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Chapter 1

Introduction

With its numerous discoveries that paved the way for groundbreaking technological ad-
vancement and innovation, fundamental solid state research plays a decisive role in shaping
the society of today. One of its many subdisciplines is the field of strongly correlated elec-
tron physics. As the name implies, the research area covers physical phenomena that
arise from the interaction between electrons. A prime example of such an effect is the
Mott insulating state. Here, the Coulomb repulsion between electrons causes insulating
behavior in a material that would theoretically classify as electrically conductive [1]. An-
other well studied electronic correlation phenomenon is the heavy-fermion (HF) state in
4f- and 5f-based intermetallic systems, where the strong correlation between the local-
ized magnetic moments and conduction electrons results in a full screening of the former
and in a significant enhancement of the effective electron mass as compared to ordinary
metals [2–4].

For this work, the latter phenomenon that links to a variety of intriguing novel physical
behaviors is of major interest. It all began in the early 1930’s with the peculiar experi-
mental finding that the electrical resistivity of a metal that includes a small fraction of
magnetic impurities does not decrease monotonically towards a constant as temperature
declines but exhibits a low temperature minimum [5, 6]. Describing this phenomenon
theoretically turned out as a rather complex problem, which was partially solved by Jun
Kondo in 1964 [7]. The key aspect of Kondo’s theory was to demonstrate that it is the
spin flip scattering of conduction electrons off a localized magnetic impurity that triggers
the unconventional low temperature behavior in the electrical resistivity [8, pp. 170-172].
Years later it was shown numerically by Wilson that this scattering process ultimately
leads to the formation of a non-magnetic singlet ground state [9]. Even though the main
focus was on impurity systems at the beginning, the research field quickly moved in the
direction of 4f- and 5f-based Kondo lattice systems, commonly known as HF metals. In
this material class, where the localized magnetic moments are periodically arranged on the
lattice, the Kondo screening shows a coherent nature and heavy quasiparticles form that
feature effective electron masses increased by several orders of magnitude as compared to
conventional metals [2–4]. As originally suggested by Doniach, an interesting aspect of
a Kondo lattice is the fact that its ground state can be changed to antiferromagnetically
ordered by adjusting a non-thermal control parameter [10,11]. Fascinatingly, the two pos-
sible ground states of a HF metal are usually separated by a quantum phase transition
(QPT), a zero temperature critical point at which conventional metallic behavior collapses
and exotic states, such as unconventional superconductivity, emerge [11].

The significant progress in the field of magnetic Kondo lattice systems opened up
the question as to whether comparable behavior is present in 4f-based intermetallics that
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feature a non-magnetic ground state. Based on Kramers theorem, such a non-magnetic
ground state is only possible for ions with integer spin, i.e. an even number of 4f electrons
[12, p. 63]. Both the Pr3+ and the U4+ ion classify as such and offer when embedded
in a metallic host the possibility to explore correlation effects of non-magnetic nature.
Inspired by the emergence of the unconventional HF behavior in UBe13, Cox proposed that
the hybridization between the material’s localized quadrupole moments and conduction
electrons evokes exotic Kondo physics that is of entirely different nature than the one
observed in magnetic Kondo systems [13, 14]. The so called quadrupole Kondo effect is a
direct manifestation of the two-channel Kondo scenario1 and describes the over screening
of a quadrupole moment by two conduction electron channels [16]. For the single-impurity
case, theory predicts a highly fragile ground state featuring characteristic non-Fermi liquid
(NFL) behavior and an unconventional residual entropy [16–18], which is fundamentally
different to the behavior linked to the stable single-channel Kondo ground state present in
magnetic impurity systems. Extensive research followed Cox’s initial suggestion, with the
objective of finding hard evidence for this highly unconventional state of matter. Initially,
the main focus was on diluted U-based materials and indication of the quadrupole Kondo
related NFL behavior was indeed found in selected systems, which include, among others,
UxTh1−xBe13 [19,20], Y1−xUxPd3 [21,22] and UxTh1−xRu2Si2 [23,24]. A general problem
with U-based materials, however, is the presence of significant hybridization effects, which
complicate the measurement of crystal electric field (CEF) excitations. It therefore often
remained ambiguous as to whether the findings are indeed a signature of over screened
quadrupole moments or triggered by another mechanism.

Recently, the focus shifted towards Pr-based systems, in which the 4f electrons are
more localized, hybridization effects more moderate and CEF excitations therefore bet-
ter determinable. Especially the class of the Pr-based 1-2-20 materials has been sub-
ject to extensive research and initial evidence of the quadrupole Kondo effect and other
novel correlation phenomena was revealed [25, 26]. The Zn-based systems PrIr2Zn20 [27,
28] and PrRh2Zn20 [29, 30] as well as the Al-based materials PrV2Al20 [26, 31, 32] and
PrTi2Al20 [26, 33, 34] attracted thereby particular attention. In these materials, the Pr3+

ions are exposed to a cubic CEF and the resulting ground state was identified as either
the quadrupolar non-Kramers Γ3 or Γ23 doublet [25]. As the number of metallic ions
located around a Pr site is high, a pronounced hybridization effect between the local-
ized quadrupole ground state moments and conduction electrons is expected [25]. Indeed,
signatures of the quadrupole Kondo lattice effect were reported for both Zn-based sys-
tems [28, 30] and PrV2Al20 [35]. At very low temperature, all four compounds exhibit an
ordering of their multipolar ground state moments that is followed by a superconducting
transition at even lower temperature [26, 27, 29, 31, 36]. For the Zn-based materials, the
order proved to be of antiferroquadrupolar (AFQ) nature [27, 29, 37, 38]. In the case of
the Al-based systems, ferroquadrupolar (FQ) order was found in PrTi2Al20 [26,34], while
for PrV2Al20 its nature has not been fully clarified so far. In case of the latter mate-
rial, a double transition was reported and a combination of AFQ and octupolar order is
under discussion [39]. Microscopic evidence for this scenario is, however, still missing.
While the discovery of the quadrupole Kondo lattice effect in aforementioned materials
can be considered as a great success [28, 30, 35], the inter-site interaction between the
Pr3+ ions complicates the theoretical modeling of this effect [40] and also results in a
quadrupolar ordered instead of a quadrupolar Kondo ground state. It is thus desirable
to scrutinize the emergent NFL behavior by tuning a quadrupole Kondo lattice towards

1The two-channel Kondo effect is a special case of the multichannel Kondo scenario, with an impurity
spin S = 1/2 and n = 2 screening channels, originally introduced by Nozières and Blandin [15].
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a single-impurity quadrupole Kondo ground state for which unambiguous theoretical pre-
dictions exist [16, 18, 41]. The absence of quadrupolar order in an impurity system also
allows to search for the theoretically predicted residual quadrupole Kondo entropy [17].
Lately, the theoretically predicted single-impurity quadrupole Kondo NFL behaviors were
indeed revealed in highly diluted Y1−xPrxIr2Zn20 with x ≤ 0.044 [42–44].

This thesis aims to further examine the novel quadrupolar driven phenomena emerging
in the Zn-based materials PrIr2Zn20 and Y1−xPrxIr2Zn20 by using low temperature ther-
mal expansion and magnetostriction measurements and is structured as follows: Chap-
ter 2 outlines the theoretical concepts essential for the understanding of the experimental
results. At first, the relevant thermodynamic quantities are introduced and the role of
CEF interactions in f electron systems is discussed. Furthermore, the basics of elasticity
are addressed and the relevance of symmetrized strain and elastic constant measurements
for the characterization of non-Kramers CEF states is stressed. Finally, the single- and
two-channel Kondo effect are reviewed. Chapter 3 deals with the experimental meth-
ods employed in this work. To start with, the generation of ultra-low temperatures by
means of dilution refrigeration is briefly outlined and the utilized experimental setup is
detailed. Afterwards, the focus is on the measurement technique capacitive dilatometry.
The capacitive dilatometers used for the research on this thesis are introduced and their
background contributions discussed. Chapter 4 deals with PrIr2Zn20, a cubic quadrupo-
lar Kondo lattice that features AFQ order at TQ = 0.11 K and a peculiar FL phase in
close vicinity of its critical magnetic field of quadrupolar order [27, 28, 37]. The first part
of the chapter reviews previous results from literature that served as a motivation for
the thermal expansion and magnetostriction experiments carried out in this work. The
experimental findings are discussed in the second part. Based on the anomalous behavior
found in the electrical resistivity and the Seebeck coefficient that emerge just above the
critical field of AFQ order [28,45,46], the primary focus of the measurements was to quan-
tify possible volume changes in close vicinity of this novel phase. Another key motivation
of the experiments was to set the anisotropic and volume effects present in PrIr2Zn20 in
relation to the well studied behaviors in magnetic Kondo metals. Chapter 5 covers the
system Y1−xPrxIr2Zn20. Diluting PrIr2Zn20 by gradually substituting the Pr3+ ions with
Y3+ ions is an effective way to reduce the inter-site interaction between the Pr3+ ions and
to tune the material towards a possible single-impurity quadrupolar Kondo ground state.
The first part of the chapter reviews previous literature results on the system that pointed
towards the formation of the single-impurity quadrupole Kondo effect in weakly doped
single crystals [42–44]. Subsequently, the thermal expansion and magnetostriction results
obtained on differently doped Y1−xPrxIr2Zn20 single crystals are presented and discussed.
Motivated by previous studies, the experiments focused on a highly diluted single crystal
on which uniaxial and volume thermal expansion as well as magnetostriction measure-
ments were carried out. The obtained findings are discussed within the framework of the
single-impurity quadrupole Kondo model and also compared with the behaviors found
in two moderately doped single crystals. Chapter 6 gives a brief summary of the key
experimental results presented in this thesis and provides an outlook on how they might
impact future research.



4 Chapter 1. Introduction



Chapter 2

Theoretical Foundations

This chapter introduces selected theoretical topics that are helpful for a better under-
standing of the experimental results obtained in the scope of this thesis. Firstly, the
relevant thermodynamic quantities are introduced. Major focus is thereby on the thermal
expansion and the magnetostriction, as these two measurements are central to this work.
Subsequently, the effect of CEF interactions in 4f-based intermetallic materials is addressed
and its implications for a Pr3+ ion in a cubic CEF environment are discussed. The basics
of elasticity are the topic of the following section. Here, a special emphasis is put on the
case of cubic symmetry and the importance of strain and elastic constant measurements
when dealing with non-Kramers CEF states is stressed. Finally, the focus is on the Kondo
effect, an electronic correlation phenomenon that leads to the full screening of a localized
magnetic moment via the conduction electrons. In this context, also exotic variations of
the effect are detailed, whereby a particular focus is on the two-channel Kondo effect,
which manifests itself in selected Pr-based 1-2-20 materials and is thus highly relevant for
this work.

2.1 Thermodynamics

This section introduces the relevant thermodynamic quantities. To start with, the specific
heat is briefly discussed. Even though its measurement is not a topic of this thesis, it is
an indispensable quantity for the characterization of strongly correlated electron materials
and inherently connected to the thermal expansion coefficient, which is detailed afterwards.
Besides the thermal expansion, the magnetostriction is the second central thermodynamic
probe used in this work to examine the quadrupolar ground state of selected Pr-based
intermetallic materials and therefore briefly introduced as well. Finally, the Grüneisen
parameter is discussed. It quantifies the pressure dependence of an energy scale and is
considered as the most relevant probe to track down a pressure sensitive quantum critical
point (QCP).

2.1.1 Specific Heat

The specific heat is likely one of the most prevalent measurement parameters to charac-
terize the ground state of HF metals, as it is not only a powerful probe to detect phase
transitions but also to obtain information on the electronic nature of the ground state.
Thermodynamically, the specific heat coefficient C can either be defined at constant pres-
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sure P as

CP = T

(
∂S

∂T

)
P

, (2.1)

or at constant volume V as

CV = T

(
∂S

∂T

)
V

, (2.2)

where T denotes the temperature and S the entropy. At low temperatures, CP and CV
are basically identical and distinction between the two measurements is not required. In
the field of low temperature physics it is therefore common to simply denote the specific
heat by the universal symbol C. Based on its relation to the temperature derivative of
entropy, integration of C/T with respect to temperature is a straightforward and widely
employed approach to deduce a material’s temperature dependent entropy.

In metallic systems, the low temperature1 specific heat is described by the relation [2]

C = γT + βT 3, (2.3)

where the first term specifies the electronic and the second term the lattice contribution.
The prefactor γ of the first term is commonly known as Sommerfeld coefficient and shows
proportionality to the effective electron mass m∗ [47, p. 136]. The mass renormalization
is a direct consequence of the interaction between electrons and has been theoretically
proposed by Lev Landau in the scope of his FL theory [47, p. 129]. A central aspect of
Landau’s theory2 are the so called quasiparticles that provide an explanation for certain
metallic behaviors that could not be captured by the preceding theories of Drude and
Sommerfeld. In a nutshell, quasiparticles are excitations that form close to the Fermi
energy εF and exhibit a remarkably long life-time [47, p. 127]. For further reading on
the concept of Landau’s FL theory see, for instance, Refs. [47, 48]. Now, back to the
specific heat. The proportionality of its electronic component to the effective electron mass
becomes particularly evident in the material class of HF metals, where the formation of
heavy quasiparticles leads to a substantial enhancement of the γ coefficient [4]. A prime
example to illustrate this effect is the HF metal CeAl3 that shows a gigantically increased
Sommerfeld coefficient of γ = 1620 mJ mol−1 K−2 [49]. For comparison, the Sommerfeld
coefficient of conventional metals is approximately γ ≈ 1 mJ mol−1 K−2 [50, p. 171] and
thus around one thousand times smaller than the value derived for CeAl3.

Even though the low temperature behavior of a large number of metals is captured
very well by FL theory, there are also metallic states that cannot be accounted for by the
former theory and their experimental and theoretical exploration is one of the hot topics in
the field of solid state research. Such unconventional states of matter are generally termed
NFL phases and emerge, for instance, when a HF metal is tuned away from its HF liquid
ground state towards a magnetic QCP [11]. Another intriguing hybridization phenomenon
that triggers exotic metallic behavior is the two-channel Kondo effect [15,17,18], which is
central to the research carried out in the scope of this thesis. Both effects are discussed
in detail at a later stage of this chapter.

2.1.2 Thermal Expansion

Besides the specific heat, the thermal expansion coefficient is another frequently employed
thermodynamic probe to physically characterize solid state materials. It is a particularly

1Meant are temperatures well below the Debye and Fermi temperatures.
2Landau’s theory provides a theoretical framework for the description of an interacting fluid of fermions.

Consequently, it is not limited to electrons in metals but has also been successfully applied to other fermionic
fluids, such as 3He.
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insightful measurement to quantify anisotropy effects and plays a paramount role for the
characterization of the electronic state of HF metals.

The volume thermal expansion coefficient β quantifies a material’s volume change upon
the variation of temperature and is defined as

β =
1

V

(
∂V

∂T

)
P

= − 1

V

(
∂S

∂P

)
T

, (2.4)

whereby the relation between β and the pressure derivative of entropy follows from a
Maxwell relation. In analogy to the volume thermal expansion coefficient β, one can
define the linear thermal expansion coefficient α as

α =
1

L

(
∂L

∂T

)
P

, (2.5)

where L denotes the length of the considered sample. The thermal expansion coefficient
classifies as a tensor of rank two and is therefore isotropic for materials with cubic crystal
symmetry [51, p. 45]. This implies that the volume thermal expansion coefficient of a cubic
material derives as β = 3α. Given that the crystal symmetry of a system is lower than
cubic, α varies along certain crystallographic directions and depending on the symmetry
of the crystal, the measurement of α along various crystallographic directions is required
in order to deduce β. In the case of a tetragonal, rhombohedral or hexagonal crystal
symmetry, for instance, the thermal expansion tensor has two different components and
in the case of triclinic, monoclinic or rhombic crystal symmetry, even three independent
components exist [51, p. 45].

As this thesis deals with thermal expansion measurements on Pr-based intermetallic
systems, the driving forces of the thermal expansion in a metallic solid shall be briefly
addressed. For further reading on the topic, see Ref. [48] on which the following lines are
based and Ref. [52], which is a very detailed treatise of the thermal expansion of solids.
In general, the thermal expansion coefficient can be directly related to a temperature
dependent pressure [48, p. 492]

α =
1

3V

(
∂V

∂T

)
P

=
1

3cB

(
∂P

∂T

)
V

, (2.6)

where cB = −V (dP/dV ) is the bulk modulus. In analogy to the specific heat, the thermal
expansion of a metal at temperatures well below the Debye temperature is governed by a
linear in temperature electronic and a cubic lattice contribution [48, p. 495]. With respect
to Eq. (2.6), these temperature dependencies must stem from the temperature derivatives
of the respective pressures generated by the electrons and the phonons. This is elucidated
in the following by considering both pressure contributions in detail.

At first, the focus is on the pressure evoked by the phonons [48, p. 490]

Pphon = − ∂

∂V
[Uzp +

∑ 1

2
h̄ωs(k)] +

∑
ks

(
− ∂

∂V
(h̄ωs(k))

)
1

e
h̄ωs(k)
kBT − 1

, (2.7)

where Uzp denotes the zero-point energy, ωs(k) the phonon frequencies with wave vector
k, h̄ the Planck constant and kB the Boltzmann constant. As the first term of Eq. (2.7)
in square brackets does not depend on temperature, it is not of relevance for the fol-
lowing consideration and can be disregarded. The second term is more interesting, as
it shows a temperature dependence provided that ωs(k) depends on the volume, which
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is, however, only given when the anharmonicity of the lattice potential is taken into ac-
count [48, pp. 490-491]. The temperature derivative of the second term of Eq. (2.7)

yields the phononic thermal expansion coefficient αphon = γphonC
phon
V /3cB, where Cphon

V

and γphon are the lattice contributions to the specific heat and the Grüneisen param-
eter, respectively [48, p. 493]. The second contribution to the thermal expansion of a
metal stems from the temperature dependent pressure generated by the free electron gas
Pelec = 2/3(Uelec/V ) [48, p. 495]. Plugging this expression into Eq. (2.6) gives back the
electronic thermal expansion coefficient αelec = 2/3(Celec

V /3cB), with the electronic specific
heat Celec

V [48, p. 495]. Note that the prefactor 2/3 corresponds to the Grüneisen param-
eter of the free electron gas γelec, which measures the volume dependence of the density
of states at the Fermi level γelec = (∂ lnN(εF)/∂ lnV )T = 2/3 [52, p. 641]. By combining
electronic and lattice contribution, the low temperature thermal expansion coefficient of
a metal consequently reads as [48, p. 495]

α = αelec + αphon =
1

3cB

(
2

3
Celec
V + γphonC

phon
V

)
, (2.8)

whereby the proportionality of αelec and αphon to the respective heat capacities demon-
strates the initially noted linear and cubic temperature dependencies of the electronic and
lattice thermal expansion coefficient, respectively. At temperatures well above the Debye
temperature, the thermal expansion coefficient converges against a constant value [48,
p. 493], which is in analogy to the constant high temperature Dulong-Petit specific heat.
The proportionality between the thermal expansion and the specific heat contribution that
assign to the same energy scale is known as Grüneisen law [53]. An exceptional breakdown
of this generally valid scaling relation is present at a pressure sensitive QCP, where the
Grüneisen parameter diverges upon approaching absolute zero [54]. An detailed discussion
of this intriguing effect is provided in Section 2.1.4.

In the cubic Pr-based intermetallic materials examined in the scope of this thesis,
another considerable contribution to the low temperature thermal expansion arises from
the linear coupling between the quadrupolar moments of the Pr3+ ion’s non-Kramers
Γ3 ground state doublet and strain of the same symmetry. This corresponds to a CEF
effect that measures the splitting of the Γ3 ground state doublet and is therefore only of
relevance when the material’s cubic crystal symmetry is broken and the degeneracy of
the quadrupolar ground state doublet lifted. More details on this effect are provided in
Section 2.3.2.

2.1.3 Magnetostriction

The volume of a material does not only change upon the variation of temperature but also
with magnetic field. This effect is known as volume magnetostriction and the respective
coefficient is defined as

λV =
1

V

(
∂V

∂B

)
P,T

= − 1

V

(
∂M

∂P

)
B,T

, (2.9)

where B = µ0H denotes an external magnetic field. A Maxwell relation links the volume
magnetostriction coefficient to the hydrostatic pressure dependence of magnetization. The
linear magnetostriction coefficient λ quantifies the change in length with magnetic field
and is defined as

λ =
1

L

(
∂L

∂B

)
P,T

. (2.10)



2.1. Thermodynamics 9

The direct connection between the volume magnetostriction and the pressure depen-
dence of magnetization has been demonstrated for a number of 4f-based intermetallic
compounds, whereby the Ce- and Yb-based intermediate valence systems are likely the
best examples to illustrate this effect [55]. When Yb ions are placed in a metallic host,
they typically display a mixed valence state lying in between Yb3+ and Yb2+, which cor-
responds to electronic configurations of 4f13 and 4f14, respectively [55]. As the application
of hydrostatic pressure results in a reduction of volume, a pressurized mixed valent Yb ion
is pushed towards the smaller and magnetic 4f13 configuration. This implies an increase
of magnetization and according to Eq. (2.9) a negative volume magnetostriction. For a
Ce-based intermediate valence system, the pressure effect is reversed. Its valence state
usually lies in between Ce4+ and Ce3+, which is equivalent to electronic configurations of
4f0 and 4f1, respectively [55]. As the non-magnetic 4f0 configuration occupies a smaller
volume, the application of hydrostatic pressure results in a decrease of magnetization and
the respective volume magnetostriction is positive. By contrast, in 4f-based intermetal-
lic systems, where the valence state of the rare earth ions is close to integer, anisotropic
magnetostriction effects are dominant [55]. Such uniaxial response to magnetic field stems
from the anisotropic shape of the 4f electron charge distribution, which in turn is a di-
rect consequence of the CEF effect [56, p. 11]. Note that the degree of anisotropy of the
electron distribution varies among the different rare earth ions and is quantified by the
Stevens factor αj , whose sign dictates whether the 4f electron cloud is squeezed (αj < 0)
or stretched (αj > 0) with respect to the orbital angular momentum axis [57]. Consider,
for instance, the Gd3+ ion, which exhibits a spherical distribution of the 4f electrons and a
Stevens factor of αj = 0 [57]. In consequence, an anisotropic CEF magnetostriction is not
expected for this ion. Counterexamples are the Ce3+ and the Pr3+ ion, which show the
most negative and the Tm3+ and the Yb3+ ion, which exhibit the most positive Stevens
factors among the 4f ions [57]. Consequently, it can be assumed that the associated CEF
magnetostriction shows a distinct anisotropy. As outlined a few lines before, Yb- and Ce-
based intermetallic materials often exhibit intermediate valence states, which come along
with pronounced volume magnetostriction effects and therefore counteract the anisotropic
CEF magnetostriction [55]. In the view of the just reviewed behavior in Ce- and Yb-
based intermetallics, the quantification of uniaxial and volume magnetostriction effects in
selected Pr-based 1-2-20 materials is a central aspect of this thesis. As reduction of CEF
anisotropy and the emergence of volume changes is a distinct signature of hybridization
effects, the magnetostriction measurements carried out in the scope of this work aimed to
shed light on the strength of correlation effects in the just specified material class.

2.1.4 Grüneisen Parameter

The Grüneisen law goes back to Eduard Grüneisen [53] who proposed that the ratio of
the volume thermal expansion to the specific heat, generally referred to as Grüneisen
parameter Γ, does not depend on temperature provided that the system under considera-
tion is governed by a single energy scale E? [54]. Commonly, the Grüneisen parameter is
expressed as a dimensionless quantity [58]

Γ =
Vm

κT

β

C
, (2.11)

where Vm denotes the molar volume and κT the isothermal compressibility. Note that
depending on the consulted literature, the definition of Γ and therefore its dimension
varies. Zhu et al. [54], for instance, disregard the prefactor in Eq. (2.11) in their work
and simply define Γ as the ratio of the volume thermal expansion to the specific heat.
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In the experimental section of this thesis, the Grüneisen parameter of a single-impurity
quadrupolar Kondo metal is expressed in units of Pa−1 in order to emphasize the direct
relation of Γ to the pressure dependence of the relevant energy scale. This relation is
briefly discussed below.

When only a single energy scale is concerned, the molar entropy can be expressed as
S/N = f(T/E?) [54] and it follows for the dimensionless Grüneisen parameter [58]

Γ =
1

κTE?
∂E?

∂p
. (2.12)

Apparently, Γ does not depend on temperature and measures the pressure dependence of
E? [54]. While the electronic Grüneisen parameter of an ordinary metal is typically order
of unity, HF metals are distinguished by Γ values that are up to two orders of magni-
tude increased [59]. With respect to Eq. (2.12), this enhancement implies a considerable
pressure dependence of the relevant energy scale and also emphasizes the significance of
thermal expansion measurements to characterize the emerging effects in this materials
class [59].

As outlined before, the temperature independence of the Grüneisen parameter is only
given when a single energy scale is concerned. In real materials, however, this condition is
often not fulfilled, as a range of different energy scales with different pressure dependencies
contribute, which results in a temperature dependence of the Grüneisen parameter [58,59].
It is therefore common to define an effective Grüneisen parameter Γeff as [59]

Γeff =
∑
i

Γi
Ci
C
, (2.13)

where Γi and Ci are the different Grüneisen and specific heat contributions and C the total
specific heat. This effect becomes particularly evident in the case of HF materials, where
Γeff typically shows a pronounced temperature dependence at elevated temperatures [59].
Below liquid helium temperature it is usually justified to assume that a single energy scale,
namely the one related to the 4f electrons, dominates [58].

Zhu et al. [54] demonstrated theoretically that the generally valid Grüneisen scaling
between thermal expansion and specific heat breaks down at a QCP. In a nutshell, a
QCP denotes a second order phase transition that manifests itself at absolute zero and
comes along with NFL and other unconventional behaviors [11]. Key difference to a
classical phase transition is that quantum and not thermal fluctuations are the driving
force behind a QPT [60]. Quantum fluctuations are described by the energy scale h̄ωc and
become relevant at very low temperature, where h̄ωc > kBT holds true [60]. Despite the
fact that a QCP forms at absolute zero, the related behavior manifests itself in a finite
temperature region specified by kBT > h̄ωc ∼ |r − rc|νz, where r is the control parameter
and ν and z are critical exponents [60]. The critical exponents relate to the correlation
length ξ ∼ |r|−ν and to the imaginary correlation time ξτ ∼ ξz, which both diverge at
a QCP [54, 60]. This is analogously to a classical second order phase transition, with
the key difference that r is a non-thermal control parameter [11, 60]. By considering the
critical free energy contribution, Zhu et al. [54] revealed the divergence of Γ ∼ 1/T 1/νz at
a QCP. The power law dependence of Γ depends on the critical exponents ν and z, which
show characteristic values for different scenarios of QC, as explicitly discussed in Ref. [54].
Extensive experimental evidence for QC and the related divergence of Γ was found in the
material class of magnetic HF metals [11, 58]. While the divergence of Γ at a magnetic
QCP is with certainty the most prominent and most thoroughly studied example, also
other scenarios that lead to a breakdown of the Grüneisen law are conceivable. Zacharias
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et al. [61], for instance, studied the divergence of Γ at an elastic QCP. Such elastic criticality
arises when a linear coupling between strain and criticality is present [61] and is of relevance
for this work, as it can be applied to the quadrupolar Kondo effect. More details on the
latter phenomenon are provided in Section 2.4.2, which also clarifies that uniaixal strain of
suitable symmetry is a direct control parameter for the critical quadrupole Kondo state.

2.2 Crystal Electric Field Theory

In the following, a single ion is considered, which is located inside a crystal structure and
the impact of the electric field gradient generated by the charge density of the adjacent
ions on the just specified single ion is elucidated. This effect is termed CEF effect and
its consideration is crucial in order to understand and explain a large variety of physical
phenomena that arise in d and f electron systems. As this thesis deals with Pr-based
intermetallics, the following review focuses on the case of f electron systems. In materials
of this class, the CEF energy is distinctly small as compared to the spin-orbit coupling
energy [62, p. 116]. This implies that the total angular momentum quantum number J is a
suitable means to characterize the localized f electrons [62, p. 116]. In presence of a CEF,
the degeneracy associated to the ground state of a free f ion is lifted and, depending on
the symmetry of the CEF, a characteristic set of energetically different CEF states forms.
These states are commonly referred to as irreducible representations of the respective CEF
point group symmetry.

While classically the CEF potential can be expressed in terms of spherical harmonics,
Stevens introduced an elegant alternative to evaluate CEF effects in f electron systems by
using the total angular momentum operators [63]. The corresponding CEF Hamiltonian
reads as [62, p. 124]

HCEF =
∑
m

∑
n

Bm
n O

m
n , (2.14)

where Bm
n are the CEF parameters that have to be specified by suitable experiments and

Omn denote the Stevens operators. Generally, the number of the different coefficients and
thus the form of HCEF depends on the symmetry of the CEF. In the following, the focus
shall be on a cubic CEF, as it is present in the Pr-based 1-2-20 materials examined in the
scope of this work. According to Lea et al. [64], the CEF Hamiltonian given by Eq. (2.14)
distinctly simplifies in this case to the form [64]

HCubic
CEF = B4(O0

4 + 5O4
4) +B6(O0

6 − 21O4
6). (2.15)

Lea et al. [64] then defined two coefficients B4 = Wx/F (4) and B6 = W (1− |x|)/F (6), so
that Eq. (2.15) takes the form [64]

HCubic
CEF = W

[
x

(
O0

4 + 5O4
4

F (4)

)
+ (1− |x|)

(
O0

6 − 21O4
6

F (6)

)]
. (2.16)

Here, F (4) and F (6) are parameters, which depend on the total angular momentum quan-
tum number J of the ion under consideration [64]. In the case of a Pr3+ ion with J = 4,
the parameters are specified by F (4) = 60 and F (6) = 1260 [64]. The parameter x de-
termines the energetic arrangement of the different eigenstates and W is simply a scaling
factor [64]. Note that both W and x have to be specified via the experiment. When
subjected to a cubic CEF, as denoted by the Hamiltonian in Eq. (2.16), the nine-fold
degenerate ground state of a free Pr3+ ion splits into four states, namely a Γ1 singlet, a Γ3

doublet, a Γ4 triplet and a Γ5 triplet [64]. The corresponding eigenstates for each of the
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Irreducible Representation Degeneracy Eigenstates

Γ1 1 |Γ1〉 =
√

5
24 |4〉+

√
7
12 |0〉+

√
5
24 |−4〉

Γ3 2
∣∣∣Γ(1)

3

〉
=
√

7
24 |4〉 −

√
5
12 |0〉+

√
7
24 |−4〉∣∣∣Γ(2)

3

〉
=
√

1
2 |2〉+

√
1
2 |−2〉

Γ4 3
∣∣∣Γ(1)

4

〉
=
√

1
8 |3〉+

√
7
8 |−1〉∣∣∣Γ(2)

4

〉
=
√

1
2 |4〉 −

√
1
2 |−4〉∣∣∣Γ(3)

4

〉
=
√

1
8 |−3〉+

√
7
8 |+1〉

Γ5 3
∣∣∣Γ(1)

5

〉
=
√

7
8 |3〉 −

√
1
8 |−1〉∣∣∣Γ(2)

5

〉
=
√

7
8 |−3〉 −

√
1
8 |1〉∣∣∣Γ(3)

5

〉
=
√

1
2 |2〉 −

√
1
2 |−2〉

Table 2.1: Irreducible representations, corresponding degeneracy and eigenstates of a Pr3+

ion, described by a total angular momentum quantum number J = 4, which is
located in a cubic CEF with Oh or Td point group symmetry. The eigenstates
were originally reported in Ref. [64].

four irreducible representations are listed in Table 2.1. In the case of PrIr2Zn20, Iwasa et
al. [65] determined the CEF parameters at W = −1.22 K and x = 0.537 by using inelastic
neutron scattering. This parameter constellation suggests a Γ3 ground state, a Γ4 first
excited state that is followed by a Γ1 singlet and a Γ5 triplet state [65]. For further details
it is referred to Section 4.1.2, which provides specific information on the exact energetic
arrangement of the different CEF eigenstates of PrIr2Zn20. The just referenced work by
Lea et al. [64] is very helpful when dealing with CEF effects in cubic rare earth ions, as
it specifies the CEF eigenstates for a wide range of J values. In addition, graphs are
provided based on which the energy values and therefore the energetic arrangement of the
different eigenstates as a function of the CEF parameter x can be deduced [64].

Each of the four CEF states of a Pr3+ ion in a cubic crystal environment carries
a set of different multipolar degrees of freedom. Multipole moments can be either of
magnetic or quadrupolar nature and are generally described by a tensor of rank k [66].
When k takes an even number, the multipole moment is electric and when k takes an
uneven number, it is magnetic [66, 67]. More specifically, a tensor of rank zero denotes
a magnetic monopole, a tensor of rank one a magnetic dipole, a tensor of rank two an
electric quadrupole and a tensor of rank three a magnetic octupole [67]. The corresponding
multipole operators ranging from rank one to rank three and their commonly employed
denotations are specified below [66].

• Magnetic dipole operators (k = 1): Jx, Jy Jz

• Electric quadrupole operators (k = 2): O0
2, O2

2, Oxy, Oxz, Oyz

• Magnetic octupole operators (k = 3): Txyz, T
α
x , T βx , T γx , Tαy , T βy , T γy
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For details on how the electric quadrupole and magnetic octupole operators depend on the
angular momentum operators, see, for instance, Ref. [68]. This thesis examines electronic
correlation effects at very low temperature, where the physics of a system is governed by
the CEF ground state and its multipolar degrees of freedom. In the case of PrIr2Zn20,
the energetically lowest lying state is a non-Kramers Γ3 doublet [27, 65], for which only
the quadrupole operators O0

2 and O2
2 as well as the magnetic octupole operator Txyz show

finite expectation values. The absence of magnetic dipole degrees of freedom therefore
allows for the exploration of novel quadrupole related correlation effects.

2.3 Elasticity

In order to characterize the ground state of a quadrupolar Kondo metal, it is crucial to
study its elastic properties. In this regard, the three physical quantities stress, strain and
elastic constant shall be introduced in this section. In addition, the elastic free energy
is discussed, whereby a special focus is put on the case of cubic symmetry. Finally, the
paramount role of symmetrized elastic constant and strain measurements to characterize
non-Kramers CEF states is addressed.

2.3.1 Strain, Stress and Elastic Constant

As subsequently only a very basic introduction to the physical quantities strain, stress and
elastic constant is provided, it is referred to Refs. [51, 69] for further details on which the
following lines are based. Note that Ref. [51] provides an elementary yet explicit introduc-
tion to the topic of elasticity, while Ref. [69] shows how these concepts find application in
order to physically characterize solid state materials by means of ultrasonic measurements.

Displacement Vector and Strain Tensor

Generally speaking, the physical quantity of strain describes the deformation of a body and
manifests itself either in the form of a normal or a shear strain. In order to give a precise
definition of strain, at first, a three dimensional coordinate system with a coordinate vector
r = (x, y, z) is introduced. When a point located at the coordinate position r is now moved
to a different coordinate at position r′, then the vector u = r − r′ = (ux, uy, uz) specifies
the point’s displacement [51, p. 1].

In the following the focus is on a body that undergoes a deformation process. In
this case, not only the coordinate position of a particular point of the body but also the
distance l between the just specified point and another point of the body may change to
a different value l′ [51, p. 1]. It then holds for the altered distance after the deformation
process [51, p. 2]

dl′2 = dl2 + 2εijdxidxj , (2.17)

where εij denotes the strain tensor with i, j = x, y, z. This tensor of rank two is directly
connected to the components of the displacement vector via the equation [51, p. 2]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
, (2.18)

which demonstrates a key characteristic of the strain tensor, namely its symmetry εij = εji.
When a body undergoes only a small deformation, it is justified to disregard the third term
of Eq. (2.18) and the strain tensor simplifies to the well known expression [51, p. 3]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.19)
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whereby the case i = j denotes a normal strain and the case i 6= j a shear strain. By
calculating the trace of the strain tensor, one can derive the relative volume change (dV ′−
dV )/dV = εxx + εyy + εzz, which is generally termed bulk strain εB [51, p. 4].

Stress Tensor

Strains are generated when a body is put under stress. Consequently, the stress tensor
σij is an equally crucial quantity when addressing the elastic properties of a solid. Stress
generally relates to a force, as indicated by the relation [51, p. 6]∫

FidV =

∫
∂σij
∂xj

dV =

∫
S
σijdfj , (2.20)

where Fi and dfj denote a force and a surface element component, respectively. Specif-
ically, Eq. (2.20) reveals that the stress tensor σij connects the i-th force component Fi
with the j-th component of the surface element dfj . Provided that i = j, the force acts
parallel to the surface normal and the respective stress is said to be normal. In the case of
i 6= j, the force acts perpendicular to the surface normal and the respective stress denoted
as a shear stress.

Just like the strain tensor, also the stress tensor is symmetric [51, p. 7]

σij = σji, (2.21)

which can be derived by calculations of the angular momentum [51, p. 6-7]. Besides
the application of the just mentioned normal and shear stresses to a body, one can also
compress the latter uniformly, which corresponds to a hydrostatic pressure P . In this case,
the stress tensor fulfills the condition σij = −Pδij , which indicates that only its diagonal
elements differ from zero [51, p. 7].

Thermodynamic Relations

Next, the relations of the strain and stress tensor to the derivatives of different thermo-
dynamic potentials are detailed. The energies of relevance are the internal energy U , the
free energy F and the Gibbs free energy G, which are defined by using Einstein notation
as [69, pp. 47-48]

dU = TdS + V σijdεij + µdN, (2.22)

dF = −SdT + V σijdεij + µdN, (2.23)

dG = −SdT − V εijdσij + µdN, (2.24)

where µ denotes the chemical potential and N the number of particles.
Evidently, the stress tensor σij can be directly deduced via the partial derivative of

either the internal energy U or the free energy F with respect to the strain tensor εij

σij =
1

V

(
∂U

∂εij

)
S,N

=
1

V

(
∂F

∂εij

)
T,N

. (2.25)

The strain tensor εij , on the other hand, follows from the partial derivative of the Gibbs
free energy G with respect to the stress tensor σij .

εij = − 1

V

(
∂G

∂σij

)
T,N

. (2.26)
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In particular, the relation of the stress tensor to the partial derivative of the free energy
with respect to strain, as described by Eq. (2.25), should be kept in mind. It is an
important relation and repeatedly used in the following to deduce some basic relations.

Elastic Constant Tensor

In case the deformation is small, the stress and the strain tensor are directly proportional
quantities, whereby the elastic constant tensor cijkl denotes the constant of their propor-
tionality. This famous relation is known as Hook’s law and one of the most fundamental
equations in the field of elasticity.

For its derivation, at first, the elastic free energy, which is expressed as an energy
density in the following, is considered [51, p. 40]

Fel =
1

2
cijklεijεkl. (2.27)

Note that again Einstein notation is used. The direct proportionality between stress and
strain can then simply be demonstrated by differentiating Fel with respect to εij , which
yields, according to Eq. (2.25), the stress tensor [51, p. 40]

σij =

(
∂Fel

∂εij

)
T

= cijklεkl. (2.28)

Note that the elastic free energy specified by Eq. (2.27) is already expressed in the form of
an energy density and an additional normalization to volume, as suggested by Eq. (2.25),
therefore not necessary. Since strain ε is a dimensionless quantity, the elastic constant
must denote an energy density having the unit of Pa. Equation (2.28) is a relation of
fundamental importance, as it reveals a direct proportionality between the stress and the
strain tensor and specifies the elastic constant tensor as their proportionality constant. It
is crucial to keep in mind that this linear dependence between stress and strain only holds
true in case the deformation is small. When the applied stress exceeds a certain threshold
value, non-linear behavior sets in and ultimately plastic deformation of the material under
stress appears.

Thanks to the symmetry of the elastic constant tensor [51, p. 40]

cijkl = cjikl = cijlk = cklij , (2.29)

its different components decrease from a relatively large number of eighty one to a moder-
ate number of twenty one. Note that the equivalency of the first three terms in Eq. (2.29)
is a direct consequence of the symmetry of the stress and the strain tensor, which was
discussed a few lines before. The equivalency of the first and the fourth term, on the other
hand, follows from the fact that it is irrelevant as to whether one calculates the elastic
constant tensor by partially differentiating Fel at first with respect to εij and then with
respect to εkl or the other way around. The just mentioned twenty one different compo-
nents of the elastic constant tensor further reduce when a material with a certain crystal
symmetry is considered. While for triclinic crystal symmetry still a quite large number
of eighteen elastic constants are present, the number reduces to six in case of tetragonal
crystal symmetry and to three when the crystal shows cubic symmetry [51, p. 44]. As the
latter case applies to the materials examined in this thesis, it is discussed more in detail
in the following subsection. In addition, the paramount role of elastic constant and strain
measurements for the characterization of materials that feature non-Kramers CEF states
is addressed.
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2.3.2 Implications for Cubic Non-Kramers States

In the following, the just detailed basic concepts of elasticity are applied to materials that
feature cubic crystal symmetry. This special case is of particular relevance for this thesis,
as the here examined Pr-based 1-2-20 systems classify as such. To begin with, the cubic
elastic free energy is specified and the related symmetrized elastic constants and strains are
introduced. Subsequently, it is shown that the measurement of symmetrized strains and
elastic constants is a powerful means to characterize materials that feature quadrupolar
non-Kramers CEF states.

In the case of cubic symmetry, the large number of independent elastic constants
reduces to three and the elastic free energy density introduced in Eq. (2.27) simplifies
distinctly to the form [51, p. 44]

F cubic
el =

cxxxx
2

(ε2
xx + ε2

yy + ε2
zz) + cxxyy(εxxεyy + εxxεzz + εyyεzz)

+ 2cxyxy(ε
2
xy + ε2

xz + ε2
yz). (2.30)

To be in line with the relevant literature on the materials examined in the scope of this
work [37, 44], in the following, the indices of the elastic constant tensor are expressed
by digits instead of letters, whereby x → 1, y → 2 and z → 3. In case of the strains,
by contrast, the letters are kept as indices. For reasons of clarity, elastic constants are
often expressed by the shortened Voigt notation3, where two indices are summarized to a
single one. This notation is used here as well and the so abbreviated form of Eq. (2.30)
consequently reads as

F cubic
el =

c11

2
(ε2
xx+ε2

yy +ε2
zz)+ c12(εxxεyy +εxxεzz +εyyεzz)+2c44(ε2

xy +ε2
xz +ε2

yz). (2.31)

This relation can then be rewritten in terms of the symmetrized cubic strains and elastic
constants4, as summarized in Table 2.2, and takes the form

F cubic
el =

(c11 + 2c12)/3

2
ε2

B +
(c11 − c12)/2

2
(ε2

u + ε2
v) +

4

2
c44(ε2

xy + ε2
xz + ε2

yz). (2.32)

The first term of the equation denotes the isotropic bulk contribution, which has Γ1

symmetry and contains the bulk modulus cB = (c11 + 2c12)/3 and the bulk strain εB =
εxx + εyy + εzz. The second term has Γ3 symmetry and covers the two strains εu =
(2εzz − εxx− εyy)/

√
3 and εv = εxx− εyy as well as the elastic constant (c11− c12)/2. The

third term is of Γ5 symmetry with the three shear strains εxy, εxz, εyz and the related
elastic constant 4c44.

Each of the symmetrized strains listed in Table 2.2 can also couple to a multipole
moment of the same symmetry, whereby the coupling strength between symmetrized strain
and multipole moment is quantified by the multipole-strain coupling constant gΓ [70–72].
By taking account of this additional contribution, the cubic elastic free energy density

3In the Voigt notation double indices ij and kl are summarized to a single index as follow: xx = 11 →
1, yy = 22 → 2, zz = 33 → 3, yz = 23 → 4, xz = 13 → 5, xy = 12 → 6.

4Here, the same irreducible cubic strain representations as in the literature dealing with elastic constant
measurements relevant for this thesis (cf. Ref. [44]) are used. It is noted that another representation which
uses normalized eigenstrains is also often employed (cf. Ref. [70]). For reasons of consistency with the
relevant literature, the former representation is chosen in this work.
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Irreducible Representation Symmetrized Strain Symmetrized Elastic Constant

Γ1 εB = εxx + εyy + εzz (c11 + 2c12)/3

Γ3 εu = (2εzz − εxx − εyy)/
√

3 (c11 − c12)/2
εv = εxx − εyy

Γ5 εxy 4c44

εxz
εyz

Table 2.2: Irreducible representations, symmetrized strains and symmetrized elastic con-
stants for cubic symmetry.

given by Eq. (2.32) modifies to the form

F cubic
el =

(c11 + 2c12)/3

2
ε2

B +
(c11 − c12)/2

2
(ε2

u + ε2
v) +

4

2
c44(ε2

xy + ε2
xz + ε2

yz)

− NRE

V
[gΓ1〈O0

0〉εB + gΓ3(〈O0
2〉εu + 〈O2

2〉εv)

+ gΓ5(〈Oxy〉εxy + 〈Oyz〉εyz + 〈Oxz〉εxz)], (2.33)

whereby the multipole moments are denoted by the expectation values of the respective
Stevens operators 〈OΓ〉. In rare earth based intermetallics, it are the localized 4f electrons
exposed to a cubic CEF that principally generate the just specified multipole moments.
Consequently, the term of Eq. (2.33) in square brackets scales with the number of rare
earth ions NRE that are located in the considered volume. Note that Eq. (2.33) is based on
the assumption that only one particular type of rare earth ion is embedded in the metallic
host system. In the materials examined in the scope of this work, the rare earth ion is
the Pr3+ ion whose CEF ground state has been specified by various experiments as the
non-Kramers Γ3 doublet [27, 42, 43, 65]. Consequently, the second and the fifth term of
Eq. (2.33) with Γ3 symmetry are of particular relevance.

In consequence of the multipole-strain coupling, both symmetrized elastic constant
and strain measurements are effective probes to characterize CEF states with regard to
their multipolar nature. This is elucidated in the following two subsubsections, whereby
the focus is at first on the cubic symmetrized strains. In this regard, an important impli-
cation of Eq. (2.33), namely the linear dependence between a symmetrized strain and the
expectation value of the respective Stevens operator, is discussed. In addition, the cubic
symmetrized strains are set in relation to the strains along certain cubic crystallographic
directions. This is important, as the symmetrized strains with Γ3 and Γ5 symmetry cannot
be measured directly, but have to be deduced from measurements along selected crystallo-
graphic directions. Finally, the direct relation between symmetrized elastic constant and
strain susceptibility of a non-Kramers 4f state is reviewed.

