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Mode splitting of spin waves in magnetic nanotubes with discrete symmetries
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We investigate how geometry influences spin dynamics in polygonal magnetic nanotubes. We find that lower-
ing the rotational symmetry of nanotubes by decreasing the number of planar facets splits an increasing number
of spin-wave modes, which are doubly degenerate in cylindrical tubes. This symmetry-governed splitting is
distinct form the topological split recently observed in cylindrical nanotubes. Doublet modes where the azimuthal
period is a half-integer or integer multiple of the number of facets, split to singlet pairs with lateral-standing-wave
profiles of opposing mirror-plane symmetries. Moreover, the polygonal geometry facilitates the hybridization of
modes with different azimuthal periods but the same symmetry, manifested in avoided level crossings. These
phenomena, unimaginable in cylindrical geometry, provide new tools to control spin dynamics on the nanoscale.
Our concepts can be generalized to nano-objects of versatile geometries and order parameters, offering new
routes to understand and engineer dynamic responses in mesoscale physics.
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I. INTRODUCTION

The field of magnetism provides many interesting exam-
ples of mesoscopic effects which emerge when transitioning
from flat to curved or buckled geometries [1–5]. For example,
the surface curvature of thin magnetic membranes can be used
to stabilize nontrivial magnetic textures, such as skyrmions
[6,7] which, in flat systems, are only stable in the presence
of intrinsic Dzyaloshinskii-Moriya interactions or frustration.
The spin-Cherenkov effect [8,9], that emerges in magnetic
nanotubes when domain walls propagate faster the spin-wave
velocity, is another phenomenon not observed in flat geome-
tries so far. The effect of curvature on magnetization dynamics
manifests itself, for example, in a nonreciprocal propagation
of spin waves along magnetic nanotubes in the flux-closure
(vortex) state [see Fig. 1(a)]. In this case, the surface curvature
leads to an asymmetric spin-wave dispersion, i.e., waves coun-
terpropagating along the nanotube exhibit different oscillation
frequencies [10]. These phenomena are induced by emergent
magnetochiral interactions [11–16] which, in return, stem
from an inversion-symmetry breaking [17,18] by noncollinear
spin textures embedded in curved magnetic membranes.

Another important aspect of magnetism in specimen with
complex three-dimensional shape is their topology. For ex-
ample, in magnetic samples with a nonorientable surface,
such as Möbius ribbons, topological magnetic solitons ap-
pear which are strongly tied to the geometry of the magnetic
object [19]. In magnetic rings and nanotubes, the topology
of the magnetic waveguide can induce a Berry phase for
the spin waves [20,21]. The spatial profile of the spin-wave
modes in thin cylindrical magnetic nanotubes are described
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by exp[i(νφ + kz)], where ν ∈ Z counts the periods in the
azimuthal (φ) direction and k ∈ R denotes the wave-vector
component along the axis (z direction) of the nanotube. In
the vortex equilibrium state, modes which are propagating
clockwise (ν > 0) or counterclockwise (ν < 0) around the
circumference of the tube form doublets. This azimuthal de-
generacy is lifted for each ν by a Berry phase when the
magnetization is tilted from the vortex state to a helical state
[20,21] as depicted in Fig. 1(a). Consequently, modes propa-
gating in the opposite azimuthal direction are gradually split
into two lateral-running waves of different frequency with
increasing axial component of the magnetization as seen in
Fig. 1(b). This topological effect is a nontrivial spin version
of the Aharonov-Bohm effect [22,23], originally observed
for charged particles in similar geometries, e.g., in carbon
nanotubes [24].

