.95354 0.95114 0.94806

Weibull 50 10 Mean bias 0.00235 0.00263 0.00227
(1034 excluded iterations)a Median bias 0.00258 0.00290 0.00337

RMSE 0.65654 0.66925 0.69106
Coverage 0.98294 0.97954 0.97413

Weibull 26 13 Mean bias −0.00238 −0.00256 −0.00235
(4 excluded iterations)a Median bias −0.00052 0.00042 0.00165

RMSE 0.58901 0.62311 0.67014
Coverage 0.96170 0.95446 0.94719

Abbreviation: RMSE, root mean square error.
aIterations with less than two observed events in one treatment group are excluded.

time of study entry as well as the number of recruited
subjects, were evaluated, too (see Web Appendix A). The
bias we observed for the latter attains only moderate lev-
els, whereas the estimated hazard ratio for the entry times

is highly inaccurate in some of the considered scenarios.
In the setting with 𝑛 = 50 and𝑚 = 10, this analysis yields
particularly biased results. Besides, the deviation from the
true hazard ratio ismore pronounced in case that the event
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times follow a Weibull distribution. It thus seems like the
covariate for the entry times in fact disturbs the analysis.
All presented analyses were furthermore performed for

underlying treatment hazard ratios of 0.8 and 1.25, respec-
tively (see Web Appendix A), but the outcomes did not
reveal any significant differences compared to what we
observed before.
In summary, the results of the simulations are consis-

tent with our expectations: If the calendar times of study
entry are used, the estimated hazard ratios diverge from
the true ones, even though the bias for the log hazard
ratio of groupmembership is verymoderate. The deviation
becomes more notable, the smaller one chooses the values
of the parameters 𝑛 and 𝑚 (ie, for 𝑛 ≤ 50), and also if the
proportion 𝑚∕𝑛 is reduced. This follows from the heuris-
tically stronger dependence within the data. The number
of recruited subjects further provides additional informa-
tion on the sequence of the events, which is why the bias
increases inModel 2. The impact of conditioning on calen-
dar time information is however reflected more distinctly
by the estimated cumulative baseline hazard: Our simu-
lations showed that for sample sizes of 50 and below, the
Breslow estimators are very prone to bias in those mod-
els where the calendar times are taken into account, and
the deviation increases with the amount of details on the
sequence of the events. As a consequence, predicted sur-
vival probabilities will not be reliable if one conditions on
calendar times.
To show that the described effects are in fact caused by

the interaction between staggered study entry and type II
censoring, we repeated the simulations for the exponen-
tial scenarios with hazard ratio 1 and parameters (𝑛,𝑚) ∈

{(50, 25), (50, 10), (26, 13)}, but instead of implementing
type II censoring, we generated random censoring times.
Compared to the previous outcomes, the absolute value
of the median bias of the Breslow estimators is notably
smaller in the models that include calendar time vari-
ables, even though the sample sizes are very small. This is
also clearly visualized in the shadow plots of the Breslow
curves (see Web Appendix A). Our proposition thus seems
to be confirmed.

5 SIMULATION STUDY II

The proof in Section 3 shows that independent censoring
is fulfilled in event-driven trials with staggered entry, how-
ever, one cannot assume that random censoring holds. A
situation where both conditions come into play is boot-
strapping: While Efron’s nonparametric bootstrap, that
is, drawing with replacement from the data, requires ran-
dom censoring (Efron, 1981), it is sufficient to consider data
that fulfill Aalen’s multiplicative intensity model when

applying the wild bootstrap proposed by Lin,Wei and Ying
(1993) (see also Beyersmann et al., 2013). In event-driven
trials with staggered entry, the wild bootstrap is therefore
expected to perform superior.
We conducted another simulation study to demonstrate

