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ABSTRACT Novel and high-performance medical image classification pipelines are heavily utilizing
ensemble learning strategies. The idea of ensemble learning is to assemble diverse models or multiple
predictions and, thus, boost prediction performance. However, it is still an open question to what extent as
well as which ensemble learning strategies are beneficial in deep learning based medical image classification
pipelines. In this work, we proposed a reproducible medical image classification pipeline for analyzing the
performance impact of the following ensemble learning techniques: Augmenting, Stacking, and Bagging.
The pipeline consists of state-of-the-art preprocessing and image augmentation methods as well as 9 deep
convolution neural network architectures. It was applied on four popular medical imaging datasets with
varying complexity. Furthermore, 12 pooling functions for combining multiple predictions were analyzed,
ranging from simple statistical functions like unweighted averaging up to more complex learning-based
functions like support vector machines. Our results revealed that Stacking achieved the largest performance
gain of up to 13% F1-score increase. Augmenting showed consistent improvement capabilities by up to
4% and is also applicable to single model based pipelines. Cross-validation based Bagging demonstrated
significant performance gain close to Stacking, which resulted in an F1-score increase up to +11%.
Furthermore, we demonstrated that simple statistical pooling functions are equal or often even better than
more complex pooling functions. We concluded that the integration of ensemble learning techniques is a
powerful method for anymedical image classification pipeline to improve robustness and boost performance.

INDEX TERMS Medical image classification, ensemble learning, deep learning, medical imaging, stacking,
bagging, test-time augmentation.

I. INTRODUCTION
The field of automated medical image analysis has seen
rapid growth in recent years [1]–[3]. The utilization of deep
neural networks became one of the most popular and widely
applied algorithms for computer vision tasks [2]. A starting
point for this trend relies on deep convolutional neural net-
work architectures. These architectures demonstrated power-
ful prediction capabilities and achieved similar performance
as clinicians [2], [4]. The integration of deep learning based
automated medical image analysis in the clinical routine
is currently a highly popular research topic. The subfield
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medical image classification (MIC) aims to label a complete
image to predefined classes, e.g. to a diagnosis or a condition.
The idea is to use these models as clinical decision support
for clinicians in order to improve diagnosis reliability or
automate time-consuming processes [2], [5].

Recent studies showed that the most successful and accu-
rate MIC pipelines are also heavily based on ensemble learn-
ing strategies [6]–[12]. In the machine learning field, the
aim is to find a suitable hypothesis that maximizes predic-
tion correctness. However, finding the optimal hypothesis
is difficult which is why the strategy was evolved to com-
bine multiple hypotheses into a superior predictor closer to
an optimal hypothesis. In the context of deep convolutional
neural networks, hypotheses are represented through fitted
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neural network models. Thus, ensemble learning is defined
as the combination of models to yield better prediction per-
formance. The integration of ensemble learning strategies
in a deep learning based pipeline is called deep ensemble
learning. Various recent studies successfully utilized this
strategy to improve the performance and robustness of their
MIC pipeline [6]–[16]. The underlying techniques of these
deep ensemble learning based pipelines are ranging from
the combination of different model types like in the studies
Rajaraman et al. [17] and Hameed et al. [11] to inference
improvement of a single model like in Galdran et al. [18].
Furthermore, medical imaging datasets are commonly quite
small, which is why ensemble learning techniques for effi-
cient training data usage are especially popular as demon-
strated in Ju et al. [13] and Müller et al. [19]. Empirically,
ensemble learning based pipelines tend to be superior accord-
ing to the assumption that the assembling of diverse models
has the advantage to combine their strengths in focusing
on different features whereas balancing out the individual
incapability of a model [13], [20]–[22]. However, it is still
an open question to what extent as well as which ensemble
learning strategies are beneficial in deep learning based MIC
pipelines. Even so, the field and idea of general ensem-
ble learning is not novel, the impact of ensemble learning
strategies in deep learning based classification has not been
adequately analyzed in the literature, yet. Whereas multi-
ple authors provide extensive reviews on general ensemble
learning like Ganaiea et al. [22], only a handful of works
started to survey the deep ensemble learning field. While
Cao et al. reviewed deep learning based ensemble learn-
ing methods specifically in bioinformatics [23], Sagi and
Rokach [24], Ju et al. [13], and Kandel et al. [25] started to
provide descriptions or analysis on general deep ensemble
learning methods.

In this study, we push towards setup a reproducible analysis
pipeline to reveal the impact of ensemble learning techniques
on medical image classification performance with deep con-
volution neural networks. By computing the performance of
multiple ensemble learning techniques, we want to compare
them to a baseline pipeline and, thus, identify possible per-
formance gain. Furthermore, we explore the possible per-
formance impact on multiple medical datasets from diverse
modalities ranging from histology to X-ray imaging. Our
experiments aim to help understand the beneficial as well as
unfavorable influences of different ensemble learning tech-
niques on model performance. This study contributes to the
field of deep ensemble learning and provides the missing
overview of state-of-the-art ensemble learning techniques for
deep learning based MIC.