Here, we explore another fundamental aspect of three-
dimensional magnetic nano-objects, complementary to their
topology, namely, their symmetry. In particular, we inves-
tigate the evolution of the spin-wave spectrum in magnetic
nanotubes when the continuous rotational symmetry of cylin-
drical tubes is lowered to a discrete rotational symmetry
[Fig. 1(c)]. In our previous work [25], we have already shown
that the spin-wave dispersion in hexagonal nanotubes is dras-
tically different from round magnetic nanotubes. In this paper,
we systematically uncover a symmetry-induced doublet split
of spin waves by studying the transition from a round mag-
netic nanotube to a polygonal nanotube. In contrast to the
topological doublet split and as a completely distinct feature,
we observe the splitting of certain ±ν doublet modes into
singletsfor tubes in a vortexlike magnetic state. A symmetry
classification of the modes according to the irreducible rep-
resentations (irreps) belonging to the magnetic point group
of the respective tube reveals that these singlet pairs have
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mirror antisymmetric

lateral standing waves

FIG. 1. Comparison of the known topological doublet split with
the newly presented symmetry-governed doublet split of spin waves
in tubular magnetic waveguides. (a) Magnetic transition from vor-
tex to the axial state. In round vortex-state magnetic nanotubes
counterclockwise and clockwise modes (azimuthal index ±ν) are
degenerate. (b) A topological split of these doublets appears when
transitioning to the helical equilibrium state, which produces lateral-
running waves that are singlets. In contrast to this, (c) when the full
rotational symmetry of a cylindrical tube is lowered by polygonal
distortions, the symmetry-governed split of certain azimuthal dou-
blets appears for tubes in the vortex state, leading to lateral-standing
waves with opposing mirror symmetry (here belonging to the A1 and
A2 irreducible representations). (d) Splitting and lateral mode profiles
of the spin waves using a bivariate color map that displays the z
components of the oscillation magnitude and phase at the same time.

opposing mirror symmetry. For example, Fig. 1(d) shows how
the ν = ±7 doublet of a round tube is split in a heptagonal
tube into an A1-A2 singlet pair of lateral-standing-wave char-
acter. This geometric effect is distinct from the topological
doublet split and independent of the involved magnetic inter-
actions.

We study the spin-wave dispersion in polygonal nan-
otubes using micromagnetic simulations, in particular, a
finite-element dynamic-matrix approach for propagating spin
waves [26], in combination with group theory. At first, we
introduce the geometry and the equilibrium magnetic state
of the studied systems, which together define their magnetic
symmetry groups. We model polygonal tubes with facets be-
tween c = 6 and c = 30 facets and a round tube (c = ∞)
as the limiting case. After our predictions based on symme-
try considerations, we numerically calculate the lateral mode
profiles of the spin waves propagating along the different
polygonal nanotubes. With that, we uncover the symmetry-
governed mode splitting of spin waves and disentangle it from
the topological splitting. We demonstrate that, with lowering
the rotational symmetry, certain spin-wave modes which are
completely orthogonal in the case of round nanotubes are
arranged into the same irreps which is shown to have con-

FIG. 2. (a) Vortex equilibrium state in a heptagonal nanotube
obtained from numerically simulations for a single cross section.
The zoom in shows the presence of narrow domain walls in the
corners where the magnetization rotates continuously between two
neighboring facets. (b) Axial mirror planes (planes containing the
long axis of the tube) for an odd- and an even-numbered polygonal
tube. The odd-facet cross sections contain only one set of mirror
planes (corner to facet), whereas even-facet ones contain two sets
(corner to corner and facet to facet). (c) Mode profiles in the phase
space of the standing-wave singlets and the running-wave doublets.
The numbers inside denote the number of azimuthal periods (and
possible sense of rotation) of the modes. (d) The transformation
of the homogeneous lateral mode (ν = 0) into a mode localized to
the corners of the polygonal cross section is summarized. For both
magnitude and phase of the modes, only the z component is shown.

sequences on the dipole-dipole hybridization of different spin
waves as well as on their high-frequency susceptibility (i.e.,
the microwave power absorption).