Symmetrized Strains

As thermal expansion and magnetostriction measurements were employed in this work to
examine the quadrupolar non-Kramers Γ3 ground state of different cubic Pr-based 1-2-
20 materials, the following lines, which detail the linear dependence between the cubic
symmetrized strains and the expectation value of the respective Stevens operators, are
paramount for the interpretation of the experimental results presented later on. This
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important relation was originally revealed by Callen and Callen [71]. Pioneering work
on symmetrized strain measurements was also done by Morin et al. [70, 72, 73], who took
advantage of the quadratic coupling between quadrupole moment and strain to derive
quadrupole-strain coupling constants at elevated temperatures.

The just mentioned linear dependence between a symmetrized strain εΓ and the re-
spective multipole moment 〈OΓ〉 becomes directly evident when Eq. (2.33) is minimized
with respect to εΓ. This gives back the generalized expression

εΓ =
nREgΓ

cΓ
〈OΓ〉 , (2.34)

where nRE = NRE/V is the rare earth ion density. Note that the lattice contribution to the
symmetrized elastic constant is denoted from now on by c0

Γ, as the following subsubsection
introduces another contribution to cΓ that assigns to the 4f electrons. Equation (2.34) is
of fundamental importance for this work and frequently employed at a later stage when
the experimental results are detailed. Specifically, Eq. (2.34) allows to calculate the CEF
thermal expansion and magnetostriction coefficients via the temperature or magnetic field
dependence of the quadrupolar expectation values.

As the cubic materials PrIr2Zn20 and Y1−xPrxIr2Zn20 examined in the scope of this
thesis exhibit a Γ3 ground state doublet, the two Γ3-type strains εu and εv are most
relevant and therefore introduced at first. According to Eq. (2.34) and by taking into
account that the strain εu has the same symmetry as the O0

2 Stevens operator it follows

εu =
nREgΓ3

(c0
11 − c0

12)/2

〈
O0

2

〉
. (2.35)

For the second Γ3-type symmetrized strain εv, which is of identical symmetry as the O2
2

Stevens operator, it holds

εv =
nREgΓ3

(c0
11 − c0

12)/2

〈
O2

2

〉
. (2.36)

The Γ5-type shear strain εxy, on the other hand, corresponds to the Oxy Stevens operator
and thus calculates as

εxy =
nREgΓ5

4c0
44

〈Oxy〉 . (2.37)

The relations for the other symmetrized strains εxz and εyz with Γ5 symmetry are not
explicitly detailed here. Their calculation is analogously to the one of εxy, whereby the
respective Stevens operators Oxz and Oyz have to be used. For the sake of completeness
also the volume strain that derives as

εB =
nREgΓ1

(c0
11 + 20

12)/3

〈
O0

0

〉
, (2.38)

is given. As 〈O0
0〉 is a constant, εB does not depend on temperature or magnetic field and

is therefore not of relevance in the following.
Among the just detailed relations, Eq. (2.35), which sets the strain εu in relation to

the quadrupolar expectation value 〈O0
2〉, is the most crucial one for this work. While in

presence of cubic crystal symmetry the expectation values of the Stevens operators with
Γ3 and Γ5 symmetry vanish to zero, they are finite when the system is subjected to a
symmetry breaking perturbation that matches the symmetry of the respective multipole
moment. 〈O0

2〉, for instance, exhibits a finite expectation value when an uniaxial stress
or a magnetic field is applied along the cubic [001] direction, which distorts the crystal
symmetry from cubic to tetragonal. 〈Oxy〉, by contrast, is induced by a magnetic field or
an uniaxial stress along the [110] direction, which evokes a shear strain εxy.
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With the exception of the bulk strain εB, it is not possible to directly measure the
cubic symmetrized strains. Therefore, it is important to quantify their contributions to
the strains along certain cubic crystallographic directions that can be accessed in the ex-
periment. By employing the cubic symmetrized strains presented in Table 2.2, the relative
length changes along the cubic main directions are directly deducible. Note that only the
strains relevant for this work are specified in the following. Under the assumption that a
symmetry breaking magnetic field or uniaxial stress is applied along the crystallographic
[001] direction, the strains along the three cubic directions [100], [010] and [001] derive as

ε[001] =
∆L

L

∣∣∣∣
[001]

=
1

3
εB +

1√
3
εu, (2.39)

ε[100] =
∆L

L

∣∣∣∣
[100]

=
1

3
εB −

1

2
√

3
εu +

1

2
εv, (2.40)

ε[010] =
∆L

L

∣∣∣∣
[010]

=
1

3
εB −

1

2
√

3
εu −

1

2
εv. (2.41)

The strain along the [110] direction, on the other hand, derives as

ε[110] =
∆L

L

∣∣∣∣
[110]

=
1

3
εB −

1

2
√

3
εu + εxy. (2.42)

Finally, the strain along the [111] direction is provided, which reads as

ε[111] =
∆L

L

∣∣∣∣
[111]

=
1

3
εB +

2

3
(εxy + εxz + εyz). (2.43)

It is recalled that the Γ3- and Γ5-type strain contributions εu, εv, εxy, εyz and εxz
are only activated when a perturbation of suitable symmetry is applied to the system.
Given that magnetic field and uniaxial stress are zero and the considered material in the
paraquadrupolar phase, the strain along any cubic direction is simply given by εB/3. The
just mentioned equations indicate that the quadrupolar Γ3-type symmetrized strains are
only induced when the cubic symmetry is broken by an uniaxial stress or a magnetic field
applied, for instance, along the [001] or the [110] direction. In the latter scenario also
the contribution εxy with Γ5 symmetry becomes active, as indicated by Eq. (2.42). By
contrast, an uniaxial stress along the [111] direction, which induces a strain ε[111], couples
only to the strains with Γ5 symmetry, as Eq. (2.43) implies. Consequently, an important
implication of the just detailed equations is that only a distortion along a cubic 〈100〉 or
a 〈110〉 direction results in a linear splitting of the cubic non-Kramers Γ3 doublet.

As mentioned in the outline, symmetrized strain measurements have so far mainly been
used to determine quadrupole-strain coupling constants at elevated temperatures [73]. In
this work it is demonstrated that such symmetrized strain measurements are a powerful
and direct means to track down possible variations in the CEF quadrupole-field suscepti-
bility of quadrupolar Kondo metals. The most common approach to physically character-
ize this material class is the measurement of symmetrized elastic constants by using the
ultrasonic technique. This is the central topic of the following subsubsection.

Symmetrized Elastic Constants

The strain susceptibility χΓ describes the response of a multipole moment 〈OΓ〉 to a
symmetrized strain εΓ and is defined as

χΓ =
∂〈OΓ〉
∂εΓ

∣∣∣∣
εΓ→0

. (2.44)
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In case of a degenerate non-Kramers state Γ with quadrupolar degrees of freedom, χΓ shows
a divergent 1/T Curie-type temperature dependence and is therefore a direct means to
examine the quadrupolar nature of a CEF state. An elegant way to determine χΓ is via
the measurement of symmetrized elastic constants. The direct relation between these two
quantities is reviewed subsequently by following the notation of Ref. [74, pp. 243-244].
Also Ref. [69] has to be mentioned in the context of this subsubsection, as it is another
elementary book on the elastic constant topic.

As indicated by Eq. (2.27), the symmetrized elastic constant cΓ can be derived via
the second derivative of free energy F with respect to the symmetrized strain εΓ. As this
thesis deals with correlation phenomena related to 4f electrons, the main focus of this
review is on the 4f contribution to cΓ, which calculates by means of the 4f electron free
energy F4f as [74, p. 243]

c4f
Γ =

1

V

(
∂2F4f

∂ε2
Γ

)
T

= − 1

V

(
∂2

∂ε2
Γ

NREkBT ln
∑
i

exp (−Ei(εΓ)/kBT )

)
T

, (2.45)

where Ei(εΓ) denotes the energy of a CEF level, which shows a dependence on strain.
Ei(εΓ) calculated to second order in perturbation theory is given by [74, p. 243]

Ei(εΓ) = Ei − gΓεΓ 〈i|OΓ |i〉+ g2
Γε

2
Γ

∑
i 6=j

| 〈i|OΓ |j〉 |2

Ei − Ej
. (2.46)

Besides the 4f contribution c4f
Γ , one also has to take account of the lattice contribution

c0
Γ, which the literature commonly refers to as background elastic constant. c0

Γ contains
both temperature independent harmonic and temperature dependent anharmonic lattice
contributions [74, p. 243]. This is in analogy to the lattice thermal expansion coefficient
detailed in Section 2.1.2, for which a temperature dependence only arises when the higher
order anharmonic terms in the lattice potential are taken into account. As the research
on this thesis was carried out at very low temperature T < 4 K, it is safe to assume that
c0

Γ is constant in the here accessed temperature range.
By summing up the 4f contribution, evaluated by Eq. (2.45), and the lattice part, the

symmetrized elastic constant deduces as [74, p. 244]

cΓ = c0
Γ + nRE

[〈
∂2E

∂ε2
Γ

〉
− 1

kBT

〈(
∂E

∂εΓ

)2〉
+

1

kBT

〈
∂E

∂εΓ

〉2
]
. (2.47)

The term in square brackets reminds on the definition of the magnetic susceptibility, for
which E depends on magnetic field and the respective partial derivatives are calculated
with respect to magnetic field instead of strain. This analogy implies a direct relation be-
tween the symmetrized elastic constant cΓ and the strain susceptibility χΓ. Consequently,
when expressing the term in square brackets of Eq. (2.47) as a strain susceptibility, a
simplified relation for the symmetrized elastic constant follows [74, p. 244]

cΓ = c0
Γ − nREg

2
ΓχΓ, (2.48)

whereby the single-ion strain susceptibility χΓ reads as [74, p. 244]

χΓ =
∑
i 6=j

pi − pj
Ei − Ej

|〈i|OΓ|j〉|2 +
1

kBT

∑
i

pi|〈i|OΓ − 〈OΓ〉|i〉|2 = χVV +
C

kBT
, (2.49)

with pi = exp(−Ei/kBT )Z−1 and Z =
∑

i exp (−Ei/kBT ). Eq. (2.49) indicates that
χΓ has two major contributions arising, on the one hand, from diagonal and, on the
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other hand, from off-diagonal matrix elements of the respective Stevens operator. The
off-diagonal elements thereby correspond to a temperature independent Van Vleck con-
tribution χVV and the diagonal ones to a temperature dependent Curie contribution
χC = C/(kBT ) [74, p. 244]. Note that in case of a magnetic Kramers state, only a Van
Vleck but no Curie contribution to the strain susceptibility is present [74, p. 244]. Con-
sequently, elastic constant measurements can directly identify quadrupolar non-Kramers
states via a characteristic Curie-type softening and therefore play an equally crucial role
for the characterization of non-Kramers states as magnetic susceptibility measurements
do for magnetic Kramers state.

For a wide range of materials, the assumption of independent rare earth ions, on which
the preceding review is based, is, however, not applicable. In rare earth based intermetallic
compounds, for instance, the rare earth ions are periodically arranged on the lattice and
interact with each other by means of the conduction electron mediated Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange. By taking account of this additional interaction, whose
strength is quantified by the interaction constant K, Eq. (2.48) modifies to [69, p. 82]

cΓ = c0
Γ − nREg

2
Γ

χΓ

1−KχΓ
. (2.50)

Note that the second term, which assigns to the localized 4f electrons has the same form as
the Curie Weiss-type magnetic susceptibility that describes interacting magnetic Kramers
states.

The direct relation between the symmetrized elastic constant and the respective strain
susceptibility emphasizes the crucial role of elastic constant measurements when study-
ing materials that feature quadrupolar degrees of freedom. Strikingly, the measurement
of symmetrized elastic constants is not only a powerful means to obtain information on
the quadrupolar nature of a CEF state but also to specify the symmetry of the pos-
sible quadrupolar response. Just to recall, the Pr3+ ions of the cubic Pr-based 1-2-20
materials examined in this work are subject to a cubic CEF with Td point group and
the ground state was specified as the non-Kramers Γ3 doublet [27, 42, 43, 65]. Accord-
ing to Table 2.2, (c11 − c12)/2 is the respective symmetrized elastic constant with Γ3

symmetry and its measurement thus paramount for the characterization of the materials’
non-Kramers Γ3 ground state doublet. On the basis of the above, a Curie-type softening
of (c11 − c12)/2 is expected in case of the highly diluted material Y1−xPrxIr2Zn20 and a
Curie-Weiss-type softening in case of the dense material PrIr2Zn20 at low temperature,
where the ground state dominates. In reality, different mechanisms, such as quadrupolar
order or the quadrupolar Kondo effect, can lead to deviations from the theoretically ex-
pected behavior. The latter effect is an intriguing phenomenon that comes along with a
characteristic renormalization of χΓ to a logarithmic temperature dependence [16]. The
measurement of the (c11− c12)/2 elastic constant is therefore a direct and powerful means
to track down possible quadrupolar Kondo correlations in cubic non-Kramers systems.
More details on the quadrupole Kondo effect are provided in the subsequent section. In
solid state physics, elastic constants are usually measured by the ultrasonic technique,
whereby detailed information on the topic is provided in Ref. [69]. Note that the strain
susceptibility with Γ3 symmetry χΓ3 is hereinafter simply referred to as the quadrupole
susceptibility χQ.

2.4 Kondo Physics

The Kondo effect is likely one of the most thoroughly researched hybridization phenomena
in condensed matter physics. In a nutshell, it describes the screening of a localized impurity
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magnetic moment by conduction electrons that ultimately results in the vanishment of the
impurities’ magnetic character. When the local magnetic moments are periodically placed
on a crystal lattice, as it is the case in 4f- and 5f-based HF metals, a so called Kondo
lattice forms. Of direct relevance for this work is an exotic variation of this hybridization
phenomenon, known as two-channel Kondo effect. In this case, a localized moment is
over screened by two conduction electron channels, which evokes NFL behavior and a
remarkable residual entropy. While the Kondo effect is a well understood phenomenon
that has been extensively studied over the last decades, clear experimental evidence for
its two-channel version remains still elusive. Finding and exploring new materials that
feature this intriguing state of matter is therefore a hotly disputed topic in the field of
solid state research.

2.4.1 Single-Channel Kondo Effect

This subsection provides a basic introduction to the Kondo effect, also referred to as
single-channel Kondo effect. At first, the single-impurity case is addressed and a brief
overview over the historical development is given. Subsequently, the Kondo lattice effect
is discussed and its implications for the class of HF metals are elaborated.

Single-Impurity Kondo Effect

Nowadays, it is a well established fact that the contamination of a pure metal with a
small fraction of magnetic impurities has a tremendous impact on its low temperature
physical properties. This phenomenon becomes particularly evident when considering
the electrical resistivity. In contrast to a conventional metal, for which the resistivity
decreases monotonically down to a constant value as temperature declines, the resistivity
of a metal with a small fraction of magnetic impurities passes through a minimum at low
temperatures and shows a divergent like increase as temperature is further reduced. This
phenomenon, which was initially reported in the early 1930’s [5,6], is termed Kondo effect.
It is named after the Japanese theoretical physicist Jun Kondo who made with his theory
from 1964 a major contribution to resolve this experimentally found peculiarity [7].

The key aspects of Kondo’s theoretical considerations are briefly reviewed in the fol-
lowing. At the theory’s core is the Kondo Hamiltonian, which reads as [75]

HK =
∑
kµ

εkc
†
kµckµ + J

∑
kk′µµ′

S · c†kµσµµ′ ck′µ′ , (2.51)

where the first term describes the free electron gas, with the kinetic energy εk and the
annihilation and creation operators ckµ and c†kµ, respectively. k is the wavenumber and
µ the electron spin, which can either point up or down. The second term, generally
labeled as s−d term, denotes the interaction between the conduction electrons, whose
spin vector σ = (σ1, σ2, σ3) is described by the Pauli matrices, and a localized impurity
spin S = (S1, S2, S3) [75]. The interaction strength between impurity and conduction
electron spin is quantified by a constant denoted as J > 0 [75]. A key assumption of
the model is that the conduction electron channel has no orbital degrees of freedom,
meaning that l = 0 [75]. As Kondo pointed out in his original publication from 1964 [7],
the employed s−d exchange model is based on previous theoretical work by Kasuya [76],
Zehner [77] and Yosida [78, 79]. The central point of Kondo’s theory was to demonstrate
by means of a second order Born approximation that the interaction between the localized
magnetic impurity and the conduction electrons, which is described by the s−d term in
the Kondo Hamiltonian, leads to a low temperature divergence in the electron scattering
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rate [7]. Specifically, this implies a correction to the low temperature electrical resistivity
that depends logarithmically5 on temperature [7]

ρ = cρM[1− (3zJ/εF) log T ], (2.52)

where c is the impurity concentration, ρM = 3πmJ2S(S + 1)(V/N)/2e2h̄εF, z quantifies
how many conduction electrons assign to an atom and εF is the Fermi energy. According
to Eq. (2.52), a divergence in the electrical resistivity is, however, only present, when the
Kondo interaction J is AFM [7]. As Kondo pointed out, a first order Born approximation
would only yield a temperature independent term in the scattering rate and is therefore
not sufficient to explain the experimentally observed divergence in the low temperature
electrical resistivity [7].

The combination of the logarithmically divergent electrical resistivity contribution
specified by Eq. (2.52) with the lattice contribution ρphon = aT 5, provides indeed a very
good description of the experimentally observed low temperature minimum and divergence
in the electrical resistivity [7]. Kondo could therefore successfully derive a relatively simple
mathematical relation that provides an excellent description of the electrical resistivity of
a metal with a small fraction of magnetic impurities [7]

ρ = aT 5 + cρ0 − cρ1 log T, (2.53)

where a is a constant and ρ0 the residual resistivity.
Nevertheless, Kondo’s theory also had a significant inconsistency, namely the diver-

gence in the electrical resistivity on approaching absolute zero. Shortly after Kondo’s
original publication, Abrikosov [80] identified a characteristic temperature to which the
divergence in the electrical resitivity can be assigned to. This is the well known Kondo
temperature, defined as [80]

TK ∼ exp (−1/|J |). (2.54)

In 1961, a few years before Kondo’s groundbreaking work, Philip Anderson published
his theory on local moment formation in metals [81]. While Kondo took the existence
of local moments for granted, Anderson addressed the problem of how a local moment
actually develops from scratch. The two key constituents of Anderson’s theory are the
Coulomb repulsion U between the d electrons of the impurity and the tunneling between
localized d and conduction states, resulting in a resonance with a finite width ∆ that is
generally referred to as hybridization energy [81, 82]. In case of U = 0, this resonance is
directly located at the energy of the d state εd [81, 82]. The essential point of Anderson’s
theory is that the formation of local moments depends sensitively on the interplay of the
two parameters U and ∆. By employing a Harte Fock approximation, Anderson showed
that, in case the conditions εF > εd and ∆/U < π are fulfilled, a separation of the
single resonance into two takes place and a local moment forms [81,82]. For more details
it is referred to Anderson’s original work [81] and to a subsequent review article [82].
As Anderson’s considerations are based on a hybridization between local moment and
conduction electrons, they differ from the approach taken by Kondo who described the
interaction between localized magnetic moment and conduction electrons by means of an
exchange interaction J . Notably, in 1966 it was shown by Schrieffer and Wolff that the
approaches of Anderson and Kondo are equivalent given that s−d mixing is small [83].

5Note, as Kondo assumed in his original publication that an AFM interaction corresponds to J < 0,
which is in contrast to the presented Hamiltonian from Ref. [75], where an AFM interaction is denoted by
J > 0, the sign of the logarithmic term in Eq. (2.52) was flipped from positive to negative as compared to
Kondo’s cited original publication [7], to be in line.
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Tackling the problem with the low temperature divergence in the electrical resistivity
was the topic of subsequent research. In the end it was Wilson [9] who gave an exact
solution of this long standing problem by means of renormalization group theory. Wilson’s
calculations suggested a temperature independent impurity magnetic susceptibility at very
low temperature [84, p. 89]

χimp =
(gµB)2w

4kBTK
, (2.55)

which demonstrated the vanishment of the impurities’ magnetic character due its full
screening by the conduction electrons. Here, w = 0.4128 denotes the Wilson number,
which links the Kondo temperature to the impurity magnetic susceptibility [84, p. 90].
The specific heat assigned to the impurity, on the other hand, shows a linear dependence
on temperature Cimp = γimpT [84, p. 90]. With the help of these two quantities, the
Wilson ratio R can be calculated as [84, p. 90]

R =
χimp/χc

γimp/γc
=

4π2k2
B

3(gµB)2

χimp

γimp
= 2, (2.56)

where χc and γc denote the susceptibility and the Sommerfeld coefficient assigned to the
conduction electrons. This is a surprising finding, as the value of R = 2 differs from
the one of electrons that do not interact with each other, which are generally described
by R = 1 [84, p. 90]. Later it became apparent that this enhancement is due to the
formation of quasiparticles and therefore a direct consequence of the interaction between
electrons [84, p. 90]. Pioneering work on this topic was done by Nozières [85], who proposed
that the Kondo effect corresponds to a local FL at very low temperature.

Kondo Lattice Effect

A central assumption of the just detailed single-impurity Kondo model is the independence
of the local moments, meaning that Kondo’s theory only applies to materials containing
a tiny fraction of magnetic ions. For a large variety of 4f- and 5f-based intermetallic
compounds, this prerequisite is, however, not fulfilled, as the magnetic ions are periodically
arranged on the lattice and their inter-site interaction is not negligible. Such materials are
classified as Kondo lattice systems. The terminology goes back to Doniach, who suggested
back in 1977 that the ground state of a dense local moment system is either a sort of non-
magnetic Kondo screened or an antiferromagnetically ordered state [10]. Since this initial
proposal, the physical characteristics of dense local moment systems have been studied
extensively, mainly on the example of magnetic HF metals [2,4]. Before discussing the key
signatures of Kondo lattice systems more in detail, some important theoretical aspects are
outlined.

The Kondo lattice Hamiltonian reads as [86]

HKL =
∑
kµ

εkc
†
kµckµ + J

∑
iµµ′

Si · c†iµσµµ′ciµ′ , (2.57)

where the first term describes the conduction electrons and the second term their interac-
tion with the local moments that are sitting at different lattice sites i. In addition to the
Kondo temperature TK, a Kondo lattice is distinguished by a second energy scale, namely
the Kondo coherence temperature Tcoh that is generally smaller than TK [87]. The effect
of coherence can be nicely illustrated by taking the example of HF metals. At elevated
temperatures, a HF metal exhibits basically the same characteristics as a single-impurity
system, i.e. its electrical resistivity increases logarithmically as temperature declines [88].
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At low temperature, however, the periodicity of the local moment sublattice leads to
the formation of Bloch waves [47, p. 658]. In consequence, the independent and there-
fore incoherent scattering processes happening at each local moment site show a coherent
character, which manifests itself in a sudden decrease of the HF metal’s electrical resistiv-
ity [47, p. 659]. This coherent low temperature behavior is typically captured by FL theory
and therefore distinguished by a quadratic temperature variation of the electrical resistiv-
ity, a linear in temperature dependence of the specific heat coefficient and a temperature
independent magnetic susceptibility [2, 87]. As pointed out by Doniach, the coherent low
temperature Kondo ground state is in competition with AFM order, which provides the
basis for the phenomenon of magnetic HF QC [10,11]. Note that AFM order in local mo-
ment systems is induced by the RKKY interaction via the conduction electrons [89]. Since
the Kondo and the RKKY energy scales depend differently on the interaction constant J ,
whereby TK ∼ exp (−1/|J |) and TRKKY ∼ J2, it is the magnitude of J , which specifies the
ground state of a Kondo lattice [10]. The just detailed dependencies of the characteristic
temperatures on J demonstrate that for small J the RKKY energy scale dominates, while
the Kondo energy scale prevails for large J . Of particular interest is the point of the phase
diagram, at which both energy scales cross. Here, typically a QCP forms that is linked
to NFL and other peculiar behavior, such as unconventional superconductivity [11]. More
specific details on the phenomenon of QC were already provided in Section 2.1.4 to which
it is referred at this point for further details.

2.4.2 Two-Channel Kondo Effect

An exotic variation of the just detailed Kondo effect that triggers NFL behavior in various
thermodynamic quantities as well as an unconventional residual entropy is the two-channel
Kondo effect. This unconventional hybridization effect is of particular relevance for this
thesis, as there has been initial evidence for its emergence in the here investigated class of
Pr-based 1-2-20 systems [28, 30, 35, 42–44]. By contrast to the well studied single-channel
Kondo effect, conclusive experimental evidence for the two-channel Kondo effect remains
still elusive. This subsection provides a brief introduction to the latter effect and reviews
its thermodynamic signatures with respect to both the single-impurity and the lattice
version.

Single-Impurity Two-Channel Kondo Effect

The two-channel Kondo effect is a special case of the multichannel Kondo scenario, which
was originally proposed by Nozières and Blandin back in 1980 [15]. Their theory ad-
dresses shortcomings of both the Kondo and the Anderson model, as neither of the two
takes account of the orbital contribution of the localized magnetic impurity [15]. The
multichannel Kondo Hamiltonian has a similar form as the conventional single-impurity
Kondo Hamiltonian, specified by Eq. (2.51), with the key difference that the number of
electron screening channels is not limited to a single one [15,90]

HMCK =
∑
kmµ

εkc
†
kmµckmµ + J

∑
kk′mµµ′

S · c†kmµσµµ′ck′mµ′ , (2.58)

where the summation over m takes account of the various orbital screening channels. The
multichannel Kondo model differs among three distinct screening scenarios, which set the
impurity spin S in relation to the total number of orbital screening channels n and lead
to different ground states [15]. These are listed and briefly discussed in the following.
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• In the first scenario it holds n = 2S. Here, the localized impurity spin is fully
screened by the conduction electron channels and the resulting ground state is a
singlet featuring FL behavior. An example is the conventional Kondo effect, which
arises in magnetic impurity systems, as discussed in the preceding subsection. [15,91]

• The second scenario describes the case where n < 2S. Here, the number of conduc-
tion electron channels is not sufficient to fully screen the impurity spin. The impurity
is therefore under screened and the resulting ground state remains partially degener-
ate. In this case, the Kondo interaction between impurity and conduction electrons
is ferromagnetic (FM). [15,91]

• The third scenario denotes a situation where n > 2S. Here, the impurity spin
is over screened by the conduction electron channels and the Kondo interaction of
AFM nature. In consequence, criticality arises in various thermodynamic quantities,
which implies intriguing physics to explore. This case is of particular relevance
for this thesis, as it covers the two-channel Kondo scenario where S = 1/2 and
n = 2. [15,91]

In the following, the focus is on the third scenario, which describes the over screening
of the impurity spin by the conduction electron channels. After the original proposal
of the model by Nozières and Blandin [15], different approaches were taken to solve the
multichannel Kondo problem that included, for instance, the Bethe Ansatz method [17,92]
or conformal field theory [41,93].

For the over screened case with S = 1/2, calculations by Tsvelick [17] suggested that
NFL behaviors arise in the impurity specific heat and the impurity susceptibility. The NFL
behaviors depend sensitively on the number of conduction electron screening channels, as
described by the following relations [17,18]

C

T
∼
(
T

TK

) 4
(n+2)

−1

, (2.59)

χ ∼
(
T

TK

) 4
(n+2)

−1

, (2.60)

where TK is the characteristic multichannel Kondo temperature. In addition, Tsvelick [17]
proposed that the over screening comes along with an unconventional zero field residual
entropy in the limit T → 0 that is given by [17]

S = ln
[sin (π(2S + 1))/(n+ 2)]

sin [π/(n+ 2)]
. (2.61)

As the two-channel Kondo effect, where an impurity spin with S = 1/2 is over screened
by two channels of conduction electrons n = 2, manifests itself in selected Pr-based 1-2-20
materials [42–44,94], its implications for the just detailed NFL behaviors shall be discussed
in the following. Generally, a two-channel Kondo effect can appear both in magnetic and
quadrupolar systems [95]. Given that the localized moment carries quadrupolar degrees
of freedoms, the relevant susceptibility is the quadrupole-strain susceptibility [16]. In
the single-impurity two-channel Kondo scenario, the just detailed relations simplify and
both the specific heat over temperature and the susceptibility of the impurity depend
logarithmically on temperature [16,18]

C

T
= −a ln

(
T

TK

)
, (2.62)
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χ = −b ln

(
T

TK

)
, (2.63)

where a and b are constants. In addition, Affleck and Ludwig [41] suggested a square root
temperature dependence of the electrical resistivity [41]

ρ ∼ 1 + c
√
T , (2.64)

where c is a constant. Also the complex expression for the residual entropy given by
Eq. (2.61) simplifies and yields a characteristic value of [17]

S =
1

2
ln 2. (2.65)

These clear theoretical predictions of the NFL associated to the single-impurity two-
channel Kondo effect quested for real materials that feature this unconventional physics.
In this regard, Cox [95] made a crucial contribution with his proposal of selection rules
that allow for the identification of suitable 4f and 5f ions that can principally host two-
channel Kondo physics. A potential candidate is, for instance, the Ce3+ ion located in
a cubic crystal environment [95]. Given that the CEF ground state is the Γ7 doublet,
its hybridization with conduction electrons of Γ8 symmetry can evoke the magnetic two-
channel Kondo effect [95]. By contrast, Cox deems the formation of a two-channel Kondo
effect in a Yb3+ ion for unlikely [95]. Another possible candidate is the U4+ ion [95].
Provided that a cubic CEF is present, the Γ3 doublet is a possible CEF ground state of
this ion that can hybridize with conduction electrons of Γ8 symmetry and lead to a two-
channel Kondo effect [95]. As the Γ3 doublet of the non-Kramers U4+ ion is of quadrupolar
nature, the term quadrupolar Kondo effect is generally employed. This terminology also
goes back to Cox, who introduced the quadrupole Kondo model in order to explain exotic
NFL behavior emerging in UBe13 [13,14]. Note that the just mentioned examples are just a
fraction of all possible ones and it is referred to the original publication by Cox [95] for more
details. Initially, there has been comprehensive research on diluted U-based materials,
which included, for instance, the compounds UxTh1−xBe13 [19, 20], UxTh1−xRu2Si2 [23,
24] and Y1−xUxPd3 [21, 22], in order to find experimental evidence for the quadrupolar
Kondo effect. While unconventional behaviors were indeed revealed that were in partial
agreement with the theoretical predictions, it has so far not been possible to find hard and
unambiguous evidence for the formation of the quadrupolar Kondo effect in bulk materials.
In the U-based materials, the hybridization strength is usually significant, which in turn
complicates the measurement of CEF excitations. Specifying the CEF ground state of
the material under consideration is, however, essential in order to evaluate as to whether
quadrupole moments are involved in the formation of the NFL state.

In addition to the just detailed 4f ions, the non-Kramers Pr3+ ion is another noteworthy
candidate [96]. If exposed to a cubic CEF, the Pr3+ ion with J = 4 can principally show a
non-Kramers Γ3 ground state doublet [64]. The quadrupolar ground state moments with
Γ3 symmetry can then, analogously to the U4+ ion, hybridize with conduction electrons of
Γ8 symmetry, which provides the basis for a quadrupolar two-channel Kondo effect [96].
With the recent discovery of the class of cubic Pr-based 1-2-20 systems [25, 26, 97], new
prototype materials were found that feature such a non-Kramers Γ3 ground state doublet.
These materials are therefore well suited to explore the quadrupolar Kondo effect, whereby
PrIr2Zn20 has to be mentioned as a prime example [27, 28, 65]. Consequently, its highly
diluted sister compound Y1−xPrxIr2Zn20 is a promising candidate to feature the single-
impurity quadrupole Kondo effect and the just detailed measurements of the specific heat,
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quadrupole susceptibility and electrical resistivity are essential probes to verify its possible
formation in the material [42–44,94].

Two-Channel Kondo Lattice Effect

As aforementioned equations only hold true for the single-impurity case, they cannot be
applied to dense two-channel Kondo lattice systems, for which the localized magnetic or
quadrupolar moments are arranged in a periodic manner within the crystal structure and
interact with each other. Even though various approaches were taken from the theory side
to tackle this problem and to provide a general framework for the theoretical description
of the two-channel Kondo lattice effect, universally applicable mathematical relations that
unambiguously predict the related behavior have, as of yet, not been found.

An early work by Jarell et al. [98] used a quantum Monte Carlo simulation and demon-
strated that a two-channel Kondo lattice displays NFL behavior and transitions into an
AFM ordered state at low temperature. The formation of the latter phase depends thereby
sensitively on the filling of the conduction electron band and is only realized for the case
of half filling [98]. Recently, Tsuruta et al. [40] took another theoretical approach that
was successfully applied to describe the NFL behaviors present in selected Pr-based 1-2-
20 materials [28, 30, 35]. Their theory is based on a two-channel Anderson lattice model,
which is evaluated by means of the 1/N expansion technique [40]. This yields characteris-
tic NFL temperature dependencies in the specific heat, electrical resistivity and magnetic
susceptibility [40]

C ∼ 1− a
√
T , (2.66)

ρ ∼ 1

1 + b
T

, (2.67)

χ ∼ 1− c
√
T , (2.68)

where are a, b and c are constants. Strikingly, the model provides a very good description
of the unconventional temperature dependencies found in the electrical resistivity and
the specific heat of the material PrIr2Zn20 [28]. Also the temperature dependence of
the electrical resistivity of PrRh2Zn20 could be well accounted for [30]. In addition, Fu et
al. [35] used the model to successfully describe the NFL behavior emerging in the electrical
resistivity and magnetic susceptibility of PrV2Al20.

As temperature approaches absolute zero, a two-channel Kondo lattice typically un-
dergoes some kind of ordering that ultimately quenches the exotic NFL behavior [99].
The most straightforward scenario is the RKKY-type ordering of the ground state’s mul-
tipole moments, which was observed in various Pr-based 1-2-20 materials [28, 30]. In
PrIr2Zn20, for instance, the NFL behavior is suppressed by AFQ order at 0.11 K [27, 28],
while PrRh2Zn20 undergoes AFQ ordering at 0.06 K [29] and PrV2Al20 shows a yet uniden-
tified double transition at around 0.6 K [39]. An alternative and more exotic ordering
mechanism, termed composite order, was proposed by Hoshino et al. [99,100]. In the case
of F-channel diagonal composite order, the degeneracy of both electron screening channels
related to the quadrupole Kondo effect is lifted, as one of the two conduction electron
channels hybridizes with the local moments into Kondo singlets [99, 100]. Interestingly,
this effect is accompanied by characteristic FL behavior [99]. A very similar scenario to
the just mentioned model by Hoshino et al. [99, 100] was recently introduced by Zhang
et al. [101] and Van Dyke et al. [102] termed hastatic order. Specifically, Van Dyke et
al. [102] deduced a magnetic field phase diagram for the case of half filling, which implies
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the formation of AFQ order at low magnetic field followed by ferrohastatic (FH) order at
intermediate magnetic field and an uncorrelated singlet state at high magnetic field. This
theoretical prediction matches well with the low temperature phase diagram of PrIr2Zn20

derived by Onimaru et al. [28], which provides indication for the possible formation of
composite or hastatic order in the material.



30 Chapter 2. Theoretical Foundations



Chapter 3

Experimental Methods

Carrying out thermal expansion and magnetostriction measurements at very low tempera-
ture is a challenging task. While it is rather straightforward to cool down to a temperature
as low as 4.2 K, which is the boiling temperature of liquid helium, reaching temperatures
in the mK range takes much greater effort. In this environment, also the measurement
of physical quantities becomes more tricky, as measurement signals are typically tiny and
easily affected by external noise. Consequently, a well optimized experimental setup is
essential in order to obtain reliable data in the mK range.

This chapter deals with the experimental methods and the setup utilized for the re-
search on this thesis and is structured as follows. The first section is dedicated to the
physics behind dilution refrigeration, a cooling technique that allows for the generation of
temperatures in the low mK range. In the following section, the measurement technique
capacitive dilatometry is introduced and the two capacitive dilatometers utilized in this
work are detailed. The final section gives insights into the experimental setup, whereby a
special focus lies on its optimization with respect to noise generating ground loops.

3.1 Low Temperature Physics

As the term low temperature is a rather broad one, its interpretation lies in the eye
of the beholder. In daily life, for instance, where typically a quite narrow temperature
range is accessed, already the freezing temperature of water is considered as low. In a
scientific environment, however, the definition of low temperature is a much different one.
Here, it is common to quantify temperature by use of the Kelvin scale that defines 0 K as
absolute zero temperature. A view on this temperature scale suggests that the freezing
temperature of water, which is located at around 273 K, is still a comparably high one.
Thanks to the technical progress made in the last century, temperatures at the lower end
of the Kelvin temperature scale became readily accessible. In particular, the liquefaction
of 4He by Heike Kamerlingh Onnes back in 1908 was a major breakthrough due to its very
low boiling point of 4.2 K. Nowadays, highly advanced refrigeration lab equipment even
allows for the generation of temperatures close to absolute zero. A dilution refrigerator
is such a machine, which typically allows for cooling down to temperatures as low as
0.01 K−0.02 K. As a dilution refrigerator was employed in this work, the underlying basic
physical principles are outlined in this section. Furthermore, the topic temperature and
its measurement close to absolute zero is briefly addressed.
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Figure 3.1: Rough phase diagram sketch of a 3He/4He mixture, whereby temperature
against the 3He concentration x is shown. The λ-line and the two phases line
are indicated. Sketched based on Ref. [104, p. 106], which in turn used data
from Refs. [105–110].

3.1.1 Generating Ultra-Low Temperatures

In this thesis, dilution refrigeration, which makes use of the physical properties of a mixture
of 3He and 4He isotopes, was used to generate temperatures in the low mK range. The
basic physical principles behind are briefly outlined in this subsection. For more in-depth
explanations, it is referred to Ref. [103] on which the following lines on dilution refrigeration
are mainly based. In addition, Refs. [8,104] provide further information on liquid helium.

The isotopes 3He and 4He have boiling points of 3.19 K and 4.21 K and transition into
the superfluid state at 0.0025 K and 2.177 K, respectively [103, p. 15]. Superfluidity is
an intriguing state of matter with fascinating physical properties. Key characteristics of
superfluid 4He, which is commonly termed as Helium II, are zero viscosity, zero entropy
and a by five orders of magnitude enhanced thermal conductivity as compared to normal
fluid 4He [8, chap. 2]. Based on the extremely low superfluid transition temperature of
3He, experiments on its superfluid phase are much more challenging than on the one of
4He. In addition, 3He shows a more complex phase diagram, as three different superfluid
phases emerge as a function of pressure and of magnetic field [8, p. 85].

A mixture of both isotopes shows no less fascinating characteristics that set the basis
for refrigeration down to mK temperatures. In order to understand the physical principles
behind dilution refrigeration, the phase diagram of a 3He/4He mixture has to be consid-
ered. The latter is sketched in Fig. 3.1, which illustrates temperature against the 3He
concentration x [104, p. 106]. Highlighted are the λ-line, which separates the normal fluid
from the superfluid phase, and the phase-separation line, below which a phase rich in 4He
and a phase rich in 3He forms [104, p. 105]. The phenomenon of phase separation at low
temperatures and in particular the properties of the 4He rich phase are key for dilution
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refrigeration. While the 4He content of the 3He rich phase vanishes to zero as temperature
declines to zero, a finite fraction of 6.6 % 3He remains in the 4He rich phase even close to
zero temperature [103, p. 122]. To facilitate dilution refrigeration, 3He atoms are forced
from the phase rich in 3He into the phase rich in 4He and the enthalpy change ∆H related
to this process results in cooling [103, p. 123]. ∆H can be deduced by integrating the
specific heat change ∆C between the 3He rich and the 4He rich phase [103, p. 123]

∆H ∼
∫

∆CdT. (3.1)

Consequently, the cooling power Q̇ reads as [103, p. 124]

Q̇ ∼ x∆H ∼ T 2. (3.2)

With this key characteristic of a 3He/4He mixture in mind, the focus is now on the
working principle of a dilution refrigerator, in which the before detailed properties of a
3He/4He mixture find application. The hearth of the dilution refrigerator is the dilution
refrigerator insert that contains the dilution circuit. The insert sits in a bath of liquid 4He,
which cools the system down to a temperature of approximately 4.2 K. To generate mK
temperatures, initially a 3He/4He mixture has to be condensed into the dilution circuit of
the dilution refrigerator insert. After finishing the condensation process, the mixture is
circulated through the dilution unit by means of an automated gas handling system. As it
will become evident at the end of this subsection, it is nearly pure 3He, which is pumped
through the dilution circuit during operation. When the 3He gas enters the dilution circuit
at room temperature, it is cooled to liquid helium temperature of 4.2 K with the help of a
4He bath. Inside the dilution refrigerator insert, different cooling stages, as illustrated in
Fig. 3.2, gradually reduce the temperature of the 3He [103, p. 136]. Note that the lowest
accessible temperature of a dilution refrigerator depends on the employed system. The
dilution refrigerator used for the research on this thesis, for instance, generates tempera-
tures as low as approximately 0.02 K. To better understand the refrigeration process, the
purpose of each of the different cooling stages is briefly outlined in the following. The
first cooling stage is the 1 K pot, which operates at a temperature of approximately 1.5 K
and aims to further reduce the temperature of the 3He gas [103, p. 136]. The cooling
process in the 1 K pot is realized by means of 4He evaporation cooling. After leaving
the 1 K pot, the 3He passes through the main flow impedance, which guarantees its con-
densation [103, p. 136]. It is further cooled by an array of heat exchangers and finally
reaches the mixing chamber, the stage with the lowest temperature [103, p. 136]. Before
the mixing chamber, a secondary flow impedance makes sure that the liquid 3He does
not vaporize again [103, p. 136]. The mixing chamber is the coldest stage of the dilution
refrigerator and consists of both 4He rich and 3He rich phase [103, p. 136]. As outlined
before, at very low temperatures the 4He rich phase still contains a finite percentage of
6.6% 3He, while the 3He rich phase releases its 4He component and tends towards a pris-
tine 3He liquid [103, p. 122]. The 3He rich phase is thereby located at the top part of the
mixing chamber due to its lower density and the 4He rich phase at its bottom [103, p. 122].
To reach mK temperatures, 3He is continuously removed from the 4He rich phase, which
forces 3He atoms from the 3He rich phase into the 4He rich phase in order to maintain the
finite fraction of 6.6% 3He in the 4He rich phase [103, p. 123]. As indicated by Eq. (3.2),
it is the mixing enthalpy related to the movement of the 3He atoms from the 3He rich into
the 4He rich phase, which ultimately facilitates the refrigeration down to mK tempera-
tures [103, p. 123]. To remove 3He atoms from the 4He rich phase in the mixing chamber,
the bottom of the mixing chamber is directly connected to the still, whose temperature
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Figure 3.2: Illustration of the dilution circuit of a conventional 3He/4He dilution refriger-
ator. Sketched based on Ref. [103, p. 136].

ranges in between 0.6 K− 0.7 K [103, p. 139]. As the vapor pressure of 3He is higher than
the one of 4He, the liquid phase in the still consists of nearly pure 4He with a very little
3He fraction of less than 1% [103, p. 137]. On the other hand, the vapor inside the still
contains nearly pure 3He [103, p. 137]. In consequence of the significant difference in the
3He concentration between the two phases in the mixing chamber and the still, osmotic
pressure causes the 3He atoms to move from the mixing chamber through aforementioned
connection into the still [103, p. 135]. To establish a cooling cycle, the 3He vapor in the
still is continuously removed by means of the He circulation pump, cleaned from impuri-
ties by two cold traps and finally pumped back into the dilution circuit. It is therefore
basically 3He that circulates through a dilution refrigerator during operation.

3.1.2 Measurement of Temperature in the mK Range

In order to quantify temperature in the mK range, resistive thermometry is the most preva-
lent method. As a thermometer material, thick film RuO2 chips are commonly employed
based on their semiconducting property and their inexpensiveness [103, p. 265]. A key
characteristic of a semiconducting material is the exponential increase of its resistance as
temperature approaches absolute zero. Consequently, a tiny change in temperature relates
to a substantial change in resistance, which allows for ultra-high resolution temperature
measurements in the low mK range. A downside of such a semiconducting tempera-
ture sensor is the loss of sensitivity as temperature increases. However, as it is typically
the boiling temperature of liquid helium that limits the highest accessible temperature
in a dilution refrigerator, the sensitivity of a RuO2 sensor is generally sufficient to fully
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Figure 3.3: Resistance versus temperature curve of the RuO2 thick film resistor (SB7)
utilized in this thesis for the measurement of temperature.

cover the accessible temperature range. RuO2 resistive thermometers classify as secondary
thermometers. Before usage they have to be calibrated, typically against a primary ther-
mometer. Here, commonly a combination of a superconducting fixed point device and a
cerium magnesium nitrate (CMN) thermometer is used. The fixed point device contains
an array of different superconducting samples with well known transition temperatures.
The CMN thermometer consists of the paramagnetic salt CMN, whose magnetic suscepti-
bility exhibits a 1/T Curie-type temperature dependence at low temperature. Combining
both devices is therefore a powerful means to calibrate a low temperature RuO2 sensor.
In general, the calibration against an already calibrated resistance thermometer is also
conceivable, whereby the calibration against a primary thermometer is more desirable.

In this thesis, temperature was measured with such a RuO2 thick film resistor. The
thermometer itself was setup in the framework of my master thesis [111]. To contact the
sensor, superconducting wires by the company SUPERCON (Type SW-M) were used [111].
At temperatures well below the superconducting transition temperature, superconductors
display a very low thermal conductivity. This characteristic ensures that no external heat
is transported to the thermometer through the connecting wires and the measured tem-
perature corresponds to the one of the sensor’s close environment. The superconducting
wire is made from the material NbTi whose critical field is much higher than the rela-
tively small stray fields to which the sensor is exposed [111]. The here utilized RuO2 thick
film resistor was thermally cycled for approximately fifty times between liquid helium and
room temperature before calibration [111], following the suggestion by Pobell [103, p. 265].
This process is necessary as the resistance of a RuO2 sensor slightly changes during the
first thermal cycles, which is commonly known as aging effect [103, p. 265]. Calibration
of the sensor was done by S. Bachus1 back in 2017 together with a bunch of other sen-
sors. S. Bachus calibrated the thermometer against a superconducting fixed point device
and a CMN thermometer at very low temperatures 0.023 K ≤ T ≤ 0.18 K and against

1Chair of Experimental Physics VI, University of Augsburg, 86159 Augsburg, Germany.
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an ex factory calibrated Cernox® sensor from Lake Shore Cryotronics at temperatures
0.18 K < T ≤ 8.3 K. The RuO2 thermometer, referred to as SB7, consequently allows for
temperature measurements in the range 0.023 K−8.3 K. Its resistance versus temperature
curve for T ≤ 4 K is presented in Fig. 3.3.

3.2 Capacitive Dilatometry

This section covers the experimental technique capacitive dilatometry, a standard method
to measure the low temperature thermal expansion and magnetostriction of solids. At first,
the setup and the working principle of the two ultra-high resolution capacitive dilatome-
ters, utilized for the research on this thesis, is described. Subsequently, the calculation
of the relative length change, the determination of the background contributions of the
dilatometers and the procedure of data analysis are discussed.