Our manuscript is organized as follows: Section 1 intro-
duces medical image classification, the field of ensemble
learning and our research question. In Section 2, we describe
our proposed pipeline including the datasets, preprocess-
ing methods, deep convolutional neural network architec-
tures, ensemble learning strategies, and pooling functions.
In Section 3, we report the experimental results and discuss

these in detail in Section 4. In Section 5, we conclude our
paper and give insights on future work. The Appendix con-
tains further information on the availability of our trained
models, all result data and the code used in this research.

II. METHODS AND MATERIALS
A. DATASETS
For increased result reliability and robustness, we analyzed
multiple public MIC datasets. The datasets differ in sam-
ple size, modality, feature type of interest and noisiness.
An overview of all datasets can be seen in Table 1, as well
as exemplary samples in Figure 1.

1) CHMNIST
The image analysis of histological slides is an essential
part in the field of pathology. The CHMNIST dataset con-
sists of image patches generated from histology slides of
patients with colorectal cancer [26], [27]. These patches
were annotated in eight distinct classes: Tumor epithelium,
simple stroma (homogeneous composition), complex stroma
(containing single tumor cells and/or immune cells), immune
cells, debris (including necrosis, hemorrhage and mucus),
normal mucosal glands, adipose tissue and background (no
tissue) [26], [27]. The dataset contains in total 5,000 images
in Red-Green-Blue (RGB) color encoding with 625 images
for each class and a unified resolution of 150 × 150 pixels.
The slides were generated via an Aperio ScanScope micro-
scope with a 20x magnification from the pathology archive
of University Medical Center Mannheim and Heidelberg
University [26].

2) COVID
X-ray imaging is one of the key modalities in the field of
medical image analysis and is crucial in modern healthcare.
Furthermore, X-ray imaging is a widely favored alterna-
tive to reverse transcription polymerase chain reaction test-
ing for the coronavirus disease (COVID-19) [28], [29].
Researchers from Qatar, Doha, Dhaka, Bangladesh, Pakistan
and Malaysia have created a dataset of thorax X-ray images
for COVID-19 positives cases along with healthy control and
other viral pneumonia cases [28]. The X-ray scans were gath-
ered and annotated from 6 different radiographic databases
or sources like the Italian Society of Medical and Interven-
tional Radiology (SIRM) COVID-19 Database [28], [30].
The dataset consists of in total 2,905 grayscale images with
219 COVID-19 positive, 1,345 viral pneumonia and 1,341
control cases.

3) ISIC
Melanoma, appearing as pigmented lesions on the skin,
is a major public health problem with more than new
300,000 cases per year and is responsible for the majority
of skin cancer deaths [31]. Dermoscopy is the field of early
melanoma detection, which can be either performed man-
ually by expert visual inspection or automatically by MIC
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TABLE 1. Overview of utilized datasets with descriptive details and sampling distributions. The noisiness of a dataset is a subjective impression based on
the best achieved performance in the literature for this dataset.

FIGURE 1. Exemplary sections of the four used datasets used in this analysis: CHMNIST (histology), COVID (X-ray), ISIC (dermoscopy) and DRD
(ophthalmoscopy).

via high-resolution cameras. The International Skin Imag-
ing Collaboration (ISIC) hosts the largest publicly available
collection of quality-controlled images of skin lesions [31].
The 2019 release of their archive consists of in total 25,331
RGB images which were classified in the following 8 classes:
Melanoma (MEL), melanocytic nevus (NV), basal cell carci-
noma (BCC), actinic keratosis (AK), benign keratosis (BKL),
dermatofibroma (DF), vascular lesion (VASC) and squamous
cell carcinoma (SCC) [32]–[34].

4) DRD
Diabetic retinopathy is the leading cause of blindness and is
estimated to affect over 93 million people worldwide [35].
The detection of diabetic retinopathy is mostly done via a
time-consuming manual inspection by a clinician or ophthal-
mologist with the help of a fundus camera [19]. In order
to contribute to research for automated diabetic retinopathy
detection (DRD) algorithms, the California Healthcare Foun-
dation and EyePACS created a public dataset consisting of
35,126 RGB fundus images [35], [36]. These were annotated
in the following five classes according to disease severity: No
DR, Mild, Moderate, Severe, Proliferative DR. It has to be
noted that the authors pointed out the real-world aspect of
this dataset which includes various types of noise like arti-
facts, out of focus, under-/overexposed images and incorrect
annotations [35].