We would like to emphasize that the presented results on
the geometrical effects on the dynamics of magnetic nan-
otubes are not particular to magnetic systems. It can be
generalized and applied to acoustic and polarization waves
too, for example, which would also be prone to mode split-
ting and hybridization when lowering the symmetry of the
host material. Therefore, besides topological and curvature-
induced effects the symmetry can similarly be used to design
magnetic, elastic, dielectric, and optical properties of conven-
tional nanomaterials.

II. SYMMETRY CONSIDERATIONS

Disregarding discretization effects, the symmetry group of
the resulting flux-closure state is that of the idealistic polygo-
nal vortex state with sharp corners, which is c/m′mm when
c is even, and c/m′m when c is odd. The odd-facet tubes
have only one set of mirror planes connecting corners with
facets, whereas even-facet tubes have one set connecting op-
posite corners and another set connecting opposite facets [see
Fig. 2(b)]. When transitioning from a cylindrical to a polygo-
nal tube, the modes can be classified according to the irreps of
c/m′m(m), which are either one or two dimensional [27] (see
Table I). As a consequence, only singlet or doublet solutions
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TABLE I. The irreducible representations and their dimensions
of the magnetic point-groups c/m’m(m), to which the obtained spin-
wave modes are categorized (or belong to). Here, c is the number
of facets of the nanotube. The symbol E∗ is a place holder for the
different two-dimensional (2D) irreps which can exist depending on
c. For example, for a round tube (c = ∞), infinitely many 2D irreps
exist. Also, in this case, the irrep A1 contains only the homogeneous
mode, ν = 0.

Irrep Dimensions c = ∞ c odd c even

E∗ 2 Doublets � � �
A1 1 Fully symmetric (�) � �
A2 1 Fully antisymmetric � �
B1

B2

1
1

}
mix of the two above

�
�

are allowed in the spin-wave spectrum. The expected mode
profiles in the phase space of the singlets (standing waves) and
the doublets (running waves) are shown in Fig. 2(c). Note, that
in contrast to the phase map of singlets, which are invariant
upon all symmetry operations (apart from a factor of −1 for
certain symmetry operations), the phase maps of doublet pairs
are exchanged by some of the symmetries, again emphasizing
the standing/running wave distinction. For round tubes there
is only one singlet solution, the homogeneous mode, which
for polygonal tubes, maintains a homogeneous phase profile
within the cross section, but its oscillation magnitude is en-
hanced around the corners of the tube as shown in Fig. 2(d).

III. RESULTS OF MICROMAGNETIC MODELING

A. Calculation of spin-wave mode profiles and frequencies

Our numerical modeling is carried out within the contin-
uum limit of micromagnetism [28–30], which is adequate
for spin waves with wave lengths in the nanometer regime
and above. We obtain the spin-wave modes by solving the
linearized torque equation of motion,

d

dt
(δm) = −γμ0[δm × H0 + m0 × δh], (1)

which describes the magnetization dynamics δm(r, t ) close to
some equilibrium magnetization state m0(r). Here, δh and H0

are the dynamic and static effective magnetic field acting on
the magnetization. In our case, these fields are comosed by
the exchange, dipole-dipole, and uniaxial-anisotropy fields.
For the case of infinitely long tubular magnets where the
equilibrium state is translationally invariant along the tube
(here, the z direction), the solutions of Eq. (1) can be taken as
ην,k exp{i[kz − ων (k)t]} with the (complex) lateral spin-wave
mode profiles ην,k , the wave vector in z direction k, the angular
frequency ων (k), and some lateral mode index ν. Using this
ansatz, the equation of motion is transformed into an eigen-
value problem for the lateral mode profiles and the angular
frequencies. To solve this eigenvalue problem numerically, we
use a finite-element method to discretize the cross sections of
the different polygonal nanotubes using small triangles. The
details of this propagating-wave dynamic-matrix approach
are found in Ref. [26]. For this paper, we model infinitely
long regular-polygonal nanotubes with an outer diameter of