3.2.1 Capacitive Dilatometers

Capacitive dilatometry takes advantage of the direct relation between the capacitance of
a parallel plate capacitor and the distance between its two capacitor plates. A capacitive
dilatometer is designed in a way that a change in the mounted sample’s length induces
an identical change in the distance between the two capacitor plates. This allows to
directly deduce the relative length change of a sample as a function of temperature or
magnetic field by measuring the respective change in capacitance. The experimental re-
sults of the thermal expansion and magnetostriction measurements presented in this thesis
were obtained by use of a ultra-high resolution miniaturized capacitive dilatometer [112].
Two selected single crystals were additionally examined with an uniaxial stress capacitive
dilatometer [113] in order to evaluate the effect of uniaxial stress on their thermal expan-
sion. Both dilatometers were developed by R. Küchler2 and are capable of resolving tiny
relative length changes in the range 0.01 Å− 0.02 Å [112,113].

Miniaturized Capacitive Dilatometer

The major part of the relative length change measurements presented in this thesis was
carried out by use of a miniaturized capacitive dilatometer, developed by R. Küchler. A
detailed description of the miniaturized capacitive dilatometer can be found in Ref. [112]
of which I am a coauthor. My contribution was to test the performance of the miniatur-
ized capacitive dilatometer at mK temperatures. The miniaturized dilatometer measures
only 1.50 cm × 1.40 cm × 1.47 cm, which corresponds to a volume of roughly 3 cm2, and
weighs just 12 g [112]. Compared with a preceding model [114] both size and weight of
this newly developed dilatometer are significantly reduced. This results in a more rapid
thermalization process of the dilatometer and the sample, which is particularly crucial at
low temperatures and high magnetic fields [112]. Besides, the miniaturized design enables
for the rotation of the capacitive dilatometer inside the tiny sample space of a dilution
refrigerator insert, which facilitates, for instance, relative length change measurements
perpendicular to the magnetic field direction. The dilatometer is manufactured from a
CuBe alloy with a tiny beryllium fraction of 1.84 % [112]. This small amount of beryllium
is sufficient to significantly reduce the electrical conductivity of the alloy by a factor of
thirty as compared to copper [112], which is of high relevance for low temperature mag-
netostriction measurements. This is due to eddy currents, which arise when a conducting

2Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.
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Figure 3.4: Technical drawings of the miniaturized capacitive dilatometer. Depicted are
three-dimensional view (left), full section side view (middle) and full section
front view (right). The different components of the capacitive dilatometer are
indicated by numbers ranging from (1) to (15), which are explicitly explained
in the main text. [112]
Reprinted figure from Ref. [112], whereby the three figure elements were re-
arranged for horizontal display. ©2017 Author(s). With permission from
R. Küchler who created this figure.

material is subject to a changing magnetic field. At low temperatures, these current
loops cause small heating effects, which are, however, already sufficient to disturb a low
temperature magnetostriction measurement for which a stable temperature is essential.

Figure 3.4 shows schematic views of the miniaturized capacitive dilatometer [112].
With reference to Ref. [112], the following lines provide a brief overview of the dilatometer’s
main components. The dilatometer body is composed of three major parts (3). Firstly,
the lower body part, which houses the lower capacitor plate (6). Secondly, the middle
body part, which consist of a fixed and a movable part (1), whereby the two components
are connected by two flat springs (2). The latter allow for the displacement of the movable
part and the upper capacitor plate (5). Both capacitor plates are electrically insulated
against the dilatometer body parts by thin washers, as indicated by (13) and (14). The
capacitor plates can be connected to the inner conductor of a coaxial cable via a small
metallic pin (15). The outer conductor of the coaxial cable, which is connected to ground,
can be soldered on an additional pin on the dilatometer body, which is, however, not shown
in the technical drawings of Fig. 3.4. A guard ring, indicated by (7) and (8), is placed
around each capacitor plate in order to reduce interference through stray fields. The lower
and middle dilatometer body parts are connected with each other by four screws and can
be detached if necessary, for instance, to clean the capacitor plates from dust. The third
key component is the upper dilatometer body part, which is attached by two screws to
the middle dilatometer body part and serves as a mechanism to clamp the sample (4) into
the dilatometer, which is realized by a piston (10). On top of the upper dilatometer body
part, a detachable clamping device, specified by (9) and (11), can be mounted. With the
adjustment screw (9) one can press the piston on top of the sample and thus change the
distance between the two capacitor plates and the capacitance value. After the desired
capacitance value has been set, the piston can be fixed by a screw (12) from the side.

Fig. 3.5 illustrates a typical sample mounting process by a series of photos. In order
to place a sample, in this case a Y1−xPrxIr2Zn20 single crystal with x = 0.09, into the
dilatometer, the upper body part of the dilatometer has to be removed. This process is
illustrated in Fig. 3.5(a). Afterwards, the upper part, which also includes the clamping



38 Chapter 3. Experimental Methods

Figure 3.5: Photo series showing the miniaturized capacitive dilatometer attached to a
low temperature probe. (a) Illustrates a sample mounting process, where the
upper part of the dilatometer is detached from the dilatometer body in order
to place a Y1−xPrxIr2Zn20 single crystal with x = 0.09 into the dilatome-
ter. (b) The upper dilatometer part including the clamping device is attached
again to the dilatometer body in order to fix the sample and to adjust the
desired capacitance value by turning the pushing screw on the top. (c) After
tightening the side screw, the clamping device is removed in order to carry out
a measurement. (d) Front photo of the miniaturized capacitive dilatometer
aligned parallel to the magnetic field direction. (e) Front photo of the minia-
turized capacitive dilatometer rotated by 90◦ in order to carry out relative
length change measurements perpendicular to the magnetic field direction.

device, is attached to the middle body part by two screws. As depicted in Fig. 3.5(b), the
capacitance value can be carefully adjusted by slowly turning the pushing screw, which
presses the piston on the sample. After reaching the desired capacitance value, which
is typically in the range 18 pF − 20 pF at room temperature, the piston is fixed by the
side screw and the clamping mechanism can be removed, as illustrated in Fig. 3.5(c). In
this configuration, a measurement is performed. Figure 3.5(d) shows a front view of the
capacitive dilatometer being aligned parallel to the magnetic field direction. The cell can
also be rotated to measure the relative length change for different angles with respect to
the applied magnetic field direction. One possible configuration is shown in Fig. 3.5(e),
where the capacitive dilatometer is rotated through 90◦ in order to perform relative length
change measurements perpendicular to the magnetic field direction. Since the sample is
clamped into the dilatometer by the flat springs, it is subjected to a small force. At a
typical working capacitance of C = 20 pF, this force is approximately 4 N [112]. In case of
a sample cross sectional area of 1 mm×1 mm, this corresponds to a small uniaxial stress of
σ = −4 MPa on the installed sample, whereby the negative sign indicates that the stress
is compressive. It is generally assumed that such a small uniaxial stress does not have
any influence on the thermal expansion of the investigated sample [112]. However, this
assumption is not always justified, as this thesis demonstrates on the example of selected
Pr-based 1-2-20 systems that feature a quadrupolar ground state. Because of the linear
coupling between the quadrupolar moments and strain, the small uniaxial stress exerted
by the miniaturized capacitive dilatometer on the sample has to be considered carefully
when interpreting the experimental results.

Uniaxial Stress Capacitive Dilatometer

Uniaxial stress is a highly sensitive tuning parameter for a variety of strongly correlated
electron systems and the development of new experimental devices that allow for the
measurement of thermodynamic quantities under high uniaxial stress is therefore desirable.
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Figure 3.6: Technical drawings of the uniaxial stress capacitive dilatometer. Shown are
three dimensional view (left), full section side view (middle) and full section
front view (right). The different constituents of the uniaxial stress dilatometer
are indicated by numbers ranging from (1) to (13). A detailed explanation of
the components is provided in the main text. [113]
Adapted figure from Ref. [113], whereby the three figure elements were rear-
ranged for horizontal display. ©2016 Author(s). With permission from R.
Küchler who created this figure.

Even though the miniaturized capacitive dilatometer, which was detailed in the previous
subsubsection, can already be considered as an uniaxial stress device, the small force of
4 N [112] applied to the sample in measurement direction is not sufficient to alter the
physical properties of most strongly correlated materials and can thus be considered as
negligible small. A relatively straight forward approach to enhance the force on the sample
is to simply increase the thickness of the dilatometer’s flat springs. Based on this idea,
R. Küchler designed a new type of uniaxial stress dilatometer [113], which features a more
rigid body and flat springs. The latter have an increased thickness of 0.7 mm, which results
in a higher force on the examined sample [113]. While the general principle of operation
and the design of the uniaxial stress dilatometer is very similar to the just discussed
miniaturized capacitive dilatometer, their sizes differ significantly. The dimensions of the
uniaxial stress dilatometer are 2.60 cm × 2.01 cm × 3.32 cm [113] and therefore notably
larger than the ones of the miniaturized capacitive dilatometer. A direct consequence is
a larger mass, which results in a slower thermalization process of the dilatometer at low
temperatures. In order to keep eddy current heating effects as low as possible during
magnetostriction measurements, the uniaxial stress dilatometer is also made of a CuBe
alloy [113].

Figure 3.6 illustrates technical drawings of the uniaxial stress dilatometer, whereby a
three-dimensional view of the dilatometer is shown on the left, a full section side view in
the middle and a full section front view on the right [113]. With reference to Ref. [113],
the following lines provide a brief description of the dilatometer’s main components. The
body of the dilatometer is composed of three main constituents (3), which categorize as
lower dilatometer part, middle dilatometer part and clamping device. Lower and middle
dilatometer part contain the lower (6) and the upper (5) capacitor plate, respectively. Both
capacitor plates are electrically insulated against the dilatometer body by thin washers
denoted as (11) and (12). Via a small metallic pin (13) attached to each capacitor plate,
the inner conductor of a coaxial cable can be soldered on either of the dilatometer’s
capacitor plates. Note that the outer conductor of the coaxial cable, which establishes
the connection to ground, is soldered onto the dilatometer body. To reduce interference
arising from stray fields, guard rings, indicated by (7) and (8), encompass either of the
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Figure 3.7: Displacement of the upper capacitor plate ∆L (left axis) as well as the force
exerted by the flat springs F (right axis) versus the dilatometer’s capacitance
value. Dashed lines indicate the capacitance regime in which measurements
are usually carried out and the respective force exerted via the dilatometer’s
flat springs on the sample. [113]
Reprinted figure from Ref. [113]. ©2016 Author(s). With permission from R.
Küchler who created this figure.

two capacitor plates. As already discussed in the preceding subsubsection dealing with
the miniaturized capacitive dilatometer, the housing (1) of the upper capacitor plate is
movably attached to the middle dilatometer part by two flat springs (2). In the case
of the uniaxial stress dilatometer, the flat springs are more rigid as compared to the
miniaturized dilatometer, which results in a higher force on the sample (4). The design
of the clamping device differs from the one of the miniaturized capacitive dilatometer.
Because of the thicker flat springs, this part has to be more rigid as compared to the
miniaturized dilatometer and also remains attached during the measurement process. To
clamp a sample inside the dilatometer, a piston (10) is used. This piston can be adjusted
by a pushing screw (9).

Owing to the thicker flat springs, the uniaxial stress dilatometer exerts a significantly
higher force on the sample than the miniaturized capacitive dilatometer. For typical
working capacitance values of 15 pF− 40 pF, the respective force on the sample ranges in
between 40 N − 75 N [113]. This is at least by a factor ten higher than the force applied
by the miniaturized capacitive dilatometer. Figure 3.7 illustrates how the capacitor plate
displacement, shown in blue, and the spring force, plotted in red, relate to the capacitance
value of the dilatometer [113]. With the help of this graph, the force on the sample can be
directly estimated from the measured capacitance value. By taking account of the sample’s
cross sectional area, it is then possible to directly calculate the exerted uniaxial stress.
Assuming a typical sample cross sectional area of 1 mm × 1 mm, the just detailed force
values correspond to uniaxial stress values ranging from −40 MPa to −75 MPa. Higher
uniaxial stresses can be generated by reducing the sample’s cross sectional area. By using
this technique, Küchler et al. [115] were able to exert significant uniaxial stresses up to
−200 MPa on a CeRhSn single crystalline sample and tune the material’s ground state
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from quantum critical towards an AFM ordered state. It is important to keep in mind that
the capacitance value of the dilatometer changes by the variation of temperature, which
in turn results in a change of the exerted uniaxial stress [113]. Note that the capacitance
change of the dilatometer, which is either generated by a length change of the examined
sample or by the dilatometer itself, is most significant at temperatures ranging from liquid
helium to room temperature. As the experiments performed in the scope of this thesis
were carried out below 4 K, this effect can be safely neglected.

3.2.2 Relative Length Change

When a sample is clamped into one of the just described capacitive dilatometers and
undergoes a change in length, the distance between the two capacitor plates changes
respectively, which in turn alters the capacitance. A mathematical relation between the
relative change in length of the sample and the capacitance change of the capacitive
dilatometer can be deduced by considering a parallel plate capacitor whose capacitance
value C derives as

C = ε0εr
A

d
, (3.3)

where ε0 is the permittivity of free space, εr the relative permittivity, A the surface area
of a capacitor plate and d the distance between the two capacitor plates.

The relative change in distance ∆d = d−d0 between the two capacitor plates depends
on the respective capacitance values C and C0 and calculates by use of Eq. (3.3) as

∆d = d− d0 = ε0εrA

(
C0 − C
C · C0

)
. (3.4)

As an expansion/contraction of the sample reduces/increases the distance between the
two capacitor plates, the respective relative length change ∆L of the sample is obtained
by flipping the sign of ∆d. By taking account of the circular capacitor plates of the
miniaturized capacitive dilatometer with a surface area of A = r2π and the fact that
experiments are carried out in vacuum, where εR = 1, the relative length change calculates
as

∆L = −∆d = ε0πr
2

(
C − C0

C · C0

)
. (3.5)

Since the here assumed idealized case, where the capacitor has two perfectly parallel
capacitor plates, cannot be realized experimentally, strictly speaking, Eq. (3.5) is only an
approximate calculate of the relative length change. Pott and Schefzyk [116] addressed
this problem by considering the dilatometer’s maximal adjustable capacitance value Cmax

and proposed a modified version of Eq. (3.5), which corrects a possible error due to a small
capacitor plate tilting. The corrected formula, which was used in this work to deduce the
relative length change from the measured capacitance values, reads as [116]

∆Lcorr = ε0πr
2C − C0

C · C0

(
1− C · C0

C2
max

)
. (3.6)

Miniaturized Capacitive Dilatometer

By using the plate radius of the utilized miniaturized capacitive dilatometer r = 5 mm [112],
the dielectric constant in vacuum ε0 = 8.85419 · 10−12 F/m and π = 3.14159 one obtains
the relation

∆Lcorr (10−6 cm) = 6.95406 · 104 pF · C − C0

C · C0

(
1− C · C0

C2
max

)
. (3.7)
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The maximal adjustable capacitance value of the miniaturized capacitive dilatometer was
determined at Cmax = 50 pF. Note that this is an average value and cannot be reached
exactly at every measurement run. The maximal adjustable capacitance usually takes a
value in the range 45 pF ≤ Cmax ≤ 55 pF. For reasons of consistency, the average value
of 50 pF was used for the calculation of the relative length change. The Cmax value was
confirmed before every measurement run and in case the maximal capacitance could not
be reached, the capacitance cell was cleaned before starting the experiment. In the latter
case, the lower body part was detached from the middle body part and the capacitor plates
were cleansed by use of isopropanol and a lens cleaning paper. Sometimes this process
turned out as not being sufficient and the detached lower and middle dilatometer parts
were put inside a beaker filled with isopropanol and purged for several minutes inside an
ultrasonic bath. After cleansing the dilatometer parts with either of the two described
procedures, the desired Cmax value could always be set.

Uniaxial Stress Capacitive Dilatometer

In case of the uniaxial stress capacitive dilatometer, the capacitor plate radius has a larger
value of r = 7 mm [113]. Consequently, one obtains for the relative length change

∆Lcorr (10−6 cm) = 1.36300 · 105 pF · C − C0

C · C0

(
1− C · C0

C2
max

)
. (3.8)

The maximal adjustable capacitance of the uniaixal stress dilatometer was determined at
Cmax = 90 pF. Like for the miniaturized capacitive dilatometer, this number is an average
value that slightly varies from one measurement run to the other.

3.2.3 Dilatometer Background

To correctly determine the relative length change of a material, it is necessary to take ac-
count of a possible background contribution of the measurement setup. The background
contributions of both capacitive dilatometers were determined by measuring the capac-
itance change as a function of temperature or magnetic field with a high purity oxygen
free (99.95 %) copper dummy sample with a length of L = 2.34 mm clamped in. A copper
specimen was chosen for the background determination, as its low temperature thermal
expansion is negligibly small and has therefore no notable impact on the background mea-
surement. This assumption is based on a copper reference measurement performed by
Ackerman et al. [117]. By utilizing a SQUID detector, the authors were capable of resolv-
ing relative length changes down to 2× 10−4 Å [117], which is a two orders of magnitude
higher resolution than the one achieved by the capacitive dilatometers used in this thesis.
Their findings suggest that FL behavior sets in below 1 K, with a tiny thermal expansion
coefficient of α1 K ≈ 0.3×10−9 K−1 [117], which decreases linearly as temperature declines.
Only above 1 K, phonons, which display a T 3 temperature dependence, become noticeable
and cause a much stronger dependence of the thermal expansion on temperature [117].
However, even at 4.2 K, the thermal expansion coefficient of copper is only slightly larger
than the resolution of the here utilized measurement setup [117]. For this reason, the
thermal expansion background of the copper specimen is disregarded and the measured
signal of the capacitive dilatometer and the copper sample were taken as the dilatometer
background. The results of the background measurements are discussed in the following.
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Figure 3.8: Background relative length change ∆Lbg as a function of temperature at differ-
ent magnetic fields. Black solid lines are polynomial fits to the experimentally
obtained data. The fit parameters are summarized in Table 3.1. Note that the
∆Lbg measurement curves and the respective fits are shifted arbitrarily along
the y-axis for reasons of clarity.

Miniaturized Capacitive Dilatometer

In the case of the miniaturized capacitive dilatometer, both temperature and magnetic
field dependent background contributions were measured. As the tiny background signal
is close to the resolution limit of the capacitance bridge, several background data sets were
collected at each magnetic field and temperature. Subsequently, the experimental findings
were compared against each other with respect to reproducibility and the best reproducible
data sets were selected. When measuring tiny signals close to the resolution limit of the
capacitance bridge, a major cause for error is a small time dependent drift of the measured
capacitance value. As the measurements are typically performed by changing temperature
or magnetic field very slowly, in order to guarantee the thermal equilibrium of the sample,
this small superimposed time dependent drift can have a substantial impact on the data.
Performing a series of measurements is therefore a good strategy to sort out data sets,
which are influenced by such a drift.

At first, the temperature dependent background relative length change ∆Lbg of the
miniaturized capacitive dilatometer at various external3 magnetic fields B = µ0H, which
is shown in Fig. 3.8, is discussed. The black solid lines are polynomial fits to the data by
use of the formula

∆Lbg(10−6 cm) = a0 + a1T
1 + a2T

2 + a3T
3 + a4T

4

+ a5T
5 + a6T

6 + a7T
7 + a8T

−1/2 + a9T
−2, (3.9)

where T denotes the temperature and ai, with 0 ≤ i ≤ 9, the fit parameters. The fit
parameters obtained at the different magnetic fields and the respective fitting intervals
are summarized in Table 3.1.

3When using the term magnetic field in the following it is always referred to an external magnetic field
for which the relation B = µ0H holds true. It strongly depends on the consulted literature whether the
denotation B or µ0H is used. Note that in the following both denotations are used interchangeably.
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The zero field background signal is order of magnitude 10−9 cm and changes only weakly
when magnetic field is applied. Furthermore, the different curves share a very similar
temperature dependence. At elevated temperatures, the background has a negative slope,
which changes sign to positive below 3 K. In this temperature region, the slope becomes
steeper as temperature declines and then suddenly changes sign to negative at a very
low temperature of approximately 0.1 K. Note that the sign change temperature depends
weakly on the applied magnetic field and shifts to slightly higher temperature as magnetic
field is increased. In addition, the positive low temperature slope becomes steeper and
the background larger once a small magnetic field is applied, but does not change notably
upon the further increase of magnetic field. The high temperature negative slope, by
contrast, changes only marginally in presence of a magnetic field.

Next, details on the field dependent background contribution ∆Lbg, measured at two
different temperatures of 0.05 K and 4 K, is given. The results are summarized in Fig. 3.9,
whereby the black solid lines are fits to the data by use of the equation

∆Lbg(10−6 cm) = b0 + b1B+ b2B
2 + b3 + (b4− b3)/(1 + (B/b5)b6) + b7 exp(B−11), (3.10)

where B denotes the magnetic field and bi, with 0 ≤ i ≤ 7, the fit parameters. The fit
parameters and the respective fit ranges are summarized in Table 3.2. To obtain a sat-
isfying fit result, a combination of a range of different fitting terms had to be chosen. It
shows that there is no notable difference between the data measured at 0.05 K and 4 K,
which implies a temperature insensitivity of the field dependent background contribution,
at least up to 4 K. For that reason no further background measurements were performed,
as it can be assumed that also the data in between 0.05 K and 4 K shows a comparable
behavior. While the background barely changes at low magnetic fields, a notable increase
appears at around 7 T. The order of magnitude of the background signal is 10−8 cm in
the investigated magnetic field range, which is slightly larger than the temperature de-

Figure 3.9: Background relative length change ∆Lbg as a function of magnetic field at
different temperatures. Black solid lines are fits to the measured data, whereby
the fit parameters and the fit ranges are summarized in Table 3.2. Note that
the ∆Lbg background curves and the respective fit curves are shifted arbitrarily
along the y-axis for reasons of clarity.
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Fit Range Temperature
& Parameters (Temperature Range used for Data Subtraction)

0.05 K 4 K
(0 < T < 2 K) (2 K ≤ T ≤ 4 K)

Fit Range 0− 13 T 0− 13 T

b0 -0.0063309928 -9.8214952762E-4

b1 -1.93898943E-4 1.5467308652E-4

b2 8.1188606468E-5 4.8624246012E-5

b3 0.0164027207 0.023269873

b4 0.0091818857 0.014735088

b5 8.4371992537 8.4265324145

b6 17.4722602607 15.7647006361

b7 3.2739277308E-4 4.3015696393E-4

Table 3.2: Fit parameters and and the respective fit range at two different temperatures.
By using these parameters, Eq. (3.10) describes the magnetic field dependent
background relative length change of the miniaturized dilatometer at the spec-
ified temperatures.

pendent background, however, still distinctly small as compared to the relative length
changes of most of the single crystalline samples examined in this thesis. Taking account
of the dilatometer background is of particular relevance for the thermal expansion and
magnetostriction data of the highly diluted Y1−xPrxIr2Zn20 single crystal with x = 0.033
and x = 0.036. The materials show relatively small relative length changes and a care-
ful subtraction of the dilatometer background is crucial. By contrast, both PrIr2Zn20

and the moderately doped Y1−xPrxIr2Zn20 single crystals show relatively large relative
length changes and the dilatometer background is less critical. Nevertheless, the shown
background curves were subtracted from all measured relative length change data sets
presented in this thesis, unless, it is stated otherwise.

Uniaxial Stress Capacitive Dilatometer

Thermal expansion measurements by means of the uniaxial stress capacitive dilatometer
were only carried out at zero magnetic field. Consequently, it was sufficient to determine
the dilatometer background in zero magnetic field. The respective background relative
length change ∆Lbg as a function of temperature is shown in Fig. 3.10. The red solid line
denotes a polynomial fit to the data by using the formula

∆Lbg(10−6 cm) = c0 + c1T + c2T
2 + c3T

3 + c4T
4 + c5T

5, (3.11)

where T denotes the temperature and ci, with 0 ≤ i ≤ 5, the fit parameters. The fit
parameters and the fit range are listed in Table 3.3.

The background relative length change of the uniaxial stress dilatometer shows compa-
rable behavior to the one of the miniaturized capacitive dilatometer. At high temperatures
T ≥ 1.5 K, its slope is negative and the related relative length change up to 4.2 K approx-
imately four times larger than the one of the miniaturized capacitive dilatometer. In the
range 0.75 K ≥ T ≥ 1.5 K, the background is nearly temperature independent and its



3.2. Capacitive Dilatometry 47

Figure 3.10: Temperature dependent background relative length change ∆Lbg of the uni-
axial stress capacitive dilatometer at zero magnetic field. The red solid line
is a polynomial fit to describe the measured data. The fit parameters and
the fit range are summarized in Table 3.3. Note that the ∆Lbg curve and the
respective fit curve are shifted arbitrarily along the y-axis.

Fit Range
& Parameters Magnetic Field

0

Fit Range 0.038 K− 4.2 K

c0 0.0110833485

c1 0.0029606143

c2 -0.0032868869

c3 0.0017387879

c4 -4.5389526422E-4

c5 3.8104227771E-5

Table 3.3: Fit parameters and temperature range for which Eq. (3.11) describes the tem-
perature dependent background relative length change of the uniaxial stress
capacitive dilatometer.

slope changes sign to positive below 0.75 K. In contrast to the miniaturized dilatometer,
the background does not show another sign change at very low temperature. Uniaxial
stress measurements were only performed on the two highly diluted Y1−xPrxIr2Zn20 sin-
gle crystals with x = 0.033 and x = 0.036. Their relative length changes measured in the
uniaxial stress dilatometer were corrected for the just detailed background contribution.
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3.2.4 Data Analysis

Obtaining high resolved relative length change data at very low temperature is a crucial
prerequisite to perform a reliable thermal expansion and magnetostriction analysis. How-
ever, this process is typically complicated by various factors, as briefly detailed in the fol-
lowing. Capacitance measurements are highly sensitive to external interference, which can
be generated by ground loops or measurement equipment close by. A careful optimization
of the experimental setup to minimize such interference is crucial in order to keep external
disturbances, which negatively impact the data quality, as low as possible. In addition, at
very low temperature, the measured capacitance changes are often close to the resolution
limit of the employed measurement equipment, which entails an inevitably low signal to
noise ratio. As the relative length change data derived from the measured capacitance has
to be differentiated to deduce the thermal expansion and the magnetostriction coefficient,
already a small noise level in the raw data appears amplified in the differentiated data.
Therefore, like in every other measurement, it is crucial to have raw data with a resolution
as high as possible. By optimizing the here employed setup, as it is being discussed in
the subsequent section, the noise level of the relative length change measurement could
be significantly reduced as compared to the initial measurements, which I carried out in
the framework of my master thesis [111]. With the miniaturized capacitive dilatometer,
for instance, relative length changes with a very high resolution of up to 0.01 Å could be
detected. Here, it has to be noted that the reached resolution slightly varied from one mea-
surement run to the other and was occasionally somewhat lower than the just mentioned
optimum. As the measurement setup was not modified during the different experimental
runs, the little variation in resolution must be ascribed to uninfluenceable factors, such
as interference from measurement equipment located in adjacent laboratories. Another
possible cause for error is connected to the extremely low change rates of temperature
or magnetic field used for the measurements at very low temperatures. Such low sweep
rates are necessary to guarantee that the examined single crystalline sample is in ther-
mal equilibrium during the measurement process and the measured temperature indeed
the one of the sample. As a rule of thumb, a thermal expansion measurement at very
low temperature, which covers a quite small temperature range from base temperature to
0.3 K, consumes already several hours. At higher temperatures, faster sweep rates can be
chosen, as the thermalization process is less critical. In case the measured relative change
in length is distinctly small and the change rate of temperature or magnetic field very low,
a small time dependent drift in the measured capacitance value that is superimposed to
the intrinsic signal of the sample may induce a significant error to the data. While this
small drift is not of any concern in the case of single crystals that show large relative length
changes, it has to be considered carefully when measuring tiny signals at very low temper-
ature. As an example, the measurements on the highly diluted material Y1−xPrxIr2Zn20

with x = 0.033 and x = 0.036 have to be mentioned. Because of the small Pr doping of
only a few percent, the single crystals display distinctly small relative length changes at
low temperatures. In this case, it is crucial to repeat each measurement for several times
in order to compare the different data sets, identify reproducible behavior and track down
data sets that contain a parasitic drift contribution. In general, the thermal expansion
measurements were carried out in different temperature ranges, whereby the temperature
sweep rate was adjusted accordingly. Commonly, both a warming and a cooling curve
was measured, which helped to evaluate possible hysteresis effects and allowed to adjust
the temperature sweep rate if necessary. At very low temperature and in presence of an
applied magnetic field, a small hysteresis between warming and cooling measurement was
often inevitable. The thermal expansion curves presented in the experimental sections are
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mostly warming curves. Before starting a warming sweep, the sample was thermalized
for a certain amount of time in order to guarantee thermal equilibrium between the sam-
ple stage, where the temperature is measured, and the sample. Due to this process, the
warming curve is deemed to be the more accurate measurement than the cooling curve.
In general, the found hysteresis between warming and cooling were, however, quite small
and only manifested themselves at very low temperature. The data sets obtained at dif-
ferent temperature ranges were then combined to a single data set that covers the whole
examined temperature range. To deduce the thermal expansion and magnetostriction co-
efficient from the relative length change data, a numerical differentiation procedure had
to be applied. This process is briefly discussed in the following.

The thermal expansion coefficient α and the magnetostriction coefficient λ are first
order derivatives of the relative length change ∆L/L with respect to either temperature
or magnetic field. Note that ∆L denotes the measured relative length change as a function
of temperature or magnetic field and L the length value of the investigated single crystal
at room temperature. Since the experimentally determined ∆L/L data represents a set
of data points, a numerical approach is necessary to approximate its first order derivative.
To alter the experimentally obtained data as little as possible, it is refrained from more
complex derivative algorithms, which usually require interpolation of the data set and often
apply smoothing procedures. Instead, the most basic approach of the interval derivative
is employed. To briefly illustrate the differentiation process, in the following, a set of data
points is considered, whereby each data point is described by a coordinate (x, y). The
x-value thereby corresponds to the measured temperature or magnetic field value and the
y-value to the respective relative length change value ∆L/L. Note that the x-values of
the data set are sorted in ascending order and are in the range [x0;xi]. To differentiate
the data, a differentiation window ∆x is chosen, which is typically distinctly smaller than
the measured temperature or magnetic field range. Starting from the first measured data
point x0, a linear regression is calculated on the subset of data points ranging from x0

to the boundary value xn ≤ x0 + ∆x. The lower equal sign means that given that there
is no data point which equals xn, the data point with the next smaller value is taken as
xn. The linear regression then gives back the slope associated to this set of data points,
which marks the y value of the derivative. The corresponding x value is approximated
by the middle value (x0 + xn)/2. The differentiation window is then shifted point wise to
higher temperature and the procedure repeated until xn reaches the end of the data set.
Evidently, the smaller the window size ∆x, the better the approximation of the derivative
at a given point. At the same time it is important to keep in mind that the data set is
composed of measurement points that contain noise. Thus, when choosing a too small
differentiation window, the differentiated data may exhibit a significant noise level, which
is neither desirable. Therefore, it is important to compromise, i.e. choose a window
that is large enough to have a reasonable noise level but small enough to provide a good
approximation of the local slope. A small window is in particular necessary when the data
shows a sudden and strong change in slope, as it is, for instance, the case in vicinity of
a phase transition. A visualization of the just detailed interval differentiation method is
detailed in Fig. 3.11, whereby an artificially generated set of data points is shown in the
upper panel and the respective derivative value determined by interval differentiation in
the lower panel. In this example, a window size of 0.5 was chosen. As just mentioned, the
size of the differentiation window has to be adapted depending on the raw data. At very
low temperature, usually a very small window of approximately 0.01 K − 0.03 K is used.
The same holds in vicinity of a phase transition signature, where the relative length change
shows a sudden change within a small temperature interval. With increasing temperature,
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Figure 3.11: Illustration of the derivation process, where an interval ∆x is shifted pointwise
over a finite set of data points to approximate its derivative by a linear
regression.

the size of the window can be increased, whereby for high temperatures in the Kelvin range,
the differentiation window was typically adjusted to a value of approximately 0.1 K.

3.3 Experimental Setup

In order to carry out thermal expansion and magnetostriction measurements at very low
temperatures, a rather complex measurement setup is necessary. Its different components
are detailed in this section. Furthermore, the topic grounding is addressed, as the elim-
ination of ground loops is essential when performing ultra-high resolution capacitance
measurements.

Figure 3.12 shows a schematic sketch of the measurement setup, which comprises the
three main constituents (a) vacuum pump stand and automated gas handling system,
(b) measuring instrument rack and (c) cryogenic dewar with dilution refrigerator insert.
In addition, a blowup of the dilatometer probe, which is attached to the mixing chamber
of the dilution refrigerator insert, is depicted in (d). The vacuum pump stand is equipped
with a 1 K pot, a He circulation and an auxiliary pump. An automated gas handling
system, sitting on its top, controls the gas flow through the dilution refrigerator insert.
The instrument rack stores all the relevant measurement equipment as well as the magnet
power supply and the magnet programmer. The resistance thermometers of the dilution
refrigerator insert are operated by a Lakeshore LS370 and a Lakeshore LS372 resistance
bridge, which also drive the heaters and therefore control the temperature at the different
stages of the system. The LS370 bridge controls the ex factory sensors and heaters sitting
at the different cooling stages of the insert and the LS372 bridge controls the RuO2 sensor
and resistance heater at the sample stage. More details on the sample stage are given at
the end of this section. An additional filter box is utilized in order to reduce high frequency
noise and to increase the resolution of the resistance measurement. The capacitance value
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Figure 3.12: Schematic sketch of the experimental setup. Shown are (a) the pump stand
with automated gas handling system, (b) the measurement instrument rack,
(c) the cryogenic dewar with the dilution refrigerator insert and (d) a blowup
of the low temperature dilatometer probe. The conventional ground is high-
lighted by red color and the clean laboratory ground by green color. Electrical
insulation is indicated with dark yellow color and the different electrical in-
sulation points of the setup are specified by numbers ranging from (1) to (5).
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of the dilatometer was measured by an Andeen-Hagerling AH2550A ultra-high resolu-
tion capacitance bridge. To facilitate high precision measurements, the bridge employs
a three-terminal capacitance measurement method, meaning that fully shielded coaxial
cables are used with the braid being connected to ground. This is a very efficient way to
reduce interfering high frequency noise. When carrying out a capacitance measurement,
the average exponent of the Andeen-Hagerling bridge was set to a value of eight. The
bridge then averages over a number of measurement points, whereby the averaging time
is approximately six seconds.

Optimizing the measurement setup with respect to external interference, which wors-
ens the signal to noise ratio, is paramount in order to obtain reliable data. Likely the most
important point to be addressed is the elimination of noise generating ground loops. Also
electromagnetic noise caused by adjacent machines and measurement equipment is a prob-
lem. Both issues are briefly outlined in the following. The 1 K pot and the He circulation
pump are connected to the respective valves of the dilution refrigerator insert with metallic
hoses. In consequence of this metallic connection, high frequency noise coming from the
pump stand can be easily transmitted into the measurement system. In addition, the hoses
connect the insert at various points to ground, which triggers ground loops. In particular
with respect to the highly sensitive capacitance measurement, the presence of such ground
loops leads to a distinct worsening of the signal to noise ratio. In order to eliminate the
latter and the resulting interference, electrically insulating plastic o-rings and clamps (1)
have to be installed in between the vacuum hoses and the respective valves of the dilution
refrigerator insert. The consequent elimination of ground loops is a necessary measure to
conduct ultra-high resolution capacitance measurements. However, ground loops do not
only originate from the connection established through the metallic hoses, but also form at
various other points. In order to eliminate these, the dilution refrigerator insert has to be
electrically insulated from its surrounding. Grounding is then established only at a single
point. The dilution refrigerator insert is electrically insulated from the cryogenic dewar
by use of a very thin electrically insulating spacer (5) and fixed by plastic (4) instead of
metal screws. Additional paths to ground can be realized via the braided shield of the
measuring cable. It is therefore crucial to also cut the braided shield (2) of the 1 K pot
needle valve control, thermometer and heater cable in order to break ground loops. In
addition, the braid of the coaxial cable is insulated by two small custom made vacuum
tight plastic spacers (3) from the metallic connector of the dilution refrigerator insert.
After eliminating all connections to ground, the grounding of the setup is established only
at a single point via the braid of the coaxial cables, which is soldered onto the dilatometer
body, as depicted in Fig. 3.12(d). Both, the Andeen-Hagerling capacitance bridge and the
Lakeshore LS372 resistance bridge are cut off from the conventionally used ground, which
is indicated by red color in Fig. 3.12(b). To do so, an insulating transformer has to be used
and both measurement bridges are grounded separately by a clean earth, as indicated by
green color in Fig. 3.12(b). This clean earth is reserved for a few measurement systems
and contains less noise than the conventional ground. As the grounding of the insert is
realized via the braid of the coaxial cable, the ground potential of the insert is the same
as the one of the Andeen-Hagerling capacitance bridge.

Finally, the focus is on the key component of the experimental setup, which is the low
temperature dilatometer probe, as illustrated in Fig. 3.13. The dilatometer is mounted on
a copper bracket, which in turn is attached to a slotted copper rod. Copper was chosen as
a material, as it is the best thermal conductor in the here accessed temperature range [103,
p. 58]. A high thermal conductivity of the rod is key to achieve a sufficient thermalization
of both the dilatometer and the examined single crystal at mK temperatures. The slots
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Figure 3.13: Schematic sketch of the low
temperature dilatometer
probe. The dilatometer is
mounted on a L-shaped cop-
per holder, which is attached
to a slotted copper rod. A
TRP partially thermally
insulates the dilatometer
probe from the mixing
chamber, which facilitates
measurements to higher
temperature. A resistance
heater and a RuO2 ther-
mometer are sitting on the
TRP. The thin green cables
denote coaxial cables by
which the dilatometer is
connected to the capacitance
measurement bridge.

in the copper rod aim to reduce eddy current induced heating effects, which arise during
magnetostriction measurements. The copper rod is attached to a temperature regulation
plate (TRP), which is only weakly thermally coupled to the mixing chamber of the dilution
refrigerator insert. This allows for a local heating of the TRP up to temperatures of 4 K,
while the mixing chamber remains below its critical value of 1 K. When the mixing chamber
is heated to higher temperature, the circulation process becomes abruptly unstable due to
a sudden evaporation of a large amount of liquid mixture. In consequence, the pressure
in the dilution circuit increases rapidly. In this case, the He circulation pump turns
off automatically due to safety reasons and the circulation process stops. Consequently,
placing a TRP between the low temperature dilatometer probe and the mixing chamber
is an elegant and relatively straightforward method to extent the accessible temperature
range of a dilution fridge measurement. The TRP itself consists of a thermally insulating
plate on which a copper plate is mounted. The insulating side of the TRP is attached
to the mixing chamber of the dilution refrigerator insert and the TRP’s copper plate is
connected via a thin copper wire to the mixing chamber. Variation of the diameter of the
copper wire allows to adjust the cooling power of the TRP and the experimental probe.
The temperature at the TRP is measured by a RuO2 temperature sensor and can be
regulated by a resistance heater. It is thereby assumed that the temperature at the TRP
is identical to one of the sample.



54 Chapter 3. Experimental Methods



Chapter 4

PrIr2Zn20

NFL phases show many facets and their exploration has evolved into a comprehensive
research field of great popularity. One of the best known and most thoroughly researched
examples is the collapse of conventional metallic behavior at a magnetic QCP, a phe-
nomenon that has been extensively studied on the example of HF metals over the last
decades [11]. Less conclusive, at least so far, has been the research on exotic behaviors
emerging in systems that feature high rank multipolar degrees of freedom, such as electric
quadrupoles [25,26].

A material class that can be considered as highly suitable for the exploration of exotic
multipolar phenomena is the one of the Pr-based 1-2-20 systems [25,26]. Most prominent
members of this family are PrIr2Zn20 [27,28], PrRh2Zn20 [29,30], PrV2Al20 [26,31,32] and
PrTi2Al20 [26,33,34]. In these materials, the localized nature of the 4f2 electrons and their
moderate hybridization with conduction electrons are key prerequisites that allow for the
accurate classification of the emergent effects. Most eminent cause of NFL behavior is
thereby the quadrupolar Kondo effect [28, 30, 35]. This is distinct to magnetic HF mate-
rials, where the Kondo screening results in a stable FL ground state and NFL behavior
appears close to a magnetic QCP [11]. While the latter phenomenon has been comprehen-
sively studied and is well understood, clear and unambiguous experimental evidence for
the quadrupolar Kondo effect and quadrupolar QC remains elusive so far. In this regard,
comprehensive research on the Pr-based 1-2-20 systems is a promising approach to reveal
experimental signatures of these novel effects. A noteworthy finding is the emergence of
NFL behavior in PrIr2Zn20 [28], PrRh2Zn20 [30] and PrV2Al20 [35], which can be well cap-
tured by a two-channel Anderson lattice model [40]. Besides, PrTi2Al20 shows a substantial
increase of its effective electron mass and superconducting transition temperature under
hydrostatic pressure, which is seen as a possible indication of a quadrupolar QCP [33].
PrV2Al20, on the other hand, displays a further NFL phase when tuned by the application
of magnetic field towards the phase boundary of its low temperature ordered state, which
points towards a quadrupolar QCP [32]. In PrIr2Zn20 [28] and PrRh2Zn20 [30], by con-
trast, FL behavior emerges in close vicinity of the critical field of AFQ order. A possible
explanation for this unexpected finding is the emergence of FH order, also referred to as
F-channel diagonal composite order [28,30,99–102].

This chapter deals with the material PrIr2Zn20. The system exhibits a non-Kramers
Γ3 ground state doublet (Td point group symmetry) that possesses O0

2 and O2
2 quadrupole

as well as Txyz octupole degrees of freedom and displays AFQ order at TQ = 0.11 K [25,27].
In the specific heat, a critical magnetic field of Bc ≈ 4.5 T − 5 T applied along the
crystallographic [100] direction suppresses the AFQ order, which is replaced by another
anomaly [28]. Furthermore, FL behavior arises in the electrical resistivity, which sup-
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ports the emergence of a new phase [28]. Here, aforementioned FH or F-channel diagonal
composite order are considered as a possible mechanism to explain the experimentally ob-
served behavior [28,99–102]. In addition, the Seebeck coefficient is substantially enhanced
at around Bc, which points towards the formation of a strongly hybridized state that is
likely linked to the FL behavior in the electrical resistivity [28, 45, 46]. Interestingly, at
T > TQ, NFL behaviors are present in the specific heat and the electrical resistivity that
can be well accounted for by a two-channel Anderson lattice model [40] and are therefore
indicative of the quadrupolar Kondo lattice effect [28].

4.1 Physical Properties Review

This section reviews the physical properties of PrIr2Zn20 with reference to the currently
available literature on the system. The material’s crystal structure and the CEF effect
are introduced at first [65, 97], as these are key for understanding the formation of the
material’s non-Kramers Γ3 ground state doublet. Afterwards, the low temperature AFQ
order and the quadrupole Kondo lattice effect are discussed [27,28] and possible signatures
of the F-channel diagonal composite order (FH order) are briefly reviewed [28,99–102].

4.1.1 Crystal Structure

PrIr2Zn20 forms in the CeCr2Al20 crystal structure with the cubic Fd3̄m space group and
a lattice parameter of 14.2729(2) Å [97]. Fig. 4.1 shows a visualization of the crystal struc-
ture. Here, the Pr3+ ions occupy the 8a site and are arranged in a diamond structure [25].
The Ir ions, which are located at the 16d site, crystallize in a pyrochlore lattice and the
Zn ions sit on the remaining 16c, 48f and 96g sites [25]. The sixteen Zn ions on the 16c
and 96g sites form a cage, which surrounds the Pr3+ ion at the 8a site, as highlighted
by the purple polyhedra in Fig. 4.1. Neutron scattering experiments by Iwasa et al. [65]
suggested that the point group symmetry at a Pr site is cubic Td. In consequence of the

Figure 4.1: Cubic crystal structure of PrIr2Zn20 with Fd3̄m space group. Pr3+ ions are
shown in red, Ir ions in green and Zn ions in grey color. Each Pr3+ ion is
surrounded by a cage structure of sixteen Zn ions, as highlighted by purple
polyhedra. The crystal structure was visualized with VESTA [118], by using
crystallographic data typical for this material class from Ref. [119].
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Pr3+ ion’s high coordination number, a significant overlap of the localized 4f2 moment
wave functions and the conduction electron wave functions of the surrounding Zn ions is
expected [25]. This should result in a pronounced hybridization effect, which in turn sets
the basis for novel physical phenomena, such as the quadrupolar Kondo effect [25].

4.1.2 Crystal Electric Field Effect

In PrIr2Zn20, the cage like arrangement of sixteen Zn ions generates a cubic CEF with
Td point group at a Pr site [65]. Before discussing this effect in detail, the ground state
characteristics of a free Pr3+ ion, which classifies as a 4f ion with an electronic configura-
tion [Xe]4f2, are briefly recalled. By following Hund’s rules, its ground state total angular
momentum quantum number calculates as J = |L−S| = 4, where L = 5 is the orbital an-
gular momentum and S = 1 the spin angular momentum. In consequence, the degeneracy
of the Pr3+ ion’s ground state is (2J + 1) = 9. In presence of a CEF, this degeneracy is
lifted and the number and degeneracy of the consequent CEF states is determined by the
point group symmetry at a Pr site. As detailed in Section 2.2, in case of a CEF with cubic
Td point group symmetry, the originally nine-fold degenerate J multiplet of a free Pr3+

ion breaks down into Γ1 singlet, Γ3 doublet, Γ4 triplet and Γ5 triplet [64]. The even num-
ber of 4f electrons classifies the Pr3+ ion as a non-Kramers ion. In consequence, its CEF
eigenstates do not necessarily have to be doubly degenerate and can be of non-magnetic
nature. By contrast, Kramers ions with an odd number of 4f electrons, such as the Yb3+

ion or the Ce3+ ion, cannot feature non-magnetic or singlet CEF states, as the Kramers
theorem requires at least doubly degenerate states that split in magnetic field [12, p. 63].
While the degeneracy of a Kramers state can be broken by the application of magnetic
field, a non-Kramers state’s degeneracy is lifted by a symmetry breaking strain. Among
the aforementioned CEF eigenstates of the Pr3+ ion, the Γ3 state stands out, as it does not
posses a magnetic dipole moment but high rank quadrupole and octupole moments [25].
Discovering new systems that feature such a non-Kramers Γ3 doublet ground state is of
great interest, as it allows to study electronic correlation effects of non-magnetic nature.
In order to specify the energetic arrangement of the CEF eigenstates and to identify the
CEF ground state of a material, inelastic neutron scattering is generally the method of
choice. In the case of PrIr2Zn20, also other thermodynamic probes, such as the specific
heat and the magnetization, provided helpful information [27]. In the following subsub-
section, the CEF level scheme of PrIr2Zn20 is detailed. Subsequently, the focus lies on the
characteristics of the material’s non-Kramers Γ3 ground state doublet.