B. SAMPLING AND PREPROCESSING
In order to ensure a reliable evaluation of ourmodels, we sam-
pled each dataset with the following distribution strategy:
For model training, 65% of each dataset was used (called
‘model-train’) whereas 10% of all samples were used as a

validation set during the training process (called ‘model-val’)
to allow validation monitoring for callback strategies. The
only exception for this ‘model-train’ and ‘model-val’ sam-
pling strategy occurred in the Bagging experiment, in which
the two sets were combined and sampled according to a
5-fold cross-validation (75% in total of a dataset with 60%
as training and 15% as validation for each fold). For possible
training of ensemble learning pooling methods, another 10%
of a total dataset was reserved (called ‘ensemble-train’). For
the final in detail evaluation on a separate hold-out set, the
remaining 15% of each dataset was sampled as testing set
(called ‘testing’).

We applied the following preprocessing methods for
enhancement of the pattern-finding process of our deep
learning models as well as to increase data variability. Our
pipeline utilized extensive real-time (also called online-)
image augmentation during the training phase to allow the
model seeing novel and unique images in each epoch. The
augmentation was performed with Albumentations [37] and
consisted of the following techniques: Flipping, rotations
as well as alterations in brightness, contrast, saturation,
and hue. Furthermore, all images were squared padded for
avoiding aspect ratio loss. In the posterior resizing, the
image resolutions were reduced to the model architecture
default input sizes, which were commonly 224 × 224 pix-
els except for EfficientNetB4 with 380 × 380, as well
as InceptionResNetV2 and Xception with 299 × 299 pix-
els [38]–[40]. Before passing the images into the model,
we applied value intensity normalization. The intensities
were zero-centered via Z-Score normalization based on the
mean and standard deviation computed on the ImageNet
dataset [41].
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TABLE 2. Overview of configurations for applied preprocessing techniques and neural network models in the presented medical image classification
pipeline.

C. DEEP LEARNING MODELS
For computer vision tasks like image classification, deep con-
volutional neural networks are state-of-the-art and unmatched
in accuracy and robustness [5], [42]–[44]. Rather than
focusing on a single model architecture for our anal-
ysis, we trained diverse classification architectures to
ensure result reliability. The following architecture were
selected: DenseNet121 [45], EfficientNetB4 [39], Incep-
tionResNetV2 [40], MobileNetV2 [46], ResNeXt101 [47],
ResNet101 [48], VGG16 [49], Xception [38] and a custom
Vanilla architecture for comparison. The Vanilla architecture
consisted of 4 convolutional layers with each followed by
a max-pooling layer. The utilized classification head for all
architectures applied a global average pooling, a dense layer
with linear activation, a dropout layer, and another dense
layer with a softmax activation function for the final class
probabilities. The selected architectures represent the large
diversity of popular and widely applied types of deep learning
models for image classification. These strongly vary in the
number of model parameters as well as neural network layers,
input sizes, underlying composition techniques as well as
functionality principles, and overall complexity. This allows

a clearer analysis of the ensemble learning impact without
architecture-related biases. In terms of general complexity,
the utilized architectures have the following numbers of
model parameters: Vanilla with 0.5∗106, DenseNet121 with
7.0∗106, EfficientNetB4 with 17.7∗106, InceptionResNetV2
with 54.3∗106, MobileNetV2 with 2.3∗106, ResNet101
with 42.7∗106, ResNeXt101 with 42.2∗106, VGG16 with
14.7∗106, and Xception with 20.8∗106. Further details on the
architectures and their differences can be found in the excel-
lent reviews of Bressem et al. [50] and Alzubaidi et al. [51].
For implementation, we used our in-house developed frame-
work AUCMEDI which is built on TensorFlow [52]. Archi-
tecture and other implementation details are summarized in
Table 2.

We utilized a transfer learning strategy by pretraining all
models on the ImageNet dataset [41]. For the fitting pro-
cess, the architecture layers were frozen at first except for
the classification head and unfrozen, again, for fine-tuning.
Whereas the frozen transfer learning phase was performed for
10 epochs using the Adam optimization with an initial learn-
ing rate of 1-E04, the fine-tuning phase stopped after a max-
imal training time of 1000 epochs (including the 10 epochs
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FIGURE 2. Illustration showing the four ensemble learning techniques: Augmenting, Stacking, Boosting and Bagging. Except for Boosting, all techniques
are commonly utilized in modern deep convolutional neural network pipelines.

for transfer learning). The fine-tuning phase also utilized a
dynamic learning rate for the Adam optimization [53] starting
from 1-E05 to a maximum decrease to 1-E07 by a decreasing
factor of 0.1 after 8 epochs without improvement on the mon-
itored validation loss. As loss function for model training,
we used the weighted Focal loss from Lin et al. [54].