250 nm, a thickness of 30 nm, number of corners c, and
typical material parameters for a soft ferromagnet. Namely,
we assert a saturation magnetization of Ms = 820 kA/m, an
exchange-stiffness constant of Aex = 13 pJ/m, and a reduced
gyromagnetic ratio of γ /2π = 28 GHz/T. The average edge
length of the triangles used in spatial discretization is approxi-
mately 4 nm which is smaller than the characteristic exchange
length of the material, under which the magnetization can be
assumed to be homogeneous. Here, we model polygonal tubes
between c = 6 and c = 30 corners as well as the limiting
case of a round tube with c = ∞. The equilibrium state m0

is obtained for each tube by minimizing the total magnetic
energy [26].

B. Disentanglement from topological mode splitting

Before confirming these symmetry-based predictions by
micromagnetic simulations, we want to disentangle symmetry
effects from topological effects. Namely, we show that the
previously mentioned Aharonov-Bohm doublet splitting for
magnons, which lifts the degeneracy between clockwise and
counterclockwise modes (∓ν), remains unaffected when low-
ering the rotational symmetry. Let us only consider the spin
waves at k = 0, which are homogeneous along the tubes. As
known for round magnetic nanotubes (c = ∞) [21], the topo-
logical doublet splitting for modes with opposite azimuthal
periods (ν) is maximum when the tubes are axially magne-
tized. Here, the tubes are saturated in this direction using an
external field of 200 mT. Figure 3(a) shows the frequencies of
the modes at k = 0 as the number of facets c is decreased. In
this case, the deformation of the cylindrical tube to a polygo-
nal shape does not have a major impact due to the topological
origin of the Aharonov-Bohm splitting. Clearly, the topology
of polygonal tubes is exactly the same as of round tubes.
Note, that the singlets of the topological split are still lateral-
running waves, just like in round nanotubes. Thus, the phase
of the modes varies smoothly along the circumference as is
clear from the profiles of the modes with ν = −1 periods in
Fig. 3(a).

C. Symmetry-governed mode splitting

The vortex states is stabilized by an easy-plane mag-
netocrystalline anisotropy, favoring an orientation of the
magnetization on the plane of the cross section. In real sam-
ples, such an anisotropy can be achieved using epitaxial
crystal growth [31]. In our calculations, this was realized
using a uniaxial anisotropy with a negative constant of K =
−20 kJ/ m3 along the long (z) axis of the nanotubes. In the
vortex state, the Aharonov-Bohm flux is zero, therefore, in
round tubes, clockwise and counterclockwise (±ν) modes
are degenerate [10]. However, this degeneracy is lifted for
some of the modes when the rotational symmetry is lowered.
Figure 3(b) shows the computed modes at k = 0 for different
numbers of facets. For certain modes, namely, when the az-
imuthal periods are half-integer multiples (|ν| = c/2, 3c/2,...)
or integer multiples (|ν| = c, 2c,...) of the number of facets, a
splitting of the doublets is observed. This geometrical splitting
is solely induced by lowering the rotational symmetry of the
vortex state.
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FIG. 3. Frequencies of the spin waves at k = 0 in nanotubes when the number of facets c is lowered. (a) In the axial state, azimuthal modes
with the same |ν| are already split by the topological Aharonov-Bohm effect, which is unaffected by lowering the rotational symmetry. The
spatial mode profiles show that the azimuthal modes remain running waves. (b) In the vortex state, the singlets resulting from the doublet
split due to symmetry lowering are categorized and colored according to their irrep. Lines are added to guide the eye. Fully symmetric A1 and
fully antisymmetric A2 singlets (blue) appear for |ν| = c, 2c, . . .. Mixed-symmetry B1 and B2 singlets (orange) appear for |ν| = c/2, 3c/2, . . .,
but only in tubes with an even number of facets. Panels (c) and (d) show examples of the corresponding numerically obtained lateral mode
profiles (magnitude and phase of the z component) as well as representative (anti-)mirror planes, distinguishing modes belonging to different
irreps. The energetic split between two singlets with the same |ν| can be understood from the mode localization following from these mirror
symmetries (see the main text).