to which extent the accuracy of both resampling methods
can differ in practice. Preliminary simulations hinted that
the effect is more pronounced in the more complicated
illness-death-model compared to the classical survival set-
ting.We thus adhered to the simulation scenario described
in Nießl et al. (2021) to generate type II censored illness-
death data without recovery, except that our simulations
additionally involved staggered entry: The calendar times
of 𝑛 = 100 study admissions were sampled from a uni-
form distribution over the interval between 0 and 60. As
in Nießl et al. (2021), the waiting times in the initial state
followed an exponential distribution with parameter 0.04,
and from there, subjects moved to the state of being ill
or dead with probabilities 0.25 and 0.75, respectively. The
waiting time for the transition from illness to death was
further simulated by random numbers generated from an
exponential distribution with parameter 0.1. Eventually,
type II censoring was imposed at the time when 𝑚 = 50

subjects hadmoved to the state of death, regardless of their
prior state occupation.
We applied both the usual nonparametric bootstrap as

well as the wild bootstrap using 1000 samples, respec-
tively, in order to determine 95% confidence intervals for
the Nelson–Aalen estimator. To that end, the transition
from illness to death was considered. It should be noted
that internal left-truncation as a result of the progression
into the illness state additionally complicates inference
here. The confidence intervals at times 16, 18, and 20 were
computed based on the log-transformed formula given
in Andersen et al. (1993, p. 208), but with the standard
normal quantiles replaced by the 0.975 quantiles of the
studentized bootstrap estimates. With respect to Efron’s
bootstrap, these estimates are defined by

(
𝐴(𝑏)(𝑡) − 𝐴(𝑡)

)
∕

√
v̂ar

(
𝐴∗(𝑡)

)
(𝑏 = 1, … , 1000).

The terms 𝐴(𝑏) and 𝐴 in this formula denote the Nelson–
Aalen estimators from the 𝑏th bootstrap sample and from
the original data set, respectively, and v̂ar

(
𝐴∗(⋅)

)
is the

empirical variance of the resampled Nelson–Aalen esti-
mates. The quantiles we used for the wild bootstrap were,
on the other hand, based on

∑
𝑢≤𝑡

(
𝟙{𝑌(𝑢) > 0}

𝑌(𝑢)
⋅ Δ𝑁(𝑢) ⋅ 𝐺(𝑏)(𝑢)

)
∕

√
v̂ar

(
𝑍∗(𝑡)

)
(𝑏 = 1, … , 1000),

where𝑌 refers to the number of subjects at risk,Δ𝑁 reflects
the number of transitions from illness to death, 𝐺(𝑏) are
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TABLE 3 Coverage probabilities (in %) and widths of the
bootstrapped confidence intervals at selected time points

EBS WBS
Time Coverage Width Coverage Width
16 83.0 2.217 95.3 3.298
18 84.3 2.298 95.6 3.455
20 82.0 2.349 95.9 3.640

Abbreviations: EBS, Efron’s nonparametric bootstrap; WBS, wild bootstrap.

(independent and identically distributed) standard nor-
mal multipliers, and the empirical variance v̂ar

(
𝑍∗(⋅)

)
is

based on the resampled values of the sum in the expres-
sion above. Other than that, the values of v̂ar

(
𝐴∗(⋅)

)
and

v̂ar
(
𝑍∗(⋅)

)
were also used as variance estimates in the

respective formulas for the confidence intervals.
In order to limit the Monte Carlo error for the cover-

age below 1.6%, we repeated the simulations 1000 times,
and assessed the coverage of the generated confidence
intervals. The true cumulative hazard was approximated
numerically: We considered the average of the Nelson–
Aalen estimates obtained from 10,000 sampled studies
that followed the design described above, but without
censoring.
The outcomes are shown in Table 3. As can be seen,

the wild bootstrap attains coverage levels that are signif-
icantly closer to the intended level of 95% in comparison
to the classical bootstrap approach. Similar findings were
obtained for other choices of 𝑛 ≤ 200 and 𝑚 = 𝑛∕2 (see
WebAppendix B). Hence, we recommend thatmartingale-
based survival methods, such as the wild bootstrap, should
be preferred in settings where censoring is independent,
but not random.