FL (pt) = −αt (1− pt)γ log(pt ) (1)

In the above formula, pt is the probability for the correct
ground truth class t , γ a tunable focusing parameter (which
we set to 2.0) and αt the associated weight for class t [54].
The class weights were computed based on the class distribu-
tion in the corresponding ‘model-train’ sampling set. Further-
more, an early stopping and model checkpoint technique was
applied for the fine-tuning phases, stopping after 15 epochs
without improvement and saving the best model measured
based on validation loss monitoring. The complete analysis
was performed with a batch size of 28 and run parallelized on
a workstation with 4x NVIDIA Titan RTX with each 24GB
VRAM, Intel(R)Xeon(R)Gold 5220RCPU@2.20GHzwith
96 cores and 384GB RAM.

D. ENSEMBLE LEARNING TECHNIQUES
As stated in the Introduction, deep ensemble learning is tra-
ditionally defined as building an ensemble of multiple pre-
dictions originating from different deep convolutional neural
network models [22]. However, recent novel techniques
necessitate redefining ensemble learning in the deep learning
context as combining information, most commonly predic-
tions, for a single inference. This information or predictions
can either originate from multiple distinct models or just a
single model. In this analysis, we explored the performance
impact of the ensemble learning techniques: Augmenting,
Bagging, and Stacking. We excluded the Boosting technique,
which is also commonly used in general ensemble learning.
The reason for this is that Boosting is not feasibly applicable
for image classification with deep convolutional neural net-
works due to the extreme increase in training time [22], [24].
An overview diagram of the four techniques can be seen in

Figure 2. For comparison, we setup Baseline models for all
architectures to identify possible performance gain or loss
tendencies through the ensemble learning techniques.

1) AUGMENTING
The Augmenting technique, often called test-time data aug-
mentation, can be defined as the application of reasonable
image augmentation prior to inference [55]–[60]. Through
augmentation, multiple images of the same sample can be
generated and then be used to compute multiple predictions.
The aim of augmenting is to reduce the risk of incorrect
predictions based on overfitting or too strict pattern learn-
ing [56], [57], [59]. In our analysis, we reused the Baseline
models and applied random rotations as well as mirroring
on all axes for inference. For each sample, 15 randomly
augmented images were created, and their predictions were
combined through an unweighted Mean as pooling function.

2) STACKING
In contrast to single algorithm approaches, the ensemble
of different deep convolutional neural network archi-
tectures (also called inhomogeneous ensemble learn-
ing) showed strong benefits for overall performance
[10], [22], [24], [25], [61]. This kind of ensemble learning
is more complex and can consist of even different computer
vision tasks [10], [22], [25]. The idea of the Stacking
technique is to utilize these diverse and independent models
by stacking another machine learning algorithm on top of
these predictions. In our analysis, we reused the Baseline
models consisting of various architectures as an ensemble
for stacking the pooling functions directly on top of these
inhomogeneous models.

3) BAGGING
Homogeneous model ensembles can be defined as multi-
ple models consisting of the same algorithm, hyperparam-
eters, or architecture [16], [22]. The Bagging technique is
based on improved training dataset sampling and a popular
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homogeneous ensemble learning technique. In contrast to a
standard single training/validation split, which results in a
singlemodel, Bagging consists of trainingmultiplemodels on
randomly drawn subsets from the dataset. In practice, a k-fold
cross-validation is applied on the dataset resulting in k mod-
els [62]. In our analysis, we applied a 5-fold cross-validation
for Bagging as described in the sub-section 2.2 Sampling
and Preprocessing, which resulted in five models for each
architecture. The predictions of these five models for a single
sample were combined via multiple pooling functions.

E. POOLING FUNCTIONS
In order to combine the ensemble of predictions into a
single one, we studied several different methods and algo-
rithms. A prediction consisted of the softmax normalized
probability of each class for an unknown sample. For
the Bagging and Stacking technique, the following pool-
ing functions were analyzed: Best Model, Decision Tree,
Gaussian Process classifier, Global Argmax, Logistic Regres-
sion,Majority Vote Soft and Hard, Unweighted andWeighted
Mean, Naïve Bayes, Support Vector Machine, and k-Nearest
Neighbors [63]. For the Augmenting technique, only the
Unweighted Mean was used as pooling function.