Crystal Electric Field Level Scheme

In order to examine the possible non-magnetic nature of the ground state of PrIr2Zn20,
magnetic susceptibility measurements are a powerful means. Onimaru et al. [97] performed
such experiments and reported saturation of the magnetic susceptibility at T < 10 K
for magnetic field along the [100] direction, which points towards the presence of Van
Vleck paramagnetism. This type of magnetism appears when a non-magnetic ground
state mixes with an excited magnetic state in magnetic field [12, p. 30]. In this case,
second order perturbation theory suggests a finite and temperature independent magnetic
susceptibility [12, p. 30] and the finding of Onimaru et al. [97] therefore confirms that
the ground state of PrIr2Zn20 is of non-magnetic nature. This explicitly excludes the Γ4

and Γ5 triplet as the ground state, since both carry magnetic dipole moments [25]. An
anisotropy observed in the magnetic field dependence of the magnetization with respect
to the [100] and [110] direction and a Schottky maximum in the specific heat, specified
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Figure 4.2: Left side shows the nine-fold degenerate J = 4 multiplet of a free Pr3+ ion.
Right side shows the CEF level scheme of PrIr2Zn20, where a CEF with Td
symmetry acts on a Pr3+ ion. The CEF level scheme was sketched based on
inelastic neutron scattering results from Ref. [65].

the Γ3 doublet as the ground state and ruled out the Γ1 singlet [27]. This conclusion by
Onimaru et al. [27] is based on the fact that the effects in the magnetization and specific
heat can be well described by a theoretical calculation, which assumes a Γ3 ground state
with an energy gap of ∆ = 30 K to the first excited Γ4 triplet state. Later, Iwasa et al. [65]
determined the exact CEF level scheme of PrIr2Zn20 by inelastic neutron scattering, which
is in very good agreement with the just detailed results by Onimaru et al. [27,97]. The CEF
level scheme of PrIr2Zn20, which is based on inelastic neutron scattering results by Iwasa
et al. [65], is sketched in Fig. 4.2. The ground state is the Γ3 doublet, which is followed
by the Γ4 triplet at 27.4 K, the Γ1 singlet at 65.8 K and the Γ5 triplet at 67.3 K [65].

Characteristics of the Γ3 Ground State

A key characteristic of the cubic non-Kramers Γ3 doublet is its non-magnetic nature. While
it carries two electric quadrupole moments O0

2, O2
2 and a magnetic octupole moment Txyz,

magnetic dipole moments are absent [25]. Consequently, a splitting of an isolated Γ3

doublet in magnetic field is not expected. In PrIr2Zn20, however, the assumption of the
Γ3 ground state doublet being isolated is not justified, as also higher excited states are
present. In particular, the mixing of the Γ3 ground state with the first excited Γ4 state is
of relevance, as it leads to a quadratic splitting of the Γ3 doublet in magnetic field.

The fact that an isolated Γ3 doublet does not split in magnetic field can be demon-

strated by considering the expectation value of Jz for both the Γ
(1)
3 and Γ

(2)
3 eigenstate,

which were introduced in Table. 2.1. In the following, this is demonstrated for the Γ
(1)
3

state for which the expectation value of Jz vanishes to zero〈
Γ

(1)
3

∣∣∣ Jz ∣∣∣Γ(1)
3

〉
=

7

24
〈4| Jz |4〉+

5

12
〈0| Jz |0〉+

7

24
〈−4| Jz |−4〉

=
7

24
· 4− 7

24
· 4

= 0.

(4.1)

Analogously it follows for the Γ
(2)
3 state〈

Γ
(2)
3

∣∣∣ Jz ∣∣∣Γ(2)
3

〉
= ... = 0. (4.2)
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In PrIr2Zn20, the Γ3 ground state doublet is not isolated but accompanied by the
higher excited Γ4 triplet, Γ1 singlet and Γ5 triplet states. Given that the ground state
mixes with one of the excited states in magnetic field, i.e. Jz has a finite expectation value
in the mixed state, the Γ3 doublet will split in magnetic field despite its non-magnetic

nature. Such a mixing in fact occurs for the Γ
(1)
3 state and the first excited Γ

(2)
4 state, as

the expectation value of Jz in the mixed state is finite

〈
Γ

(1)
3

∣∣∣ Jz ∣∣∣Γ(2)
4

〉
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√
7

48
〈4| Jz |4〉 −

√
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〈−4| Jz |−4〉
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7

48
· 4

= 2

√
7

3
.

(4.3)

Note that the higher excited Γ5 and Γ1 states are disregarded in this discussion.

The following lines that demonstrate the quadratic splitting of the Γ3 ground state
doublet of PrIr2Zn20 in magnetic field are based on a personal communication with T.
Onimaru1 from 2016. At first, a simple Hamiltonian that contains a CEF term HCEF and
a Zeeman term HZ = −gJµBJzHz is considered

H = HCEF +HZ. (4.4)

In matrix representation this Hamiltonian reads as

H =

(
0 0
0 ∆

)
+

(
0 Z
Z 0

)
=

(
0 Z
Z ∆

)
, (4.5)

where Z = −2
√

7/3gJµBHz. Note that the HCEF matrix has the energy eigenvalues of the
Γ3 and the Γ4 state on its diagonal and the HZ matrix contains only off-diagonal elements
Z that correspond to the finite expectation value of Jz in the mixed state. The energy
eigenvalues of this Hamiltonian read as

ε
Γ

(1)
3 ,Γ

(2)
4

=
∆±

√
∆2 + 4Z2

2
. (4.6)

Consequently, the magnetic field induced splitting of the ground state’s Γ
(1)
3 component

approximates for Hz ≈ 0 to

∆
Γ

(1)
3

=
∆−

√
∆2 + 4Z2

2
≈ −Z

2

∆
≈ −H

2
z

∆
. (4.7)

This suggests a quadratic splitting of the ground state doublet’s Γ
(1)
3 component in mag-

netic field, which scales with the energy gap ∆ between the ground and first excited state.

On the other hand, the doublet splits linearly when an uniaxial stress is applied along
the crystallographic [001] direction, which in turn induces a strain along the same direction.
This can be directly seen when considering Eq. (2.35) and Eq. (2.39), based on which
the linear dependence between strain ε[001] and the Γ3-type quadrupolar expectation value
〈O0

2〉 becomes evident.

1Laboratory for Magnetism in Novel Materials, Graduate School of Advanced Science and Engineering,
Department of Quantum Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan.
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4.1.3 Antiferroquadrupolar Order

In PrIr2Zn20, the specific heat and the electrical resistivity show a distinct phase transition
signature at TQ = 0.11 K [27,97]. Since the magnetization does not exhibit any feature at
TQ, a non-magnetic quadrupole order is likely [27]. To scrutinize the nature of the phase
transition, the (c11 − c12)/2 elastic constant is a particularly insightful physical quantity,
as it provides direct information on its possible quadrupolar character. As outlined in
Section 2.3.2, in case of cubic symmetry, the (c11 − c12)/2 elastic constant is directly
related to the Γ3-type quadrupole-strain susceptibility χQ and thus measures the response
of the Γ3-type quadrupolar ground state moments 〈O0

2〉 and 〈O2
2〉 to strain of the same

symmetry εu and εv. Just to recall, in the single-impurity case, χQ displays a Curie-type
temperature dependence χQ ∼ 1/T , which is modified to χQQ ∼ χQ/(1 − KχQ) when
the quadrupole moments interact with each other, whereby K denotes the interaction
constant. In case of a quadrupolar order, the characteristic softening of the (c11 − c12)/2
elastic constant is suddenly suppressed at the phase transition, as the degeneracy of the
ground state doublet is lifted. To study the low temperature order of PrIr2Zn20 more in
detail, Ishii et al. [37] performed ultrasound measurements and found in fact a softening of
the (c11−c12)/2 elastic constant for temperatures lower than 7 K that is suppressed at TQ.
The softening of (c11 − c12)/2, on the one hand, confirms the Γ3-type quadrupolar nature
of the ground state and its suppression, on the other hand, provides direct evidence that
the anomalies in the specific heat and electrical resistivity result in fact from the ordering
of the ground state’s quadrupole moments [37]. Ishii et al. [37] were able to determine
the sign of the quadrupole-quadrupole coupling constant K, based on which they specified
the nature of the order as AFQ [37]. With the help of Levy’s criterion, the authors ruled
out that the transition at TQ is a cooperative Jahn-Teller distortion [37]. An additional
and quite peculiar finding of the just referenced study is that the c44 elastic constant,
which is not of Γ3 but of Γ5 symmetry, also shows a softening at low temperature that
is suppressed at TQ [37]. This result was confirmed on two different single crystalline
samples, which makes an experimental error unlikely [37]. As c44 is of different symmetry
than the system’s Γ3 ground state, the finding is difficult to interpret at a first glance.
In their publication, Ishii et al. [37] note that c44 displays a frequency dependence and
thus attribute the peculiar behavior to a possible rattling of the 16c site Zn ions. Inelastic
neutron scattering experiments in magnetic field provided additional evidence that the
quadrupolar order in PrIr2Zn20 is indeed of AFQ nature and furthermore specified the
order parameter as the O2

2 quadrupole [120]. Note, as neutrons are not sensitive to detect
quadrupole moments, Iwasa et al. [120] determined the AFQ order indirectly via the field
induced dipole moments. In zero field, the determination of the quadrupolar structure of
the material was therefore not possible by means of neutrons [120].

The evolution of the AFQ phase transition for magnetic fields B ‖ [100] was studied by
Onimaru et al. [27, 28] by means of specific heat and electrical resistivity measurements.
Their results on the temperature dependence of the 4f specific heat C4f at various magnetic
fields are shown in Fig. 4.3(a) [28]. At low magnetic field, the data indicates a distinct
phase transition signature at TQ, whose magnitude decreases with increasing magnetic
field [28]. At a critical field Bc ≈ 4.5 T− 5 T, the AFQ order is suppressed [28]. This can
be seen more clearly in the inset of Fig. 4.3(b), which focuses on the temperature evolution
of C4f close to Bc [28]. In a first publication, Onimaru et al. [27] reported a separation of
TQ in low magnetic field into two transitions. This could, however, not be reproduced in a
following study [28], from which Fig. 4.3 was reprinted. Electrical resistivity measurements
do neither give any indication of the initially reported splitting of TQ for magnetic field
B ‖ [100], but confirm the Bc value derived by the specific heat [28]. Interestingly, in a
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Figure 4.3: (a) Temperature dependence of the 4f specific heat C4f of PrIr2Zn20 at various
magnetic fields B ‖ [100]. TQ specifies the onset of AFQ order and TSch the
high field Schottky maximum. (b) Temperature variation of the 4f entropy S4f

of PrIr2Zn20 at different magnetic fields. T
(C)
0 is the characteristic quadrupole

Kondo temperature at S = 3/4R ln 2. The inset displays a blowup of the low
temperature part of C4f at intermediate magnetic fields. [28]
Reprinted figure with permission from Ref. [28]. ©2016 by the American
Physical Society.

small magnetic field regime at around Bc another low temperature anomaly emerges in
C4f , which is indicated by T ∗ in the inset of Fig. 4.3(b) [28]. This finding is corroborated
by the electrical resistivity, which exhibits a kink like signature in a comparable field range,
marking the onset of FL behavior [28]. More details on this peculiar intermediate phase
are provided in the following subsection. Another important quantity to consider when
studying hybridization effects is the entropy. Onimaru et al. [28] also deduced the tem-
perature dependence of the 4f entropy S4f at various magnetic fields B ‖ [100], as shown
in Fig. 4.3(b). The system acquires an entropy value of S = R ln 2 at around 2 K, which
corresponds to the entropy of the two-fold degenerate Γ3 ground state doublet [28]. Inter-
estingly, the entropy is then readily suppressed as temperature declines and the value just
above TQ is surprisingly small [28]. This implies that quadrupolar fluctuations are present
above TQ, which possibly account for the release of a large fraction of the ground state
doublet’s entropy well above the phase transition [27, 28]. In this regard, the quadrupole
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Figure 4.4: (a) Relative change ∆c/c of the c11 elastic constant of PrIr2Zn20 as a function
of temperature at different magnetic fields H ‖ [100]. Black and green arrows
specify the onset of AFQ order. (b) Relative change of c11 of PrIr2Zn20 as
a function of magnetic field H ‖ [100] at different temperatures. (c) Phase
diagram, which summarizes the results from (a) and (b). [37]
Reprinted figure with permission from Ref. [37]. ©2011 The Physical Society
of Japan.

Kondo effect is a promising candidate to explain the behavior [28]. Note that the arrows

in Fig. 4.3(b) mark the characteristic quadrupole Kondo temperature T
(C)
0 , specified by

S = 3/4R ln 2 [28]. T
(C)
0 was originally defined by Sacramento et al. [18].

Before addressing the quadrupole Kondo behavior in PrIr2Zn20 in detail in the next
subsection, elastic constant measurement results by Ishii et al. [37], who studied the evo-
lution of the AFQ order in magnetic field, are briefly reviewed. Figure 4.4(a) shows the
temperature dependence of the relative change ∆c/c of the c11 elastic constant at various
magnetic fields H ‖ [100] [37]. A reason for the measurement of the c11 instead of the Γ3-
type (c11−c12)/2 elastic constant is not given by Ishii et al. [37]. At low magnetic field and
low temperature, c11 shows a clear hardening, which indicates the phase transition into
the AFQ ordered state [37]. While the data of Ishii et al. [37] shows comparable behavior
at low magnetic fields, the data at 5 T stands out due to a substantial softening at elevated
temperature, which is suppressed upon approaching absolute zero. At 6 T, c11 is nearly
temperature independent, which is indicative of a quenching of the Γ3-type quadrupole
moments in consequence of the field induced splitting of the Γ3 doublet [37]. The field
dependence of the relative change of c11 at various temperatures for H ‖ [100] is shown in
Fig. 4.4(b) [37]. At low temperatures T ≤ 0.15 K, c11 exhibits a pronounced minimum at
around 5 T, while at an elevated temperature of 2 K, the anomaly at intermediate mag-
netic field is suppressed and c11 is nearly field independent [37]. A phase diagram, which
summarizes the anomalies found in the temperature and field dependent measurements
for H ‖ [100] is shown in Fig. 4.4(c) [37]. Ishii et al. [37] also performed elastic constant
measurements for magnetic field H ‖ [110]. Figure 4.5(a) shows the relative change ∆c/c
of the (c11−c12)/2 elastic constant as a function of temperature at various magnetic fields
H ‖ [110] [37]. The data looks comparable to the just reviewed one for H ‖ [100] with the
difference that the phase transition signature in (c11 − c12)/2 persists up to much higher
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Figure 4.5: (a) Relative change ∆c/c of the (c11 − c12)/2 elastic constant of PrIr2Zn20 as
a function of temperature at various magnetic fields H ‖ [110]. The black
arrows specify the onset of AFQ order. (b) Relative change of (c11− c12)/2 of
PrIr2Zn20 as a function of magnetic field H ‖ [110] at selected temperatures.
(c) Phase diagram, which contains the results from (a) and (b). [37]
Reprinted figure with permission from Ref. [37]. ©2011 The Physical Society
of Japan.

magnetic field of approximately 10 T [37]. Figure 4.5(b) shows the field dependence of
the relative change of (c11 − c12)/2 for H ‖ [110] at different temperatures [37]. At the
lowest temperatures, a continuous softening of (c11− c12)/2 up to a critical magnetic field
of µ0Hc ≈ 10 T is reported, which is distinct from the behavior derived for H ‖ [100],
where c11 shows a clear minimum at µ0Hc ≈ 5 T [37]. The respective phase diagram,
which summarizes the anomalies from the temperature and field dependent measurements
for H ‖ [110] is shown in Figure 4.5(c) [37].

4.1.4 Quadrupole Kondo Lattice Effect and Diagonal Composite Order

In PrIr2Zn20, the continuous reduction of the ground state’s entropy already well above
the AFQ phase transition temperature is a surprising finding and indicates the presence
of an additional correlation effect at low temperature [27,28]. Onimaru et al. [28] suggest
the quadrupole Kondo effect as a possible mechanism to explain this finding. As outlined
in Section 2.4.2, this correlation effect arises when a localized quadrupole moment is over
screened by two conduction electron channels. The respective ground state is fragile and
distinguished by NFL behavior in the specific heat and the electrical resistivity and a
characteristic divergence in the related susceptibility [40]. In order to clarify the presence
of the quadrupole Kondo lattice effect in PrIr2Zn20, Onimaru et al. [28] compared their
specific heat and electrical resistivity measurement results with the theoretical scaling
relations derived by Tsuruta et al. [40] who evaluated a two-channel Anderson lattice
model. The key results of Onimaru et al. [28] on the quadrupole Kondo lattice behavior
in PrIr2Zn20 are briefly reviewed in the following.

Figure 4.6(a) shows the 4f specific heat normalized to its value at the characteristic

temperature C4f(T )/C4f(T
(C)
0 ) versus T/T

(C)
0 at different magnetic fields B ‖ [100] [28].
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Figure 4.6: (a) 4f specific heat of PrIr2Zn20 normalized to its value at the characteristic

temperature C4f(T )/C4f(T
(C)
0 ) as a function of T/T

(C)
0 at various magnetic

fields B ‖ [100], together with the theoretically expected quadrupole Kondo
lattice behavior [40] as a red solid line. C4f/T as a function of temperature
is displayed in the inset. (b) Electrical resistivity of PrIr2Zn20 normalized to

its value at the characteristic temperature ∆ρ(T )/∆ρ(T
(ρ)
0 ) as a function of

T/T
(ρ)
0 at different magnetic fields B ‖ [100], together with the theoretically

expected single-impurity quadrupole Kondo behavior [121] as a blue dashed
line and the quadrupole Kondo lattice behavior [40] as a red solid line. The
inset illustrates ρ/(ρ0 +A

√
T ) as a function of temperature. [28]

Reprinted figure with permission from Ref. [28]. ©2016 by the American
Physical Society.

Just to recall, Onimaru et al. [28], determined T
(C)
0 as the temperature value at which

the entropy takes a value of S = 3/4R ln 2. For temperatures 0.8 < T/T
(C)
0 < 3, the

scaled specific heat data is indeed in excellent conformity with the theoretical prediction
by the two-channel Anderson lattice model [40] plotted as a red solid line, whereby de-
viations arise at lower temperature [28]. At low magnetic fields, these deviations assign
to the emergence of AFQ order, which was already discussed in a preceding subsection.
Onimaru et al. [28] performed a similar scaling analysis for their electrical resistivity data.
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Figure 4.7: (a) Low temperature phase diagram for magnetic field B ‖ [100] of PrIr2Zn20.
Red and blue symbols denote anomalies and characteristic temperatures de-
rived from the specific heat and electrical resistivity, respectively. The contour
plot indicates the field derivative of the magnetization dM/dB. (b) 4f spe-
cific heat over temperature C4f/T as a function of magnetic field B ‖ [100]
at 0.07 K. (c) Field evolution of the electrical resistivity’s A parameter, given
by ρ = ρ0 + AT 2, on the left. On the right, field dependence of the Seebeck
coefficient over temperature S/T [45] at a temperature of 0.08 K. [28]
Reprinted figure with permission from Ref. [28]. ©2016 by the American
Physical Society.

Figure 4.6(b) displays the differential electrical resistivity normalized to its value at the

characteristic temperature ∆ρ(T )/∆ρ(T
(ρ)
0 ), whereby the determination of the character-

istic temperature T
(ρ)
0 is illustrated in the inset [28]. In analogy to the specific heat, very

good accordance exists between the experimentally determined data and the theoretical
prediction by the two-channel Anderson lattice model [28]. By contrast, a simple

√
T

dependence, as proposed by the single-impurity quadrupole Kondo model [121], cannot
account for the experimentally observed behavior [28]. This finding is not surprising, as
the Pr3+ ions are arranged periodically on the crystal lattice and a non-negligible inter-
site interaction must be present. Overall, the good conformity between the experimental
results of Onimaru et al. [28] and the theoretical prediction by Tsuruta et al. [40] strongly
suggests the formation of the quadrupole Kondo lattice effect in PrIr2Zn20.

Another interesting aspect of the study by Onimaru et al. [28] is the occurrence of
FL behavior in the electrical resistivity in a small magnetic field regime approximately
at the critical magnetic field of AFQ order. The phase diagram shown in Fig. 4.7(a)
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illustrates this peculiarity [28]. Here, the red and blue circles and squares correspond to
signatures and characteristic temperatures, found by Onimaru et al. [28] in the specific
heat and the electrical resistivity, respectively. The contour plot illustrates the magnetic
field derivative of the material’s magnetization, which displays a clear enhancement at
intermediate magnetic field and low temperature [28]. This coincides with the FL behavior
arising in the electrical resistivity [28]. In their publication, Onimaru et al. [28] suggest
that composite order [99,100], which is also referred to as hastatic order [122], is a possible
mechanism to explain this interesting finding. As reviewed in the theory part of this thesis,
composite order is proposed to be a possible yet exotic ground state of a quadrupole Kondo
lattice [99,100]. In the F-channel diagonal composite order scenario, the degeneracy of the
two quadrupole Kondo electron screening channels is broken, as one of the two channels
hybridizes with the localized quadrupole moments into Kondo singlets [99]. FL behavior
is a key signature of this exotic state of matter [99]. As both F-channel diagonal composite
order, which is also termed as FH order, and quadrupolar order quench the quadrupole
Kondo effect at low temperatures, they are competing mechanisms [99–102]. Van Dyke
et al. [102] performed simulations and found that in zero magnetic field AFQ order is
prevalent, while at intermediate magnetic field the FH order takes over and at high field an
uncorrelated singlet ground state forms. This prediction matches very well with the phase
diagram constructed by Onimaru et al. [28]. Besides the FL behavior and the enhancement
of dM/dB at intermediate magnetic field and low temperature, also the field dependence
of C4f/T at 0.07 K exhibits a distinct maximum, as shown in Fig. 4.7(b) [28]. Very similar
behavior is reported for the electrical resistivity’s A coefficient and the Seebeck coefficient
over temperature S/T [45], which are displayed in Fig. 4.7(c) [28]. As an alternative to
the composite order, Onimaru et al. [28] discuss the scenario that the quadrupole Kondo
NFL state crosses over to a FL state in presence of a magnetic field, a mechanism that
was originally proposed by Yotsuhashi et al. [123]. To further characterize this not yet
fully understood phase at intermediate magnetic field, was a major motivation for the
measurements of thermal expansion and magnetostriction carried out in the scope of this
thesis. The experimental results are presented and discussed in the succeeding section.

4.2 Experimental Results

This section details the thermal expansion and magnetostriction measurement results ob-
tained on single crystalline PrIr2Zn20. First, brief information is provided regarding the
examined single crystals that were grown and characterized by a collaboration partner
from Hiroshima University in Japan. Subsequently, the low temperature thermal expan-
sion and magnetostriction results for B ‖ [001] and B ‖ [110] are presented. Main purpose
of the measurements for B ‖ [001] was to search for unconventional behavior in vicinity of
the critical field of AFQ order at around 5 T, where a significant enhancement of the See-
beck coefficient [45,46] as well FL behavior in the electrical resistivity [28] were reported.
In addition, the effect of magnetic field B ‖ [110] was examined.

4.2.1 PrIr2Zn20 Single Crystals

The thermal expansion and magnetostriction measurements were performed on two differ-
ently oriented single crystalline samples of PrIr2Zn20, which were provided by T. Onimaru
from Hiroshima University in Japan. Both samples originate from the same batch (#19)
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Sample Nr. RRR Batch Crystal Directions Length

1 54 #19 [001] 1.295 mm
[110] 1.557 mm
[11̄0] 1.854 mm

2 54 #19 [111] 1.206 mm

Table 4.1: Properties of the two investigated single crystalline samples of PrIr2Zn20. The
single crystals in this table were grown by K. T. Matsumoto and crystallograph-
ically oriented by K. T. Matsumoto and Y. Yamane. Provided length values
have an accuracy of ±0.001 mm. The given RRR value was measured by the
collaborators on another single crystal from the same batch.

and were synthesized by K. T. Matsumoto2, who also crystallographically aligned sample
Nr. 1. Y. Yamane2 crystallographically aligned sample Nr. 2. General information on
both samples, such as the estimated residual resistivity ratio (RRR), batch number, crys-
tallographic orientations and dimensions are summarized in Table 4.1. The given length
values have an accuracy of ±0.001 mm and the referenced RRR was determined by the
Japanese collaborators on a single crystal from the same batch. The shapes of both sam-
ples are shown in Fig. 4.8. Sample Nr. 1 has a rectangular shape, whereby the three
different pairs of parallel faces correspond to the [001], [110] and [11̄0] direction. This
orientation allows not only for relative length change measurements parallel to magnetic
field applied along the [001] or [110] direction but also for relative length change measure-
ments perpendicular to a magnetic field applied along the [100] direction. In this case, the
single crystal can be aligned based on its [110] and [11̄0] oriented sides, so that magnetic
field points along the [100] direction and the relative length change is measured along the
physically oriented [001] direction, which is perpendicular to the applied magnetic field
direction. Based on the fact that for cubic symmetry the [100], [010] and [001] direc-
tion are degenerate, subsequently, always the 〈100〉 direction along which the magnetic
field points, is defined as the [001] direction. Purpose of the thermal expansion and mag-
netostriction measurements along and perpendicular to B ‖ [001] was to determine the
respective volume changes. Sample Nr. 2, on the other hand, has only two parallel faces
that correspond to the [111] direction.

Figure 4.8: Sketches of the two differently oriented single crystalline samples of PrIr2Zn20

examined in this thesis. Indicated are shape, crystallographic orientations and
dimensions.

2Laboratory for Magnetism in Novel Materials, Graduate School of Advanced Science and Engineering,
Department of Quantum Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan.
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4.2.2 Thermal Expansion

At first, the zero magnetic field linear thermal expansion coefficients of PrIr2Zn20 mea-
sured along the three crystallographic directions [001], [110] and [111] are presented and
discussed. An important fact to keep in mind is that the quadrupolar Γ3 ground state
doublet of PrIr2Zn20 splits linearly in presence of a small strain ε[001] or ε[110]. By contrast,
in case of strain ε[111], no linear splitting of the ground state doublet is expected. As the
capacitive dilatometer exerts via its flat springs a small uniaxial stress on the single crys-
tal, measurements along different crystallographic directions are helpful to assess whether
this effect has an impact on the obtained data. Subsequently, the linear thermal expansion
coefficients obtained for B ‖ [001] and B ‖ [110] are detailed. In case of B ‖ [001], both
the longitudinal and the transverse thermal expansion coefficient was measured. Based on
the two coefficients, the volume thermal expansion coefficient could be inferred. A special
focus of the research was to reveal possible volume changes at around 5 T, where pre-
vious Seebeck coefficient measurements indicated the formation of a strongly hybridized
state and the electrical resistivity displays FL behavior [28,45,46]. Another central point
was to compare the found anisotropy and volume effects with the respective behaviors
in magnetic Kondo lattice materials. In the case of magnetic field B ‖ [110], only the
longitudinal thermal expansion coefficient was measured. Due to the weaker splitting of
the Γ3 ground state doublet for B ‖ [110], a major motivation of the measurement was
to set the obtained results in relation to the ones derived for B ‖ [001] and search for
universal behavior.

Thermal Expansion in Zero Magnetic Field

The zero magnetic field thermal expansion coefficient of PrIr2Zn20 was determined along
the crystallographic [001], [110] and [111] direction. The measurements along the [001] and
the [110] direction were performed on sample Nr. 1 and the measurement along the [111]
direction was carried out on sample Nr. 2. For detailed information on the two examined
single crystalline samples, it is referred to Table 4.1. Figure 4.9 shows the three different
linear thermal expansion coefficients α[001], α[110] and α[111] as a function of temperature
at zero magnetic field. The three data sets exhibit comparable behavior, they are positive
at high temperature and display a clear phase transition signature at TQ ≈ 0.11 K, which
indicates the formation of the AFQ ordered state. This finding is in good agreement
with previous studies that covered elastic constant, specific heat and electrical resistivity
measurements [27, 28, 37]. Unexpectedly, the magnitude of α varies slightly among the
three examined crystallographic directions. This finding is at odds with the expected
isotropic thermal expansion of a cubic crystal. A possible explanation for this behavior
is a tiny extrinsic distortion, which is evoked by the small uniaxial stress exerted by the
capacitive dilatometer’s flat springs. It is recalled that a strain ε[001] couples linearly to the
〈O0

2〉 quadrupole moment and thus lifts the degeneracy of the Γ3 ground state doublet.
It is therefore conceivable that already a tiny uniaxial stress along the [001] direction,
as applied by the miniaturized capacitive dilatometer, is sufficient to activate the 〈O0

2〉
quadrupole moment, which in turn evokes a tetragonal distortion that is superimposed on
the intrinsic volume thermal expansion. A similar effect is present for α measured along
the [110] direction, whereby a look on Eq. (2.39) and Eq. (2.42) implies that the coupling
of 〈O0

2〉 to strain ε[110] is by a factor 1/2 reduced as compared to ε[001]. Therefore, the
experimentally observed smaller magnitude of α[110] as compared to α[001] is in line with the
just described scenario and supports the assumption that a small extrinsic uniaxial stress
induced contribution to the data is present. According to Eq. (2.43), no linear coupling
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Figure 4.9: Temperature dependence of the thermal expansion coefficients α[001], α[110] and
α[111] of PrIr2Zn20 measured at zero magnetic field. α[001] was already pub-
lished in Ref. [124], whereby the here plotted α[001] data is background cor-
rected as compared to the published data.

between strain ε[111] and the quadrupolar ground state moments 〈O0
2〉 and 〈O2

2〉 exists and
an uniaxial stress induced contribution to α[111] is not expected. It is therefore a surprise
that α[111] is located in between α[001] and α[110]. The unexpectedly large value of α[111]

may relate to a peculiar finding of the elastic constant measurement by Ishii et al. [37].
Here, in addition to the expected low temperature softening of the Γ3-type elastic constant
(c11 − c12)/2, a softening of the c44 elastic constant with Γ5 symmetry was reported [37].
Even though a rattling effect of the Zn ions is under discussion to trigger this unexpected
softening of the c44 elastic constant [37], further supportive experimental evidence for this
scenario would be desirable. As ε[111] contains a contribution with Γ5 symmetry, the small
uniaxial stress exerted by the experimental setup along the [111] direction may evoke an
additional contribution to α[111], which arises from the softening of c44. Another possible
reason for the enlarged value of α[111] is the fact that the measurement of α[111] was carried
out on sample Nr. 2, while the measurements of α[001] and α[110] were performed on sample
Nr. 1. Even though both single crystals originate from the same batch, small differences
in the sample quality may be present, which may affect the magnitude of α. Such a
possible relation between disorder and the volume thermal expansion will be discussed
more in detail in Section 5.2.2, which covers thermal expansion measurement results on
the diluted sister compound Y1−xPrxIr2Zn20.

Thermal Expansion in Magnetic Fields B ‖ [001]

This subsubsection is based on a publication in the scientific journal Physical Review
B [124] from the 22nd of February 2019 of which I am the first author. I have carried out
the thermal expansion and magnetostriction measurements, the respective data analysis
as well as the CEF simulations presented therein. To simulate the temperature dependent
expectation values of the quadrupolar operators at different magnetic fields, which are
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Figure 4.10: Longitudinal thermal expansion coefficient α‖ as a function of temperature
measured at various magnetic fields B ‖ [001]. The arrows labeled as TQ

indicate the phase transition temperature into the AFQ ordered state. Note
that a dilatometer background contribution, which is insignificantly small as
compared to the shown data, was not subtracted.
Adapted figure from Ref. [124]. ©2019 by the American Physical Society.

necessary to calculate the strain contributions arising from the CEF effect, a Mathematica
based mean-field CEF program provided by T. Onimaru from Hiroshima University in
Japan was used. The single crystalline sample employed for this study was, as already
acknowledged in Section 4.2.1, grown and characterized by collaborators from Hiroshima
University in Japan. All figures that are shown in this subsubsection and were adapted
or reprinted from Ref. [124] were created by myself. First longitudinal thermal expansion
measurements for B ‖ [001] on the system were performed in the framework of my master
thesis [111]. These measurements were, however, carried out by use of an older type of
dilatometer with a lower resolution. The longitudinal thermal expansion data presented
in the following was remeasured in the scope of this thesis by use of the miniaturized
capacitive dilatometer introduced in Section 3.2.1.

The longitudinal thermal expansion coefficient α‖ as a function of temperature mea-
sured at various magnetic fields B ‖ [001] is shown in Fig. 4.10. In zero magnetic field, α‖
is distinctly small but grows readily with the application of magnetic field. The significant
enhancement of α‖ upon the application of magnetic field can be directly assigned to the
quadratic splitting of the Γ3 ground state doublet in magnetic field. This effect will be
discussed more in detail at a later stage of this subsubsection, where the experimental
results are set in relation to a CEF calculation. As outlined in the preceding subsubsec-
tion, at zero magnetic field, the thermal expansion coefficients measured along different
crystallographic directions display a distinct phase transition signature at a temperature
of TQ ≈ 0.11 K. As magnetic field is increased, TQ shifts to lower temperature and is finally
suppressed at a critical magnetic field value of Bc ≈ 5 T. The evolution of TQ with mag-
netic field is illustrated by black arrows in Fig. 4.10. As detailed before, previous studies
specified the phase transition as the AF-type ordering of the Γ3 ground state’s quadrupole
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moments [37, 120]. The evolution of the phase transition in magnetic field derived by the
thermal expansion measurements is in very good agreement with earlier reports on the
elastic constant, specific heat and electrical resistivity [27,28,37].

A quite peculiar finding of the thermal expansion measurements is the fact that α‖
does not vanish to zero for T < TQ but diverges as soon as a small magnetic field is
applied. While such a magnetic field induced low temperature divergence is commonly
observed in the specific heat due to a nuclear Schottky contribution, this effect usually
does not manifest itself in the thermal expansion. Also the fact that the low temperature
divergence in α‖ vanishes at 5 T speaks against a nuclear contribution, for which a gradual
increase with magnetic field would be expected. As the thermal expansion coefficient is
thermodynamically connected to the negative pressure dependence of entropy, the diver-
gent behavior at low magnetic field indicates remaining entropy inside the AFQ ordered
phase. This is surprising, as the AFQ order at TQ lifts the degeneracy of the ground
state doublet and should consequently lead to a full release of the related ground state
entropy of S = R ln 2. Strikingly, also the specific heat measured by Onimaru et al. [28]
provides indication of a small but finite residual entropy at low magnetic field, as shown
in Fig. 4.3(b). In zero magnetic field, by contrast, the entropy derived by Onimaru et
al. [28] vanishes as expected to zero as temperature declines to zero. Consequently, both
the thermal expansion and the specific heat [28] indicate the presence of a small residual
entropy in low magnetic field. The large and divergent linear thermal expansion coefficient
suggests that the finite low temperature entropy is highly uniaxial stress dependent. Even
though the quadrupolar Kondo effect, which comes along with a residual entropy, could
principally be set in relation to the peculiar finding, hard evidence for such a connection
cannot be provided at the moment.

While the low temperature longitudinal thermal expansion coefficient shows divergent
behavior for magnetic fields B ≤ 4 T, a clear maximum forms at 5 T. As magnetic field is
further increased, the 5 T maximum gradually shifts to higher temperature and its peak
value decreases in magnitude. Surprisingly, α‖ at high magnetic field increases again at
very low temperatures. As the maximum in α‖ at high magnetic field is indicative of
a Schottky-type anomaly, which measures the energy scale of the split Γ3 ground state
doublet, it is surprising that another contribution emerges at very low temperature. In
addition, specific heat measurements suggested that the entropy is fully released at high
magnetic field and low temperature, where the peculiar enhancement in α‖ was found [28].
As this unexpected behavior cannot be assigned to a particular physical effect at the mo-
ment, complementary measurements are desirable in order specify its physical origin. A
notable feature found in α‖ is the prominent maximum at 5 T and low temperature. This
finding reminds on the Seebeck coefficient, which features a maximum at comparable
magnetic field and temperature values with a peak value that is by a factor of seventy
enhanced as compared to its zero magnetic field value [45, 46]. As the Seebeck coefficient
can be directly related to the density of states at the Fermi level, the huge value found in
PrIr2Zn20 at 5 T was interpreted as an indication of a strongly hybridized state [46]. Also
the specific heat exhibits a maximum at a similar position in the phase diagram and the
electrical resistivity displays FL behavior that is accompanied by a distinct enhancement
of its A coefficient [28]. The largely increased Seebeck coefficient and α‖ in combination
with the respective findings in the electrical resistivity and specific heat are reminiscent of
a strongly hybridized state. As hybridization effects usually come along with pronounced
volume changes, volume thermal expansion and magnetostriction measurements are pow-
erful to further characterize PrIr2Zn20’s yet unidentified intermediate magnetic field phase.
To examine whether the notable enhancement in α‖ at intermediate field is connected to
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a sizable volume change, the transverse thermal expansion coefficient α⊥ for B ‖ [001]
was measured. Based on the α‖ and α⊥ data it is possible to derive the volume thermal
expansion coefficient via the relation β = α‖ + 2α⊥. To carry out the transverse ther-
mal expansion measurements, the capacitive dilatometer was rotated by 90◦ with respect
to the magnetic field direction. Before doing so, the PrIr2Zn20 single crystal had to be
carefully aligned in the dilatometer. This process is briefly described in the following. As
outlined in Section 4.2.1, the examined PrIr2Zn20 single crystal has a cuboid shape whose
three different faces correspond to the crystallographic [001], [110] and [110] direction.
It is recalled that because of the material’s cubic crystal symmetry, the [100], [010] and
[001] direction are degenerate in zero field. The same holds for the [110] and the [110]
direction. In the following, the cubic 〈100〉 direction along which the magnetic field is
applied is defined as the [001] direction. As magnetic field B ‖ [001] distorts the material
tetragonally along the magnetic field direction, it is fair to make this assumption. The
[100] and the [010] direction, which are perpendicular to the magnetic field direction, are
assumed to remain degenerate. This assumption is confirmed by CEF calculations, which
indicate that the expectation value 〈O2

2〉 vanishes to zero for B ‖ [001]. As 〈O2
2〉 is directly

proportional to the strain εv = εxx−εyy, the in plane thermal expansion coefficients α[100]

and α[010] have to be degenerate for B ‖ [001]. Since the here examined single crystal
has only a single physically aligned 〈100〉 direction, the thermal expansion was always
measured along the same 〈100〉 direction, which is specified in Table 4.1 and Fig. 4.8 as
the [001] direction with a length of 1.295 mm. While the alignment of the single crystal
for a thermal expansion measurement parallel to magnetic field is straightforward, it is
more tricky for the measurement perpendicular to magnetic field, as only a single aligned
〈100〉 direction exists. By taking advantage of the aligned 〈110〉 directions it is, however,
possible to align the single crystal in the dilatometer in a way that the magnetic field
points along the [100] direction that is located 45◦ off the aligned [110] and [110] direction.
By using aforementioned definition that the 〈100〉 direction along which the magnetic field
points, corresponds to the [001] direction, the just specified [100] direction is labeled as
the [001] direction and the perpendicular direction along which the transverse thermal
expansion was measured denotes the [100] direction. The latter is thereby degenerate to
the [010] direction.

Figure 4.11(a) shows the transverse thermal expansion coefficient α⊥ together with
the already detailed data of α‖ at intermediate magnetic fields B ‖ [001]. The volume
thermal expansion coefficient calculated via the equation β = α‖ + 2α⊥ as a function of
temperature at the respective magnetic fields is shown in Fig. 4.11(b). The measurement
results demonstrate that α‖ and α⊥ are highly anisotropic, whereby α⊥ approximately
mirrors α‖. The size of α⊥, is, however, only half in magnitude as compared to α‖.
Strikingly, the volume thermal expansion coefficient β is distinctly small when compared
to the uniaxial coefficients. In addition, a sign change in β becomes evident at B = 5 T
and very low temperature. By further increasing magnetic field, the low temperature sign
change in β becomes more pronounced and shifts to higher temperature. At elevated
temperature, the curves of β determined at different magnetic fields fall on top of each
other. This indicates an universal mechanism, pointing towards the quadrupole Kondo
lattice effect, which was revealed in a preceding study to arise in a comparable temperature
range via specific heat and electrical resistivity measurements [28]. As a clear theoretical
prediction for the NFL behavior in the thermal expansion associated with the quadrupole
Kondo lattice effect has not been discussed in literature so far, it is difficult to classify the
found behavior. A detailed study on the relation between the linear and volume thermal
expansion coefficients and the quadrupole Kondo effect is provided in Section 5.2.2, which
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Figure 4.11: (a) Longitudinal and transverse thermal expansion coefficients α‖ and α⊥ as
a function of temperature at selected magnetic fields B ‖ [001]. (b) Volume
thermal expansion coefficient calculated from the data of α‖ and α⊥ via
the relation β = α‖ + 2α⊥ at selected magnetic fields B ‖ [001]. The here
shown data is not corrected for the dilatometer background. The background
contribution is, however, distinctly small as compared to the shown data.
Reprinted figure from Ref. [124]. ©2019 by the American Physical Society.

covers thermal expansion measurement results on the diluted single-impurity quadrupole
Kondo candidate Y1−xPrxIr2Zn20.

In comparison to typical magnetic Kondo lattice systems, such as CeRu2Si2 [125] or
CeCu6 [126], which display a pronounced low temperature volume thermal expansion of
order of magnitude 10−5 K−1, the size of the volume thermal expansion of PrIr2Zn20 ap-
pears to be distinctly small. In case of CeRu2Si2 [125], the significant volume expansion is
attributed to magnetic correlations and in the case of CeCu6 [126] to the highly pressure
dependent Kondo coupling. The relatively small volume thermal expansion coefficient of
PrIr2Zn20 implies that the pressure dependence of the relevant coupling constant has to
be distinctly small as compared to the magnetic counterparts. As the volume thermal
expansion curves presented in Fig. 4.11(b) exhibit universal behavior at elevated temper-
ature and different magnetic fields, it is conceivable that the quadrupole Kondo lattice
effect evokes the small but finite volume expansion. In this case, the respective coupling
constant, whose pressure dependence determines the magnitude of β, would correspond
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to the quadrupole Kondo coupling. Despite the distinct differences in the volume thermal
expansion coefficient, the magnitude of the Seebeck coefficient of PrIr2Zn20 is surprisingly
large and comparable in magnitude to the one of CeRu2Si2 and slightly smaller than the
huge value of CeCu6 [46,127]. A graphical overview of the Seebeck coefficient values for a
range of well known HF metals [127] together with the ones of selected quadrupolar Pr-
based 1-2-20 systems is provided in Ref. [46]. In summary, the quite small volume thermal
expansion coefficient in PrIr2Zn20 implies that the largely enhanced Seebeck coefficient
of PrIr2Zn20 at 5 T is probably not directly related to a significant hybridization effect,
as it is known from magnetic HF metals, and must therefore be triggered by another yet
unidentified phenomenon.