As a general principle of nature, lowering the symmetry
of a system can lift the degeneracy of its eigenstates and, in
turn, can lead to mode splitting. The textbook example in
solid-state physics is the quasifree electron gas subject to a
weak periodic potential [32]: Degeneracies of the band struc-
ture are reduced/lifted by gap opening at such wave vectors
where the periodic potential of the crystal has a finite Fourier
component. In our case, this concept can be adapted to the
symmetry lowering from cylindrical to polygonal tubes. In the
unperturbed cylindrical case the solutions are the azimuthal
harmonics with ν = ±m integer azimuthal numbers being
degenerate. The perturbing potential here is represented by the
geometrical deformation of a cylindrical tube to a polygonal
shape that can be associated with harmonics of azimuthal
numbers ±c,±2c,±3c, etc. If any of them connects modes
with ν = ±m azimuthal numbers—which is fulfilled for |ν| =
c/2, c, 3c/2, 2c, etc.—the degeneracy of the corresponding
±m doublet is lifted.

Modes can be classified in a straightforward manner into
singlets and doublets via the effect of symmetry operations
on their spatial profiles, their amplitude, and phase maps. A
mode that is mapped only onto itself (and not onto any other
mode) by any of the symmetry operations is a singlet. As we
see in the following, for polygonal tubes, the full classifica-
tion of the modes can been performed by considering only
the mirror plane symmetries. When classifying the modes
according to the irreps (see Table I), the singlets resulting from
the symmetry-lowering-induced splitting appear in A1-A2 and
B1-B2 pairs, colored in blue and orange in Fig. 3(b). This
classification, using the symmetry of the magnitude and phase
maps obtained from the dynamic-matrix approach [26] has the
following simple meaning. The singlets with |ν| = c, 2c, . . .

are either symmetric (A1) or antisymmetric (A2) with respect
to all mirror-plane reflections m as seen in Fig. 3(c) for |ν| =
c. The mirror and antimirror planes are indicated by solid
and dashed lines, respectively. Naturally, the homogeneous
mode (ν = 0) is a fully symmetric (A1) singlet. For tubes
with even number of facets, two sets of mirror planes exist,
corner-to-corner and facet-to-facet types. In this case, singlets
symmetric to the former set and antisymmetric to the latter
set are called B1. For B2 the situation is reversed as shown
in Fig. 3(d) for |ν| = c/2. Modes with such symmetry cannot
exist for an odd number of facets.

In contast to singlets, that are only connected to themselves
by all symmetry operations of the polygonal tube, the modes
in doublets with periods |ν| �= c/2, c, 3c/2, 2c, . . . are inter-
changed by some of the mirror symmetries. Therefore, they
remain degenerate clockwise and counterclockwise running
modes, belonging to the two-dimensional irreps. In contrast,
the singlets are lateral-standing waves with a piecewise con-
stant phase along the perimeter and with jumps by π at certain
points, see Figs. 3(c) and 3(d).

In the case of the doublet splittings observed here, the
energy hierarchy of the resulting singlet shows a general
trend: A1 (B1) singlets always have lower energy than the
corresponding A2 (B2) singlets. This can be understood in
a simple physical picture: Modes belonging to A2 and B2

representations have antimirror planes connecting opposite
corners where these modes must have a π phase jump. As
a result, the oscillation magnitude has to vanish at the cor-
ners and the modes are, therefore, localized to the facets.
The opposite holds for modes belonging to the A1 and B1

representations. They possess mirror planes connecting op-
posite corners, hence, favor mode localization to the corners.
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FIG. 4. Spin-wave dispersions for different polygonal nanotubes
in the vortex state, calculated using a propagating-wave dynamic ma-
trix approach. All dispersions exhibit a curvature-induced asymmetry
upon inversion of wave-vector k. Singlet branches are highlighted as
thick colored (blue or orange) lines. As the number of corners c de-
creases, the doublet split induced by symmetry lowering propagates
down in frequency and the singlets grow in number. Branches be-
longing to the same irreducible representation (irrep) make avoided
level crossings due to dipole-dipole hybridization, highlighted by
gray patches in (c) and (d).