Basic pooling functions were custom implemented,
whereas more complex algorithms were integrated from
scikit-learn [63]. The Best Model is selecting the best scoring
model according to the F1 score on the ‘ensemble-train’
sampling set. Decision Trees were trained with Gini impurity
as information gain function [64]. Gaussian Process classifier
was based on Laplace approximation with a ‘one-vs-rest’
multi-class strategy. Global Argmax was defined as selecting
the class with the highest probability across all predictions
and zeroing the remaining classes. For Logistic Regression
training, the ‘newton-cg’ solver and L2 regularization were
used with a multinomial multi-class strategy [65]. TheMajor-
ity Vote Soft variant sums up all probabilities per class and
then softmax normalizes them across all classes, whereas the
Majority Vote Hard variant utilizes traditional class voting in
which the class with the highest probability is used for each
prediction as vote. The Unweighted Mean straightforward
averages the class probabilities across predictions, whereas
theWeightedMean performs a weighted averaging according
to the achieved F1 score of the model on the ‘ensemble-
train’ sampling set. The Naïve Bayes was implemented as
the Complement variant described by Rennie et al. [66]. The
Support Vector Machine classifier was based on the stan-
dard implementation from LIBSVM [67]. For the k-Nearest
Neighbors classifier, a number of five neighbors was utilized.

F. EVALUATION
For evaluation, we utilized the packages pandas [68], scikit-
learn [63], and plotnine [69] for visualization.

The performance scores were calculated class-wise
and averaged by the unweighted mean. The following
community-standard scores were used: Accuracy, F1-score,
Sensitivity (also called True Positive Rate), False Positive

Rate (FPR), and area under the receiver operating characteris-
tic curve (AUC&ROC). The supplementary contains various
additional metrics like Top-1/3-Error, Specificity, and others.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(2)

F1 =
2TP

2TP+ FP+ FN
(3)

Sensitivity =
TP

TP+ FN
(4)

FPR =
FP

FP+ TN
(5)

All metrics are based on the confusion matrix for binary
classification, where TP, FP, TN, and FN represent the true
positive, false positive, true negative, and false negative rate,
respectively [70]. For the AUC and ROC curve computation,
classifier confidence for predictions was also utilized [71].

III. RESULTS
The total training time of the complete analysis took around
1,215 hours with the following distribution per technique:
Baseline 213 hours (17.5%), Augmenting 0.00 hours (0%),
Stacking less than 0.09 hours (0%), and Bagging 1,002 hours
(82.5%). It has to be noted that the Augmenting and Stack-
ing techniques were based on the Baseline models but did
not require extensive additional training time. The Baseline
revealed an average training time by mean across all archi-
tectures of 45 minutes for COVID, 47 minutes for CHM-
NIST, 302 minutes for ISIC, and 1,026 minutes for DRD,
whereas the Vanilla architecture had the lowest training time
on average across datasets with 246 minutes and ResNet101
the highest with 522 minutes. Further details on training
times for all architectures and phases can be found in the
supplementary.

All training processes for the deep learning convolutional
neural network models did not require the entire 1000 epochs
and instead were early stopped after an average of 51 epochs.
On median the epoch distribution looked like the follow-
ing: For Baseline CHMNIST 54, COVID 48 ISIC 64, and
DRD 37. For Bagging CHMNIST 53, COVID 48, ISIC 68,
and DRD 37. Through validation monitoring during the train-
ing, no overfitting was observed. The training and validation
loss function revealed no significant distinction from each
other. The individual fitting plots for all models are attached
in the Appendix.

A. BASELINE
The Baseline revealed the performance of various state-of-
the-art architectures without the usage of any ensemble learn-
ing technique. This resulted in an average F1-score by a
median of 0.95 for CHMNIST, 0.96 for COVID, 0.72 for
ISIC, and 0.43 for DRD. The architectures shared overall
a similar performance depending on the dataset noisiness.
According to their F1-score, the best architectures were Effi-
cientNetB4 and ResNet101 in CHMNIST, ResNeXt101 in
COVID, ResNet101 and ResNeXt101 in ISIC, as well as
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TABLE 3. Achieved results of the Baseline approach showing the Accuracy (Acc.), F1-score, Sensitivity (Sens.), and AUC on image classification for each
architecture and dataset.

FIGURE 3. Performance results for the Baseline pipeline showing (LEFT) the achieved F1-score with its confidence interval on classification for each
architecture and (RIGHT) class-wise ROC curves for the best performing architecture (according to F1-score) on each dataset.

EfficientNetB4 and ResNet101 in DRD. The smaller archi-
tectures like Vanilla and MobileNetV2 performed the worst.
More details are shown in Table 3.

The ROC curves in Figure 3 revealed only marginal perfor-
mance differences of classes in the CHMNIST, COVID, and
ISIC dataset. However, DRD showed significant differences
in Accuracy between classes whereas the detection of ‘Mild’
samples had the lowest performance.