In order to better understand the experimentally obtained data and to track down
unconventional behavior, it is helpful to compare the experimental findings with a CEF
calculation. As explicitly discussed in Section 2.3.2, for B ‖ [001], the strains along the
cubic [100], [010] and [001] direction can be expressed in terms of the cubic symmetrized
strains provided in Table 2.2 and read as

∆L

L

∣∣∣∣
[001]

= ε[001] =
1

3
εB +

1√
3
εu, (4.8)
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1

2
√

3
εu −

1

2
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where εB = εxx + εyy + εzz is the isotropic bulk strain with Γ1 symmetry and εu =
(2εzz − εxx − εyy)/

√
3 and εv = εxx − εyy are the anisotropic strains with Γ3 symme-

try. While εB corresponds to the small thermal expansion found in zero magnetic field,
the anisotropic strains εu and εv become only active in presence of a suitable symmetry
breaking perturbation. In this thesis, such a perturbation is realized via the application
of magnetic field B ‖ [001], which distorts the crystal symmetry of PrIr2Zn20 from cubic
to tetragonal. As already stressed before, the CEF calculation indicates that 〈O2

2〉 ≈ 0 for
B ‖ [001] and consequently εv ≈ 0. According to Eq. (4.9) and Eq. (4.10), this implies
that the two transverse strains ε[010] and ε[100] have to remain degenerate. Figure 4.11
reveals that the volume strain contribution is distinctly small as compared to the field
induced anisotropic strain and can therefore be safely neglected in the theoretical calcula-
tion. Consequently, the experimentally observed behavior in magnetic field must mainly
arise from the temperature dependent 〈O0

2〉 quadrupole moment that couples linearly to
the Γ3-type symmetrized strain εu, which is specified by the equation

εu =
nPrgΓ3

(c0
11 − c0

12)/2

〈
O0

2

〉
, (4.11)

where the number of Pr3+ ions per volume is given by nPr = 2.751×1027 m−3 [37] and the
Γ3-type background elastic constant by (c0

11 − c0
12)/2 = 50.74 GPa [37]. In order to derive

the Γ3-type strain εu and the longitudinal and transverse thermal expansion coefficients,
it is necessary to simulate the temperature dependent expectation value 〈O0

2〉 at different
magnetic fields B ‖ [001]. In this thesis, the expectation values of the relevant multipole
operators were calculated by means of a Mathematica based mean-field CEF program,
which was provided by T. Onimaru from Hiroshima University in Japan. The program
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can simulate both the temperature and the field dependence of magnetic dipole, electric
quadrupole and magnetic octupole moments by evaluating a Hamiltonian of the form

H = HCEF − gJµBJH − gΓ3 [O0
2εu +O2

2εv]

−KΓ3 [O0
2

〈
O0

2

〉
+O2

2

〈
O2

2

〉
]−KJ〈J〉. (4.12)

As Eq. (4.12) contains various terms, its different contributions are briefly detailed in the
following. The first term denotes the CEF Hamiltonian HCEF for cubic Td point group
symmetry that reads as [64]

HCEF = W

[
x

60
(O0

4 + 5O4
4) +

1− |x|
1260

(O0
6 − 21O4

6)

]
. (4.13)

In the case of PrIr2Zn20, the CEF parameters W and x were determined by means of in-
elastic neutron scattering by Iwasa et al. [65] at W = −1.22 K and x = 0.537. The second
term is the Zeeman Hamiltonian with the gyromagnetic ratio gJ , the Bohr magneton µB,
the angular momentum operator J and the magnetic field H. The third term denotes the
quadrupole-strain interaction term. The quadrupole-strain coupling constant gΓ3 quanti-
fies the interaction strength between the Γ3-type symmetrized strains εu and εv and the
Stevens operators of the same symmetry O0

2 and O2
2 with the respective expectation values

〈O0
2〉 and 〈O2

2〉. The fourth term specifies the interaction between quadrupole moments,
where KΓ3 is the quadrupole-quadrupole coupling constant. The fifth term denotes the in-
teraction between excited dipole moments with the magnetic dipolar interaction constant
K and the expectation value of the total angular momentum operator 〈J〉. In order to sim-
ulate the multipolar expectation values, a quadrupole-quadrupole interaction coefficient
KΓ3 = −0.0067 K, a quadrupole-strain coupling constant gΓ3 = −38.0 K and a magnetic
interaction K = −0.19 K were employed. The quadrupole-quadrupole interaction constant
was derived by T. Onimaru, who could reproduce the experimentally found AFQ order
temperature of TQ = 0.11 K by means of a mean-field calculation when using this value.
The parameters gΓ3 = −38.0 K and K = −0.19 K were used as fitting parameters and their
values derived by fitting the theoretically calculated curves to the experimentally obtained
thermal expansion data at 10 T. With reference to previous measurements by Onimaru
et al. [28], it is fair to assume that the system resides in the fully localized state at this
magnetic field value and comparison of the experimentally obtained data with the mean-
field simulation is therefore justified. The so determined values of gΓ3 and K agree well
with the quadrupole-strain coupling constant |gΓ3 | = 30.9 K deduced by Ishii et al. [37]
via an elastic constant measurement and the magnetic interaction constant K = −0.35 K
estimated by T. Onimaru based on previous magnetization measurements [25]. By using
the just specified parameters, the temperature dependencies of various multipolar opera-
tors were simulated at different magnetic fields. The relevant expectation value 〈O0

2〉 was
then transformed into the respective symmetrized strain εu via Eq. (4.11). By plugging
the symmetrized thermal expansion coefficient αu = ∂T εu into Eq. (4.8) and Eq. (4.9),
the longitudinal and transverse thermal expansion coefficient α‖ = α[001] and α⊥ = α[100]

could be derived for B ‖ [001].
Figure 4.12 shows the simulated thermal expansion coefficients α‖ and α⊥ as a func-

tion of temperature at various magnetic fields B ‖ [001], whereby the inset provides a
head-to-head comparison of the experimentally obtained data and the simulated one at
selected magnetic fields. The calculation qualitatively reproduces the highly anisotropic
behavior found in α‖ and α⊥ very well. At high magnetic field B ≥ 8 T and elevated
temperature, the calculation and the experimentally determined data match nicely, which
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Figure 4.12: Simulated CEF longitudinal and transverse thermal expansion coefficients α‖
and α⊥ as a function of temperature at different magnetic fields B ‖ [001].
The inset displays both simulated and experimentally obtained data for α‖
at elevated magnetic fields B ‖ [001].
Reprinted figure from Ref. [124]. ©2019 by the American Physical Society.

indicates the fully localized nature of the quadrupolar Γ3 ground state doublet. Only at
very low temperature, the experimentally obtained high field data exhibits a peculiar low
temperature increase that cannot be accounted for by the CEF simulation. By contrast,
at an intermediate magnetic field of B = 5 T, distinct deviations between CEF simu-
lation and the measurement results are present. These deviations become particularity
evident on approaching the critical magnetic field of AFQ order, where FL behavior in
the electrical resistivity, a low temperature maximum in the specific heat and a largely
enhanced Seebeck coefficient were reported [28, 45, 46]. At a magnetic field of 5 T, the
peak position in α‖ is located at T ≈ 0.13 K, which closely resembles the position of the
maximum found in the Seebeck coefficient [45, 46] and the specific heat [28]. While it is
difficult to assign this anomaly to a specific physical effect, the electrical resistivity, which
shows FL behavior in a comparable magnetic field range, indicated that the unconven-
tional behavior at 5 T may be caused by the emergence of diagonal composite order [28].
Note that the FH order scenario discussed by Zhang et al. [101] and Van Dyke et al. [102]
can be considered as complementary to the diagonal composite order theory introduced
by Hoshino et al. [99, 100]. In particular the work by Van Dyke et al. [102] on the FH
order in cubic Pr-based 1-2-20 systems is of relevance for the here obtained experimental
results, as the authors studied possible strain signatures of FH order. Van Dyke et al. [102]
showed theoretically that FH order only manifests itself in form of a phase transition in
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zero magnetic field and transforms into a rather broad crossover as soon as magnetic field
is applied [102]. According to their calculations, at low magnetic field, the AFQ order is
dominant, whose onset is indicated by a sharp discontinuity in the longitudinal thermal
expansion coefficient α‖ [102]. By increasing magnetic field, the sharp phase transition
signature in α‖ is replaced by a broad crossover anomaly that is indicative of the emerging
FH order [102]. The theoretical prediction by Van Dyke et al. [102] matches well with the
experimentally measured data of α‖, which displays a sharp discontinuity at low magnetic
field that is indicative of AFQ order and a largely enhanced maximum at 5 T, which may
assign to the possible crossover into the FH ordered state. Overall, the experimentally
determined thermal expansion data is therefore in good accordance with the FH order
scenario. Clear proof for the emergence of this novel phase can, however, not be provided
solely on the basis of the thermal expansion data. Van Dyke et al. [102] also proposed
that a broad crossover related to the FH ordered phase arises in the magnetostriction co-
efficient. This prediction is compared to the experimentally determined magnetostriction
data in the following Section 4.2.3. Before, the longitudinal thermal expansion coefficient
for B ‖ [110] is detailed.

Thermal Expansion in Magnetic Fields B ‖ [110]

The focus of the following lines is on the thermal expansion coefficient α[110] measured
parallel to magnetic field B ‖ [110]. Fig. 4.13 shows α[110] as a function of tempera-
ture at various magnetic fields B ‖ [110]. Similar to α[001], α[110] is distinctly small in
zero magnetic field but grows steadily in magnitude as magnetic field increases. A clear
phase transition signature is visible up to a critical magnetic field of Bc ≈ 8 T, which
likely assigns to the transition into the AFQ ordered state. In the magnetic field range
0 ≤ B ≤ 6 T, TQ shifts to higher temperature as magnetic field is increased, while it is
suppressed to lower temperature at 8 T and finally vanishes at 10 T. This finding is in good
agreement with previous elastic constant measurement results by Ishii et al. [37]. At low
magnetic fields B ≤ 6 T, the phase transition signature as well as the divergent increase in
α[110] are reminiscent of the behavior found for B ‖ [001]. Note that the low temperature
anomaly in α[110] at 8 T, which likely indicates a phase transition, has a much different
appearance than the signature present for B ≤ 6 T. Specifically, it shows a sudden drop
to zero, instead of a sign change. Since the shape of the phase transition anomaly at 8 T
is much different to the one found at smaller magnetic field, it is difficult to judge as to
whether the signature also assigns to the AF-type ordering of the quadrupolar ground
state moments or to another effect. At 10 T, a phase transition signature could not be
found, which implies the suppression of the AFQ ordered state. Here, a clear maximum
forms at around 0.25 K with a peak value of α[110] ≈ 9 × 10−6 K−1. This reminds on
the behavior found for the longitudinal thermal expansion coefficient at 5 T for B ‖ [001],
whose peak value is, however, approximately five times larger. It is likely that the physical
mechanism behind these two anomalies has the same origin. As magnetic field is further
increased, the maximum value decreases and its peak position moves to higher tempera-
ture. This behavior clearly reminds on a Schottky-type anomaly. To better understand
and to correctly classify the experimentally observed behaviors, they are now compared
to a CEF calculation, which simulates the effect expected for a fully localized Γ3 ground
state doublet. As magnetic field applied along the [110] direction does not only induced
the 〈O0

2〉 but also the 〈Oxy〉 quadrupole moment, the theoretical analysis becomes more
complicated as compared to the just discussed case, where B ‖ [001]. In order to simu-
late the temperature dependence of the quadrupolar expectation values, again the CEF
mean-field program by T. Onimaru was employed. The Hamiltonian evaluated by the
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Figure 4.13: Temperature dependence of the longitudinal thermal expansion coefficient
α[110] of PrIr2Zn20 for different magnetic fields B ‖ [110].

program has a very similar form as the one for B ‖ [001], which is specified by Eq. (4.12).
The only difference is that also a quadrupole-strain coupling term with Γ5 symmetry has
to be taken into account. A possible interaction between the Γ5 quadrupole moments is
disregarded in the following analysis, as no information on the magnitude of the respective
interaction constant exists and an additional free parameter would further complicate the
analysis. The Hamiltonian evaluated by the CEF program reads as

H = HCEF − gJµBJH − gΓ3 [O0
2εu +O2

2εv]− gΓ5 [Oxyεxy +Oxzεxz +Oyzεyz]

−KΓ3 [O0
2

〈
O0

2

〉
+O2

2

〈
O2

2

〉
]−KJ 〈J〉 , (4.14)

whereby the first term denotes the cubic CEF Hamiltonian specified by Eq. (4.13) in
the preceding subsubsection with the CEF parameters W = −1.22 K and x = 0.537 [65]
and the second term specifies the Zeeman Hamiltonian. The third and the fifth term
cover the quadrupole-strain and quadrupole-quadrupole interaction contributions with Γ3

symmetry. Here, the same parameters as derived in the preceding subsubsection were
employed for the simulation, which are gΓ3 = −38.0 K and KΓ3 = −0.0067 K. The fourth
term takes account of the coupling between strains with Γ5 symmetry εxy, εxz and εyz and
the corresponding Stevens operators Oxy, Oxz and Oyz. The coupling strength between
quadrupole and strain is thereby quantified by the quadrupole-strain coupling constant
gΓ5 . Its value has to be determined by fitting the theoretically calculated curves to the
experimentally obtained high magnetic field data. The last term of Eq. (4.14) denotes
the interaction between field induced dipole moments, whereby the interaction constant
K = −0.19 K, which was also derived in the preceding subsubsection, was employed.

In order to ascertain which of the quadrupolar expectation values are of relevance
for the calculation of the thermal expansion coefficient α[110] = ∂T ε[110], the decomposi-
tion of ε[110] into the cubic symmetrized strains, as explicitly detailed in Section 2.3.2, is
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Figure 4.14: Comparison between the experimentally determined and the simulated ther-
mal expansion coefficients α[110] at high magnetic fields B ‖ [110]. The simu-
lation uses the CEF parameters W = −1.22 K and x = 0.537 [65], a Γ3-type
quadrupole-strain coupling constant gΓ3 = −38.0 K, a Γ3-type quadrupole-
quadrupole interaction constant KΓ3 = −0.0067 K and an interaction con-
stant between excited dipole moments K = −0.19 K. Note that the Γ5-type
quadrupole-strain coupling was set to zero gΓ5 = 0 in this calculation.

considered. The strain along the [110] direction reads as
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which implies that the bulk strain εB, the Γ3-type symmetrized strain εu and the shear
strain εxy with Γ5 symmetry are of relevance. As already mentioned in the preceding
subsubsection, the contribution of εB has to be disregarded in the calculation, as it cannot
be simulated. Based on the fact that the zero magnetic field thermal expansion is distinctly
small as compared to the thermal expansion coefficient in magnetic field, the error that
comes along with the negligence of εB can be considered as insignificantly small and
is therefore not of any relevance for the simulated data at high magnetic field. The
contribution from εu stems again from the temperature dependence of the quadrupolar
expectation value 〈O0

2〉, as specified by the equation

εu =
nPrgΓ3

(c0
11 − c0

12)/2

〈
O0

2

〉
, (4.16)

with the Pr3+ ion density nPr = 2.751×1027 m−3 [37] and the background elastic constant
with Γ3 symmetry (c0

11−c0
12)/2 = 50.74 GPa [37]. The strain εxy, on the other hand, arises

from the linear coupling to the quadrupolar expectation value 〈Oxy〉 and derives as

εxy =
nPrgΓ5

4c0
44

〈Oxy〉, (4.17)

whereby the background elastic constant was previously determined by Ishii et al. [37] at
c0

44 = 51.45 GPa. To start the theoretical analysis, only the contribution to ε[110] that
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arises from εu is taken into account, while the contribution εxy is disregarded for the
moment. The so simulated curves are shown in combination with the experimental results
at high magnetic field B ≥ 8 T in Fig. 4.14. At the highest measured magnetic field
of 13 T, it turns out that the maximum suggested by the CEF calculation appears at a
much higher temperature than the respective maximum in the experimentally obtained
data. This suggests that a magnetic field of 13 T is not sufficient to drive the system
into the fully localized state. Due to the weaker splitting of the Γ3 doublet for B ‖ [001]
than for B ‖ [110], the value of Bc moves to a higher magnetic field for the latter field
orientation. In consequence, also the magnetic field value at which the ground state
becomes fully localized is enhanced. It is therefore conceivable that correlation effects are
still present at 13 T, which explains the distinct differences between the experimentally
obtained and the simulated data. Taking account of the strain contribution εxy rather
modifies the magnitude of the simulated thermal expansion coefficient than the maximum
position. Consequently, it is not possible to determine gΓ5 based on the thermal expansion
measurement, as the applied magnetic field is too small to drive the system into the fully
localized state. Likely much higher magnetic fields of up to 20 T would be required in
order to deduce the value of gΓ5 from the thermal expansion. With the employed dilution
refrigerator, the generation of such a high magnetic field was, however, not possible, as
the superconducting magnet is limited to a magnetic field of 13 T. A better approach is
to determine gΓ5 based on the magnetostriction data, which is detailed in the following
subsection.

4.2.3 Magnetostriction

To further characterize the quadrupolar ground state of PrIr2Zn20, longitudinal and trans-
verse magnetostriction measurements were carried out for B ‖ [001], which also allowed
to infer the volume magnetostriction coefficient. Main motivation for the experiments
was to search for possible signatures in the linear and volume magnetostriction coeffi-
cients that provide further details on the novel phase emerging at B ≈ 5 T. Furthermore,
magnetostriction measurements parallel to magnetic field B ‖ [110] were carried out.

Magnetostriction in Magnetic Fields B ‖ [001]

The magnetostriction results detailed in this subsubsection were already published in the
scientific journal Physical Review B [124] on the 22nd of February 2019 together with the
respective longitudinal, transverse and volume thermal expansion results for B ‖ [001]
that were discussed in Section 4.2.2. I carried out initial measurements of the longitudinal
magnetostriction of PrIr2Zn20 for B ‖ [001] in the framework of my master thesis by use of
an older type of dilatometer [111]. The here presented longitudinal magnetostriction data
was remeasured in the scope of this thesis by use of the miniaturized capacitive dilatometer
introduced in Section 3.2.1.

Figure 4.15 displays the longitudinal, transverse and volume magnetostriction coeffi-
cients λ‖, λ⊥ and λV = λ‖ + 2λ⊥ for B ‖ [001] measured at various temperatures. In
analogy to the longitudinal and transverse thermal expansion coefficients, λ‖ and λ⊥ dis-
play highly anisotropic behavior, which becomes more distinct as temperature declines. λ‖
is negative in the whole investigated magnetic field range, while λ⊥ shows a positive value.
The finding of λ⊥ being the approximate mirror image of λ‖ with roughly half of its mag-
nitude, is reminiscent of the just discussed data of α‖ and α⊥ for B ‖ [001]. This finding
implies that the application of magnetic field B ‖ [001] triggers a nearly volume conserv-
ing tetragonal distortion, which clearly demonstrates that the symmetrized quadrupolar
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Figure 4.15: Magnetic field variation of the longitudinal and transverse magnetostriction
coefficients λ‖ and λ⊥ for B ‖ [001] at different temperatures. The volume
magnetostriction indicated by the arrow derives from the λ‖ and λ⊥ data via
the relation λV = λ‖ + 2λ⊥. Dashed black and grey lines specify the value
of the critical magnetic field Bc at 0.07 K for λ‖ and λ⊥, respectively. The
difference in Bc indicates a small misalignment of the single crystal for the
magnetostriction measurement perpendicular to magnetic field. The magne-
tostriction data is not corrected for the dilatometer background. The latter
can be considered as very small in comparison to the shown data.
Adapted figure from Ref. [124, SM]. ©2019 by the American Physical Soci-
ety.

strain with Γ3 symmetry εu ∼ 〈O0
2〉 dominates the uniaxial magnetostriction. Both λ‖ and

λ⊥ show a clear extremum at around 4.7 T at the lowest measured temperatures of 0.07 K
and 0.11 K. The maximum forms in close vicinity of the critical field of AFQ order, which
was specified by the just discussed thermal expansion measurements to be located in be-
tween 4 T and 5 T. When temperature is increased, the relatively sharp anomaly in λ‖ and
λ⊥ broadens notably and moves to higher magnetic field. When comparing the magnetic
field value at which λ‖ and λ⊥ peak at 0.07 K, it shows that the critical value assigned

to the peak position of the transverse magnetostriction B⊥c appears at a slightly higher

magnetic field value than the one derived from the longitudinal magnetostriction B
‖
c . This

is surprising as the field dependencies of both λ‖ and λ⊥ relate to ∂B〈O0
2〉 and the peak

value is therefore expected to be identical for both measurements. Before discussing this
issue more in detail, the volume magnetostriction coefficient is considered. With the help
of λ‖ and λ⊥ one can derive the volume magnetostriction via the relation λV = λ‖+ 2λ⊥,
which is additionally plotted in Fig. 4.15. Its magnitude is distinctly small as compared
to the uniaxial magnetostriction coefficients λ‖ and λ⊥, which is in line with the just
detailed thermal expansion data. Interestingly, λV exhibits a small but clearly noticeable
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sign change close to Bc. Having the just mentioned tiny difference in the critical magnetic

field value of B
‖
c and B⊥c in mind, it is conceivable that the sign change in λV is an arti-

ficially generated effect that arises from the small difference in the B
‖
c and B⊥c values. In

this regard, it is recalled that for the transverse magnetostriction measurement, the align-
ment of the sample with respect to the applied magnetic field is trickier as compared to
the longitudinal magnetostriction measurement. Even though it was taken special care to
align the single crystal as precisely as possible, a small misalignment of the single crystal
inside the dilatometer with respect to the magnetic field direction cannot be excluded. As
previously reported by Ishii et al. [37], the critical field of AFQ order depends sensitively

on the applied magnetic field direction, whereby B
[001]
c < B

[110]
c < B

[111]
c . This implies

a shift of Bc to a higher magnetic field value when the single crystal’s [001] direction is
slightly misaligned with respect to the magnetic field. Such a misalignment may have
two possible origins. The first one is the already mentioned case that the single crystal
was slightly misaligned when placed inside dilatometer. As the alignment process for the
transverse magnetostriction measurement is tricky, it is conceivable that the related error
is larger than for the longitudinal magnetostriction measurement. The second possibility
is that the cutting process used by the Japanese collaborators to bring the single crystal
to a cuboid shape with three crystallographically aligned faces comes along with a small
error. To verify whether the first scenario causes the difference in the Bc values, a comple-
mentary magnetostriction measurement was carried out, whereby the single crystal was
aligned as carefully as possible inside the dilatometer. As the second measurement approx-
imately reproduced the λ⊥ data obtained in the first run, it is concluded that the cutting
process must be hold accountable for the small misalignment. The collaborators from
Hirsohima University confirmed that a small misalignment of a few degree is an inevitable
side effect of the cutting process and cannot be excluded. On the other hand, it is also
conceivable that the sign change in λV is an intrinsic feature, which in turn would explain
the small difference found in the Bc values of λ‖ and λ⊥. After carefully considering both
scenarios, it is concluded that the sign change in the volume magnetostriction must be
artificially induced due to a small misalignment and is not an intrinsic effect. To correct
this small error arising from the misalignment, the magnetic field value of the transverse
magnetostriction data was multiplied by a constant factor in order to rescale it onto the
value found in the longitudinal magnetostriction measurement. At the lowest measured

temperature of 0.07 K, this is fulfilled for B
‖
c = 0.968×B⊥c .

The so corrected data of λ⊥ is shown together with the data of λ‖ in Fig. 4.16(a). The
volume magnetostriction calculated from the corrected linear magnetostriction coefficients
is also plotted in Fig. 4.16(a), whereby the initially found sign change in vicinity of Bc

is not present anymore. The volume thermal expansion measurements presented in the
preceding subsection already suggested that the novel state forming at intermediate mag-
netic field is not accompanied by a notable change in volume, as it would be expected for
a strongly hybridized state. The volume magnetostriction coefficient confirms this finding,
as it is vanishingly small when compared to the longitudinal and transverse magnetostric-
tion coefficients. Only in vicinity of Bc and at the lowest measured temperature, a minor
enhancement in λV exists, which is in very good conformity with the volume thermal
expansion results. In order to set the behavior present in PrIr2Zn20 in relation to the one
of a magnetic Kramers system, the longitudinal, transverse and volume magnetostriction
coefficients of its magnetic counterpart YbIr2Zn20, which were calculated from ∆L/L data
taken from Ref. [128], are shown additionally in Fig. 4.16(a). The significant difference
between the volume magnetostriction coefficients of PrIr2Zn20 and YbIr2Zn20 becomes
immediately evident. YbIr2Zn20 exhibits a strongly hybridized FL ground state [128] and
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Figure 4.16: (a) Longitudinal and transverse magnetostriction coefficients λ‖ and λ⊥, to-
gether with the volume magnetostriction coefficient λV = λ‖ + 2λ⊥ as a
function of magnetic field B ‖ [001] at different temperatures. Note that
the magnetostriction data is not corrected for the dilatometer background.
The latter contribution can, however, be considered as very small in com-
parison to the shown data. In addition, λ‖, λ⊥ and λV of YbIr2Zn20 at
T = 4 K, which were calculated from ∆L/L data taken from Ref. [128], are
displayed. (b) CEF calculations of λ‖ and λ⊥ that employ the CEF parame-
ters W = −1.22 K and x = 0.537 [65], a Γ3-type quadrupole-strain coupling
constant gΓ3 = −38.0 K, a Γ3-type quadrupole-quadrupole interaction con-
stant KΓ3 = −0.0067 K and an interaction constant between magnetic field
induced dipole moments K = −0.19 K.
Adapted figure from Ref. [124]. ©2019 by the American Physical Society.
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its volume magnetostriction coefficient is at least one order of magnitude larger than the
one of PrIr2Zn20. Takeuchi et al. [128] argue that the largely negative volume magne-
tostriction present in YbIr2Zn20 indicates that the valence of the material is altered from
a non-magnetic Yb2+ towards a magnetic Yb3+ valence state upon the application of mag-
netic field. According to Eq. (2.9), which sets the volume magnetostriction in relation to
the pressure dependence of magnetization, a negative volume magnetostriction indicates
an increase of magnetization under hydrostatic pressure. As outlined in Section 2.1.3, the
characteristically negative volume magnetostriction in Yb-based intermetallics originates
from the fact that the valence state of a non-magnetic Yb2+ ion changes to the smaller
and magnetic Yb3+ configuration under hydrostatic pressure. The fact that the volume
magnetostriction coefficient of PrIr2Zn20 is insignificantly small as compared to the one
of YbIr2Zn20 [128], reveals that the Pr3+ ion’s valence state changes only marginally with
magnetic field. At the same time, the finding indicates that the hydrostatic pressure depen-
dence of the material’s magnetization must be negligible small. This result is surprising as
the Seebeck coefficient exhibits a prominent enhancement at around 5 T and the electrical
resistivity displays FL behavior with an enhanced A coefficient, which implies the onset
of hybridization effects for which a distinct volume change would be expected [28,45,46].

To better understand the experimental results, a CEF simulation was carried out by
following the approach that was explicitly discussed in Section 4.2.2. In order to simulate
the magnetic field dependence of the quadrupolar expectation values, the mean-field CEF
program provided by T. Onimaru was employed. To recall the Hamiltonian that is eval-
uated by the mean-field program, it is referred to Eq. (4.12). Figure 4.16(b) shows the
simulated λ‖ and λ⊥ data, whereby the same parameters that were used for the thermal
expansion analysis were employed. These are the CEF parameters W = −1.22 K and
x = 0.537 [65], a quadrupole-strain coupling constant of gΓ3 = −38.0 K, an interaction
constant between the quadrupole moments with Γ3 symmetry KΓ3 = −0.0067 K and an
interaction constant between field induced dipole moments K = −0.19 K. At the high-
est measured temperature of 4 K, calculation and experiment agree well with each other,
while pronounced discrepancies arise at low temperatures. At 0.2 K, for instance, the
calculation predicts an extremum at around 2.3 T, while the experimentally determined
extremum appears at a significantly higher magnetic field value of approximately 5 T.
These stark differences between the simulated and experimentally obtained data clearly
demonstrate that the low temperature behavior in the magnetostriction coefficient cannot
be accounted for by a simple CEF effect. This conjecture is supported by the fact that
Bc depends only weakly on temperature at 0.07 K and 0.11 K. As the value of Bc agrees
well with the magnetic field values at which FL behavior in the electrical resistivity and a
distinct maximum in the Seebeck coefficient and the specific heat were found [28, 45, 46],
the extrema in the linear magnetostriction can be likely set in relation to the previous
findings. Note that the relatively broad appearance of the low temperature extremum in
the longitudinal and transverse magnetostriction coefficients would also be in line with
the FH scenario proposed by Van Dyke et al. [102]. However, analogously to the thermal
expansion, the magnetostriction results can only provide further indication of the possible
emergence of FH order but no direct proof. Further measurements are therefore indis-
pensable in order clarify the cause of the novel phase emerging at intermediate magnetic
field.

Magnetostriction in Magnetic Fields B ‖ [110]

After discussion of the magnetostriction results for B ‖ [001], the focus is now on the
magnetostriction coefficient λ[110] measured parallel to magnetic field B ‖ [110]. The re-
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Figure 4.17: Longitudinal magnetostriction coefficient λ[110] as a function of magnetic field
B ‖ [110] at different temperatures.

spective data at various temperatures is shown in Fig. 4.17. Analogously to λ[001], also
λ[110] shows a negative value almost in the whole examined magnetic field range. Only
the two data sets obtained at the lowest temperatures of 0.07 K and 0.11 K reveal a sign
change from negative to positive at elevated magnetic field. Notably, the magnitude of
λ[110] is by one order of magnitude reduced as compared to λ[001]. At the lowest measured
temperature of 0.07 K, a relatively broad minimum that peaks at around 7 T is present.
The minimum position approximately coincides with the critical magnetic field value of
the AFQ order, which was estimated based on the measurement of α[110] to be in the
range 6 T− 8 T. Increasing temperature has only very little impact on the minimum po-
sition but reduces the magnitude of λ[110] distinctly. Even though the low temperature
minimum in λ[110] is much broader than the respective anomaly in λ[001], the temperature
insensitivity of the minimum position at very low temperature is a common feature. By
gradually increasing temperature, the shape of the minimum in λ[110] is slightly modi-
fied. The minimum position, however, shifts only marginally to lower temperature. At
the highest measured temperatures of 2 K and 4 K, the minimum takes a rather broad
shape. It is not surprising that the behaviors found in λ[001] and λ[110] are reminiscent of
each other, as magnetic field applied along either of the two directions splits the ground
state doublet. Furthermore, λ[001] and λ[110] directly measure the splitting of the ground
state doublet, as both measurements depend linearly on the magnetic field derivative of
the Γ3-type symmetrized strain ∂Bεu, which in turn shows proportionality to the respec-
tive quadrupolar expectation value ∂B〈O0

2〉. Since the splitting of the Γ3 doublet is more
pronounced for B ‖ [001] than for B ‖ [110], it is reasonable that the minimum position
appears at a higher magnetic field value for the latter magnetic field orientation. Interest-
ingly, all data sets contain distinct oscillations. These cannot be explained by conventional
noise but assign to quantum oscillations, whereby an analysis of the related frequencies
can be found in the appendix of this thesis.
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Figure 4.18: Magnetic field dependence of the simulated longitudinal magnetostriction
λ[110] for B ‖ [110] as dashed lines together with the experimentally obtained
data as solid lines at selected temperatures. For the simulation, the CEF pa-
rameters W = −1.22 K and x = 0.537 [65], a Γ3-type quadrupole-strain cou-
pling constant gΓ3 = −38.0 K, a Γ5-type quadrupole-strain coupling constant
gΓ5 = 5.0 K, a quadrupole-quadrupole interaction constant KΓ3 = −0.0067 K
and an interaction constant between excited dipoles K = −0.19 K were used.

As Eq. (4.15) demonstrates, the magnetostriction coefficient λ[110] = ∂Bε[110] contains
not only the Γ3-type contribution εu ∼ 〈O0

2〉 but also a contribution that arises from
εxy ∼ 〈Oxy〉. While the quadrupole-strain coupling constant gΓ3 , which quantifies the
coupling between strain εu and the quadrupole moment 〈O0

2〉, was already specified in the
preceding subsection, the CEF calculations discussed in the following furthermore revealed
the quadrupole-strain coupling constant gΓ5 , which quantifies the coupling between strain
εxy and the quadrupole moment 〈Oxy〉. The respective Hamiltonian, which was evalu-
ated by the mean-field CEF program provided by T. Onimaru, was already introduced by
Eq. (4.14) in the preceding subsection. In this context, it was also elucidated that based
on the α[110] data, the deduction of the Γ5-type quadrupole-strain coupling constant was
not possible, as the applied magnetic field was not sufficient to drive the system into the
fully localized state. By contrast, at a temperature of 4 K, the quadrupolar ground state
appears to be in the fully localized state and fitting the CEF calculation to the measured
data allowed for a precise determination of the Γ5-type quadrupole-strain coupling con-
stant. In order to derive the CEF magnetostriction, at first the contribution εu ∼ 〈O0

2〉
was calculated by using the parameters with Γ3 symmetry provided in Section 4.2.2. The
so simulated magnetostriction curve was then compared to the experimentally obtained
data and the differences were attributed to the contribution εxy with Γ5 symmetry. By
adding the contribution of εxy ∼ 〈Oxy〉 to the simulated data and varying the respective
quadrupole-strain coupling constant gΓ5 , it showed that a rather small value of gΓ5 = 5.0 K
provided the best match between the experimentally determined and the simulated data.
A possible volume contribution was again disregarded in the theoretical analysis. The fact
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that the contribution εxy has the opposite sign as the contribution −1/(2
√

3)εu, explains
the experimentally found sign change in λ[110] at low temperatures and at the highest
measured magnetic field. This can be explained by the fact that the contribution εxy
overcomes the contribution of εu at high magnetic field, which results in a sign change
of λ[110]. The CEF simulation results for λ[110] at different temperatures are shown in
Fig. 4.18, whereby selected experimentally obtained data sets of λ[110] are shown for com-
parison. While at the highest measured temperatures of 2 K and 4 K, the simulated and
the experimentally determined curves agree well with each other, the differences become
stark as temperature is lowered. At 0.2 K, for instance, the simulation suggests a mini-
mum at around 3 T, while the minimum in the respective measurement appears at a much
higher magnetic field of 6.5 T. This is reminiscent of the behavior found in λ[001] and likely
assigns to the unconventional phase that emerges close to the critical magnetic field of the
AFQ ordered state. In vicinity of this yet unidentified state, both α[110] and λ[110] dis-
play crossover like anomalies, which are somewhat broader in their appearance than the
respective anomalies found in α[001] and λ[001] at around 5 T. Nevertheless, the behavior
present for both magnetic field directions is comparable and in both cases reminiscent of
a crossover that may be related to the possible FH ordered phase [102]. As neither the
thermal expansion nor the magnetostriction data could provide definite proof for the FH
order scenario, further research is indispensable to correctly classify the unconventional
behavior emerging at intermediate magnetic field. Future measurements of the electrical
resistivity that examine the presence of FL behavior at around 6 T − 8 T for B ‖ [110]
would be particularly insightful.

4.2.4 Phase Diagrams

On the basis of the just detailed thermal expansion and magnetostriction measurements,
phase diagrams for B ‖ [001] and B ‖ [110] were constructed. Fig. 4.19 summarizes the
results for B ‖ [001]. The black circles denote the AFQ phase transition temperature
TQ deduced from the linear thermal expansion measurements. The green circles indicate
the temperature of a plateau like feature Tplat found in the thermal expansion at small
magnetic fields. With increasing magnetic field, this feature takes the shape of a clear
maximum, whose peak value temperature Tmax is indicated by red circles. At high mag-
netic fields B ≥ 8 T, the latter can be well reproduced by a CEF calculation, which reveals
its Schottky-type nature. At lower magnetic field, the maximum’s shape is still reminis-
cent of a Schottky-type anomaly but slight deviations to the simulation point towards the
onset of correlation effects. Quite significant deviations between the experimentally ob-
tained and the simulated data sets are present for B ≤ 5 T. A preceding study implied the
emergence of a possible diagonal composite (hastatic) order at around 5 T [28]. Also the
broad anomalies found in the linear thermal expansion and magnetostriction coefficient
at around 5 T are in line with the theoretically proposed FH order scenario [102]. The
intermediate field range is therefore denoted as FH ordered with a question mark put over,
as further experiments are needed to clarify its nature. The blue squares correspond to
anomalies found in the uniaxial magnetostriction coefficients. Here, the CEF calculations
match well with the measured data obtained at temperatures in the Kelvin range, but
cannot capture the behavior at low temperatures. Interestingly, at low temperatures the
blue squares terminate into the possible FH ordered phase at around 5 T.

The measurement results obtained for B ‖ [110] are summarized in Fig. 4.20. Again,
the black circles denote the phase transition temperature into the AFQ ordered state, as
derived from the linear thermal expansion measurement. The grey circle corresponds to
a kink like phase transition anomaly found in the linear thermal expansion coefficient,



88 Chapter 4. PrIr2Zn20

Figure 4.19: Phase diagram of PrIr2Zn20 for magnetic field B ‖ [001]. Black circles denote
the transition into the AFQ ordered state, as detected by the linear thermal
expansion. Green circles correspond to a plateau like feature present in the
linear thermal expansion coefficient at low magnetic field. Red circles denote
a maximum found in the linear thermal expansion coefficient. Blue squares
indicate the peak position of the extrema in the linear magnetostriction co-
efficients. Error bars quantify the uncertainty in the determination of the
plotted temperature and magnetic field values.

Figure 4.20: Phase diagram of PrIr2Zn20 for magnetic field B ‖ [110]. Black circles in-
dicate the phase transition into the AFQ ordered state, as suggested by the
linear thermal expansion measurements. Green circles denote a plateau like
feature and red circles a maximum found in the thermal expansion coefficient.
Blue squares mark the minimum position in the linear magnetostriction co-
efficient. Error bars quantify the uncertainty, which comes along with the
determination of the respective temperature and magnetic field values.
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whose appearance is distinct from the phase transition anomalies found for B ≤ 6 T. The
green circles indicate the temperature of a plateau like feature Tplat in the linear thermal
expansion coefficient at low magnetic field, which changes into a maximum with increasing
magnetic field. The peak temperature of the maximum Tmax is indicated by red circles. At
the highest measured magnetic fields, the maximum reminds on a Schottky-type anomaly.
The fact that the maximum peaks at a lower temperature than the corresponding CEF
calculation, implies that remaining correlations are still present. The blue squares denote
the minimum found in the linear magnetostriction coefficient. Similar to the behavior
observed for B ‖ [001], the blue squares terminate close to the critical field of AFQ order.

Generally, both phase diagrams show very similar behavior. The main difference is
that the phase boundary of the AFQ order is increased for B ‖ [110] as compared to
B ‖ [001], which is reasoned in the weaker splitting of the Γ3 ground state doublet for
B ‖ [110] than for B ‖ [001]. As the splitting of the ground state doublet is the main
perturbation that counteracts the low temperature AFQ order, the obtained results are in
good agreement with the theoretical expectation.

4.2.5 Summary

This section covered thermal expansion and magnetostriction measurement results ob-
tained on single crystalline PrIr2Zn20 for magnetic fields B ‖ [001] and B ‖ [110]. In the
following, the key findings are briefly recalled.

• The zero field thermal expansion coefficient of PrIr2Zn20 measured along three differ-
ent crystallographic directions α[001], α[110] and α[111] is anisotropic, which is at odds
with the theoretically expected isotropic thermal expansion of a cubic material. This
indicates that the small uniaxial stress exerted by the dilatometer’s flat springs is
sufficient to break the material’s cubic symmetry, which induces the 〈O0

2〉 quadrupole
moment and therefore an additional contribution to α[001] and α[110]. A peculiarity
is that α[111] is smaller in magnitude than α[001] but larger than α[110]. As no linear
coupling between strain ε[111] and the quadrupolar ground state moments with Γ3

symmetry exists, a stress induced contribution for the measurement of α[111] is not
expected. As a possible cause for the enhancement of α[111], the softening found
in the c44 elastic constant by Ishii et al. [37] has to be mentioned. Another possi-
ble reason is that the measurement of α[111] was carried out on a different piece of
single crystal than the piece on which α[001] and α[110] were measured. Both pieces
originated, however, from the same batch.

• To probe the response of the quadrupolar ground state to magnetic field, longitu-
dinal and transverse thermal expansion as well as magnetostriction measurements
were carried out forB ‖ [001]. The experimental findings revealed that both thermo-
dynamic probes display a significant uniaxial anisotropy. CEF calculations demon-
strated that this behavior is caused by the field induced 〈O0

2〉 quadrupole moment,
which manifests itself in a tetragonal distortion of the material. For B ≥ 8 T, very
good conformity between the experimentally obtained data and the CEF simula-
tion proofed the fully localized nature of the Γ3-type quadrupole moments at high
magnetic fields. At a relatively high temperature of 4 K, also the experimentally
determined magnetostriction coefficient agrees well with the simulated data. By
contrast, close to the critical magnetic field of AFQ order at around 5 T and at
low temperature, both the linear thermal expansion and the magnetostriction coeffi-
cients exhibit prominent extrema that cannot be taken account of by the simulation.
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This anomalous behavior agrees well with the previously reported maxima in the
specific heat [28] and the Seebeck coefficient [45,46], which coincide with FL behav-
ior in the electrical resistivity [28]. In particular the latter finding was interpreted
as a signature of a possible FH order [101, 102], also referred to as F-channel di-
agonal composite order [99, 100]. Theoretical calculations by Van Dyke et al. [102]
implied that in magnetic field B ‖ [001], the onset of FH order manifests itself in
a crossover like anomaly in the longitudinal thermal expansion and magnetostric-
tion coefficients, while a clear phase transition signature would only be expected in
zero magnetic field. Indeed, the anomalies found in the thermal expansion and the
magnetostriction coefficients are indicative of a crossover, which matches well with
the prediction by Van Dyke et al. [102]. While this experimental finding provides
further indication of the FH scenario, it cannot proof its actual existence. At low
magnetic fields B ≤ 4 T, the uniaxial thermal expansion coefficient displays a dis-
continuity that is in good conformity with the previously reported phase transition
into the AFQ ordered state at TQ = 0.11 K [27]. Surprisingly, in presence of a mod-
erate magnetic field B ≤ 4 T, the uniaxial thermal expansion coefficient diverges
below TQ. Thermodynamically, this peculiarity may relate to a small amount of
largely pressure dependent entropy that is not released by the AFQ order. Indeed,
specific heat measurements by Onimaru et al. [28] indicated an enhancement of the
low temperature entropy in a comparable magnetic field range. At this moment,
the origin for the unexpected divergence in the linear thermal expansion coefficient
cannot be specified and complementary experiments are needed to clarify its na-
ture. To further scrutinize the unconventional state at 5 T, the volume thermal
expansion and magnetostriction coefficients were considered. In the whole examined
magnetic field and temperature range, the volume changes are significantly smaller
than the linear changes. Only very little enhancement of the volume thermal expan-
sion and magnetostriction coefficient is present at around 5 T, which is at odds with
a strongly hybridized state as implied by Seebeck coefficient measurements [45, 46].
In addition, comparison with the volume magnetostriction of the sister compound
compound YbIr2Zn20, measured by Takeuchi et al. [128], demonstrated that the
field induced volume changes are distinctly small in PrIr2Zn20. This suggests that
the valence state of the non-Kramers Pr3+ ion is only marginally altered by the
variation of magnetic field, which is distinct to the mixed-valent Kramers Yb2+/3+

ion of the sister compound. The tiny volume magnetostriction also implies that the
magnetization of PrIr2Zn20 varies only weakly upon the application of hydrostatic
pressure.

• Measurements of the longitudinal thermal expansion and magnetostriction coeffi-
cients for B ‖ [110] revealed qualitatively comparable behavior to the results ob-
tained for B ‖ [001]. As the splitting of the Γ3 ground state doublet for magnetic
fieldB ‖ [110] is weaker than forB ‖ [001], AFQ order persists up to higher magnetic
fields in the range 6 T− 8 T. The longitudinal thermal expansion and magnetostric-
tion coefficients for B ‖ [110] are approximately one order of magnitude smaller than
the respective longitudinal coefficients obtained for B ‖ [001]. At low magnetic field
B ‖ [110], the longitudinal thermal expansion coefficient shows a divergence inside
the AFQ ordered state and therefore reassembles the behavior found for B ‖ [001].
Close to the critical magnetic field of the AFQ ordered state, the thermal expansion
coefficient exhibits a characteristic low temperature maximum. Further increase of
magnetic field continuously shifts the maximum to higher temperature, which is
reminiscent of a Schottky-type anomaly. Differences between the measured data
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and the simulated curves persist up to the highest applied magnetic field of 13 T,
which suggests that correlation effects are still present. At the lowest measured tem-
perature of 0.07 K, λ[110] shows a relatively broad minimum, which coincides with
the critical field of AFQ order determined by the thermal expansion measurement.
Similar to the thermal expansion coefficient, the low temperature magnetostriction
could not be reproduced by the CEF simulation. Very good agreement between the
experimentally determined and simulated magnetostriction curves is only present
at a temperature of 4 K. In analogy to the measurement for B ‖ [001], also for
B ‖ [110] unconventional behavior was found at magnetic field values just above the
phase boundary line of the AFQ ordered state. To obtain further information on a
possible relation to FH order, measurements of the specific heat and the electrical re-
sistivity would be essential in order further clarify the nature of this unconventional
phase emerging at intermediate magnetic field.
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Chapter 5

Y1−xPrxIr2Zn20

The observation of NFL behavior in PrIr2Zn20 by Onimaru et al. [28] and its successful
description by a two-channel Anderson lattice model [40] called for more detailed stud-
ies on the system. It is thereby of particular interest to drive the quadrupolar Kondo
lattice PrIr2Zn20 towards a possible single-impurity quadrupolar Kondo ground state by
systematically substituting the Pr3+ ions with a total angular momentum of J = 4 by
Y3+ ions with J = 0 [42, 43]. This unconventional state of matter is distinguished by
NFL behaviors1 emerging in the specific heat C/T ∼ ln 1/T [16–18], electrical resistivity
ρ ∼ 1 + c

√
T [41] and quadrupole-strain susceptibility χQ ∼ ln 1/T [16–18]. Another

fascinating aspect is the theoretically expected residual entropy of S = 1/2R ln 2 [17].

Recently, Yamane et al. [42, 43] found experimental indication for the single-impurity
quadrupole Kondo effect in the specific heat and electrical resistivity of highly diluted sin-
gle crystalline Y1−xPrxIr2Zn20 with x ≤ 0.044. Corroborative evidence for the formation
of this exotic state was provided by Yanagisawa et al. [44], who reported a logarithmic
temperature dependence of the quadrupole-strain susceptibility measured on a single crys-
tal with a Pr concentration of x = 0.034. With reference to these experimental findings,
highly diluted Y1−xPrxIr2Zn20 can be considered as a prototype material to explore single-
impurity quadrupole Kondo physics.

Historically, mainly diluted U-based materials, which include, for instance, the systems
UxTh1−xRu2Si2 [23, 24] and UxTh1−xBe13 [19, 20], have been subject to extensive study
due to emergent NFL behaviors, which were attributed to the quadrupole Kondo effect.
Yet, clear proof for this scenario has not been found. A key issue with the U-based
materials is the ambiguity in the specification of the CEF excitations, as the 5f electrons
are rather delocalized and hybridize substantially with conduction electrons.

5.1 Physical Properties Review

Based on the currently available literature, this section provides an overview of the physical
properties of single crystalline Y1−xPrxIr2Zn20 (x ≤ 0.44). Initially, the crystal structure,
the ground state and the influence of local lattice distortions are reviewed [42, 43]. Sub-
sequently, the NFL behaviors emerging in the specific heat [42, 43, 94] and the electrical
resistivity [42, 43] as well as the renormalization of the (c11 − c12)/2 elastic constant [44],
indicative of the single-impurity quadrupole Kondo effect, are detailed.

1These scaling equations are a special case of the overcompensated multichannel Kondo model, with
S = 1/2 and n = 2, which was originally proposed by Nozières and Blandin [15].
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5.1.1 Crystal Structure and Ground State

At room temperature, Y1−xPrxIr2Zn20 (x ≤ 0.44) exhibits a CeCr2Al20 crystal structure
(Fd3̄m space group) [43], with a cubic Td point group symmetry at the Pr sites2. Neither
the specific heat nor the electrical resistivity give an indication of a structural phase
transition down to temperatures of 3 K, below which characteristic NFL behavior emerges
[43]. This suggests that the point group at the Pr sites is not altered from cubic Td, which
is a key prerequisite for the formation of the non-Kramers Γ3 ground state doublet [43]. By
contrast, a La substitution proved to be unsuitable to study single-impurity quadrupole
Kondo behavior, as LaIr2Zn20 exhibits a structural phase transition at T = 200 K [97].

To confirm the Γ3 ground state doublet of Y1−xPrxIr2Zn20 (x ≤ 0.44), Yamane et
al. [42, 43] took account of the Schottky anomaly in the specific heat at approximately
10 K, which relates to the energy scale between the ground and the first excited state.
A doublet-triplet model, which simulates the specific heat arising from an energy gap of
∆ = 30K between the Γ3 ground state doublet and the first excited Γ4 triplet state, indeed
explains the experimentally found low temperature Schottky maximum very well [42,43].
This result provides strong indication that the ground state of Y1−xPrxIr2Zn20 (x ≤ 0.44)
is in fact a non-Kramers Γ3 doublet and thus identical to the one of pure PrIr2Zn20 [42,43].
A characteristic Curie-type 1/T softening of the (c11− c12)/2 elastic constant for T < 2 K,
reported for a highly diluted sample with x = 0.034, strongly supports this conclusion [44].
By now, elastic constant measurements on single crystals with higher Pr doping have not
been reported in literature.

Despite the absence of a structural phase transition and the clear indication of the Γ3

ground state, local lattice distortions [42, 43], which arise due to the different ionic radii
of the Y3+ and Pr3+ ion, are inevitable. This effect has to be considered carefully, as
the degeneracy of the non-Kramers Γ3 ground state is easily lifted by local strain fields
that are induced by the substitution. Theoretically, the magnitude of these local lattice
distortions has to correlate with the Pr impurity concentration as outlined in the following.
In the dilute limit, the 8a sites adjacent to a Pr impurity site are primarily occupied by
Y3+ ions and approximate preservation of the cubic Td point group symmetry at a Pr
impurity site is expected. On the other hand, substantial local lattice distortions, which
possibly alter the local point group at a Pr site, are anticipated when half of the Y3+

ions are substituted by Pr3+ ions. In this case, the disorder around a Pr impurity site is
the largest possible. Experimentally, the disorder effect becomes particularly evident when
considering the RRR as a function of the Pr impurity concentration. While the host metal
YIr2Zn20 exhibits a very high RRR of 500 [43], the RRR of the Pr substituted samples
is reduced rapidly with increasing Pr concentration due to enhanced electron-impurity
scattering [43]. A single crystal with a Pr concentration of x = 0.036, for instance, only
shows a RRR of 160 [129]. This value is further reduced to a RRR of 50 in case of a single
crystal with x = 0.085 [43] and to a RRR of 8 for a single crystal with x = 0.44 [43].