Whether mode localization to corners or facets is energetically
favored is not determined by the symmetry but the interactions
in the system. In the case of polygonal vortices, the domains
walls in the corners surrounded by the homogeneous domains
in the flat facets [Fig. 2(a)] act as potential wells for spin
waves [33,34].

D. Consequences for spin-wave dispersion and hybridization

The doublet split induced by symmetry lowering is not
restricted to the modes at k = 0 but, occurs also for modes
propagating along the tube axis. This is seen for selected
polygonal tubes in the vortex state starting from the round tube
(c = ∞) down to a hexagonal tube (c = 6) in Figs. 4(a)–4(d).
Besides the dipole-induced dispersion asymmetry [10,35],
present for each c, the splitting due to symmetry lowering
propagates through the dispersion branches. Moreover, in the
decagonal tube (c = 10) an avoided level crossing close to
k = 5 rad/μm is present, which indicates the hybridization of
two singlet branches. In the hexagonal tube (c = 6) there are
even three hybridized branches observable. In ferromagnetic
samples, spin waves with different spatial profiles can be
hybridized due to the presence of dynamic dipolar fields. This
hybridization is mediated by the dipolar magnetostatic poten-
tial generated by each individual mode, and its strength is
determined by the spatial overlap of the unhybridized modes,
i.e., the eigenmodes without dipolar interaction. In general,
disentangling hybridized spin-wave modes for arbitrary ge-
ometries can be achieved numerically as reported recently
[36]. To tell if two crossing branches can hybridize or not it is
enough to consider the symmetry of the modes.

For a perfectly round tube, modes of different azimuthal
periods ν and ν ′, but even with the same wave-vector k, belong
to different irreps. Therefore, they are pairwise orthogonal
such that their volume-averaged inner product 〈ην,k · ην ′,k〉= 0

FIG. 5. (a) Schematics of a current-loop antenna wrapped around
a polygonal nanotube in the vortex state. (b) Corresponding mi-
crowave absorption at k = 0 calculated from the mode profiles
according to Ref. [25]. Only modes with A1 symmetry (lower-
frequency singlets with |ν| = 0, c, 2c, . . .) can be excited with this
antenna geometry. (c) Spatial profiles (z components of magnitude
and phase) of the corresponding A1 modes for c = 6.

vanishes. As a result, dipolar hybridization of different
azimuthal branches is strictly forbidden. In vortex-state polyg-
onal tubes with a finite number of corners, this orthogonality
is broken. We have seen above that modes with azimuthal
periods being an integer multiple of the number of corners,
|ν| = nc (with n = 1, 2, . . .), are arranged into either fully
antisymmetric (A2) or fully symmetric (A1) lateral-standing
waves. The latter share the same symmetry as the fully homo-
geneous mode with ν = 0. Due to their common symmetry
character, they can hybridize with each other in the presence
of dynamic dipolar fields. This explains the avoided level
crossings in the dispersion of the decagonal and the hexagonal
tube in Figs. 3(c) and 3(d) where the homogeneous mode
ν = 0 is hybridized with the lower-frequency A1 modes local-
ized to the corners of the |ν| = c and |ν| = 2c pairs (drawn as
solid blue lines). More generally, modes belonging to the same
irreps can be hybridized via dipolar interaction. An animated
movie in the Supplemental Material [37] shows the transition
of the dispersion for all numbers of facets between 30 and 6.
This movie provides a clear visualization of how the avoided
level crossings follow the branches that are split by lowering
the rotational symmetry, i.e., they follow the singlet lines seen
in Fig. 3(b).