B. AUGMENTING
By integrating the ensemble learning technique Augmenting
for the inference based on the Baseline models, it was pos-
sible to obtain the following average F1-scores by median:
0.95 for CHMNIST, 0.97 for COVID, 0.74 for ISIC, and
0.43 for DRD. More details are shown in Table 4. Thus, there
was only a marginal performance increase for the CHMNIST,
and ISIC dataset compared to the Baseline. However, in the
comparison of the best possible score between Augmenting

and Baseline, a performance impact of 0% for CHMNIST,
−1% for COVID, +3% for ISIC, and +4% for DRD was
measured according to the F1-score.

The ranking between best-performing architectures
revealed no drastic change. Especially, the EfficientNetB4
and ResNet101 achieved the highest performance similar
to the Baseline, as well as the smaller architectures like
Vanilla and MobileNetV2 the lowest. The ROC curves in
Figure 4 resulted in equivalent model Accuracy variance
between classes and datasets as the Baseline.

C. STACKING
For the Stacking technique, several pooling functions were
successfully applied for combining the predictions of all
Baseline architectures and resulted in the following aver-
age F1-scores by median: 0.96 for CHMNIST, 0.98 for
COVID, 0.81 for ISIC, and 0.48 for DRD. More details are
shown in Table 5. Compared with the median F1-score of
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TABLE 4. Achieved results of the Augmenting approach showing the Accuracy (Acc.), F1-score, Sensitivity (Sens.), and AUC on image classification for
each architecture and dataset.

FIGURE 4. Performance results for the Augmenting approach showing (LEFT) the achieved F1-score with its confidence interval on classification for each
architecture and (RIGHT) class-wise ROC curves for the best performing architecture (according to F1-score) on each dataset.

the Baseline, a performance impact of +1% for CHMNIST,
+2% for COVID, +13% for ISIC, and +12% for DRD was
measured. Additional to the median performance compari-
son, the pooling function ‘Best Model’ was also used as a
benchmark without the usage of ensemble learning, which
was inferior of up to 0.08 in Accuracy, 0.06 in F1, 0.06 in
Sensitivity, and 0.04 in AUC compared with the best pooling
function.

According to their F1-score, the best pooling functions
were Naïve Bayes in CHMNIST, Majority Voting Soft,
Mean Un-/Weighted, Naïve Byes and k-Nearest Neighbor
in COVID, Gaussian Process, Majority Voting Soft, Mean
Un-/Weighted and Support VectorMachine in ISIC, as well as
Majority Voting Soft and Mean Un-/Weighted in DRD. The
Decision Tree pooling function performed the worst and had
a performance difference of up to−0.02 Accuracy,−0.09 F1,
−0.09 Sensitivity, and −0.15 AUC compared to the ‘Best
Model’ from the Baseline.

The ROC curves of the Stacking approach (illustrated in
Figure 5) showed the same trend of class-wise performance
differences as the Baseline, but with better precision results
especially in the ISIC and DRD dataset.

D. BAGGING
By training new models based on a 5-fold cross-validation, it
was possible to analyze the effects of Bagging on prediction
capability. The predictions of five models per architecture
were combined using various pooling functions. In this exper-
iment, the five models of the EfficientNetB4 architecture
archived the highest F1-scoring and were selected for further
result reporting and representation of the Bagging approach.
The evaluation of the merged predictions of these models
showed the following averaged F1-score results by median:
0.96 for CHMNIST, 0.98 for COVID, 0.8 for ISIC, and
0.47 for DRD. In comparison with the Baseline, the following
performance impact was measured: +1% for CHMNIST,
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TABLE 5. Achieved results of the Stacking approach showing the Accuracy (Acc.), F1-score, Sensitivity (Sens.), and AUC on image classification for each
technique and dataset.

FIGURE 5. Performance results for the Stacking approach showing (LEFT) the achieved F1-score with its confidence interval on classification for each
pooling function and (RIGHT) class-wise ROC curves for the best performing method (according to F1-score) on each dataset.

+2% for COVID, +11% for ISIC, and +9% for DRD. More
details for the Bagging results can be seen in Table 6.

On the contrary to the previous ensemble learning
approaches, the ‘Best Model’ pooling function represents not
the best validation scoring Baselinemodel but instead the best
model from the 5-fold cross-validation. The ranking between
best-performing pooling functions for the EfficientNetB4
5-fold cross-validation revealed close grouping around the
same score. In the CHMNIST and COVID set, all pooling
functions except for Decision Trees achieved an F1-score
of 0.96 and 0.98, respectively. Overall, the pooling based
on Mean, Majority Voting, Gaussian Process, and Logistic
Regression resulted in the highest performance on average.
On the other hand, Decision Tree and Naïve Bayes obtained
the lowest F1-scores.

In Figure 6, the ROC curves indicate an overall equal
or superior performance compared to the Baseline, but a
slightly inferior performance in CHMNIST dataset. Notably,
the ISIC dataset indicates a strongermodel Accuracy variance
between classes compared to the Baseline ROC curves.