6 ANALYSIS OF THE OAK TRIAL

Before cancer immunotherapy was approved, docetaxel
had been the standard of care in patients with advanced-
stage or metastatic, previously treated nonsmall cell lung
cancer. Treatment with docetaxel is however associated
with severe toxic effects that limit its beneficial effects
(Hanna et al., 2004). The OAK study was a 1:1 ran-
domized, open-label phase III study that compared the
efficacy and safety of docetaxel to that of atezolizumab,
an immunotherapy agent targeting the programmed death
ligand 1 (Rittmeyer et al., 2017). The primary endpoint of
the study was overall survival, and in the original analy-
sis, atezolizumabwas found to be beneficial in comparison
to docetaxel.
We consider the primary efficacy population, which

included the first 850 patients recruited at 194 oncology
centers across 31 countries between March and Novem-
ber 2014. According to the statistical analysis plan, the

data should be evaluated when approximately 595 deaths
had been observed (CDER, 2016). The corresponding infor-
mation is publicly available as a supplementary table
with Gandara et al. (2018), and we used these data
in order to examine analysis methods based on the
assumption of random censoring in practical situations
that involve type II censored data with staggered entry
times.
Similarly as in Section 5, the classical nonparametric

bootstrap and the wild bootstrap were applied to compute
pointwise confidence intervals for the cumulative hazard
function as well as the survival probability function. The
sample size of 850 subjects was too large for the depen-
dencies to have any notable effect, though, such that both
resampling approaches produced basically equal results
(see Web Appendix C for a graphical representation of the
pointwise confidence intervals for the cumulative hazard
and the survival probability.)
Against the background of interim analyses, study

data are however often evaluated early, when only few
of the originally planned events have been observed
(cf. eg, DeMets, Furberg and Friedman, 2006, Section 1,
Case 20 and Section 4, Case 28; Hughes et al., 2018).
This motivated us to consider several small-sample sub-
sets of the primary population. Web Appendix C provides
figures showing the bootstrapped confidence intervals for
random subsets that involve 75, 50, and 40 observed events,
respectively. These results show that differences become
more visible with smaller numbers of observed events,
which may be more common in interim analyses, but fur-
ther research is needed, for example, in the analysis of
recurrent events.

7 DISCUSSION

In this paper, we demonstrated that event-driven trials
with staggered entry result in independent censoring in the
counting process sense, but not in random censoring. This
implies that survival methodology which relies on martin-
gale properties allows for valid inference, but violations of
the martingale structure potentially bias results. Analyses
of data that are obtained from small samples or popula-
tion subsets are particularly prone to such bias because
the underlying dependencies aremore pronounced. To this
end, note that interim analyses are often also event-driven,
and, as indicated by the simulations in Section 5, caution
should therefore be exercisedwhen usingmethods that are
based on the assumption of random censoring. More thor-
ough investigations of this observation are part of future
research. Moreover, our proof showed that it is essential
not to condition on the calendar times of study entry in
the analysis. As long as the calendar times are disregarded,
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approaches that rely on the counting process framework,
including for example accelerated failure time models,
remain valid. The potential bias that might arise otherwise
has been demonstrated by the (somewhat artificial) simu-
lation design in Section 4. However, the relevance of our
findings became apparent recently in the context of tri-
als conducted during the COVID-19 pandemic. A common
strategy here is to divide the trial period into pre-, dur-
ing, and postpandemic phases that are based on calendar
times (EMA, 2020; Meyer et al., 2020), and as a conse-
quence, resulting analyses may be biased in time-to-event
trials with event-driven censoring.
Finally, it is worth noting that while censoring is inher-

ent to any time-to-event analysis, there is still a lot of
discussion and confusion about it in the literature. Many
seemingly different assumptions have been proposed and
inconsistent definitions have further added to the con-
fusion. In this manuscript, we followed the definition
of Andersen et al. (1993), see also Andersen (2005) for
an overview. In the context of type I censoring, Over-
gaard and Hansen (2021) recently investigated and classi-
fied different assumptions imposed on a right-censoring
mechanism.
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