E. Predicted microwave absorption

Similar arguments apply when discussing the susceptibility
of the spin waves within polygonal tubes with respect to
the resonant excitation by high-frequency external fields. To
selectively excite certain branches of the dispersion using a
microwave antenna, knowledge about the symmetry of the
modes is paramount. In fact, when using an antenna which
is not adapted to the symmetry of the waveguide, the exci-
tation of undesired modes can hardly be avoided [25]. Here,
we briefly discuss the case of a current-loop antenna which
possesses the same symmetry as the magnetic system itself,
therefore, belonging to the A1 irrep [see Fig. 5(a)]. In a per-
fectly round nanotube (c = ∞), such an antenna will only
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excite the homogeneous mode ν = 0. However, in polygonal
tubes there are additional A1 modes, all of which should
couple to such an antenna. This is seen in Fig. 5(b) for which
we calculated the microwave absorption from the mode pro-
files according to Ref. [25] as a function of c, taking into
account the field distribution of the current-loop antennas
wrapped around the different polygonal tubes.

As seen in Fig. 5(b), next to the homogeneous mode, also
the lower-frequency A1 singlets with |ν| = c, 2c, . . . can be
excited. The mode profiles of the A1 modes for c = 6 are seen
in Fig. 5(c). When other branches of the dispersion are desired
to be selectively excited, the microwave antenna has to be
designed according to the symmetry of those modes.

IV. CONCLUSIONS

In conclusion, we investigated the influence of discrete
symmetries on the spin-wave dispersion in polygonal nan-
otubes by micromagnetic modeling. We found that lowering
the rotational symmetry leads to the splitting of doublet
modes. This is a purely geometrical effect and should be dis-
tinguished from the nontrivial version of the Aharonov-Bohm
effect, more commonly known as the Berry phase of spin
waves. The splitting is observed only for certain azimuthal
modes when the azimuthal periods are half-integer or integer
multiples of the number of facets. The resulting singlets are
lateral-standing spin waves. Using symmetry analysis, the
normal modes can be categorized according to the irreps of the
magnetic point group defined by the geometry and the mag-
netic state of the tube. As a consequence of discrete symmetry,
multiple modes can belong to the same irrep, allowing for the
hybridization of modes with different azimuthal periods. This
leads to a spin-wave dispersion with multiple avoided level
crossings. Knowing the possible symmetries of the modes
offers a qualitative understanding of the mode mixing. The

knowledge about the symmetry of the modes is also important
for the antenna design and applications, as we demonstrate by
computing the absorption for a current loop antenna. Selective
excitation of spin-wave branches is possible by designing the
antenna according to the symmetry of the modes. We believe
that these novel phenomena activated in discrete symmetries
are important for a broad range of two- and three-dimensional
nanostructures.

As a general conclusion of this paper we can say that
the dynamic properties of nanomaterials are determined by
three general factors: (1) their geometrical shape, 92) the type
of interactions governing the dynamical degrees of freedom,
and (3) the nature of their ground state. In the present pa-
per, as a specific example, we investigate polygonal tubes
(1) in the ferromagnetic vortex state (3) where the spins
interact via the Heisenberg exchange and the dipole-dipole
interaction (2). We explore the importance of the structure-
functionality relation in such nanotubes, clearly manifested in
their magnetization dynamics via geometrically induced mode
splittings and symmetry-governed hybridization effects. We
emphasize that this proof-of-concept paper can be generalized
to a wide range of nanomaterials. For example, the impact of
discrete symmetries can be explored similarly when spherical
nanoparticles are replaced by polyhedral ones. Moreover, be-
sides the dynamic magnetic properties studied here, one can
similarly use geometrical effects to design elastic, dielectric,
and optical properties in nanomaterials since acoustic and
polarization waves are also prone to mode splitting and hy-
bridization when lowering the symmetry of the host material.
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