IV. DISCUSSION
In this work, we setup a reproducible pipeline for ana-
lyzing the impact of ensemble learning techniques on
MIC performance with deep convolutional neural networks.
We implemented Augmenting, Bagging as well as Stacking
and compared them to a Baseline to compute performance
gain on various metrics like F1-score, Sensitivity, AUC, and
Accuracy. Our analysis proved that the integration of ensem-
ble learning techniques can significantly boost classification
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TABLE 6. Achieved results of the Bagging approach showing the Accuracy (Acc.), F1-score, Sensitivity (Sens.), and AUC on image classification for each
technique and dataset. The Bagging technique was applied on the EfficientNetB4 architecture, which showed the highest F1-score performance.

FIGURE 6. Performance results for the Bagging approach showing (LEFT) the achieved F1-score with its confidence interval on classification for each
pooling function and (RIGHT) class-wise ROC curves for the best performing method (according to F1-score) on each dataset. The Bagging technique was
applied on the EfficientNetB4 architecture, which showed the highest F1-score performance across all architectures.

performance from deep convolutional neural network mod-
els. As in Figure 7 summarized, our results showed a perfor-
mance gain ranking from highest to lowest for the following
ensemble learning techniques: Stacking, Bagging, and
Augmenting.

The ensemble learning technique with the highest per-
formance gain was Stacking, which applies pooling func-
tions on top of different deep convolutional neural network
architectures. Various state-of-the-art MIC pipelines heavily
utilize a Stacking based pipeline structure to optimize perfor-
mance by combining novel architectures or differently trained
models [6], [10], [12], [19], [72]. This results in higher
inference quality and bias or error reduction by using the
prediction information of diverse methods. Our analysis also

revealed that, according to F1-score results, simple pooling
functions like averaging by Mean or a Soft Majority Vote
results in an equally strong or even higher performance gain
compared to more complex pooling functions like Support
Vector Machines or Logistic Regressions. However, accord-
ing to Accuracy results, the more complex pooling func-
tions obtained higher scores. This indicates that more simple
pooling functions are still based on the penalty strategy of
the models which were trained with a class weighted loss
function in our experiments. Thus, our results of simple
pooling functions still optimize for class balanced metrics
like F1-score or Sensitivity. On the other hand, more complex
pooling functions with a separated training process focused
on optimizing overall true cases including true negatives
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FIGURE 7. Summary of all experiments to identify performance impact of ensemble learning techniques on medical image classification.
LEFT: Bar plots showing the maximum achieved Accuracy across all methods for each ensemble learning technique and dataset: Baseline (red),
Augmenting (blue), Bagging (green) and Stacking (purple). Additionally, the distribution of achieved F1-scores by the various methods is illustrated with
box plots.
RIGHT: Computed performance impact between the best scoring method of the Baseline and the best scoring method of the applied ensemble learning
technique for each dataset. The performance impact is represented as performance gain in % between F1-scores (RIGHT TOP) as well as Accuracies
(RIGHT BOTTOM). The color mapping of the ensemble learning techniques is equal to Figure 7 LEFT (Augmenting: Blue; Bagging: Green; Stacking: Purple).

which resulted in better scoring on unbalanced metrics like
Accuracy. Apart from that, other recent studies which ana-
lyzed the impact of Stacking also support our hypothesis that
Stacking can significantly improve individual deep convo-
lutional neural network model performance by up to 10%
[7], [13], [22], [25]. With a similar experiment design as in
our work, Kandel et al. demonstrated Stacking impact on a
musculoskeletal fracture dataset analyzing pooling functions
based on statistics as well as probability [25].

The Augmenting technique demonstrated to be an
efficient ensemble learning approach. In nearly all our experi-
ments, it was possible to improve the performance by another
few percent through reducing overfitting bias in predictions.
In theory, this should be already avoided with standard
data augmentation during the training process. Although,
our experiments indicated that the increased image variabil-
ity through Augmenting could lead to adverse performance
influences if applied on models based on small-sized datasets
with a high risk of being overfitted. Especially in medical
imaging, in which small datasets are common, this effect
should be considered if Augmenting is applied and can
also act as a strong indicator for overfitting. Nevertheless,
strong performing MIC pipelines revealed that model per-
formance can be significantly boosted with inference Aug-
menting [57]–[60]. Recent studies from Kandel et al. [59]
and Shanmugam et al. [57] also analyzed the performance
impact in detail of Augmenting on MIC and proved strong
as well as consistent improvement, especially for low scoring
models. In contrast to other ensemble learning techniques,

Augmenting can be quickly integrated into pipelines without
the need for additional training of various deep convolutional
neural network or machine learning models. Thus, also a
single model pipeline can benefit from this ensemble learning
technique. However, performance gain from Augmenting is
strongly influenced by applied augmentation methods and
medical context in a dataset. Molchanov et al. tried to solve
this issue with a greedy policy search to find the optimal Aug-
mentation configuration [60]. A limitation of our analysis was
that Augmenting was implemented and studied utilizing only
an unweighted Mean as pooling function. However, other
simple pooling functions without model training require-
ments like Global Argmax or Majority Vote Soft/Hard could
have led to a stronger performance increase by Augmenting
and should be analyzed as future work.