5.1.2 Single-Impurity Quadrupole Kondo Effect

First indication for the appearance of the single-impurity quadrupole Kondo effect in
Y1−xPrxIr2Zn20 was reported by Yamane et al. [42,43], who studied the zero field specific
heat and electrical resistivity of the material. Their findings suggest that the single-
impurity quadrupole Kondo effect forms exclusively in highly diluted single crystals with

2This conclusion is based on conventional room temperature powder x-ray measurements [42,43]. High-
resolution low temperature synchrotron measurements, by which tiny substitution induced local lattice
distortions and a possible symmetry lowering are detectable, have not been reported yet.
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x ≤ 0.044, for which the specific heat and the electrical resistivity show unconventional
temperature dependencies in accordance with the theoretically predicted NFL behavior
for a single-impurity quadrupole Kondo hybridization [42,43]. Shortly afterwards, Yanag-
isawa et al. [44] presented their results on the elastic constant (c11 − c12)/2, which is a
crucial thermodynamic probe to ascertain the quadrupole Kondo effect, as it is a direct
measure of the Γ3-type quadrupole susceptibility. Their finding of a logarithmic tempera-
ture dependence of the zero magnetic field (c11 − c12)/2 elastic constant agrees well with
the theoretical prediction and provides further evidence for the single-impurity quadrupole
Kondo scenario [44]. Both, the specific heat [94] and the elastic constant [44] of the highly
diluted samples with x ≤ 0.044 were also investigated in magnetic field, which splits
not only the ground state doublet3 but also the conduction bands and acts therefore as
a major perturbation for the quadrupolar Kondo effect. The studies revealed that the
NFL behaviors present in both thermodynamic quantities react indeed sensitively upon
the application of magnetic field, which is in excellent agreement with the theoretical
expectation [44,94]. In the following, the results from literature are briefly reviewed.

Behavior in Zero Magnetic Field

To start with, the focus is on the zero field specific heat and electrical resistivity results
reported by Yamane et al. [42,43]. The zero field 4f specific heat over temperature Cm/T
normalized to Pr mol as a function of temperature for differently doped Y1−xPrxIr2Zn20

single crystals with x ≤ 0.44 is shown in Fig. 5.1(a) [42]. For samples with a very low
Pr doping x ≤ 0.044, Cm/T diverges logarithmically as temperature declines, which is
in consistence with a single-impurity quadrupole Kondo effect [42]. By contrast, single
crystals with a higher Pr concentration x ≥ 0.085 do not show divergent behavior but
saturation in Cm/T at low temperatures, indicating the breakdown of the single-impurity
quadrupole Kondo effect, which is likely caused by either disorder induced static strain
fields or short range quadrupolar correlations [42].

As the single-impurity quadrupole Kondo effect relates to an anomalous residual en-
tropy [17], analysis of the latter quantity is of high relevance. Figure 5.1(b) illustrates the
4f contribution to the entropy Sm normalized to Pr mol as a function of temperature for
various doping x [42]. The three different horizontal black dashed lines represent entropy
values that play a crucial role in the quadrupole Kondo model. The value of S = R ln 2
corresponds to the entropy of the two-fold degenerated Γ3 ground state. Theory suggests
that this ground state entropy is only partially released by the quadrupole Kondo effect,
resulting in a finite residual entropy value of S = 1/2R ln 2 [17]. The black dashed line,
located at the entropy value of S = 3/4R ln 2 [18, 121], marks the characteristic single-
impurity quadrupole Kondo temperature T0 [42]. T0 is specified by an arrow for each Pr
concentration x and its evolution with x is illustrated in the inset of Fig. 5.1(b) [42]. The
entropy data by Yamane et al. [42] clearly demonstrates that none of the investigated sin-
gle crystals exhibits the theoretically expected residual entropy plateau at S = 1/2R ln 2.
It is notable, however, that the highly diluted single crystals with x ≤ 0.044 display a sub-
stantial entropy at the lowest temperature of T = 0.08 K, which is gradually suppressed as
the Pr concentration x is increased [42]. In case of the single crystals with x ≥ 0.085, the
absence of the residual entropy is not surprising, as also Cm/T displays deviations from
the expected quadrupole Kondo behavior [42]. A plausible explanation for the breakdown

3An isolated quadrupolar non-Kramers doublet would not split in magnetic field. However, in
Y1−xPrxIr2Zn20, one of the Γ3 ground state wave functions mixes with one of the first excited Γ4 triplet
state’s wave functions, resulting in a quadratic splitting of the non-Kramers doublet in a magnetic field
B ‖ [001]. For details, see Section 4.1.2.
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Figure 5.1: (a) Zero field 4f specific heat over temperature Cm/T normalized to Pr mol
as function of temperature of various Y1−xPrxIr2Zn20 (x ≤ 0.44) single crys-
tals and PrIr2Zn20 [27] as a dashed black line. The inset provides a com-
parison between the experimentally observed Schottky maximum at elevated
temperature and a doublet-triplet model simulation. (b) Zero field 4f contri-
bution to the entropy Sm normalized to Pr mol as a function of temperature
of Y1−xPrxIr2Zn20 (x ≤ 0.44) and PrIr2Zn20 [28] as a black solid line. The
characteristic temperature T0, given by Sm = 3/4R ln 2, is marked by an arrow
for each Pr concentration x. Its evolution with x is shown in the inset. [42]
Reprinted figure with permission from Ref. [42]. ©2018 by the American
Physical Society.

of the NFL behavior are disorder induced local static strain fields that split the Γ3 ground
state doublet and therefore quench the residual quadrupole Kondo entropy [42]. In addi-
tion, the moderate Pr concentration might already induce short range quadrupolar correla-
tions that counteract the quadrupole Kondo physics at low temperature [42]. By contrast,
the absence of a residual entropy of S = 1/2R ln 2 in the single crystals with x ≤ 0.044
is unexpected, as a clear logarithmic temperature dependence was found in Cm/T [42].
However, also for small doping, a tiny substitution induced distortion of the crystal lattice,
which results in a quenching of the ground state entropy, cannot be excluded [42]. Ya-
mane et al. [42] argue that also the hyperfine interaction arising between the quadrupolar
ground state and the atomic nucleus of the 141Pr may account for the deviations from
the theoretically predicted residual entropy. Moreover, a recent theoretical study by Tsu-
ruta et al. [130] suggested that a significantly higher Pr dilution of order of magnitude
10−6 would be required to reach a single-impurity quadrupole Kondo ground state. It is
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Figure 5.2: (a) Differential electrical resistivity normalized to its value at the characteristic
temperature ∆ρ/|∆ρ(T0)| versus T/T0 for variously doped Y1−xPrxIr2Zn20

single crystals with x ≤ 0.44. The additionally shown red and black solid line
are fits by the single-impurity quadrupole Kondo [121] and quadrupole Kondo
lattice model [40, 131], respectively. The inset displays ∆ρ/|∆ρ(T0)| versus√
T/T0. (b) 4f specific heat over temperature normalized to its value at the

characteristic temperature (Cm/T )/[Cm(T0)/T0] versus T/T0 for differently
doped Y1−xPrxIr2Zn20 single crystals with x ≤ 0.44. The red and black solid
line are fits by the single-impurity quadrupole Kondo [121] and random two
level model (RTL) [132,133], respectively. The inset displays a scaling plot of
the 4f entropy normalized to R ln 2 versus T/T0. [42]
Reprinted figure with permission from Ref. [42]. ©2018 by the American
Physical Society.

thus conceivable that despite the very small Pr doping of x = 0.024 achieved by Yamane
et al. [42], a tiny interaction between the quadrupole moments is still present that may
account for the release of entropy in the highly diluted single crystals. Given that single-
impurity quadrupole Kondo correlations exist, an universal scaling of the just discussed
thermodynamic quantities with respect to the characteristic single-impurity quadrupole
Kondo temperature T0 is expected. Figure 5.2(b) by Yamane et. al. [42] illustrates such
a scaling plot. Here, for Y1−xPrxIr2Zn20 with x ≤ 0.44, Cm/T normalized to its value
at the characteristic temperature is plotted versus T/T0 [42]. Indeed, for T/T0 > 0.5, a
scaling of the measured data is possible, which indicates universal behavior at elevated
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temperatures, while at lower temperature clear deviations arise [42]. Yamane et al. [42]
additionally show the theoretically expected single-impurity quadrupole Kondo behav-
ior [121] as a red solid line, which is only in accordance with the data for x ≤ 0.044. To
verify a possible link between the low temperature deviations that arise in the moderately
doped single crystals with x ≥ 0.085 and disorder, Yamane et al. [42] simulated the effect
of a distortion induced splitting of the Γ3 doublet on Cm/T by employing a random two
level (RTL) model [132,133]. The calculated specific heat resulting from a small splitting
of ∆Γ3 = 1.2 K, shown as a black solid line in Fig. 5.2(b), is in good accordance with
the experimentally obtained specific heat of the single crystal with x = 0.085 [42]. By
contrast, for the single crystal with x = 0.44, the RTL simulation, as shown in Ref. [43],
describes the experimental data only to some extent. While the RTL model suggests sat-
uration in Cm/T at low temperature, the experimental data displays a maximum, which
implies the onset of short range quadrupolar correlations [42,43]. This finding by Yamane
et al. [42,43] is conceivable as a Pr concentration of x = 0.44 is relatively high and the in-
teraction between the quadrupole moments likely not negligible. The inset of Fig. 5.2(b)
shows a scaling plot of the entropy normalized to R ln 2 as a function of T/T0, which
confirms that also the entropy is governed by universal behavior [42].

Another crucial probe to detect single-impurity quadrupole Kondo behavior is the
electrical resistivity, for which theory predicts an anomalous square root temperature de-
pendence [41]. Yamane et al. [42] also performed electrical resistivity measurements, which
provide further evidence for the single-impurity quadrupole Kondo scenario. Figure 5.2(a)
illustrates the differential electrical resistivity of Y1−xPrxIr2Zn20 (x ≤ 0.44) normalized to
its value at the characteristic temperature versus T/T0 [42]. Just like the specific heat, also
the electrical resistivity of the differently substituted single crystals of Y1−xPrxIr2Zn20 can
be nicely scaled by T0, whereby deviations for higher doping with x ≥ 0.085 at low temper-
ature are less pronounced as compared to Cm/T [42]. The inset of Fig. 5.2(a), which shows
the normalized differential electrical resistivity as a function of

√
T/T0, highlights the low

temperature deviations found in the moderately diluted samples with x ≥ 0.085 [42]. This
plot emphasizes that the anomalous

√
T dependence found in the highly diluted single

crystals with x ≤ 0.044 is present in the whole examined temperature range, while for the
higher doped single crystals with x ≥ 0.085, discrepancies to the theoretically expected
behavior become apparent at low temperature [42]. An interesting finding of the study by
Yamane et al. [42] is the fact that the sign of the electrical resistivity is reversed as com-
pared to the theoretically expected sign for the limit of weak coupling. Yamane et al. [42]
point out that the found positive sign is predicted for the strong coupling limit and refer
to a work by Affleck [93]. In summary, the specific heat and electrical resistivity results by
Yamane et al. [42,43] suggest that the single-impurity quadrupole Kondo effect is present
in highly diluted Y1−xPrxIr2Zn20 with x ≤ 0.044. By increasing the Pr concentration,
the behavior is readily suppressed due to either a random splitting of the Γ3 ground state
doublet or short range quadrupolar correlations [42,43].

Besides the specific heat and the electrical resistivity, the quadrupole-strain suscep-
tibility is the third key probe to identify a single-impurity quadrupole Kondo state. As
explicitly discussed in the theory section of this thesis, the Γ3-type quadrupole-strain
susceptibility χQ can be experimentally determined via the measurement of the related
(c11− c12)/2 elastic constant. This was done by Yanagisawa et al. [44] who investigated a
highly diluted Y1−xPrxIr2Zn20 single crystal with x = 0.034 by means of the ultrasound
technique and revealed a logarithmic variation of the (c11 − c12)/2 elastic constant with
temperature for T ≤ 0.3 K, as shown in Fig. 5.5 of the following subsubsection [44].
This result is in perfect accordance with the measurements by Yamane et al. [42, 43],
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which provides quite strong evidence for the formation of the single-impurity quadrupole
Kondo effect in highly diluted Y1−xPrxIr2Zn20. Elastic constant results on higher doped
single crystals have not yet been reported in literature and a comparison with the just
discussed specific heat and electrical resistivity data [42, 43], which suggest breakdown of
the single-impurity quadrupole Kondo effect for x ≥ 0.085, is therefore not possible.

While the application of an uniaxial stress with Γ3 symmetry, i.e. an uniaxial stress
along the [001] direction, would be due to the linear coupling between the induced strain
and the Γ3 ground state doublet the most natural choice to perturb a quadrupolar Kondo
metal and tune it away from the single-impurity quadrupole Kondo fixed point, such ex-
periments are quite tricky to realize. As magnetic field applied along the [001] direction
splits the ground state quadratically, it is expected to have a similar effect and is there-
fore another possible means to study the expected breakdown of the NFL behavior in
detail. Specific heat [94] and elastic constant [44] literature results that deal with the
magnetic field induced destruction of the single-impurity quadrupole Kondo ground state
in Y1−xPrxIr2Zn20 with x ≤ 0.044 are reviewed in the following subsubsection.

Behavior in Magnetic Field

The impact of magnetic field applied along the [100] direction on the NFL behavior arising
in highly diluted Y1−xPrxIr2Zn20 was studied by Yamane et al. [94] via specific heat
measurements on a single crystal with x = 0.044 and by Yanagisawa et al. [44] via elastic
constant measurements on a single crystal with x = 0.034.

Figure 5.3 shows the 4f specific heat over temperature C4f/T normalized to Pr mol as
a function of temperature for different magnetic fields B ≤ 12 T [94]. For small magnetic
fields B ≤ 2 T, C4f/T diverges logarithmically, which is indicative of the single-impurity
quadrupole Kondo effect [94]. With increasing magnetic field, the divergence in C4f/T
is suddenly suppressed and a maximum forms instead [94]. The inset of Fig. 5.3 shows
the 4f specific heat C4f as a function of temperature for various magnetic fields B ≤
12 T [94]. At low magnetic fields B ≤ 2 T, the C4f data by Yamane et al. [94] shows a

Figure 5.3: Temperature dependence of the 4f specific heat over temperature C4f/T of
Y1−xPrxIr2Zn20 with x = 0.044 at various magnetic fields B ‖ [100]. C4f as a
function of temperature at different magnetic fields in the inset. [94]
Reprinted figure from Ref. [94], which is licensed under a Creative Commons
Attribution (CC BY) license. ©2018 Author(s).
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Figure 5.4: Temperature dependence of the 4f entropy S4f of Y1−xPrxIr2Zn20 with x =
0.044 at different magnetic fields B ‖ [100]. CEF simulations of S4f as a
function of temperature at different magnetic fields are additionally shown as
solid lines. [94]
Reprinted figure from Ref. [94], which is licensed under a Creative Commons
Attribution (CC BY) license. ©2018 Author(s).

maximum at approximately 0.2 K, which continuously relocates to a higher temperature
value with magnetic field. The maxima present at elevated magnetic field correspond to
Schottky anomalies, which arise from the quadratic splitting of the ground state doublet
in magnetic field, as Yamane et al. [94] confirmed by a careful analysis of the entropy in
magnetic field. Figure 5.4 shows the temperature variation of the 4f entropy normalized
to Pr mol at different magnetic fields B ≤ 12 T and a CEF simulation for comparison
[94]. For the simulation Yamane et al. [94] employed a slightly altered CEF parameter of
W = −1.50 K as compared to W = −1.22 K [65], determined for PrIr2Zn20 by inelastic
neutron scattering. This discrepancy possibly originates from a tiny distortion resulting
from the partial substitution of the Pr3+ ions by the Y3+ ions [94]. At weak magnetic
fields B ≤ 2 T, where C4f/T diverges logarithmically as temperature approaches zero, the
simulated entropy and the experimentally determined one deviate substantially from each
other, while they agree well with each other at high magnetic field [94]. This indicates
local moment behavior at high magnetic field and suppression of the quadrupole Kondo
hybridization due to the large splitting of the Γ3 ground state doublet [94].

Measurements of the (c11 − c12)/2 elastic constant by Yanagisawa et al. [44] provided
additional information on the evolution of the NFL state in magnetic field H ‖ [001]. The
upper part of Fig. 5.5 shows the background corrected relative change of the (c11− c12)/2
elastic constant as a function of temperature for various magnetic fields µ0H ≤ 14 T
applied along the [001] direction [44]. Note that Yanagisawa et al. [44] subtracted a field
independent background contribution, which they specified via the measurement at a high
magnetic field of 14 T. Their data of (c11−c12)/2 reveals that a weak magnetic field in the
range 0 ≤ µ0H ≤ 1 T has only negligible influence on the divergent behavior of (c11−c12)/2,
whereby the divergence seems to become even slightly more pronounced in small magnetic
field [44]. At 1.5 T, the low temperature divergence is suppressed, which becomes more
evident as magnetic field is further increased [44]. At 14 T, the initially observed softening
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Figure 5.5: The upper part shows the background corrected relative change of
the cv = (c11 − c12)/2 elastic constant as a function of temperature of
Y1−xPrxIr2Zn20 with x = 0.034 at various magnetic fields H ‖ [001] and
PrIr2Zn20 [37] at zero field. The lower part shows the ultrasonic attenuation
coefficient ∆αv as a function of temperature at different magnetic fields. [44]
Reprinted figure with permission from Ref. [44]. ©2019 by the American
Physical Society.

vanishes and the data is reminiscent of the (c11 − c12)/2 elastic constant of the reference
compound YIr2Zn20, which is additionally plotted in Fig. 5.5 [44]. Overall, the findings by
Yanagisawa et al. [44] confirm that the NFL behavior is suppressed by a relatively small
magnetic field and are therefore in good agreement with the specific heat results obtained
by Yamane et al. [94]. The lower part of Fig. 5.5 shows the attenuation coefficient as a
function of temperature for different magnetic fields, which displays an interesting increase
at low temperatures and small magnetic field [44]. Even though a clear explanation for
this unconventional behavior is not given by Yanagisawa et al. [44], they mention the
field induced mixing of the Γ3 ground state with the higher exited Γ4 triplet as a possible
cause. Yanagisawa et al. [44] also determined the quadrupole-strain coupling constant at
|gΓ3 | = 19.0 K. For more details on the elastic constant measurement it is referred to the
publication by Yanagisawa et al. [44].

5.2 Experimental Results

In this section the thermal expansion and magnetostriction measurement results on single
crystalline Y1−xPrxIr2Zn20 are presented and discussed. Firstly, information on the ex-
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amined single crystals, which were synthesized and characterized by a cooperation partner
from Hiroshima University in Japan, is provided. Subsequently, the focus is on the ther-
mal expansion and magnetostriction results. Main objective of the experiments was to
search for unconventional behavior in highly diluted Y1−xPrxIr2Zn20 to further character-
ize the material’s possible single-impurity quadrupole Kondo ground state. In addition,
two moderately doped single crystals were examined, for which specific heat and electri-
cal resistivity measurements by Yamane et al. [42, 43] suggested the suppression of the
single-impurity quadrupole Kondo state.

5.2.1 Y1−xPrxIr2Zn20 Single Crystals

Thermal expansion and magnetostriction measurements were carried out on four differ-
ently doped single crystalline samples of Y1−xPrxIr2Zn20 with x = 0.033, x = 0.036,
x = 0.09 and x = 0.49, which were provided by T. Onimaru from Hiroshima University in
Japan. The single crystals were synthesized and crystallographically oriented by Y. Ya-
mane, who used a Zn self flux growth method and gives a very detailed description of the
single crystal growth process in his doctoral thesis [129]. The Pr concentration of each
of the four single crystalline samples mentioned above was carefully determined by either
electron probe microanalysis (EPMA) or a magnetization measurement by the cooperation
partner from Hiroshima University. This additional characterization is necessary as the
Pr concentration of a single crystal typically undergoes small changes during the growth
process. Furthermore, the Pr3+ ions are not uniformly distributed within the relatively
large single crystals from which the provided small single crystalline samples used for the
dilatometry were cut out. Therefore, scrutiny of each single crystal is crucial. The single
crystal with a Pr concentration of x = 0.49 was characterized by EPMA at Hiroshima
University. The given concentration value denotes the average of the concentration mea-
sured at ten different spots of the single crystal, whereby the standard deviation of the
so estimated concentration is according to the collaborators ∆x = ±0.06. Since the reso-
lution of EPMA was not high enough to precisely determine the Pr concentration of the
higher diluted single crystals with x = 0.033, x = 0.036 and x = 0.09, Y. Yamane speci-
fied their Pr concentration by measuring the magnetization at T = 1.8 K and B = 1 T. A
comparison of the experimentally measured value and the theoretical value derived by a
CEF calculation then allowed for the estimation of each single crystal’s Pr concentration.
By contrast to the EPMA measurement, it is more difficult to determine the error bar of
the concentration values derived by a magnetization measurement. The error can only be
roughly estimated and is likely 5 − 10% of the determined concentration value. It may,
however, be larger for the single crystal with a Pr concentration of x = 0.09, for which
a small inter-site interaction between the Pr3+ ions cannot be excluded. This may cause
a small error, as the CEF calculation to which Y. Yamane compared the experimentally
determined magnetization value does not take account of a possible inter-site interaction.

The basic properties of each single crystal, such as its Pr concentration, estimated
RRR value, batch number, crystallographic orientations and dimensions are summarized
in Table 5.1. The given RRR values, as reported in Refs. [43, 129], were determined
by the collaborators on other single crystalline samples that originated from the same
batches, as the here examined ones. The length value of each crystallographically oriented
side was measured with an accuracy of ±0.001 mm. The sample shapes, crystallographic
orientations and the respective length values are presented in Fig. 5.6. All four single
crystals have an approximately rectangular shape with three different parallel surfaces. In
case of sample Nr. 2 with x = 0.036, the three surfaces correspond to the [100], [010] and
[001] direction, which are degenerate for a cubic crystal symmetry. Sample Nr. 1 originates
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Sample Nr. Pr concentration RRR Batch Crystal directions Length

1 x = 0.033 160 [129] # 2 [11̄0] 1.082 mm

[111] 1.533 mm

[112̄] 0.701 mm

2 x = 0.036 160 [129] # 2 [100] 0.920 mm

[010] 1.143 mm

[001] 2.376 mm

3 x = 0.09 25 [129] # 1 [001] 1.487 mm

[110] 1.045 mm

[11̄0] 1.162 mm

4 x = 0.49 8 [43,129] # 1 [001] 1.714 mm

[110] 1.010 mm

[11̄0] 0.803 mm

Table 5.1: Properties of the single crystalline samples of Y1−xPrxIr2Zn20 with x ≤ 0.49
used for the thermal expansion and magnetostriction measurements. The given
Pr concentrations were either determined by EPMA (x = 0.49) or by a mag-
netization measurement at 1.8 K and 1 T (x ≤ 0.09). The RRR values were
measured by the cooperation partner on other single crystalline samples from
the same batches [43,129]. All single crystalline samples have a roughly cuboid
shape. The crystallographic orientations and the respective length values are
given for each of the single crystals, whereby the length values have an accuracy
of ±0.001 mm. The single crystals detailed in this table were synthesized and
characterized by Y. Yamane.

Figure 5.6: Sketches of the four differently doped Y1−xPrxIr2Zn20 single crystalline sam-
ples investigated in this thesis. Indicated are shape, crystallographic orienta-
tions and dimensions.
This figure is also included in Ref. [134, SM].

from the same batch and has therefore a similar Pr doping level of x = 0.033. Its surfaces
are, however, differently oriented and correspond to the [11̄0], [111] and [112̄] direction.
The two higher doped single crystals with x = 0.09 and x = 0.49 are oriented in a way
that their perpendicular surfaces denote the [001], [110] and [11̄0] direction.
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5.2.2 Thermal Expansion

As previous studies indicated that the quadrupole Kondo effect forms exclusively in highly
diluted single crystals with x ≤ 0.044 [42,43], the main focus of the thermal expansion mea-
surements was on the two weakly doped single crystals with x = 0.033 and x = 0.036. The
〈100〉 oriented single crystal with x = 0.036 was utilized to study the zero magnetic field
thermal expansion as well as anisotropy and volume effects for H ‖ [001]4. To evaluate the
anisotropy effects, longitudinal and transverse thermal expansion measurements were car-
ried out. These measurements allowed for the determination of the symmetrized Γ3-type
thermal expansion coefficient αu, which is proportional to the quadrupolar expectation
value ∂T 〈O0

2〉 and provides crucial information on the possible single-impurity quadrupole
Kondo nature of the material’s ground state. The determination of volume changes, on
the other hand, is of relevance as hybridization effects typically couple to the volume due
to the pressure dependence of the respective coupling constants, i.e. quadrupole Kondo
coupling. Also a possible valence change of the rare earth ion would be accompanied by a
distinct volume change. A downside of the thermal expansion measurement along a 〈100〉
direction arises from the linear coupling between the Γ3-type quadrupole moments and
strain along this crystallographic direction. As the here employed miniaturized capaci-
tive dilatometer exerts via its flat springs a tiny uniaxial stress on the single crystal in
measurement direction, an additional uniaxial stress induced contribution to the thermal
expansion cannot be excluded. In order to quantify its impact, an additional thermal
expansion measurement was carried out along the [111] direction of the single crystal with
x = 0.033. A general feature of unstrained cubic materials is their isotropic thermal ex-
pansion, meaning that the linear thermal expansion coefficients measured, for instance,
along the [001] and the [111] direction show the same behavior. As strain ε[111] does not
couple linearly to the Γ3 doublet, a thermal expansion measurement along this direction is
powerful to reveal a possible uniaxial stress induced contribution to the thermal expansion
coefficient measured along the [001] direction. To better classify the emerging behavior in
the highly diluted single crystals, the longitudinal thermal expansion coefficients of two
moderately diluted single crystals with x = 0.09 and x = 0.49 were measured forH ‖ [001].
These measurements aimed to verify the findings of previous specific heat and electrical
resistivity measurements, which excluded the formation of the single-impurity quadrupole
Kondo effect in single crystals with a similar Pr doping [42,43]. The measurements on the
single crystals with x = 0.036, x = 0.09 and x = 0.49 were carried out along their [001]
oriented side, which have length values of 2.376 mm, 1.487 mm and 1.714 mm, respectively.
The measurements on the single crystal with x = 0.033 were performed along its [111]
oriented side, which has a length value of 1.533 mm.

The longitudinal thermal expansion of the single crystal with x = 0.036 for H ‖ [001],
as presented in Fig. 5.7(a), was measured together with Y. Yamane during his four week
research visit at the University of Augsburg. All other experimental findings shown in this
subsection, namely the transverse thermal expansion of the x = 0.036 single crystal for
H ‖ [001], the thermal expansion of the x = 0.033, x = 0.09 and x = 0.49 single crystals
as well as the thermal expansion of the x = 0.033 and x = 0.036 single crystals under
higher uniaxial stress were obtained by me alone. Preliminary results before dilatometer
background subtraction of the longitudinal, transverse and volume thermal expansion of

4As already outlined before, depending on the consulted literature, either the denotation B or H is
used to denote the magnetic field. In case of an external magnetic field, both quantities relate as B = µ0H
to each other. Note, when considering an internal magnetic field, this relation does not hold anymore as
also the magnetization of the material has to be taken into account. In this subsection and the following
subsection on the magnetostriction, the denotation µ0H is used to specify the external magnetic field.
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the x = 0.036 single crystal presented in Fig. 5.7 of this thesis, were already shown in the
doctoral thesis of Y. Yamane [129].

Highly Diluted Single Crystals (x = 0.033 and x = 0.036)

On the basis of the thermal expansion measurement results on Y1−xPrxIr2Zn20, presented
and discussed in this subsubsection, and the respective magnetostriction measurement re-
sults on the x = 0.036 single crystal, presented at a later stage of this section, a manuscript
was prepared that was recently submitted to a scientific journal [134]. The specific heat
data shown in this subsubsection was measured by Y. Yamane and S. Bachus. M. Garst5

performed calculations on the divergent volume thermal expansion, which are reviewed
at the end of this subsubsection. The just mentioned contributions of the collaborators
are acknowledged at the respective places. Figures shown in the following that are also
included in the submitted manuscript are indicated by the citation [134] in the figure
caption. (Note added before publication of this thesis: Above mentioned manuscript was
published on the 6th of June 2022 in the scientific journal Physical Review Research [134].)

Figure 5.7(a) and (b) show the longitudinal thermal expansion coefficient α‖ and the
transverse thermal expansion coefficient α⊥ of Y1−xPrxIr2Zn20 with x = 0.036 as a func-
tion of temperature at various magnetic fields H ‖ [001]. Before continuing with the
discussion of the data, the measurement process of α‖ and α⊥ is briefly described. Just to
recall, the x = 0.036 single crystal has a cuboid shape, whose three different parallel faces
all correspond to cubic 〈100〉 directions and are thus degenerate in zero magnetic field. As
soon as a magnetic field is applied along one of these three indistinguishable directions,
their degeneracy is lifted, as the crystal undergoes a tetragonal distortion. In consequence,
the direction parallel to magnetic field is now distinguished from the two perpendicular
ones. In the experiment, the thermal expansion was always measured along the same 〈100〉
direction, whereby the longest side of the single crystal with L = 2.376 mm was chosen.
In order to determine the longitudinal thermal expansion coefficient, the magnetic field
was applied parallel to the measurement direction and to measure the transverse thermal
expansion, the dilatometer was rotated by 90◦, so that the magnetic field pointed along
one of the two 〈100〉 directions perpendicular to the relative length change measurement
direction. It is important to note that in the following the [001] direction is defined as
the 〈100〉 direction of the single crystal along which the magnetic field points. This is
justified as it is the magnetic field, which breaks the cubic crystal symmetry and therefore
defines the distinguished direction6. In order to better understand the experimentally
obtained data, CEF simulations of α‖ and α⊥ were carried out at selected magnetic fields
H ‖ [001]. The CEF calculations are additionally shown in Fig. 5.7(a) and (b) as dashed
lines and were calculated by following the approach, which was explicitly discussed in
Section 4.2.2. In order to simulate the expectation values of the quadrupole operators,
again the Mathematica based CEF program provided by T. Onimaru was used to evaluate
the Hamiltonian specified by Eq. (4.12). Due to the tiny Pr concentration of the single
crystal, it was, however, assumed that the interaction between the quadrupole moments
vanishes, i.e. KΓ3 = 0. In addition, the interaction constant between excited dipole mo-

5Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe,
Germany.

6As it will be shown at a later part of this subsubsection, not only magnetic field breaks the cubic
symmetry of the material but also the very small uniaxial stress exerted by the flat springs of the employed
miniaturized capacitive dilatometer on the single crystal in measurement direction. As the magnetic field
induced anisotropic behavior dominates over the small uniaxial stress induced one, the latter effect is
disregarded for the moment.
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ments K was set to zero K = 0. Consequently, the Hamiltonian contains only the CEF
term for cubic Td point group symmetry, the Zeeman term and the quadrupole-strain
coupling term. To simulate the thermal expansion coefficients, at first, the CEF param-
eters W = −1.22 K and x = 0.537, as previously determined by Iwasa et al. [65] on pure
PrIr2Zn20 by means of inelastic neutron scattering, were used. At a high magnetic field
of 10 T, where it is justified to assume that the quadrupole moments are fully localized,
the so calculated curves were, however, not in good accordance with the experiment. As
the inter-site interaction between the Pr3+ ions can be considered as negligible for such
a highly diluted system, it are primarily the CEF parameters W and x that determine
the temperature dependence of α‖ and α⊥. The found discrepancies between simulated
and experimentally obtained data therefore indicate a small difference between the CEF
parameters of diluted Y1−xPrxIr2Zn20 and pure PrIr2Zn20, which likely originates from
the partial substitution of the Pr3+ ions by Y3+ ions. In consequence of the smaller ionic
radius of a Y3+ ion as compared to a Pr3+ ion, the substitution with Y3+ ions strengthens
the CEF effect, which in turn leads to an enhancement of the W parameter. Note that W
serves as a scaling parameter in the cubic CEF Hamiltonian specified by Eq. (2.16) [64].
The specific heat study in magnetic field by Yamane et al. [94] on a single crystal with a
similar Pr doping level of x = 0.044, which was reviewed in Section 5.1.2, also employed a
modified CEF parameter value of W = −1.50 K in order to obtain good agreement with
the experimental data. In fact, by using the same value of W = −1.50 K as Yamane
et al. [94], very good accordance between the simulated and the experimentally obtained
thermal expansion data was found at 10 T. The parameter x = 0.537, on the other hand,
was not modified and is thus identical to the one suggested for pure PrIr2Zn20 by means
of inelastic neutron scattering [65]. In addition, the number of Pr3+ ions per volume nPr

and the Γ3-type background elastic constant (c0
11−c0

12)/2 are required parameters to carry
out the simulation. The former calculates as nPr = (x×Z)/a3 = 0.101× 1027 m−3, where
x = 0.036 is the Pr concentration, Z = 8 [25] the number of formula units per unit cell and
a = 14.197 × 10−10 m [129] the lattice parameter of another single crystal from the same
batch that exhibits a similar Pr doping level of x = 0.044. The background elastic constant
value was previously reported in Ref. [44, SM] as (c0

11 − c0
12)/2 = 52.771 GPa, which was

measured on a sample with a similar Pr doping of x = 0.034. The quadrupole-strain cou-
pling constant gΓ3 determines mainly the magnitude of the thermal expansion coefficient
and has negligible influence on its temperature dependence. Its value was determined at
gΓ3 = −28.9 K by fitting the CEF calculation to the experimentally obtained α‖ and α⊥
data at 10 T. This value is somewhat larger than the one derived by the elastic constant
measurement |gΓ3 | = 19.0 K [44]. As a similar discrepancy between the quadrupole-strain
coupling constant determined via the elastic constant [37] and the thermal expansion mea-
surement was also found for PrIr2Zn20, a systematic error between the two methods likely
causes this small deviation. To deduce the thermal expansion coefficients from the simu-
lated quadrupolar expectation values, it is recalled that the Pr3+ ions in Y1−xPrxIr2Zn20

have Td point group symmetry. In this case, a magnetic field H ‖ [001] induces only the
tetragonal 〈O0

2〉 but not the in plane 〈O2
2〉 quadrupole moment, meaning that only the Γ3-

type thermal expansion αu = ∂T εu is finite and αv = ∂T εv vanishes to zero. Just like for
PrIr2Zn20, a possible bulk contribution was disregarded in the simulation, as Fig. 5.7(c)
clearly demonstrates that the volume thermal expansion at high magnetic field vanishes
to zero. Consequently, the simulated α‖ and α⊥ curves only contain the contribution from
the thermal expansion coefficient with Γ3 symmetry αu. As the linear relation between the
Γ3-type strains εu and εv and the respective quadrupole moments 〈O0

2〉 and 〈O2
2〉 as well as

the formulas for the calculations of the longitudinal and transverse strains for H ‖ [001]
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Figure 5.7: Temperature dependence of the longitudinal, transverse and volume thermal
expansion coefficients α‖, α⊥ and β of Y1−xPrxIr2Zn20 with x = 0.036 at
different magnetic fields H ‖ [001]. (a) α‖ and (b) α⊥ as a function of temper-
ature at various magnetic fields. Additionally displayed dashed lines are CEF
calculations that use the CEF parameters W = −1.50 K and x = 0.537 and
a quadrupole-strain coupling constant of gΓ3 = −28.9 K. (c) Volume thermal
expansion coefficient deduced from the longitudinal and transverse thermal ex-
pansion coefficients via the relation β = α‖+2α⊥ as a function of temperature
at various magnetic fields. The inset illustrates the zero magnetic field volume
thermal expansion β = 3α[001] for Pr concentrations of x = 0.036, x = 0.09
and x = 0.49, normalized to x.
This figure is also included in Ref. [134].
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have already been explicitly discussed before, they are not recalled in this subsubsection.
To call the relations back to memory it is referred to Section 2.3.2 and Section 4.2.2, where
the calculation procedures of the CEF thermal expansion were detailed.

Before discussing the simulated longitudinal and transverse thermal expansion coeffi-
cients in detail, the focus is on the experimentally determined coefficients. Surprisingly,
the positive zero magnetic field thermal expansion coefficient shown in Fig. 5.7(a) and
(b) diverges on cooling down to the lowest measured temperature of 0.05 K. Upon the ap-
plication of magnetic field H ‖ [001], α‖ grows in magnitude and its divergence becomes
more pronounced until a threshold field of µ0H = 1 T is reached. By further increasing
magnetic field, the divergence is gradually suppressed and at 2 T a clear maximum appears
at around 0.12 K. With increasing magnetic field, the maximum gradually shifts to higher
temperature and its peak value decreases. Unexpectedly, at high magnetic field, α‖ does
not vanish as temperature declines to zero but starts to increase again. This observation is
reminiscent of the behavior found in PrIr2Zn20, which was discussed in Section 4.2.2. The
transverse thermal expansion coefficient α⊥, which is shown in Fig. 5.7(b), is negative at
magnetic fields µ0H ≥ 2 T and roughly mirrors the behavior of α‖, whereby its magnitude
is approximately half as large as the one of α‖. By contrast, at low magnetic field, α⊥
shows a positive sign. The sign change occurring at low magnetic field can be explained
by the gradual superposition of the positive zero field bulk expansion by the negative field
induced Γ3-type contribution.

In order to detect possible unconventional behavior arising from the single-impurity
quadrupole Kondo effect, comparison between the experimental findings and the CEF
calculations, i.e. the fully localized case, is crucial. Fig. 5.7(a) and (b) indicate that
at high magnetic field µ0H ≥ 6 T, the CEF calculation reproduces the extrema in α‖
and α⊥ very well. As the applied magnetic field breaks the degeneracy of the ground
state doublet, the observed high field extrema can be assigned to the energy scale that
measures the splitting of the Γ3 doublet in magnetic field. By contrast, the peculiar low
temperature increase in α‖ and α⊥ at high magnetic field cannot be accounted for by the
simulation. This points towards remaining correlations at very low temperature and high
magnetic field. As already discussed in the context of PrIr2Zn20, a plausible explanation
for this surprising behavior cannot be given at this point. In the intermediate magnetic
field range, calculation and experiment agree moderately well with each other, whereby
discrepancies become more significant as magnetic field decreases. At low magnetic fields
µ0H ≤ 2 T, the differences between calculation and experiment are stark. Here, the
experimentally obtained thermal expansion data is strongly suppressed as compared to
the calculation, which points towards the onset of hybridization effects. For µ0H ≤ 1 T,
which is in the single-impurity quadrupole Kondo regime [44], α‖ displays a clear diver-
gence down to the lowest measured temperature. At a later stage of this subsubsection,
where the symmetrized thermal expansion coefficient with Γ3 symmetry αu is detailed,
it will be shown that this divergence is in accordance with the logarithmic temperature
dependence of the quadrupole-strain susceptibility determined by the measurement of the
elastic constant [44] and is therefore a clear signature of the single-impurity quadrupole
Kondo effect.

With the help of α‖ and α⊥ one can calculate the volume thermal expansion coefficient
β = α‖+2α⊥, which is shown in Figure 5.7(c) for various magnetic fieldsH ‖ [001]. At zero
magnetic field, β was calculated as three times the average of the two zero magnetic field
linear thermal expansion coefficients shown in Fig. 5.7(a) and (b). While the application
of a small magnetic field of 0.5 T has no notable influence on the divergence of β and the
application of 1 T only a very little one, further increase of magnetic field to a value of
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1.5 T suppresses the divergence and a maximum appears instead. In the intermediate field
range 2 T ≤ µ0H ≤ 4 T, the maximum in β is still clearly visible and a sign change in β
appears at very low temperature. Further increase of magnetic field gradually suppresses
the maximum at elevated temperature and increases the temperature at which the sign
change occurs. In spite of the small signal, the sign change in β at very low temperature
seems to be an intrinsic feature, which is unexpected as the quadrupole moments should
be fully localized in this magnetic field range. As α‖ and α⊥ display an unconventional
increase in a comparable temperature and magnetic field range as well, a connection
between the two findings is likely. The observation of very similar behavior in PrIr2Zn20

points towards an universal feature, which should be examined more carefully in the future.
In the following, the unconventional behaviors in the linear and volume thermal ex-

pansion coefficients at low magnetic field are scrutinized and put in context with the
single-impurity quadrupole Kondo scenario. In order to provide an explanation for the
unconventional behavior at low magnetic field, it is briefly recalled that a magnetic field
H ‖ [001] splits the ground state doublet quadratically and induces a thermal expansion
contribution with Γ3 symmetry αu, which is proportional to the quadrupolar expectation
value ∂〈O0

2〉/∂T . As detailed at the beginning of this subsubsection, the field induced
contribution αu is cause for the highly anisotropic behavior found in α‖ and α⊥. By us-
ing the measurement results of α‖, α⊥ and β, as presented in Fig. 5.7, it is possible to
deduce the symmetrized thermal expansion coefficient with Γ3 symmetry αu. According
to Eq. (2.39), αu can be calculated with the help of α‖ and β by using the equation

αu =
√

3

(
α‖ −

1

3
β

)
=

nPrgΓ3

(c0
11 − c0

12)/2

∂〈O0
2〉

∂T
. (5.1)

αu is shown together with the respective CEF simulation results in Fig. 5.8(a). As evi-
denced by Fig. 5.7(c), a sizable volume expansion only exists at small magnetic field, which
explains that the temperature dependencies of α‖ and αu are nearly identical at elevated
magnetic field, where β is negligible small. In analogy to α‖ and α⊥, also the simulated
and experimentally determined αu data sets deviate substantially from each other at low
magnetic field. To put these deviations into context, the quadrupole-field susceptibility
χF

Q is considered, which quantifies the quadratic splitting of 〈O0
2〉 as a function of a small

magnetic field H ‖ [001] and is therefore defined as

χF
Q =

∂〈O0
2〉

∂(µ0H)2

∣∣∣
H→0

. (5.2)

As pointed out in Section 4.1.2 on the example of PrIr2Zn20, the initial quadratic field
dependence of 〈O0

2〉 stems from the magnetic field induced mixing of the Γ3 ground and the
Γ4 first excited state. Note that a free quadrupole moment also couples quadratically to
magnetic field [73]. This effect can, however, be considered to be small as compared to the
quadratic splitting of the ground state doublet that arises from the field induced mixing of
the ground and the first excited state. Provided that the applied magnetic field H ‖ [001]
is small, so that the quadratic coupling between quadrupole moment and magnetic field
holds true in the considered temperature range, the field induced contribution αu shows
proportionality to ∂Tχ

F
Q. It then holds

αu =
nPrgΓ3

(c0
11 − c0

12)/2

∂〈O0
2〉

∂T
=

nPrgΓ3

(c0
11 − c0

12)/2
(µ0H)2

∂χF
Q

∂T

∣∣∣
H→0

. (5.3)

This relation suggests that the measurement of the symmetrized thermal expansion coef-
ficient αu is a direct and elegant means to deduce the quadrupole-field susceptibility that
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Figure 5.8: (a) Thermal expansion coefficient with Γ3 symmetry αu as a function of tem-
perature at different magnetic fields H ‖ [001]. In addition, CEF calculations
are shown as dashed lines that use the CEF parameters W = −1.50 K and
x = 0.537 as well as a quadrupole-strain coupling constant gΓ3 = −28.9 K.
(b) Temperature dependence of the quadrupolar Grüneisen ratio Γu/(µ0H)2

at various magnetic fields H ‖ [001] and the anticipated temperature depen-
dence of the single-impurity quadrupole Kondo effect as a black solid line. The
inset illustrates αu/(µ0H)2 as a function of temperature at selected magnetic
fields. Due to a low signal to noise ratio, the 0.5 T and 1 T data was trun-
cated at high temperatures for reasons of clarity. The additionally shown black
solid and dashed lines indicate the anticipated temperature dependencies of
the single-impurity quadrupole Kondo effect ∼ T−1 and a fully localized Γ3

ground state doublet ∼ T−2, respectively.
This figure is also included in Ref. [134].

quantifies the quadratic splitting of the quadrupolar ground state doublet in magnetic
field. In order to verify the CEF temperature dependence of χF

Q, the CEF calculation
detailed in Fig. 5.8(a) is recalled and analyzed more meticulously at low magnetic field.
Figure 5.9 shows the already in Fig. 5.8(a) presented CEF thermal expansion coefficient
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Figure 5.9: Simulated CEF thermal expansion coefficient with Γ3 symmetry plotted as
αu/(µ0H)2 as a function of temperature at different magnetic fields H ‖ [001].
The simulation is based on the CEF parameters W = −1.50 K and x = 0.537
and on a quadrupole-strain coupling constant gΓ3 = −28.9 K. The inset dis-
plays the same data shown on a double logarithmic scale.
This figure is also included in Ref. [134, SM].

with Γ3 symmetry normalized to the second power of magnetic field αu/(µ0H)2 as a func-
tion of temperature at various magnetic fields H ‖ [001]. The inset shows the same data
on a double logarithmic scale. As expected, the αu/(µ0H

2) curves fall on top of each other
at high temperature but deviate at low temperatures. Note, only when temperature is
large as compared to the field induced splitting of the Γ3 ground state, proportionality
between αu and ∂Tχ

F
Q can be expected. To deduce the temperature dependence of χF

Q,
the symmetrized thermal expansion coefficient αu is analyzed at low magnetic field, where
〈O0

2〉 depends quadratically on magnetic field in the considered temperature range. The
latter condition is fulfilled7 at a low magnetic field of 0.5 T, where the CEF simulation
shown in Fig. 5.9 suggests αu/(µ0H)2 ∼ 1/T 2. This, in turn, implies that χF

Q ∼ 1/T in the
temperature range 0.05 K < T < 4 K. Strikingly, this temperature dependence is in line
with the one of the quadrupole-strain susceptibility of a fully localized non-Kramers Γ3

doublet χF
Q ∼ χQ ∼ 1/T . For details on the quadrupole-strain susceptibility and its Curie-

type temperature dependence, it is referred to Section 2.3.2. Since the quadrupole-strain
susceptibility is renormalized from a Curie-type 1/T to a log 1/T temperature dependence
when the single-impurity quadrupole Kondo effect is present, it is justified to assume that
the quadrupole-field susceptibility undergoes the same renormalization to a logarithmic
temperature dependence χF

Q ∼ χQ ∼ log 1/T . This implies for fully localized quadrupole
moments and in presence of a small symmetry breaking magnetic field H ‖ [001] that
εu ∼ H2/T and αu ∼ H2/T 2. On the other hand, for quadrupole Kondo hybridized
quadrupole moments one expects εu ∼ H2 log 1/T and αu ∼ H2/T . To verify whether the

7In the here considered temperature range from 0.05 K to 4 K, the quadratic coupling between 〈O0
2〉

and magnetic field is given up to a magnetic field of approximately 0.5 T. This becomes evident from the
simulated longitudinal strain plotted as a function of (µ0H)2, which is shown in the appendix of this thesis.
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experimental data is in line with this theoretical prediction, the experimentally determined
symmetrized thermal expansion coefficient with Γ3 symmetry normalized to magnetic field
αu/(µ0H)2 for H ‖ [001] is plotted on a double logarithmic scale in the inset of Fig. 5.8(b).
Note, as the data at 0.5 T and 1 T have a substantial noise level at high temperatures, the
noisy high temperature data was cut off in this plot for reasons of clarity. The additionally
plotted black solid and dashed lines indicate the temperature dependencies expected for
the single-impurity quadrupole Kondo effect ∼ T−1 and for a fully localized Γ3 ground
state doublet ∼ T−2. Indeed, the experimentally obtained data can be very well scaled
by (µ0H)2 and its temperature dependence for µ0H ≤ 1 T and T < 0.4 K is in very
good conformity with the theoretically expected single-impurity quadrupole Kondo be-
havior. In addition, the plot nicely shows that the system crosses over at around 0.6 K
from a single-impurity quadrupole Kondo hybridized state, where αu/(µ0H

2) ∼ 1/T , to a
fully localized state, where αu/(µ0H

2) ∼ 1/T 2. The found behavior is in excellent agree-
ment with the (c11 − c12)/2 elastic constant measured by Yanagaisawa et al. [44], which
shows a logarithmic temperature variation below 0.3 K and a Curie-type 1/T dependence
above 1 K. For µ0H > 1 T, the characteristic low temperature divergence in αu/(µ0H

2)
is steadily suppressed, as the quadratic splitting of the ground state doublet begins to
dominate over the quadrupole Kondo physics. An additional perturbation arises from the
magnetic field induced linear splitting of the two equivalent screening channels that over
screen the quadrupole moment. The very good conformity between experiment and the-
ory at low magnetic field provides direct evidence for the formation of the single-impurity
quadrupole Kondo effect in highly diluted Y1−xPrxIr2Zn20 and is fully in line with the
previous specific heat, electrical resistivity and elastic constant results [42–44,94].

To further characterize the possible single-impurity quadrupole Kondo ground state,
the Grüneisen parameter Γ is employed. As explicitly discussed before, the bulk Grüneisen
parameter ΓB calculates as the ratio of the volume thermal expansion to the specific heat
and diverges at a pressure sensitive QCP, where hydrostatic pressure serves as a direct
control parameter of the criticality [54]. Such a divergence in ΓB was found in a variety
of HF metals that are located in vicinity of a hydrostatic pressure sensitive magnetic
QCP [11]. By contrast, in the case of the single-impurity quadrupole Kondo critical
point, a volume Grüneisen divergence is not expected. While hydrostatic pressure would
certainly enhance the quadrupole Kondo hybridization, it does not break cubic symmetry
and is therefore not effective to tune a system away from the single-impurity quadrupole
Kondo critical point. Instead, the application of an uniaxial stress with Γ3 symmetry,
i.e. an uniaxial stress along a cubic 〈100〉 direction, couples linearly to the ground state
doublet and is therefore a highly effective control parameter to drive a system away from
its single-impurity quadrupole Kondo fixed point. A discussion with M. Garst revealed
that this can be seen as an example of elastic QC discussed by Zacharias et al. [61]. In
consequence, the respective Grüneisen parameter Γu is expected to diverge at the single-
impurity quadrupole Kondo critical point. Γu calculates as the ratio of the just discussed
thermal expansion coefficient with Γ3 symmetry αu to the molar specific heat Cm as

Γu = Vm
αu

Cm
. (5.4)

Here, Vm = 2.154× 10−4 m3/mol is the molar volume, determined as Vm = (NA × a3)/Z,
where NA is the Avogadro constant, a = 14.197 × 10−10 m [129] the lattice parameter
of a single crystal with a similar Pr doping of x = 0.044 and Z = 8 the number of
formula units per unit cell [25]. As the quadrupolar Kondo effect leads to αu ∼ H2/T and
Cm ∼ T log 1/T , the respective Grüneisen parameter diverges as Γu ∼ H2/(T 2 log 1/T )
at the single-impurity quadrupole Kondo critical point. The experimentally determined
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Figure 5.10: 4f contribution to the molar specific heat of Y1−xPrxIr2Zn20 with x = 0.044
as a function of temperature at various magnetic fields H ‖ [001]. Cm is
corrected for a lattice, a nuclear quadrupole and a magnetic nuclear (only
for the data measured at µ0H > 0 T) contribution. The here shown specific
heat data was measured and analyzed by Y. Yamane and S. Bachus. The
high temperature part of Cm comes from Ref. [94].
This figure is also included in Ref. [134, SM].

Grüneisen parameter normalized to the second power of magnetic field Γu/(µ0H)2 as a
function of temperature at various magnetic fieldsH ‖ [001] is shown in Fig. 5.8(b). At low
magnetic field µ0H ≤ 1 T, the experimentally obtained data is in excellent agreement with
the theoretical expectation, which is shown as a black solid line. This provides additional
evidence for the quadrupolar Kondo nature of the ground state. The molar specific heat
Cm used for the Grüneisen calculation was measured and analyzed by Y. Yamane and S.
Bachus. The measurement was carried out on a single crystal that originates from the
same batch as the single crystal used for the thermal expansion measurement and has a
similar Pr doping level of x = 0.044. This is the same single crystal whose specific heat was
already detailed before in Fig. 5.3 [94]. As the specific heat data in Fig. 5.3 has a quite high
noise level at low temperatures, Y. Yamane and S. Bachus remeasured the specific heat of
the single crystal at T ≤ 0.8 K by use of a better optimized experimental setup. For the
Grüneisen analysis, this remeasured data was combined with the high temperature data at
T > 0.8 K from Ref. [94], which was already displayed in Fig. 5.3. The so derived specific
heat data by Y. Yamane and S. Bachus is presented in Fig. 5.10. Note that Cm is corrected
for a nuclear contribution and a lattice contribution. The nuclear contribution contains a
quadrupolar component, which is already present in zero magnetic field, and a conventional
magnetic field induced component. Y. Yamane determined the lattice contribution from
a specific heat measurement on the reference compound YIr2Zn20. Despite the slightly
higher Pr concentration of the single crystal with x = 0.044 used for the specific heat
measurement as compared to the thermal expansion single crystal with x = 0.036, the
sample employed for the specific heat measurement resides still in the single-impurity
quadrupole Kondo regime, as Yamane et al. [42] clearly demonstrated. As both single
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crystals have nearly the same Pr concentration, which is likely within the error bar of the
determination method, αu and Cm were not normalized to the Pr concentration before
performing the Grüneisen analysis. It is noted that the Grüneisen parameter Γu at 0.5 T
was calculated by using the Cm data measured at 0 T, as no data at 0.5 T exists. As
Fig. 5.10 clearly shows, the specific heat curves at 0 T and 1 T are, within the error bar
of the experiment, nearly identical. Consequently, the related error can be considered as
negligible small. For the calculation of Γu at 1 T, 2 T and 4 T, αu and Cm data sets were
used, which were measured at an identical magnetic field.

After discussing the field induced quadrupolar response, which is in prefect agreement
with the theoretical expected single-impurity quadrupole Kondo behavior, the focus is now
on the unconventional divergence in the volume thermal expansion coefficient β found at
zero and small magnetic field. To recall the data, which was already introduced at the
beginning of this subsubsection, β at various magnetic fields H ‖ [001] is plotted again
in Fig. 5.11(a). The inset displays the zero field volume thermal expansion coefficient
β = 3α[001] normalized to the Pr concentration x for various x. The fact that the di-
vergence in β is already suppressed by a relatively small magnetic field of µ0H = 1.5 T
explicitly excludes a nuclear Schottky contribution as a possible cause for the unconven-
tional volume collapse. In case of a nuclear Schottky contribution, a continuous increase
of the divergence in β with magnetic field would be expected. Furthermore, a nuclear
contribution usually does not manifest itself in the thermal expansion. The fact that the
divergence appears in a similar magnetic field range as the single-impurity quadrupole
Kondo behavior in αu, Cm/T [94] and (c11 − c12)/2 [44], indicates a possible relation
between the volume divergence and the single-impurity quadrupole Kondo ground state.
Before providing possible scenarios that may account for this peculiar finding, extrinsic
causes for the volume divergence should be excluded. In this regard, the small uniaxial
stress exerted via the flat springs of the dilatometer on the single crystal has to be taken
into consideration. As the thermal expansion coefficient of the x = 0.036 single crys-
tal was measured along a cubic 〈100〉 direction, the small uniaxial stress exerted by the
dilatometer results in a strain εu that couples linearly to the Γ3 doublet. As shown by
Yanagisawa et al. [44], the related (c11 − c12)/2 elastic constant of the material displays
a logarithmic temperature variation at low temperature. According to Hook’s law, this
suggests that an unaixial stress applied along a cubic 〈100〉 direction induces an additional
contribution to the thermal expansion coefficient α[001] ∼ ∂T (c11 − c12)/2. To elucidate
whether the experimentally obtained thermal expansion contains such an uniaxial stress
induced contribution, an additional thermal expansion measurement along the [111] direc-
tion of a similarly doped single crystal with x = 0.033 was carried out. This experiment is
effective to cross-check the impact of uniaxial stress on the experimentally obtained α[001]

data, as an uniaxial stress induced strain ε[111] does not couple linearly to the Γ3 ground
state doublet. An extrinsic uniaxial stress induced contribution to the volume thermal
expansion is therefore not expected for a measurement along the crystallographic [111]
direction. Based on the fact that unstrained cubic materials feature an isotropic thermal
expansion, meaning that α[001] = α[111], possible deviations between these two measure-
ments reveal unambiguously the presence of an uniaxial stress induced contribution to
α[001]. Figure 5.11(b) shows a comparison between α[001], measured on the single crystal
with x = 0.036, and α[111], measured on the single crystal with x = 0.033, at zero magnetic
field. Both measurements were performed under small uniaxial stresses of σ[001] ≈ −4 MPa
and σ[111] ≈ −5 MPa, respectively. This small uniaxial stress is an inevitable side effect
of a relative length change measurement in the miniaturized capacitive dilatometer. The
uniaxial stresses were estimated based on the force of F ≈ 4 N [112], exerted by the flat
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Figure 5.11: (a) Temperature variation of the volume thermal expansion coefficient β =
α‖ + 2α⊥ at different magnetic fields H ‖ [001]. The inset displays the zero
magnetic field volume thermal expansion coefficient β = 3α[001] normalized
to the Pr concentration x, for three different x values. (b) Zero magnetic field
thermal expansion coefficients α[001] and α[111] as a function of temperature at
low uniaxial stresses of σ[001] ≈ −4 MPa and σ[111] ≈ −5 MPa, respectively.
(c) Temperature dependence of α[001] at low and high uniaxial stresses of
σ[001] ≈ −4 MPa and σ[001] ≈ −56 MPa, respectively. (d) Temperature de-
pendence of α[111] at low and high uniaxial stresses of σ[111] ≈ −5 MPa and
σ[111] ≈ −78 MPa, respectively. In addition, the zero field molar specific heat
Cm, measured by Y. Yamane and S. Bachus, is shown in red. The high tem-
perature part of Cm comes from Ref. [42]. A fit to α[111] by use of the relation
αfit = γCm + bT−1 is plotted as a blue solid line. The inset shows the bulk
Grüneisen parameter ΓB = Vm(3α[111]/Cm) as a function of temperature. The
blue solid line is a fit to the data by the equation Γfit = 3Vmγ+3Vmb/(TCm).
This figure is also included in Ref. [134].
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springs of the miniaturized dilatometer8 and the cross sectional areas of the examined
single crystals. The cross sectional area was calculated from the length values of the two
crystal sides perpendicular to the measurement direction, which are provided in Table
5.1. Note that this estimation is based on the assumption that the single crystals have a
perfectly cuboid shape. The sketches of the investigated single crystals, which are shown
in Fig. 5.6, indicate that this assumption is approximately justified. A comparison of the
α[001] and α[111] data sets shown in 5.11(b) reveals small differences between the two mea-
surements. In particular, the stronger divergence of α[001] as compared to α[111] suggests
that the former expansivity contains a small but finite uniaxial stress induced contribu-
tion. Nevertheless, also α[111] displays a clear divergence upon cooling, indicating that
the divergence in α[001] can only be partially triggered by the small uniaxial stress exerted
by the flat springs of the dilatometer. An intrinsic divergent volume contribution must
therefore also be present. To obtain further proof for this scenario, the uniaxial stress
effect was examined more meticulously. To do so, α[001] and α[111] were measured in an
uniaxial stress dilatometer [113]. The flat springs of this dilatometer are more rigid and
the force acting on the single crystalline sample approximately fifteen times larger than the
force exerted by the miniaturized capacitive dilatometer [112, 113]. Figure 5.11(c) shows
a comparison between α[001] measured at low and high uniaxial stresses of σ[001] ≈ -4 MPa
and σ[001] ≈ -56 MPa, respectively. The force exerted by the uniaxial stress dilatometer on
the sample in measurement direction was determined via the capacitance value at which
the dilatometer was operated. This was done via the relation between the spring force and
the capacitance value of the dilatometer derived by Küchler et al. [113], which is shown
in Fig. 3.7. The α[001] data obtained in the uniaxial stress dilatometer was measured at
a capacitance value of C ≈ 19.5 pF, which corresponds to a force F ≈ 58.7 N. By taking
the single crystal’s cross sectional area into account, the uniaxial stress on the sample
in measurement direction consequently calculates as σ[001] ≈ −56 MPa. As a substan-
tial uniaxial stress acted on the single crystal in this experiment, it was examined with
respect to a possible damage after the measurement was finished, whereby no evidence
for a damage of the single crystal was found. The measurement in the uniaxial stress
dilatometer clearly confirms the anticipated enormous impact of σ[001] on α[001]. Under a
relatively high uniaxial stress of σ[001] ≈ −56 MPa, the divergent behavior in α[001] van-
ishes. Instead a maximum arises at a temperature of approximately 0.11 K. This behavior
is reminiscent of α‖ at a magnetic field of 2 T, as shown in Fig. 5.7(a), which is plausible,
as both uniaxial stress and magnetic field applied along the [001] direction split the Γ3

doublet. The suppression of the low temperature divergence in α[001] demonstrates that
the applied uniaxial stress of σ[001] ≈ −56 MPa is sufficient to induce a splitting of the Γ3

doublet that is strong enough to quench the quadrupole Kondo physics at low temper-
atures. By contrast, a notable impact of uniaxial stress σ[111] on α[111] is not expected.
In order to verify this assumption experimentally, α[111] was also measured in the uniax-
ial stress capacitive dilatometer. A comparison between α[111] at low and high uniaxial
stresses of σ[111] ≈ −5 MPa and σ[111] ≈ −78 MPa is provided in Fig. 5.11(d). The mea-
surement of α[111] in the uniaxial stress dilatometer was carried out at a capacitance value
of C ≈ 19.8 pF, which corresponds to a force of F ≈ 59.1 N. Taking the cross sectional
area of the single crystal into account yields an uniaxial stress value of σ[111] ≈ −78 MPa.
In analogy to the single crystal with x = 0.036, also the single crystal with x = 0.033 was
examined with respect to a possible damage after the experiment. It is noted that the
uniaxial stress induced tiny cracks in the single crystal. Despite the tiny cracks, the sample

8The given force value corresponds to a capacitance of 20 pF [112], which is close to the capacitance
values at which the here shown measurement results were obtained.
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was still one piece and did not break apart. It is therefore assumed that the small damage
had no negative influence on the measurement result. Strikingly, the two α[111] data sets
obtained in the miniaturized and the uniaxial stress dilatometer do not differ from each
other. This confirms unambiguously that the impact of σ[111] on α[111] is negligible and the
low temperature divergence in α[111] indeed caused by a volume change. As the volume
thermal expansion coefficient relates to the pressure dependence of entropy via the equa-
tion β = −1/V (∂PS), the divergent β indicates the presence of a finite low temperature
entropy that is distinguished by a significant hydrostatic pressure dependence. At a first
glance, this result is surprising, as hydrostatic pressure does not break the material’s cubic
crystal symmetry and is therefore unsuitable to lift the degeneracy of the non-Kramers
Γ3 ground state doublet. A release of the low temperature entropy under hydrostatic
pressure is consequently not expected. To emphasize the peculiarity of this finding, the
molar specific heat Cm of a single crystal from the same batch with x = 0.044 is shown in
Fig. 5.11(d) in red color. This is the same specific heat data set measured by Y. Yamane
and S. Bachus, which was already presented in Fig. 5.10 in the context of the quadrupolar
Grüneisen parameter analysis. It is recalled that the Cm data is corrected for a zero field
nuclear quadrupole Schottky contribution and a lattice contribution. By contrast, the
two data sets of α[111] obtained at different uniaxial stresses are only corrected for the
background contribution of the respective capacitive dilatometer. The suppression of the
divergent volume thermal expansion at relatively small magnetic fields, as shown in Fig.
5.11(a), excludes a nuclear Schottky contribution to α[111] and the vanishment of α[111] at
4 K implicates that the lattice contribution to α[111] is insignificantly small in the examined
temperature range. The distinctly different behavior of α[111] and Cm is a quite surprising
finding, as the Grüneisen law suggests proportionality between the two thermodynamic
quantities at mK temperatures, where the material should be governed by a single energy
scale [54]. While Cm exhibits a distinct maximum at around 0.2 K, α[111] diverges down
to the lowest measured temperature of 0.07 K. To recall, Yamane et. al. [42,43] attributed
the maximum in Cm to the single-impurity quadrupole Kondo effect as Cm/T ∼ log 1/T .
The clear difference between the specific heat and the volume thermal expansion coeffi-
cient implies the breakdown of Grüneisen scaling, which usually arises in HF metals at a
QCP [11,58]. The bulk Grüneisen parameter, calculated as ΓB = 3Vmα[111]/Cm, is shown
in the inset of Fig. 5.11(d). ΓB displays an unconventional divergence at low temperature,
which resembles the temperature dependence found in Γu. Note, for the calculation of
ΓB, neither α[111] nor Cm were normalized to the Pr concentration based on the same
reasoning discussed before in the context of Γu.

In order to identify the underlying mechanism that triggers the surprisingly different
behavior in the specific heat and the bulk thermal expansion as well as the divergence
in the bulk Grüneisen parameter, in the following, different scenarios are put under the
microscope. As mentioned before, a divergence of the bulk Grüneisen parameter appears,
for instance, in selected HF metals close to a magnetic QCP [58]. As the low temperature
Kondo energy scale displays a significant pressure dependence, application of the latter is
a highly effective means to tune a HF metal between its AFM ordered, QC and HF liquid
ground states [11]. In the case of the single-impurity quadrupole Kondo critical point,
a divergence of the bulk Grüneisen parameter is not expected, as hydrostatic pressure
preserves the cubic crystal symmetry and does not tune the system away form its single-
impurity quadrupole Kondo critical state. This implies a temperature independent ΓB,
whose magnitude directly reflects the pressure dependence of the quadrupole Kondo cou-
pling constant. Consequently, a straightforward explanation in analogy to the magnetic
HF metals cannot account for the experimentally observed divergence in the Grüneisen
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parameter of highly diluted Y1−xPrxIr2Zn20. To shed light on this peculiar experimental
finding, M. Garst performed calculations, which take the elastic properties of the non-
Kramers ground state doublet into account and revealed two possible scenarios that may
account for the divergence in the volume thermal expansion emerging in highly diluted
Y1−xPrxIr2Zn20. The following lines review the key results of the calculations carried out
by M. Garst, which comprise Eq. (5.5) and Eq. (5.6) and the associated explanations.

A hallmark of the single-impurity quadrupole Kondo effect is the related residual
entropy. In a real system, however, as temperature approaches zero, this entropy will
be ultimately released via the elastic coupling, i.e. the system undergoes a tetragonal
distortion and the degeneracy of the ground state doublet is lifted. This lattice instability
is triggered by the softening of the respective symmetrized elastic constant (c11 − c12)/2.
As pointed out before, the strength of the coupling between this instability and the lattice
is modulated by the quadrupole-strain coupling constant gΓ3 . A first calculation carried
out by M. Garst revealed that in case the quadrupole-strain coupling constant depends
on hydrostatic pressure, the divergence in χQ, which causes the softening of (c11− c12)/2,
also manifests itself in the volume, as described by the following equation that suggests a
correction to β due to dynamical strain fields

δβDSF = −1
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where χQ = AS
Q log 1/T , under the assumption of quadrupolar Kondo correlations, which

is justified based on the elastic constant results of Yanagisawa et al. [44] and the results
on αu discussed before. AS

Q is a constant and 〈ε2
Γ3
〉0 are the zero point fluctuations of the

Γ3 doublet. A notable result is the proportionality between δβDSF and the temperature
derivative of the quadrupole-strain susceptibility ∂TχQ. Note that δβDSF is only sizable
when the term g2

Γ3
nPr〈ε2

Γ3
〉0AS

Q displays a pronounced pressure dependence, whereby the
contribution arising from the pressure dependence of the quadrupole-strain coupling con-
stant ∂P g

2
Γ3

must be the dominant one.

In addition, M. Garst considered the impact of disorder induced static strain fields,
which locally break the cubic symmetry at a Pr site, on the volume thermal expansion
coefficient. In the materials examined in the scope of this work, such disorder may, for
instance, be evoked by the partial substitution of the Pr3+ ions by Y3+ ions. As the Y3+

ions exhibit a smaller ionic radius than the Pr3+ ions, the substitution must alter the local
point group symmetry at a Pr site. Even though the Pr doping of the here investigated
single crystal is with 3.6 % very small and the sample quality very high, as evidenced by
a RRR of 160 [129], tiny strain fields cannot be excluded. As the degeneracy of the Γ3

doublet is easily lifted by such strain fields, even in the dilute limit, a tiny splitting of the
Γ3 ground state doublet is likely present. The large value of β indicates that these local
strain fields must be highly susceptible to an externally applied hydrostatic pressure, which
triggers another indirect coupling between the quadrupole Kondo physics and the volume.
The essence of the second calculation carried out by M. Garst is that substitution induced
static strain fields evoke another correction to the volume thermal expansion, which reads
as

δβSSF ∼ n3
Pr

∂χQ

∂T

QKE∼ 1

T
, (5.6)

and therefore shows the same temperature dependence as δβDSF. The dependence of
δβSSF on the third power of nPr indicates that this correction is likely quite small for
small doping but grows significantly by increasing Pr concentration. However, not only
static strain fields caused by the Pr disorder, but also the ones related to dislocations
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in the crystal structure can principally lift the degeneracy of the ground state doublet.
According to M. Garst, the contribution to δβSSF arising from conventional dislocations
exhibits a linear dependence on the Pr density δβSSF ∼ nPr∂TχQ. In the case of the highly
diluted single crystals, it is therefore conceivable that the static strain field contribution
induced by dislocation dominates over the one induced by Pr disorder. In summary, M.
Garst could show theoretically that in presence of the single-impurity quadrupole Kondo
effect, both dynamical and static strain fields can principally induce the same divergent

correction to the volume thermal expansion δβ ∼ ∂TχQ
QKE∼ 1/T .

When combining the two just specified contributions with the one arsing from the
quadrupole Kondo coupling, which triggers the logarithmic divergence in Cm/T , the vol-
ume thermal expansion coefficient β of a single-impurity quadrupole Kondo hybridized
metal reads as

β = βQKE + δβDSF,SSF = γCm +
b

T
. (5.7)

Note that the contribution to β arising from the quadrupole Kondo coupling βQKE is es-
timated from the specific heat data Cm in zero field. As a low temperature divergence
was not found in the Cm data, the contribution arising from static or dynamical strain
fields, which is expected to show the same temperature dependence in the specific heat
and in the volume thermal expansion coefficient, must be insignificant small. The scaling
parameter γ in Eq. (5.7) denotes the Grüneisen parameter, which quantifies the hydro-
static pressure dependence of the quadrupole Kondo coupling constant. The parameter b
in the second term is simply a constant. In order to verify the applicability of Eq. (5.7)
to the experimentally obtained data, the blue solid line in Fig. 5.11(d) shows a fit to
α[111] by using Eq. (5.7). The excellent agreement with the experimentally obtained data
confirms the theoretical prediction and reveals that the low temperature thermal expan-
sion of Y1−xPrxIr2Zn20 with x = 0.036 is indeed governed by two critical contributions.
As both dynamical and static strain fields yield a contribution to β with the same 1/T
temperature dependence, it is difficult to judge, which of the two contributions causes the
divergent behavior in α[111]. To further clarify this issue, in the following, the specific
heat and the bulk Grüneisen parameter are taken into account. A direct consequence
of the different behavior in the low temperature specific heat Cm/T ∼ log 1/T and the
thermal expansion α[111] = γCm + b/T is the divergence of the bulk Grüneisen parameter
ΓB = 3Vmγ + 3Vmb/(CmT ), which is indicated by the blue solid line in the inset of Fig.
5.11(d). Interestingly, the temperature dependence of ΓB resembles the behavior found in
the quadrupolar Grüneisen parameter Γu ∼ H2/(T 2 log 1/T ).

The divergent and significantly enhanced ΓB suggests that the related low temperature
energy scale E∗ shows a considerable pressure dependence, as [54]

ΓB ∼
∂E∗

∂p
. (5.8)

To compare the magnitude of the obtained bulk Grüneisen parameter with the one of
a magnetic HF metal at a QCP, the maximal value of ΓB ≈ 2.15 GPa−1 at the lowest
measured temperature is multiplied by the background bulk modulus c0

B in order to obtain
a dimensionless Grüneisen parameter. For this estimation, the background bulk modulus
c0

B of PrIr2Zn20 was used, as no literature value for the diluted Y1−xPrxIr2Zn20 system
exists. The value c0

B = (c0
11 +2c0

12)/3 = 94.05 GPa was estimated from the c0
11 = 161.7 GPa

[37] and (c0
11 − c0

12)/2 = 50.74 GPa [37] background elastic constants of PrIr2Zn20. This
yields a dimensionless Grüneisen parameter of ΓB ≈ 202 at 0.07 K, whose magnitude is
comparable to magnetic HF metals at a QCP [58]. For the quadrupole-strain coupling
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term, such a substantial pressure dependence is unexpected. Certainly, the application
of hydrostatic pressure would lead to an increase of the quadrupole-strain interaction
constant. However, a pressure dependence that has the same order of magnitude as the
one of a HF metal at a QCP is quite surprising. From literature it is known that the free
electron gas is described by an electronic Grüneisen parameter of Γelec = 2/3 [52, p. 641],
which would be the order of magnitude also expected for the quadrupole-strain coupling.
Next, the likelihood of the disorder scenario, which deals with disorder induced local
static strain fields is briefly discussed. Provided that the cubic symmetry of the system
is slightly broken by static strain disorder, it is conceivable that also hydrostatic pressure
may directly couple to the static strain fields and therefore serve as an indirect tuning
parameter for the splitting of the Γ3 ground state doublet. A large Grüneisen ratio is
therefore generally more conceivable than for the dynamical strain field scenario. The fact
that the static strain field contribution evoked by the Pr disorder to β must scale with
the third power of nPr, casts, however, doubt on whether this effect can really account for
the observed behavior. More likely would be a contribution that arises from conventional
dislocations, which would scale linearly with nPr, as pointed out a a few lines before.

Consequently, even though both theoretical scenarios proposed by M. Garst imply a
contribution to the volume thermal expansion whose theoretical temperature dependence
is principally in line with the experimental finding, it is difficult to make a final statement
on which of the two contributions may trigger the unconventional divergent behavior in
the volume thermal expansion. Further experiments on the highly diluted single crystals
may be helpful to clarify this issue. In order to quantify the pressure dependence of the
quadrupole-strain coupling constant gΓ3 , measurements of the (c11−c12)/2 elastic constant
under hydrostatic pressure would be a powerful means. In order to examine the impact of
static strain fields more in detail, volume thermal expansion measurements on a series of
differently doped Y1−xPrxIr2Zn20 single crystals in the highly diluted range would allow to
specify a possible scaling of the low temperature volume divergence with nPr. In addition,
assessing the impact of local strain fields on the quadrupole Kondo physics by using other
suitable local probes would be desirable.

Moderately Diluted Single Crystals (x = 0.09 and x = 0.49)

In this subsubsection, the thermal expansion results obtained on the two moderately
diluted Y1−xPrxIr2Zn20 single crystals with x = 0.09 and x = 0.49 are detailed. Purpose of
the measurements was to gain better understanding of the quadrupole Kondo ground state
by systematically studying the evolution of the unconventional behavior with increasing
Pr doping. Furthermore, the results are compared to the previously published specific
heat and electrical resistivity data by Yamane et al. [42, 43].

Figure 5.12 shows the temperature dependence of the longitudinal thermal expansion
coefficient α‖ of single crystalline Y1−xPrxIr2Zn20 with x = 0.09 at various magnetic
fields H ‖ [001]. Additionally shown dashed lines are CEF simulations. The quadrupo-
lar expectation values used to calculate the CEF thermal expansion were simulated by
use of the Mathematica based CEF program provided by T. Onimaru, which evaluates
the Hamiltonian specified by Eq. (4.12). In order to carry out the simulation, the CEF
parameters W = −1.44 K and x = 0.537 were employed. Adjusting the W parameter
to a value of W = −1.44 K was necessary in order to obtain the best accordance with
the experimentally measured data at 10 T. Note that this value is slightly smaller than
the value of W = −1.50 K used in the preceding subsubsection for the simulation of the
thermal expansion of the single crystal with x = 0.036. A possible explanation for the
reduction of W , which implies a weakening of the CEF effect, is the slightly higher Pr
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Figure 5.12: Longitudinal thermal expansion coefficient α‖ as a function of temperature of
Y1−xPrxIr2Zn20 with x = 0.09 at various magnetic fields H ‖ [001]. The zero
field thermal expansion coefficient is also included in Ref. [134]. Additionally
shown dashed lines are CEF calculations that employ the CEF parameters
W = −1.44 K and x = 0.537 and a quadrupole-strain coupling constant
gΓ3 = −38.0 K.

concentration of the here examined single crystal as compared to the single crystal with
x = 0.036. Another parameter necessary for the simulation is the number of Pr3+ ions
per volume nPr = 0.251× 1027 m−3, which was calculated by using the lattice constant of
a = 14.2017× 10−10 m [129] of a single crystal with a similar Pr doping of x = 0.085. As
(c0

11−c0
12)/2 has not yet been reported in literature for a single crystal with a Pr concentra-

tion of x = 0.09, the literature value (c0
11−c0

12)/2 = 52.771 GPa [44, SM] of a single crystal
with x = 0.034 was employed. The quadrupole-strain coupling constant was determined at
gΓ3 = −38.0 K by the usual procedure, i.e. fitting the CEF calculation to the experimen-
tally obtained data at the highest measured magnetic field of 10 T. Due to the relatively
small Pr concentration of x = 0.09, it was assumed that the quadrupole-quadrupole inter-
action is negligible small and the quadrupole-quadrupole coupling constant was therefore
set to zero in the calculation, i.e. KΓ3 = 0. Also the interaction constant between the field
induced dipole moments was neglected, i.e. K = 0. For the calculation of the longitudi-
nal thermal expansion coefficient, the contribution of a possible bulk thermal expansion
was disregarded, which follows the procedure applied before on pure PrIr2Zn20 and highly
diluted Y1−xPrxIr2Zn20 with x = 0.036. After this brief overview of the simulation pa-
rameters, the focus is now on the experimentally determined data.

The thermal expansion coefficient at zero magnetic field, which was already presented
in the preceding subsubsection, shows a maximum at around 0.4 K and decreases continu-
ously to zero as temperature declines. This behavior is in stark contrast to the divergence
in zero magnetic field that emerges in the highly diluted single crystals with x ≤ 0.036
and clearly excludes the formation of the quadrupolar Kondo effect. Based on the possi-
ble coupling between the volume and χQ by means of dynamical or static strain fields, as
discussed a few pages before, a divergent volume thermal expansion coefficient would be



122 Chapter 5. Y1−xPrxIr2Zn20

expected in presence of the single-impurity quadrupolar Kondo effect. As detailed in the
preceding subsubsection, the small uniaxial stress applied by the miniaturized capacitive
dilatometer causes an additional coupling to χQ, which would also induce a divergent con-
tribution to the thermal expansion provided that the single-impurity quadrupole Kondo
effect is present. The experimentally found suppression of the zero field thermal expansion
coefficient with declining temperature consequently excludes a single-impurity quadrupole
Kondo ground state. This finding is in very good conformity with the previously published
specific heat data obtained on a single crystal with x = 0.085 by Yamane et al. [42,43], for
which saturation in Cm/T at low temperature was reported. A possible explanation for
the breakdown of the Kondo physics and the formation of the low temperature maximum
is a splitting of the Γ3 ground state doublet due to disorder [42, 43]. If the distortion
induced splitting of the Γ3 doublet dominates at low temperature over the quadrupole
Kondo physics, a suppression of the logarithmic divergence in χQ is expected. The low
temperature maximum in the volume thermal expansion supports this scenario. Also short
range quadrupolar correlations might be a conceivable explanation [42].

Next, the longitudinal thermal expansion coefficient α‖ measured parallel to magnetic
field H ‖ [001] is detailed. As soon as a magnetic field is applied, α‖ grows in magnitude,
which is a direct consequence of the quadratic splitting of the Γ3 doublet in magnetic field.
Even though α‖ increases notably in magnitude with magnetic field, the position of the
maximum at 0.4 K does not change up to threshold magnetic field of 3 T. Surprisingly, also
for the x = 0.09 single crystal, a magnetic field induced divergence in α‖ develops at very
low temperatures, which is most pronounced at approximately 3 T. By further increasing
magnetic field, the divergence is still present but its magnitude declines. At low magnetic
field, the field induced divergence is roughly proportional to ∼ 1/T 2, as indicated by the
black dotted line in Fig. 5.12. With reference to the preceding subsubsection, this can be
interpreted as a signature of an unhybridized Γ3 doublet for which αu ∼ ∂TχF

QH
2 ∼ H2/T 2

is expected for small H ‖ [001]. Even though Yamane et al. [42, 43] suggested based on
their specific heat measurement and RTL level calculation that the ground state of the
material is likely already split, it is conceivable that a small fraction of the Pr3+ ions is
not affected by this splitting and still shows a degenerate ground state. The degeneracy
of the Γ3 ground state doublet of this small fraction of Pr3+ ions may then be broken
by the applied magnetic field. In consequence, the related αu would show proportionality
to ∂Tχ

F
Q for small H ‖ [001]. In addition, the magnitude of the experimentally found

divergence is distinctly small as compared to the CEF calculation, which is in line with
only a small fraction of the Pr3+ ions being involved in this process. On the other hand,
the thermal expansion result may also indicate that the field insensitive maximum at
around 0.4 K does not relate to the disorder induced splitting of the Γ3 ground state but
to emergent short range quadrupolar correlations. Note that in pure PrIr2Zn20 also a field
induced divergence in the low temperature thermal expansion was found inside the AFQ
ordered phase. Consequently, both the thermal expansion coefficients obtained in zero
and small magnetic fields exclude the formation of the single-impurity quadrupole Kondo
ground state in the material. Specification of the possible ground state is, however, not
possible based on the thermal expansion measurement results. Finally, the focus is on
the α‖ data obtained at intermediate and high magnetic fields. Once the aforementioned
threshold field of 3 T is breached, the maximum in α‖ at around 0.4 K begins to shift
to higher temperatures with magnetic field. For µ0H ≥ 4 T, the continuous shift of the
maximum to higher temperature and the reduction of its peak value strongly point towards
a Schottky anomaly that arises from the splitting of the Γ3 doublet in magnetic field.

In order to better classify the found behaviors, the experimentally obtained data is
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Figure 5.13: Longitudinal thermal expansion coefficient α‖ as a function of temperature
of Y1−xPrxIr2Zn20 with x = 0.49 at different magnetic fields H ‖ [001].
The thermal expansion coefficient at zero magnetic field is also included in
Ref. [134]. Additionally shown dashed lines are CEF calculations that em-
ploy the CEF parameters W = −1.36 K and x = 0.537, a quadrupole-strain
coupling constant gΓ3 = −35.8 K and a quadrupole-quadrupole interaction
constant KΓ3 = −0.0027 K.

compared with a CEF calculation in the following. In analogy to the before detailed results
on pure PrIr2Zn20 and highly diluted Y1−xPrxIr2Zn20 with x = 0.036, only the data at
high magnetic field can be reproduced by the CEF simulation. The calculation therefore
confirms the conjectured Schottky nature of the experimentally observed maximum at
elevated temperatures and high magnetic fields µ0H ≥ 6 T. Analogously to PrIr2Zn20 and
highly diluted Y1−xPrxIr2Zn20 with x = 0.036, α‖ starts to increase again well below the
Schottky maximum, which is unexpected, as the ground state should be a singlet. The
peculiar low temperature enhancement manifesting itself at high magnetic fields must
therefore be an universal feature that arises not only in the pure system but also in the
diluted samples. As a convincing explanation for this highly unconventional behavior
cannot be given at this point, future measurements have to address the high field phase
emerging at low temperatures. After discussing the thermal expansion of the single crystal
with x = 0.09, in the following, the effect of a further increasement of the Pr doping on
the thermal expansion coefficient is examined on the example of a single crystal with a
moderate Pr concentration of x = 0.49.

Figure 5.13 shows the temperature dependence of the longitudinal thermal expansion
coefficient α‖ of Y1−xPrxIr2Zn20 with x = 0.49 at various magnetic fields H ‖ [001],
whereby the additionally shown dashed lines denote CEF simulations. The quadrupolar
expectation values used to calculate the CEF thermal expansion coefficient were simulated
by use of the Mathematica based CEF program provided by T. Onimaru, which evaluates
the Hamiltonian given by Eq. (4.12). The simulation uses slightly modified CEF param-
eters of W = −1.36 K and x = 0.537. Similar to the two higher diluted single crystals,
the value of W had to be adjusted as compared to the one derived for pure PrIr2Zn20
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by inelastic neutron scattering [65] in order to achieve a good accordance between the
experimentally obtained data at 10 T and the simulated one. It is reasonable that the
W parameter estimated for the single crystal with x = 0.49 is closest to the one of pure
PrIr2Zn20 among the three diluted single crystals. Owing to the moderate Pr concen-
tration of x = 0.49, a quadrupole-quadrupole interaction of KΓ3 = −0.0027 K was used
for the simulation. The number of Pr3+ ions per volume nPr = 1.363 × 1027 m−3 was
calculated by use of the lattice parameter a = 14.2215 × 10−10 m [43, 129], which is the
one of a single crystal from the same batch having a similar Pr doping level of x = 0.44.
The quadrupole-strain coupling constant was determined at gΓ3 = −35.8 K by scaling the
simulated curve at 10 T to the experimentally determined data. Following the simulation
procedures used for the other single crystals, a possible volume contribution to the ther-
mal expansion was disregarded. It is justified to make this assumption for the moderately
doped single crystal based on the vanishment of the volume thermal expansion at high
magnetic field found both in the highly diluted and pure system. Before discussing the
simulated thermal expansion data more in detail, the focus shall be on the experimentally
obtained data.

Analogously to the single crystal with x = 0.09, the thermal expansion coefficient
measured in zero magnetic field shows a maximum at a temperature of 0.85 K and vanishes
to zero as temperature declines. By following the same line of reasoning applied to the
single crystal with x = 0.09, the absence of a divergence in the zero field thermal expansion
coefficient clearly excludes a single-impurity quadrupole Kondo ground state. Having the
specific heat measurement results by Yamane et al. [42] in mind, the maximum in the
thermal expansion can be likely assigned to short range quadrupolar correlations. Next,
the behavior in magnetic fieldH ‖ [001] is scrutinized. As soon as magnetic field is applied
to the material, a clear divergence arises in α‖ at the lowest measured temperatures. In
close resemblance to the single crystal with x = 0.09, the divergence emerging at low
magnetic field displays a temperature dependence ∼ T−2. As outlined before, this is
the theoretically expected behavior for unhybridized Γ3-type quadrupole moments in a
small symmetry breaking magnetic field H ‖ [001]. The distinctly small magnitude of
the divergence as compared to the CEF calculation suggests that only a small fraction
of the single crystal’s Pr3+ ions can be accountable for the divergent behavior at low
temperature. The maximum position in α‖ found in zero magnetic field depends only
weakly on magnetic field up to 2 T. At magnetic fields of 4 T and 6 T a minor shift of the
maximum to higher temperature can be observed. For µ0H ≥ 8 T, the maximum shifts
noticeably to higher temperatures and its peak value decreases. This clearly indicates
the Schottky nature of the high field maximum. Unexpectedly, and in analogy to the
two lower doped Y1−xPrxIr2Zn20 single crystals and to PrIr2Zn20, at high magnetic field,
α‖ starts to increase again well below the Schottky maximum temperature. In concert
with the other single crystals investigated in this thesis, the CEF calculation can only
explain the physical effects emerging at high magnetic field. By contrast, at low magnetic
field and low temperature, the experimentally found behavior deviates substantially from
the theoretical expectation for a fully localized quadrupolar ground state doublet. In the
moderately diluted single crystals with x = 0.49, the deviations can likely be related to
emerging short range quadrupolar correlations [42].

In summary, the behaviors found in the thermal expansion coefficients of the single
crystals with x = 0.09 and x = 0.49 are reminiscent of each other. In both samples,
the absence of a divergence in the thermal expansion coefficient at zero magnetic field
clearly excludes the quadrupole Kondo effect as the ground state of the system. Yamane
et al. [42, 43] argued based on specific heat and electrical resistivity measurements that
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the ground state is likely a short range quadrupole ordered or disordered state. While this
conjecture is supported by the thermal expansion measurement, it is difficult to specify
which of these two mechanisms is accountable for the suppression of the single-impurity
quadrupole Kondo effect.

5.2.3 Magnetostriction

Besides the just detailed thermal expansion, also the magnetostriction of the three differ-
ently doped Y1−xPrxIr2Zn20 single crystals with x = 0.036, x = 0.09 and x = 0.49 was
measured as a function of H ‖ [001]. In case of the highly diluted single crystal with
x = 0.036, both longitudinal and transverse magnetostriction measurements were carried
out in order to deduce the volume magnetostriction. For details on the measurement
process of the longitudinal and transverse magnetostriction it is referred to Section 5.2.2,
where the alignment process of the single crystalline sample in magnetic field was explicitly
discussed. In addition, the longitudinal magnetostriction of two moderately doped single
crystals with x = 0.09 and x = 0.49 was measured for reasons of comparison.

The longitudinal magnetostriction of the single crystal with x = 0.036, which is pre-
sented in Fig. 5.14(a), was measured together with Y. Yamane while he was staying at the
University of Augsburg for a four week research visit. All other magnetostriction measure-
ment results presented in this subsection, namely the transverse magnetostriction of the
single crystal with x = 0.036 and the longitudinal magnetostriction of the single crystals
with x = 0.09 and x = 0.49 were obtained by me alone. A preliminary analysis before
dilatometer background subtraction of the longitudinal, transverse and volume magne-
tostriction of the single crystal with x = 0.036 presented in Fig. 5.14 of this subsection,
was already shown in the doctoral thesis of Y. Yamane [129].

Highly Diluted Single Crystal (x = 0.036)

Together with part of the just detailed thermal expansion results, the magnetostriction
results on the highly diluted Y1−xPrxIr2Zn20 single crystal with x = 0.036, presented in
this subsubsection, are also part of the submitted manuscript [134] mentioned in Section
5.2.2. Figures shown in the following that are also included therein are marked by the
respective citation [134] in the figure caption. (Note added before publication of this thesis:
Above mentioned manuscript was published on the 6th of June 2022 in the scientific journal
Physical Review Research [134].)

Figure 5.14(a) displays both the longitudinal (∆L/L)‖ and the transverse (∆L/L)⊥
magnetostriction of Y1−xPrxIr2Zn20 with x = 0.036 for H ‖ [001] at different tempera-
tures, whereby the dashed lines denote CEF calculations. For details on the CEF sim-
ulation, it is referred to Section 4.2.2, which provides details on the simulation process.
The quadrupolar expectation values, based on which the CEF magnetostriction curves
were calculated, were simulated by using the Mathematica based CEF program provided
by T. Onimaru, which evaluates the Hamiltonian specified by Eq. (4.12). In order to
calculate the magnetostriction of the x = 0.036 single crystal, the same CEF parameters
as employed for the simulation of the thermal expansion coefficient of the same sample,
namely W = −1.50 K and x = 0.537, were utilized. The same holds for the number of
Pr3+ ions per volume nPr = 0.101×1027m−3 and the Γ3-type background elastic constant
(c0

11 − c0
12)/2 = 52.771 GPa [44, SM]. As the single crystal contains only a small frac-

tion of Pr3+ ions, a possible inter-site interaction was disregarded in the calculation, i.e.
KΓ3 = 0. The same holds for the interaction between the field induced dipole moments,
i.e. K = 0. The quadrupole-strain coupling constant was determined at gΓ3 = −35.0 K
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Figure 5.14: Magnetic field dependence of the longitudinal, transverse and volume magne-
tostriction (∆L/L)‖, (∆L/L)⊥ and ∆V/V for H ‖ [001] of Y1−xPrxIr2Zn20

with x = 0.036 at various temperatures. (a) (∆L/L)‖ and (∆L/L)⊥ as a func-
tion of magnetic field at various temperatures. Additionally displayed dashed
lines are CEF calculations, which were calculated by using the CEF parame-
ters W = −1.50 K and x = 0.537 and a quadrupole-strain coupling constant
gΓ3 = −35.0 K. (b) Volume magnetostriction ∆V/V = (∆L/L)‖+2(∆L/L)⊥
at various temperatures.
This figure is also included in Ref. [134, SM].

by comparing the CEF simulation to the experimentally obtained magnetostriction at a
temperature of 4 K. This value is somewhat larger than the value deduced by the thermal
expansion analysis, which suggested gΓ3 = −28.9 K. As the 10 T Schottky maximum in
the thermal expansion, to which the simulated data was fitted, appears at a slightly lower
temperature of around 2.5 K, it is conceivable that the gΓ3 value deduced from the thermal
expansion analysis is a slight underestimate. In any case, the discrepancies are small and
the derived value in good agreement with the elastic constant result of |gΓ3 | = 19.0 K [44].
A possible bulk contribution was neglected in the simulation, as the experimentally ob-
tained data shown in Fig. 5.14 clearly demonstrates that the strain εu prevails over the
bulk contribution εB at high magnetic field.