Nowadays, Bagging is one of the most widely used ensem-
ble learning techniques and utilized in several state-of-the-
art pipelines and top-performing benchmark submissions in
MIC [11], [13], [14], [19], [22], [73]. In compliance, our
experiments Bagging showed a strong performance increase
for large datasets and no or marginal performance decrease in
small datasets. Similar to Stacking, Bagging was able to sig-
nificantly improve prediction capability for complex datasets
like ISIC and DRD. We interpreted the possible detrimental
effects in COVID and CHMNIST that the fewer data used
for model training through cross-validation sampling had
a considerable impact on performance in smaller datasets.
Especially in small medical datasets with rare and unique
morphological cases, excluding these can have a strong neg-
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ative impact on performance. This is why our large datasets
like ISIC and DRD with adequate feature presentations in
all sampled folds revealed persistent performance improve-
ment. Studies like Dwork et al. [74] analyzed this behavior
and concluded that cross-validation based strategies comprise
sustainable overfitting risk [75]. Based on our results, Bag-
ging showed to have a high risk of drifting away from an opti-
mal bias-variance tradeoff. According to Geman et al. [76],
the bias-variance tradeoff is the right balance between bias
and variance in a machine learning model in order to obtain
the optimal generalizable model [76].Whereas increased bias
results into the risk of underfitting, increased variance can
lead to overfitting. Cross-validation based Bagging boosts
efficient data usage and, thus, the variance of a model. How-
ever, it has to be noted that the bias-variance tradeoff is still
on active discussion in the research community for its cor-
rectness in deep learning [77], [78]. Furthermore, Bagging
requires extensive additional training time to obtain multiple
models. In the field of deep learning, training a higher number
of models can lead to an extremely time-consuming process.
For this reason, we specified our analysis on a 5-fold cross-
validation. Still, our analysis results for Bagging are limited
thereby based on the specification on using only 5-folds.
Further research is needed on the impact of fold number or
sampling size on performance and model generalizability in
deep learning based MIC. Nevertheless, we concluded that
Bagging is a powerful but complex to utilize ensemble learn-
ing technique and that its effectiveness is highly depended
on sufficient feature representation in the sampled cross-
validation folds. To avoid harmful folds with missing feature
representation, we promote in-detail dataset analysis with
manual annotation supported sampling (stratified) or using
a higher k-fold to increase training sets and, thus, reduce
the risk of excluding samples with unique morphological
features.

V. CONCLUSION
In this paper, we analyzed the impact of the most widely
used ensemble learning techniques on medical image clas-
sification performance: Augmenting, Stacking, and Bagging.
We setup a reproducible experiment pipeline, evaluated the
performance through multiple metrics, and compared these
techniques with a Baseline to identify possible performance
gain. Our results revealed that Stacking was able to achieve
the largest performance gain in our medical image classifica-
tion pipeline. Augmenting showed consistent improvement
capabilities on non-overfitting models and has the advantage
to be applicable to also single model based pipelines. Cross-
validation based Bagging demonstrated significant perfor-
mance gain close to Stacking, but reliant on sampling with
sufficient feature representation in all folds. Additionally,
we showed that simple statistical pooling functions likeMean
or Majority Voting are equal or often even better than more
complex pooling functions like Support Vector Machines.
Overall, we concluded that the integration of ensemble
learning techniques is a powerful method for MIC pipeline

improvement and performance boosting. As a best practice,
Stacking based pipeline builds utilizingmultiple architectures
showed continuous and strong performance improvement,
whereas the gain of other ensemble learning techniques is
based on datasets preconditions. As future research, we plan
to further analyze the impact of the number of folds in cross-
validation based Bagging techniques, integrate more pooling
functions in Augmenting, and extend our analysis on deep
learning Boosting approaches. Furthermore, the applicability
of explainable artificial intelligence techniques for ensemble
learning based medical image classification pipelines with
multiple models is still an open research field and requires
further research.

APPENDIX
The code for this article was implemented in Python (plat-
form independent) and is available under the GPL-3.0
License at the following GitHub repository: https://github.
com/frankkramer-lab/ensmic.

All data generated and analyzed during this study is avail-
able in the following Zenodo repository: https://doi.org/10.
5281/zenodo.6457912.
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