Before coming back to the simulated curves, the focus is on the experimentally de-
termined magnetostriction data. (∆L/L)‖ and (∆L/L)⊥ for H ‖ [001], as presented in
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Figure 5.14(a), display substantial anisotropy, which is a clear signature of the field in-
duced 〈O0

2〉 quadrupole moment. While (∆L/L)‖ exhibits a negative slope in the whole
measured magnetic field range, (∆L/L)⊥ shows a positive one. Both strains are approx-
imately symmetric to each other with respect to the x-axis, whereby the magnitude of
(∆L/L)⊥ is only about half in size as compared to (∆L/L)‖. This is reminiscent of the
behavior found in α‖ and α⊥. As temperature declines, the anisotropy between (∆L/L)‖
and (∆L/L)⊥ becomes more pronounced. To better understand the just discussed be-
haviors, the experimentally obtained data is put in context with the CEF simulation.
The comparison reveals that at elevated temperatures T ≥ 2 K, the experimentally deter-
mined data and the simulated one match very well, while at low temperatures T < 2 K
clear deviations are present. The differences are most significant at very low temperature
and low magnetic field, which reminds on the just discussed α‖ and α⊥ data obtained
on the same single crystal. The magnetic field dependence of the volume magnetostric-
tion ∆V/V = (∆L/L)‖ + 2(∆L/L)⊥, which is presented in Fig. 5.14(b), confirms this
tendency. The small but finite volume changes found in the low magnetic field and tem-
perature range are not compatible with the volume conserving Γ3-type strains and point
towards an additional contribution. Strikingly, the found behavior closely resembles the
field dependence of the (c11 − c12)/2 elastic constant [44]. It is recalled that the volume
thermal expansion β shows a divergence at low temperature that is readily suppressed
by relatively small magnetic fields µ0H > 1 T. It is therefore conceivable that the finite
volume magnetostriction at low temperature, which sets in at approximately 1 T, relates
to the suppression of the divergence in β with magnetic field. As stressed before, due to
the fact that the length change measurements were carried out along a 〈100〉 direction, a
small uniaxial stress induced contribution to the data cannot be excluded and might also
partially contribute to the finite volume magnetostriction at low temperatures. As soon
as a small uniaxial stress with Γ3 symmetry is applied to the material, i.e. an uniaxial
stress along a 〈100〉 direction, an additional strain contribution εu is induced, which shows
proportionality to χQ. This may explain the resemblance to the field dependence of the
(c11−c12)/2 elastic constant [44]. However, as the thermal expansion measurements, which
were carried out along different crystallographic directions and at various uniaxial stresses
implicated, the additional contribution arising from the uniaxial stress acting on the single
crystal via the dilatometer flat springs can only partially explain the divergent thermal
expansion in zero magnetic field. It it thus conceivable that also the volume magnetostric-
tion shows an intrinsic volume contribution that possibly arises from either dynamical or
static strain fields, as discussed in the preceding subsection. As shown by M. Garst, the
bulk strain assigned to both of the two contributions is proportional to χQ, which makes it
difficult to extract the magnitude of the intrinsic volume and the extrinsic uniaxial stress
induced contribution. In any case, the close relation between the field dependence of εB

and (c11− c12)/2 [44] indicates a direct connection between εB and χQ and is therefore in
good agreement with the results on β.

While the observation of aforementioned deviations only indicates the presence of
unconventional behavior, a more detailed analysis of the just presented magnetostriction
data, which yields the magnetostriction coefficient with Γ3 symmetry εu, is a powerful
means to examine the possible quadrupolar Kondo nature of the ground state. As detailed
before, εu is directly proportional to the expectation value 〈O0

2〉 and therefore a physical
quantity of paramount importance. The fact that the volume magnetostriction ∆V/V
is distinctly small as compared to the uniaxial magnetostriction (∆L/L)‖ and (∆L/L)⊥,
as illustrated in Fig. 5.14, already implicates that the strain εu mainly generates the
found magnetostriction. According to Eq. (2.39) and analogously to αu, the Γ3-type
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Figure 5.15: Magnetostriction coefficient with Γ3 symmetry εu of Y1−xPrxIr2Zn20 with
x = 0.036 for H ‖ [001] at various temperatures. Additionally shown dashed
lines are CEF calculations, which were simulated based on the CEF param-
eters W = −1.50 K and x = 0.537 as well as a quadrupole-strain coupling
constant gΓ3 = −35.0 K. The inset shows the quadrupole-field susceptibility
for different Pr concentrations x and the one derived from the CEF calcula-
tion. The theoretically calculated χQ can be well described by a divergent
Curie-type contribution and a temperature independent Van Vleck contribu-
tion χQ = CT−1 + χVV. Dashed lines in the inset are guides to eye.
This figure is also included in Ref. [134].

magnetostriction coefficient εu can be calculated via the longitudinal (∆L/L)‖ = ε‖ and
the bulk magnetostriction ∆V/V = εB as

εu =
√

3
(
ε‖ −

εB

3

)
. (5.9)

A plot of the so determined εu in combination with CEF calculations, which were already
discussed at the beginning of this subsubsection, is shown in Fig. 5.15. Note that the
oscillations in the εu data, which are also present in the (∆L/L)‖ and (∆L/L)⊥ data shown
in Fig. 5.14(a), are caused by quantum oscillations. An analysis of the related frequencies,
which correspond well to the ones previously detected by elastic constant [44] and by
magnetization measurements [129], can be found in the appendix of this thesis. As already
outlined in the preceding subsection, the Γ3-type symmetrized strain εu plays a crucial
role when characterizing a quadrupolar ground state. It is recalled that the quadrupolar
expectation value 〈O0

2〉 depends quadratically on a small magnetic field H ‖ [001]

〈O0
2〉 = χF

Q(µ0H)2
∣∣∣
H→0

, (5.10)

whereby the quadrupole-field susceptibility χF
Q serves as a proportionality constant. As

explicitly detailed in Section 4.1.2, this quadratic coupling mainly arises from the mixing
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of the Γ3 ground state with the Γ4 first excited state in magnetic field. With reference to
the CEF simulation results discussed in the context of the thermal expansion coefficient αu

of the single crystal with x = 0.036, one expects χF
Q ∼ χQ ∼ 1/T in case of a fully localized

Γ3 ground state doublet and χF
Q ∼ χQ ∼ log 1/T in case of a single-impurity quadrupole

Kondo hybridized Γ3 ground state doublet. Based on the proportionality between χF
Q

and χQ, which was demonstrated in the previous subsection, in the following, simply
the denotation χQ is employed to denote the quadrupole-field susceptibility. The strain
εu on the other hand is directly proportional to the expectation value of the respective
quadrupole moment

εu =
nPrgΓ3

(c0
11 − c0

12)/2
〈O0

2〉. (5.11)

By substituting Eq. (5.10) into Eq. (5.11) one obtains a quadratic relation between strain
εu and magnetic field H, which reads as

εu =
nPrgΓ3

(c0
11 − c0

12)/2
χQ(µ0H)2

∣∣∣
H→0

. (5.12)

Note that it is χQ, which determines the magnitude of the initial quadratic response of
εu measured at different temperatures, as nPr, gΓ3 and (c0

11 − c0
12)/2 can be assumed as

temperature independent. Therefore, evaluation of the initial quadratic dependence of εu

for small magnetic fields H ‖ [001] at different temperatures allows to directly deduce
χQ. With this connection in mind, it becomes immediately evident that the weaker initial
quadratic response of the experimentally determined εu as compared to the simulated one
at low temperatures must stem from the suppression of χQ. As not only the quadrupole
Kondo effect may evoke a suppression of χQ but also correlations between the quadrupole
moments or a disorder induced splitting of the ground state doublet, a careful analysis
of the temperature dependence of χQ is essential to clearly categorize the found behav-
ior. Consequently, to deduce χQ as a function of temperature, the initial quadratic field
dependence of the strain εu of Y1−xPrxIr2Zn20 with x = 0.036 is analyzed at different
temperatures. By plotting εu versus (µ0H)2, it is possible to determine the initial slope m
via a linear regression at low magnetic field, based on which the value of χQ at a particular
temperature can be deduced via the relation

χQ =
(c0

11 − c0
12)/2

nPrgΓ3

m. (5.13)

The determination process of the slope m is illustrated in Fig. 5.16(a) − (e), which
shows εu as a function of (µ0H)2 at various temperatures and low magnetic field. The
linear regression is indicated by the red solid line. While at very low temperatures, the
magnetic field range in which εu depends quadratically on magnetic field is distinctly
small and the splitting significant, this magnetic field regime enlarges as temperature
is increased and the splitting becomes less strong. Note that the strain value at which
deviations from the initial quadratic magnetic field dependence arise is comparable at all
measured temperatures and corresponds to a value of εu ≈ −0.5 × 10−6. As the onset
of quantum oscillations complicates the analysis in particular at elevated temperatures,
the upper bound of the quadratic field dependence could only be roughly estimated. By
following the just discussed approach, the value of χQ was determined at five different
temperatures, which are shown as black filled circles in the inset of Fig. 5.15. A similar
analysis was carried out for the theoretically calculated CEF strain contribution. The
respective χQ is shown in the inset of Fig. 5.15 by the blue open circles9. Its temperature

9The analysis of the initial quadratic field dependence of the simulated curves can be found in the
appendix of this thesis.
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(a) (b)

(c) (d)

(e)

Figure 5.16: εu of Y1−xPrxIr2Zn20 with x = 0.036 as a function of (µ0H)2 for small H ‖
[001] at different temperatures of (a) 0.05 K, (b) 0.2 K, (c) 0.8 K, (d) 2 K and
(e) 4 K. Red solid lines are linear fits to the magnetostriction data. The insets
show εu as a function of (µ0H)2 in the whole measured magnetic field range.
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dependence can be well described by the equation χQ = χVV + CT−1, as shown by the
blue solid line. The constant offset χVV corresponds to a Van Vleck contribution, which
arises from off-diagonal matrix elements of the quadrupole operator between the ground
and exited state. Finite off-diagonal matrix elements for O0

2 appear, for instance, in case
of a mixing of the Γ3 ground and the Γ1 excited state. The term CT−1 on the other
hand corresponds to a Curie-type susceptibility, which exhibits the same temperature
dependence as the quadrupole-strain susceptibility of a fully localized Γ3 doublet in cubic
symmetry. For T ≤ 0.8 K, χQ of the highly diluted single crystal with x = 0.036 shows
a temperature dependence χQ ∼ log 1/T , which is a clear signature of the quadrupole
Kondo effect and therefore fully consistent with the results on αu at small magnetic fields
and the previously reported elastic constant study [44]. Additionally shown is χQ of the
two moderately doped single crystals with x = 0.09 and x = 0.49, whereby details on
their magnetostriction and the determination process of χQ are provided in the following
subsubsection. By contrast to the single crystal with x = 0.036, χQ of the two moderately
doped single crystals saturates as temperature declines, which excludes the formation of
the single-impurity quadrupole Kondo effect. This finding is in very good agreement with
the thermal expansion results detailed in the preceding subsection as well as the specific
heat and electrical resistivity results by Yamane et al. [42, 43]. As mentioned before,
the clear suppression of χQ with declining temperature in the two moderately doped
single crystals points towards emerging short range quadrupolar correlations or a disorder
induced splitting of the ground state doublet [42,43].

Moderately Diluted Single Crystals (x = 0.09 and x = 0.49)

To study the breakdown of the single-impurity quadrupole Kondo effect in Y1−xPrxIr2Zn20

with increasing Pr doping, as it was suggested by the previously detailed thermal expansion
results as well as the specific heat and resisitivity results by Yamane et al. [42,43], more in
detail, the longitudinal magnetostriction (∆L/L)‖ of two moderately doped single crystals
with Pr concentrations of x = 0.09 and x = 0.49 was measured for H ‖ [001]. The results
are detailed in the following.

Figure 5.17 displays the magnetic field dependence of (∆L/L)‖ of Y1−xPrxIr2Zn20 with
x = 0.09 for H ‖ [001] at various temperatures. Moreover, CEF field calculations were
performed by following the approach explicitly discussed in Section 4.2.2. The calculated
curves are additionally shown as dashed lines in Fig. 5.17. The quadrupolar expectation
values were simulated by using the Mathematica based CEF program provided by T.
Onimaru, which evaluates the Hamiltonian given by Eq. (4.12). For the simulation, the
same CEF parameters W = −1.44 K and x = 0.537, determined from the simulation
process of α‖ were employed. The same applies for the number of Pr3+ ions per volume
nPr = 0.251×1027m−3 and the background elastic constant (c0

11−c0
12)/2 = 52.771 GPa [44,

SM]. Fitting the simulation result to the experimentally determined (∆L/L)‖ data at
the highest measured temperature of 4 K yields a quadrupole-strain coupling constant of
gΓ3 = −47.2 K. This value is slightly larger than the value deduced from the thermal
expansion analysis at 10 T, which gave back a value of gΓ3 = −38.0 K. This is reminiscent
of the difference in the quadrupole-strain coupling constants determined by the thermal
expansion and magnetostriction measurements on the highly diluted single crystal with
x = 0.036.

The experimentally obtained longitudinal magnetostriction of the single crystal with
x = 0.09 shows a negative slope in the whole measured magnetic field range, whereby
the relative length changes become more pronounced as temperature is reduced. This
is comparable to the behavior found in the highly diluted single crystal as well as the
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Figure 5.17: Longitudinal magnetostriction (∆L/L)‖ as a function of magnetic field H ‖
[001] of Y1−xPrxIr2Zn20 with x = 0.09 at various temperatures. Additionally
shown dashed lines are CEF simulations for which the CEF parameter W =
−1.44 K and x = 0.537 and a quadrupole-strain coupling constant gΓ3 =
−47.2 K were used.

pure system. To better understand the experimental findings, they are now set in relation
to the just mentioned CEF simulation. Good agreement between experiment and sim-
ulation is only present at 4 K, while distinct differences arise as temperature is lowered.
With decreasing temperature, the initial field dependence of the experimentally deter-
mined curves is clearly suppressed as compared to the simulation. It stands out that the
observed differences between simulation and experiment are much more pronounced as in
the case of the highly diluted single crystal with x = 0.036. This points towards a stronger
suppression of χQ with declining temperature and is a first hint that the single-impurity
quadrupole Kondo physics is quenched in this moderately doped single crystal. To quan-
tify the temperature dependence of χQ, a similar approach as presented in the preceding
subsubsection on the x = 0.036 single crystal was taken. As only (∆L/L)‖ was measured
for the x = 0.09 single crystal, the small field dependent volume contribution can, however,
not be eliminated from the data. As the volume magnetostriction coefficients of both pure
PrIr2Zn20 and highly diluted Y1−xPrxIr2Zn20 with x = 0.036 are much smaller than the
respective longitudinal magnetostriction coefficients, the error associated with the negli-
gence of the volume magnetostriction can, however, be considered as vanishingly small. In
consequence, under the assumption that the bulk magnetostriction is much smaller than
the longitudinal magnetostriction εB/3 � ε‖, the longitudinal magnetostriction can be
related to the quadrupole field susceptibility via the equation

ε‖ ≈
1√
3

nPrgΓ3

(c0
11 − c0

12)/2
χQ(µ0H)2

∣∣∣
H→0

. (5.14)

As already discussed in the context of the single crystal with x = 0.036, by plotting ε‖
versus (µ0H)2 and performing a linear regression at each temperature, the initial slope
m can be determined. χQ at a certain temperature can then be directly derived via the
relation



5.2. Experimental Results 133

(a) (b)

(c) (d)

(e)

Figure 5.18: (∆L/L)‖ of Y1−xPrxIr2Zn20 with x = 0.09 as a function of (µ0H)2 for small
H ‖ [001] at different temperatures of (a) 0.05 K, (b) 0.2 K, (c) 0.8 K, (d) 2 K
and (e) 4 K. Red solid lines are linear fits to the magnetostriction data. The
insets show (∆L/L)‖ as a function of (µ0H)2 in the whole measured magnetic
field range.
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Figure 5.19: Longitudinal magnetostriction (∆L/L)‖ as a function of magnetic field H ‖
[001] of Y1−xPrxIr2Zn20 with x = 0.49 at various temperatures. Additionally
shown dashed lines are CEF simulations based on the CEF parameter W =
−1.36 K and x = 0.537, a quadrupole-strain coupling constant gΓ3 = −44.5 K
and a quadrupole-quadrupole interaction KΓ3 = −0.0027 K.

χQ ≈
(c0

11 − c0
12)/2

nPrgΓ3

√
3m. (5.15)

The longitudinal strain (∆L/L)‖ as function of (µ0H)2 of the moderately diluted single
crystal Y1−xPrxIr2Zn20 with x = 0.09 at various temperatures is shown in Fig. 5.18(a)−(e).
The red solid lines are linear regressions, which give back the slope m at each measured
temperature. The insets show (∆L/L)‖ as function of (µ0H)2 over the whole measured
magnetic field range to emphasize that the quadratic field dependence is only given at
small magnetic field. χQ is shown by red circles in the inset of Fig. 5.15 of the preceding
subsubsection. χQ of the single crystal with x = 0.09 does not diverge and is thus sub-
stantially different to the logarithmically divergent χQ of the single crystal with x = 0.036.
This excludes the formation of the single-impurity quadrupole Kondo effect, which is in
very good agreement with the thermal expansion coefficient that does not show divergent
behavior but exhibits a maximum at around 0.4 K. Also the specific heat and the electrical
resistivity measured by Yamane et al. [42, 43] on a single crystal with x = 0.085 exclude
the formation of the single-impurity quadrupole Kondo effect at low temperature, whereby
either a short range quadrupole ordered or a disorder induced split ground state doublet
likely accounts for the found behavior.

Finally, the focus is on the magnetostriction of the moderately doped single crystal with
a Pr concentration of x = 0.49. Figure 5.19 displays the longitudinal magnetostriction
(∆L/L)‖ of Y1−xPrxIr2Zn20 with x = 0.49 for H ‖ [001] at different temperatures in
combination with CEF calculations that are plotted as dashed lines. The quadrupolar
expectation values used for the simulation were calculated by using the Mathematica
based CEF program provided by T. Onimaru, which evaluates the Hamiltonian given by
Eq. (4.12). For the simulation, the same CEF parameters W = −1.36 K and x = 0.537 and
the same inter-site interaction of KΓ3 = −0.0027 K used in the previous subsection for the
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(a) (b)

(c) (d)

(e)

Figure 5.20: (∆L/L)‖ of Y1−xPrxIr2Zn20 with x = 0.49 as a function of (µ0H)2 for small
H ‖ [001] at different temperatures of (a) 0.05 K, (b) 0.2 K, (c) 0.8 K, (d) 2 K
and (e) 4 K. Red solid lines are linear fits to the magnetostriction data. The
insets show (∆L/L)‖ as a function of (µ0H)2 in the whole measured magnetic
field range.
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thermal expansion analysis, were employed. The same holds for the number of Pr3+ ions
per volume nPr = 1.363 × 1027m−3 and the background elastic constant (c0

11 − c0
12)/2 =

52.771 GPa [44, SM]. To estimate the quadrupole-strain coupling constant, the CEF
calculation was fitted to the experimentally obtained magnetostriction data at 4 K, which
gives back a value of gΓ3 = −44.5 K. As already observed in the weaker Pr doped single
crystals, the value of gΓ3 deduced from the magnetostriction measurement is slightly larger
than the one determined from the thermal expansion analysis.

The experimentally determined longitudinal magnetostriction of the single crystal with
x = 0.49 is negative in the whole examined magnetic field range and the response of the
system to magnetic field becomes more pronounced as temperature is lowered, which is
in good accordance with all the other examined single crystals. To further interpret the
experimentally obtained data, it is compared to the CEF calculation. Good accordance
between simulation and experiment is only present at the highest examined temperature
of 4 K. As temperature decreases, clear differences between experiment and calculation
become evident. These deviations are already quite substantial at a relatively high tem-
perature of 2 K, which suggests a distinct suppression of χQ as compared to the CEF
Curie-type temperature dependence. A possible cause for this finding is the relatively
high Pr concentration of x = 0.49 and the concomitant inter-site interaction.

As for this single crystal only the longitudinal magnetostriction was measured, χQ

was calculated by following the same approach applied before on the single crystal with
x = 0.09. Under the assumption that εB/3� ε‖, the value of the quadrupole-field suscep-
tibility was estimated by evaluating the initial quadratic dependence of the magnetostric-
tion coefficient at five different temperatures, as shown in Fig. 5.20(a)−(e), and plugging
the so determined slope m into Eq. (5.15). The so derived χQ is presented in the inset
of Fig. 5.15 of the preceding subsubsection in green color. It shows that χQ of the single
crystal with x = 0.49 is even stronger suppressed as compared to χQ of the single crystal
with x = 0.09. This finding can likely be assigned to the larger inter-site interaction that
is known to suppress the quadrupole susceptibility [44]. The magnetostriction results on
the single crystal with x = 0.49 are in very good accordance with the thermal expansion
coefficient at zero magnetic field, which is also strongly suppressed at low temperature, as
shown in the inset of Fig. 5.11(a).

5.2.4 Summary

In this section, thermal expansion and magnetostriction measurement results obtained
on differently doped single crystalline samples of Y1−xPrxIr2Zn20 were presented and
discussed. Main focus was thereby on a highly diluted single crystal with x = 0.036,
as previous specific heat and electrical resistivity measurements revealed that possible
single-impurity quadrupole Kondo behavior appears exclusively in single crystals with
x ≤ 0.044 [42,43]. The thermal expansion and magnetostriction measurement results fully
support this scenario. The Γ3-type symmetrized thermal expansion coefficient αu and the
respective Grüneisen parameter Γu turned out as powerful probes to study single-impurity
quadrupole Kondo behavior and display divergences at low magnetic field that are in line
with the theoretically expected single-impurity quadrupole Kondo behavior. In addition,
an unexpected divergence in the volume thermal expansion was found that, even though
hard to reconcile with the quadrupole Kondo effect at a first glance, provides further evi-
dence for the single-impurity quadrupole Kondo scenario. Theoretical calculations by M.
Garst suggested that this unconventional behavior arises from a possible coupling between
volume strain and quadrupole-strain susceptibility, which is either realized via dynamical
or static strain fields. Additional experiments on two higher doped single crystalline sam-
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ples with x = 0.09 and x = 0.49 indicated that the quadrupole Kondo signatures appear
exclusively in the single crystal with a tiny Pr concentration of x = 0.036 and are therefore
in line with previous specific heat and electrical resistivity results by Yamane et al. [42,43].
The key findings of this section are briefly recalled in the following.

• The highly diluted Y1−xPrxIr2Zn20 single crystal with x = 0.036 shows a peculiar
divergent volume thermal expansion in zero magnetic field. Measurements of the
transverse and longitudinal thermal expansion coefficients α‖ and α⊥ allowed to
trace its evolution in magnetic field H ‖ [001]. It showed that the unconventional
divergence is highly field sensitive and already suppressed by a relatively small mag-
netic field µ0H > 1 T, which is in excellent agreement with previous specific heat and
elastic constant studies [44, 94]. Comparison of α‖ and α⊥ with a CEF calculation
revealed substantial differences at low magnetic field that provide further indication
for the presence of an unconventional correlation effect. At high magnetic fields
µ0H ≥ 6 T, very good agreement between experiment and simulation suggested that
the quadrupolar ground state moments are in the fully localized state.

• To analyze the uniaxial effects more in detail, the thermal expansion coefficient with
Γ3 symmetry αu, derived from the measurement of α‖ and α⊥, was analyzed. In
case the applied magnetic field H ‖ [001] is small, αu is directly proportional to
the temperature derivative of the quadrupole-field susceptibility and therefore a cru-
cial physical probe for the characterization of the quadrupolar ground state. For
µ0H ≤ 1 T and low temperatures T < 0.4 K, αu varies as 1/T , which is fully in
line with a single-impurity quadrupole Kondo hybridization. By contrast, at el-
evated temperatures T > 1 K, αu shows a 1/T 2 temperature dependence, which
confirms the fully localized nature of the quadrupolar ground state. In addition,
the Grüneisen parameter Γu = Vmαu/Cm was employed to characterize the NFL
behavior more in detail. Its divergence is expected at the quadrupolar Kondo crit-
ical point, whereby αu ∼ H2/T and Cm ∼ T log 1/T imply Γu ∼ H2/(T 2 log 1/T ).
Indeed, at low magnetic field µ0H ≤ 1 T, Γu shows the theoretically expected tem-
perature dependence. Finally, the evaluation of the initial quadratic field depen-
dence of the symmetrized magnetostriction coefficient εu implicated a logarithmic
temperature dependence of the quadrupole-field susceptibility at low temperature.
All three experimental findings provided therefore strong corroborative evidence for
the formation of the single-impurity quadrupole Kondo effect in highly diluted single
crystalline Y1−xPrxIr2Zn20. In consequence, the measurement of the Γ3-type sym-
metrized thermal expansion and magnetostriction coefficient as well as the respective
Grüneisen parameter turned out to be relevant probes to characterize quadrupolar
Kondo metals and should be considered as complementary to the well established
measurements of the specific heat, electrical resistivity and elastic constant.

• Another key point was to put the peculiar volume thermal expansion divergence in
the highly diluted single crystal with x = 0.036 under the microscope. To exclude
that the small uniaxial stress exerted by the flat springs of the dilatometer causes
the divergence, measurements on a [111] oriented single crystal from the same batch
with a similar Pr doping level of x = 0.033 were carried out. In addition, thermal
expansion measurements on both the [001] and the [111] oriented single crystal were
performed under higher uniaxial stress. The results clearly indicated the presence
of a divergent uniaxial stress induced contribution that by itself can, however, not
explain the observed divergence in the volume thermal expansion in zero magnetic
field. Consequently, a small but finite intrinsic divergent volume thermal expansion
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has to be present. As the divergent behavior in β is substantially different to the
specific heat, the bulk Grüneisen parameter ΓB diverges upon cooling. Its large
value of ΓB ≈ 2.15 GPa−1 at 0.07 K implies a significant pressure dependence of the
respective energy scale that is comparable in magnitude to HF metals at a magnetic
QCP [58]. The divergence in ΓB is a surprising finding, as hydrostatic pressure per
se does not break cubic symmetry and can therefore not be considered as a suitable
control parameter for the single-impurity quadrupolar Kondo criticality. Theoreti-
cal calculations carried out by M. Garst suggested two possible scenarios that can
principally explain the divergence found in the volume thermal expansion. The first
scenario covers dynamical strain fields, which cause a contribution to the bulk strain
that displays proportionality to χQ. Its magnitude scales with the pressure depen-
dence of the quadrupole-strain coupling constant gΓ3 . The second scenario deals
with disorder induced static strain fields, which can principally arise from the Pr
doping or from conventional dislocations in the crystal structure. Such static strain
fields locally break the cubic symmetry at a Pr site and therefore the degeneracy of
the non-Kramers Γ3 ground state doublet. Similarly to the dynamic strain fields,
the contribution to the bulk strain is proportional to χQ. Either of the two effects
should, however, also trigger a similar divergence in the specific heat, which was
not found in the experiment. An explanation for this inconsistency is that the re-
spective low temperature energy scale must show a substantial hydrostatic pressure
dependence. Such a significant pressure dependence is considered as unlikely for the
case of dynamical strain fields but may be more realistic in the case of static strain
fields. To further clarify this issue, future measurements of the elastic constant un-
der hydrostatic pressure would be helpful to quantify the pressure dependence of the
quadrupole-strain coupling constant. Detailed thermal expansion measurements on
differently doped single crystals, on the other hand, would be insightful to examine
a possible disorder effect more in detail.

• The thermal expansion and magnetostriction results obtained on two moderately
doped single crystals with Pr doping levels of x = 0.09 and x = 0.49 are incompat-
ible with a single-impurity quadrupole Kondo effect, which is in line with previous
specific heat and electrical resistivity results by Yamane et al. [42, 43]. The distinct
suppression of the zero field volume thermal expansion and the quadrupole-field sus-
ceptibility at low temperatures is distinct to the behavior revealed for the highly
diluted single crystal with x = 0.036, whereby disorder induced static strain fields
or short range quadrupolar correlations can be mentioned as possible causes [42,43].



Chapter 6

Conclusion and Outlook

This thesis examined exotic quadrupole driven hybridization phenomena that arise in the
cubic non-Kramers material PrIr2Zn20 and its diluted sister compound Y1−xPrxIr2Zn20,
using low temperature thermal expansion and magnetostriction measurements.

The key experimental finding on PrIr2Zn20 was a pronounced anisotropy in the longi-
tuindal and transverse thermal expansion and magnetostriction coefficients for B ‖ [001]
that assigns to a roughly volume conserving tetragonal distortion. With the help of CEF
calculations it was shown that this behavior originates from the Γ3-type symmetrized
strain εu ∼ 〈O0

2〉 that directly measures the splitting of the ground state doublet in mag-
netic field. In comparison to the uniaxial behavior, the temperature and field dependent
volume effects are markedly small. This strong contrast suggests that hybridization effects
in PrIr2Zn20 are rather weak and the valence state of the Pr3+ ion close to integer. These
findings put the previous Seebeck coefficient measurement results [45, 46] and the thereof
inferred emergence of a strongly hybridized state at intermediate field into perspective.
The thermal expansion and magnetostriction measurement results imply that the novel
phase at intermediate magnetic field, which comes along with FL behavior in the electrical
resistivity [28], originates from a rather weak hybridization effect. The found behavior is
also distinct from Ce- and Yb-based intermetallic compounds that typically exhibit pro-
nounced volume effects that arise from the intermediate valence state of the rare earth
ions. In order to verify as to whether the behavior found in PrIr2Zn20 is an universal
feature of the class of Pr-based 1-2-20 materials, thermal expansion and magnetostriction
measurements on other members of this family, such as the Al-based systems PrV2Al20

and PrTi2Al20, would be insightful. In the case of PrIr2Zn20, it turned out as difficult
to deduce corroborative evidence for the quadrupolar Kondo lattice effect on the basis
of the thermal expansion and magnetostriction measurement results, as there is no clear
theoretical prediction regarding its contribution to both thermodynamic quantities so far.

Specifying possible signatures of the single-impurity quadrupole Kondo effect in the
thermal expansion and magnetostriction coefficients was the main objective of the exper-
iments on the diluted system Y1−xPrxIr2Zn20. The key findings were thereby obtained
on two single crystals with a very low Pr doping of x = 0.033 and x = 0.036. Careful
zero magnetic field thermal expansion measurements carried out along different crystallo-
graphic directions and at different uniaxial stresses revealed an unexpected divergence of
the volume thermal expansion coefficient upon cooling. Even though M. Garst derived two
theoretical scenarios that can principally set the found behavior in relation to the single-
impurity quadrupolar Kondo effect, there remain open questions that should be addressed
by future research. It is recalled that the absence of the theoretically proposed residual en-
tropy of S = 1/2R ln 2 reported by Yamane et al. [42] is another unsolved mystery. Further
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research that examines a possible relation between these two peculiar findings is desirable.
Direct evidence for the single-impurity quadrupolar Kondo effect was found in the lin-
ear thermal expansion and magnetostriction measured in low magnetic field B ‖ [001].
With the help of the longitudinal and transverse thermal expansion coefficients, the sym-
metrized thermal expansion coefficient with Γ3 symmetry was deduced that can be directly
related to the quadrupole-field susceptibility for small B ‖ [001]. The same holds for the
symmetrized magnetostriction coefficient with Γ3 symmetry. The quadrupole-field suscep-
tibility quantifies the quadratic splitting of the ground state doublet in a magnetic field
and turned out as an effective means to track down possible single-impurity quadrupolar
Kondo behavior. The measurement of symmetrized strains in magnetic field as a method
to deduce the quadrupole-field susceptibility was pioneered by Morin et al. [73], who used
the approach to quantify quadrupole-strain coupling constants of a material at elevated
temperature. In the scope of this thesis, a new aspect of this probe was revealed. CEF
calculations demonstrated that the quadrupole-field susceptibility related to a fully lo-
calized cubic Γ3 doublet exhibits the same Curie-type 1/T temperature dependence as
the quadrupole-strain [16] and the non-linear magnetic susceptibility [135]. The experi-
ments carried out on highly diluted Y1−xPrxIr2Zn20 demonstrated that this Curie-type
temperature dependence renormalizes in presence of a quadrupole Kondo hybridization
to a characteristic logarithmic temperature dependence that is in line with the other two
susceptibilities. While the measurement of the non-linear magnetic susceptibility [135] is
another possible means to track down a quadrupolar Kondo state by perturbing the sys-
tem via the application of magnetic field, identifying quadrupole Kondo correlations based
on this quantity is generally complicated by a large Van Vleck-type background contribu-
tion that masks the interesting Curie-type contribution associated to the Γ3 ground state
doublet. Strikingly, in the case of the quadrupole-field susceptibility this effect is reversed,
as the Curie-type contribution dominates over a small parasitic Van Vleck contribution.
Thanks to the significant coupling between quadrupole moment and strain, even in a
highly diluted single crystal with a Pr doping of just x = 0.036, the Γ3-type contribution
to the thermal expansion and magnetostriction is significant and the quadrupole-field sus-
ceptibility can be determined with very high precision. Measurements of the symmetrized
thermal expansion and magnetostriction coefficients in a small magnetic field B ‖ [001]
can therefore be considered as a genuine alternative to the well established elastic con-
stant and non-linear magnetic susceptibility measurements, in order to characterize the
non-Kramers ground state of a cubic quadrupolar Kondo metal. In the future, volume
thermal expansion measurements on other prototypical single-impurity quadrupole Kondo
systems would be helpful to clarify the nature of the peculiar volume divergence found in
highly diluted Y1−xPrxIr2Zn20.
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Figure A1: λ[110] corrected for the background magnetostriction of the sample as a function
of the inverse of magnetic field 1/B of PrIr2Zn20 at different temperatures for
B ‖ [110]. The sample shows distinct quantum oscillations.
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Figure A2: Fourier transformation of the λ[110] versus 1/B data shown in Fig. A1, whereby
amplitude versus frequency is shown. The frequency of each of the found peaks
is specified by an arrow.

Figure A3: εu corrected for the background strain of the sample as a function of the in-
verse of magnetic field 1/(µ0H) of Y1−xPrxIr2Zn20 with x = 0.036 at different
temperatures for H ‖ [001]. The sample shows distinct quantum oscillations.
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Figure A4: Fourier transformation of the εu vs. 1/(µ0H) data shown in Fig. A3, whereby
amplitude versus frequency is shown. The frequency of each of the found peaks
is specified by an arrow.
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(a) (b)

(c) (d)

(e)

Figure A5: CEF simulation of (∆L/L)‖ by using simulation parameters derived for
Y1−xPrxIr2Zn20 with x = 0.036 as a function of (µ0H)2 for small H ‖ [001] at
different temperatures of (a) 0.05 K, (b) 0.2 K, (c) 0.8 K, (d) 2 K and (e) 4 K.
Red solid lines are linear fits to the magnetostriction data. The insets show
(∆L/L)‖ as a function of (µ0H)2 in the whole simulated magnetic field range.
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[74] P. Thalmeier and B. Lüthi. Chapter 96 The electron-phonon interaction in inter-
metallic compounds. In Handbook on the Physics and Chemistry of Rare Earths,
volume 14, pages 225–341. Elsevier, 1991. ISBN 0444887431.

[75] V. A. Fateev and P. B. Wiegmann. The exact solution of the s-d exchange model
with arbitrary impurity spin S (Kondo problem). Phys. Lett. A, 81(2):179–184, 1981.
doi:10.1016/0375-9601(81)90056-6.

[76] T. Kasuya. A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model.
Prog. Theor. Phys., 16(1):45–57, 1956. doi:10.1143/PTP.16.45.

[77] C. Zener. Interaction Between the d Shells in the Transition Metals. Phys. Rev.,
81(3):440–444, 1951. doi:10.1103/PhysRev.81.440.

[78] K. Yosida. Magnetic Properties of Cu-Mn Alloys. Phys. Rev., 106(5):893–898, 1957.
doi:10.1103/PhysRev.106.893.

[79] K. Yosida. Anomalous Electrical Resistivity and Magnetoresistance Due to an s− d
Interaction in Cu-Mn Alloys. Phys. Rev., 107(2):396–403, 1957. doi:10.1103/

PhysRev.107.396.

[80] A. A. Abrikosov. Electron scattering on magnetic impurities in metals and
anomalous resistivity effects. Phys. Phys. Fiz., 2(1):5–20, 1965. doi:10.1103/

PhysicsPhysiqueFizika.2.5.

https://doi.org/10.1143/JPSJ.78.072001
https://doi.org/10.1143/JPSJ.78.072001
https://doi.org/10.7566/JPSJ.87.041008
https://doi.org/10.1143/JPSJ.66.1741
https://doi.org/10.1051/jphyscol:1979536
https://doi.org/10.1103/PhysRev.129.578
https://doi.org/10.1051/jphyscol:19888144
https://doi.org/10.1051/jphyscol:19888144
https://doi.org/10.1103/PhysRevB.21.1742
https://doi.org/10.1016/0375-9601(81)90056-6
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.81.440
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.107.396
https://doi.org/10.1103/PhysRev.107.396
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5


Bibliography 151

[81] P. W. Anderson. Localized Magnetic States in Metals. Phys. Rev., 124(1):41–53,
1961. doi:10.1103/PhysRev.124.41.

[82] P. W. Anderson. Local moments and localized states. Rev. Mod. Phys., 50(2):191–
201, 1978. doi:10.1103/RevModPhys.50.191.

[83] J. R. Schrieffer and P. A. Wolff. Relation between the Anderson and Kondo Hamil-
tonians. Phys. Rev., 149(2):491–492, 1966. doi:10.1103/PhysRev.149.491.

[84] A. C. Hewson. The Kondo Problem to Heavy Fermions. Cambridge University Press,
1993. ISBN 0-521-36382-9.

[85] P. Nozières. A “fermi-liquid” description of the Kondo problem at low temperatures.
J. Low Temp. Phys., 17:31–42, 1974. doi:10.1007/BF00654541.

[86] P. Fazekas and E. Müller-Hartmann. Magnetic and non-magnetic ground states
of the Kondo lattice. Z. Physik B - Condensed Matter, 85:285–300, 1991. doi:

10.1007/BF01313231.

[87] C. Lacroix. Coherence effects in the Kondo lattice. J. Magn. Magn. Mater.,
60(2):145–152, 1986. doi:10.1016/0304-8853(86)90093-4.

[88] M. Lavagna, C. Lacroix, and M. Cyrot. Resistivity of the Kondo lattice. J. Phys.
F: Met. Phys., 12(4):745–757, 1982. doi:10.1088/0305-4608/12/4/015.

[89] M. A. Ruderman and C. Kittel. Indirect Exchange Coupling of Nuclear Magnetic
Moments by Conduction Electrons. Phys. Rev., 96(1):99–102, 1954. doi:10.1103/

PhysRev.96.99.

[90] P. Schlottmann and P. D. Sacramento. Multichannel Kondo problem and some
applications. Adv. Phys., 42(6):641–682, 1993. doi:10.1080/00018739300101534.

[91] P. D. Sacramento and P. Schlottmann. Thermodynamics of the n-channel kondo
model for general n and impurity spin S in a magnetic field. J. Phys.: Condens.
Matter, 3(48):9687–9696, 1991. doi:10.1088/0953-8984/3/48/010.

[92] N. Andrei and C. Destri. Solution of the Multichannel Kondo Problem. Phys. Rev.
Lett., 52(5):364–367, 1984. doi:10.1103/PhysRevLett.52.364.

[93] I. Affleck. Conformal Field Theory Approach to the Kondo Effect. Acta Phys. Polon.
B, 26:1869–1932, 1995.

[94] Y. Yamane, T. Onimaru, K. Wakiya, K. T. Matsumoto, K. Umeo, and T. Tak-
abatake. Magnetic field effects on the specific heat of a diluted Pr system
Y1−xPrxIr2Zn20. AIP Adv., 8(10):101338, 2018. doi:10.1063/1.5043132.

[95] D. L. Cox. Selection rules for two-channel Kondo models of U4+ and Ce3+ ions in
metals. Physica B, 186-188:312–316, 1993. doi:10.1016/0921-4526(93)90563-L.

[96] D. L. Cox. The quadrupolar Kondo effect: A new mechanism for heavy electrons.
J. Magn. Magn. Mater., 76-77:53–58, 1988. doi:10.1016/0304-8853(88)90315-0.

[97] T. Onimaru, K. T. Matsumoto, Y. F. Inoue, K. Umeo, Y. Saiga, Y. Matsushita,
R. Tamura, K. Nishimoto, I. Ishii, T. Suzuki, and T. Takabatake. Superconductivity
and Structural Phase Transitions in Caged Compounds RT2Zn20 (R = La, Pr, T =
Ru, Ir). J. Phys. Soc. Jpn., 79(3):033704, 2010. doi:10.1143/JPSJ.79.033704.

https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/RevModPhys.50.191
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1007/BF00654541
https://doi.org/10.1007/BF01313231
https://doi.org/10.1007/BF01313231
https://doi.org/10.1016/0304-8853(86)90093-4
https://doi.org/10.1088/0305-4608/12/4/015
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1080/00018739300101534
https://doi.org/10.1088/0953-8984/3/48/010
https://doi.org/10.1103/PhysRevLett.52.364
https://doi.org/10.1063/1.5043132
https://doi.org/10.1016/0921-4526(93)90563-L
https://doi.org/10.1016/0304-8853(88)90315-0
https://doi.org/10.1143/JPSJ.79.033704


152 Bibliography

[98] M. Jarrell, H. Pang, D. L. Cox, and K. H. Luk. Two-Channel Kondo Lattice:
An Incoherent Metal. Phys. Rev. Lett., 77(8):1612–1615, 1996. doi:10.1103/

PhysRevLett.77.1612.

[99] S. Hoshino, J. Otsuki, and Y. Kuramoto. Diagonal Composite Order in a Two-
Channel Kondo Lattice. Phys. Rev. Lett., 107(24):247202, 2011. doi:10.1103/

PhysRevLett.107.247202.

[100] S. Hoshino, J. Otsuki, and Y. Kuramoto. Resolution of Entropy ln
√

2 by Ordering
in Two-Channel Kondo Lattice. J. Phys. Soc. Jpn., 82(4):044707, 2013. doi:10.

7566/JPSJ.82.044707.

[101] G. Zhang, J. S. Van Dyke, and R. Flint. Cubic hastatic order in the two-channel
Kondo-Heisenberg model. Phys. Rev. B, 98(23):235143, 2018. doi:10.1103/

PhysRevB.98.235143.

[102] J. S. Van Dyke, G. Zhang, and R. Flint. Field-induced ferrohastatic phase in cubic
non-Kramers doublet systems. Phys. Rev. B, 100(20):205122, 2019. doi:10.1103/

PhysRevB.100.205122.

[103] F. Pobell. Matter and Methods at Low Temperatures. Springer-Verlag Berlin Hei-
delberg, 1996. 2nd Edition. ISBN 3-540-58572-9.

[104] J. Wilks and D. S. Betts. An Introduction to Liquid Helium. Oxford University
Press, 1987. 2nd Edition. ISBN 0-19-851472-7.

[105] Z. Dokoupil, D. G. Kapadnis, K. Sreeramamurty, and K. W. Taconis. Specific heat
of mixtures of 4He and 3He between 1°K and 4°K. Physica, 25(7):1369–1375, 1959.
doi:10.1016/0031-8914(59)90058-8.

[106] R. De Bruyn Ouboter, K. W. Taconis, C. Le Pair, and J. J. M. Beenakker. Ther-
modynamic properties of liquid 3He-4He mixtures derived from specific heat mea-
surements between 0.4°K and 2°K over the complete concentration range. Physica,
26(11):853–888, 1960. doi:10.1016/0031-8914(60)90037-9.

[107] J. P. Laheurte and J. R. G. Keyston. Behaviour of He4 in dilute liquid mixtures
of He4 in He3. Cryogenics, 11(6):485–486, 1971. doi:10.1016/0011-2275(71)

90277-3.

[108] C. Ebner and D. O. Edwards. The low temperature thermodynamic properties of
superfluid solutions of 3He in 4He. Phys. Rep., 2(2):77–154, 1971. doi:10.1016/

0370-1573(71)90003-2.

[109] T. A. Alvesalo, P. M. Berglund, S. T. Islander, G. R. Pickett, and W. Zimmermann.
Specific Heat of Liquid He3/He4 Mixtures near the Junction of the λ and Phase-
Separation Curves. I. Phys. Rev. A, 4(6):2354–2368, 1971. doi:10.1103/PhysRevA.
4.2354.

[110] A. Ghozlan and E. J. A Varoquaux. C. R. Acad. Sci. (Paris) Ser. B, 280(189), 1975.

[111] A. Wörl. Novel types of Quantum Criticality in 4f-based Intermetallics. Master’s
thesis, University of Augsburg, Germany, 2016.

https://doi.org/10.1103/PhysRevLett.77.1612
https://doi.org/10.1103/PhysRevLett.77.1612
https://doi.org/10.1103/PhysRevLett.107.247202
https://doi.org/10.1103/PhysRevLett.107.247202
https://doi.org/10.7566/JPSJ.82.044707
https://doi.org/10.7566/JPSJ.82.044707
https://doi.org/10.1103/PhysRevB.98.235143
https://doi.org/10.1103/PhysRevB.98.235143
https://doi.org/10.1103/PhysRevB.100.205122
https://doi.org/10.1103/PhysRevB.100.205122
https://doi.org/10.1016/0031-8914(59)90058-8
https://doi.org/10.1016/0031-8914(60)90037-9
https://doi.org/10.1016/0011-2275(71)90277-3
https://doi.org/10.1016/0011-2275(71)90277-3
https://doi.org/10.1016/0370-1573(71)90003-2
https://doi.org/10.1016/0370-1573(71)90003-2
https://doi.org/10.1103/PhysRevA.4.2354
https://doi.org/10.1103/PhysRevA.4.2354


Bibliography 153

[112] R. Küchler, A. Wörl, P. Gegenwart, M. Berben, B. Bryant, and S. Wiedmann. The
world’s smallest capacitive dilatometer, for high-resolution thermal expansion and
magnetostriction in high magnetic fields. Rev. Sci. Instrum., 88(8):083903, 2017.
doi:10.1063/1.4997073.
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gent thermal expansion and Grüneisen ratio in a quadrupolar Kondo metal. Phys.
Rev. Research, 4(2):L022053, 2022. doi : 10.1103/PhysRevResearch.4.L022053.

• A. Wörl, T. Onimaru, Y. Tokiwa, Y. Yamane, K. T. Matsumoto, T. Takabatake,
and P. Gegenwart. Highly anisotropic strain dependencies in PrIr2Zn20. Phys. Rev.
B, 99(8):081177(R), 2019. doi : 10.1103/PhysRevB.99.081117.

Publications related to the experimental method employed in this thesis:
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