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Transport of solutes through channels with rough boundaries is abundant in natural and
engineered settings. However, it is not known currently what the consequences of an
abruptly alternating boundary are for the solute dispersion, in particular when advected
by inertial fluid flow. To investigate this, we compute numerically the time-asymptotic
longitudinal dispersion coefficient of a passive solute advected by fluid flow through
a two-dimensional channel with square boundary roughness. We determine how the
effective diffusion coefficient depends on the boundary amplitude, Péclet number and
Reynolds number. For creeping flow, the effective diffusion coefficient is found to be
enhanced significantly through the recirculation zones. Increasing fluid inertia reduces
the effective diffusion coefficient by up to a factor of two for high Péclet numbers. We
interpret this behaviour by analysing residence times computed from Lagrangian particle
simulations.
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1. Introduction

Since the original work of Taylor (1953), the notion of an effective diffusion has proven
to be extremely useful. His theory, and extensions thereof (Aris & Taylor 1956; Brenner
1980; Brenner & Adler 1982), has become the standard for estimating the dispersion in
systems ranging from transport in blood (Goldstick, Ciuryla & Zuckerman 1976; Scow,
Blanchette-Mackie & Smith 1976; Eckstein & Belgacem 1991) and groundwater systems
(Desaulniers et al. 1986; Zheng & Wang 1999), sugar transport in plants (Jensen et al.
2009, 2016; Dölger et al. 2014), and the dispersion of airborne droplets for spreading in
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disease transmission (Eames et al. 2009; Hui et al. 2009; Liu et al. 2017). Therefore,
dispersion has been the focus of much experimental, numerical and theoretical research.
The understanding of dispersion in axially invariant channels has since Taylor (1953) and
Aris & Taylor (1956) been extended to allow for alternating fluid boundary conditions
(Adrover & Cerbelli 2017; Adrover, Cerbelli & Giona 2018) and boundaries absorbing the
solute (Levesque et al. 2012; Dagdug, Berezhkovskii & Skvortsov 2014). However, most
channels and pores in natural and industrial systems are not perfectly flat. The addition of
a varying boundary geometry is found to result in significant increase for the dispersion
(Rosencrans 1997; Drazer et al. 2004; Schmidt, McCready & Ostafin 2005; Bolster, Dentz
& Le Borgne 2009; Bouquain et al. 2012), and for certain systems even results in a
decrease of the asymptotic spreading (Rosencrans 1997; Drazer et al. 2004; Bolster et al.
2009). Brenner’s theory (Brenner 1980; Brenner & Adler 1982) has proven to be a solid
theoretical framework for investigating such geometries (Bolster et al. 2009).

Most of the previous work with varying aperture has been done under certain idealized
conditions, such as with potential flow (Eames & Bush 1999; Choi et al. 2005) or in the
low-Reynolds-number regime where inertial effects can be ignored. Bolster et al. (2009)
studied solute dispersion in channels with sinusoidal wall roughness under Stokes flow
conditions. Here, the linearity of Stokes’ equations and the analyticity of the boundary
allowed for a perturbative approximation to the dispersion coefficient. Bouquain et al.
(2012) built upon this work by investigating the effects of fluid inertia on the effective
solute transport. Inertial effects can result in low-velocity regions called recirculation
zones (RZ), which can trap the solute (Buonocore, Sen & Semperlotti 2020), resulting in a
significant increase in the asymptotic spreading. While RZ can occur in Stokes flow, they
become more dominant with increasing Reynolds number and appear for much smaller
geometrical constraints.

Although the smooth single-wavelength roughness considered in a number of works
(Laachi et al. 2007; Yariv & Dorfman 2007; Bolster et al. 2009; Bouquain et al. 2012)
represents a major step towards real-world applications, the wall profiles found in both
natural rock fractures (Cvetkovic, Selroos & Cheng 1999; Fiori & Becker 2015) and
microfluidic devices such as the staggered herringbone mixer (Williams, Longmuir &
Paul 2008; Ottino et al. 2004) do not obey the same smoothness, but contain jumps
and often rugged shapes. Rough surfaces have been studied for purely diffusive transport
(Mangeat, Guérin & Dean 2018), including geometries similar to those studied here
(Kalinay & Percus 2010; Dagdug et al. 2021). With the addition of flow, recently Yoon
& Kang (2021) applied advected random walk simulations to investigate the combined
effect of a self-similar roughness and fluid inertia for a variety of advective transport
rates. However, it was limited to the transient regime. Dagdug et al. (2014) studied how
dispersion is affected by narrow dead ends where particles may be trapped for a finite time.
Larger openings may lead to non-negligible flow inside the dead ends and non-trivial flow
profiles. Further, the role of dead ends for diffusion with constant drift has been studied
(Laachi et al. 2007; Berezhkovskii et al. 2010; Berezhkovskii & Dagdug 2011; Zitserman
et al. 2014). However, this does not account for the role of fluid shear or Reynolds number.
Despite the ubiquity of rough surfaces and high-inertia flows, it is unclear exactly how
together they influence the effective diffusion. This is particularly important as numerous
previous studies assume negligible flow in the stagnant areas or ignore fluid shear. The
main novelty of this study is that we consider a geometry with sharply changing boundary
roughness, resulting in large RZ. Previous studies of dispersion in channels of varying
apertures have been limited to smooth boundaries (Bolster et al. 2009; Bouquain et al.
2012) or ignore both large openings and the flow inside the stagnant areas (Laachi et al.
2007; Berezhkovskii et al. 2010; Berezhkovskii & Dagdug 2011; Levesque et al. 2012;
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Dispersion in channels with square boundary roughness
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Figure 1. Illustration of the geometry considered in this paper. The quadratic square rough channel consists
of infinitely many repeated unit cells, with channel height 2a + r, unit cell width 2r, and unit cell area 4a2b.
The fluid unit cell boundary is created from the union of the unit cell boundary and wall boundary (2.8). The
dimensionless square roughness b ≡ r/a characterizes the geometry fully. For b = 0, one finds Aris’ channel,
and for b = 2, the channel is completely closed.

Dagdug et al. 2014; Zitserman et al. 2014). In this paper, we show that this boundary
roughness leads to a qualitatively different behaviour compared to the aforementioned
studies.

In order to understand this, we investigate systematically how a periodic discontinuous
rough square boundary, illustrated in figure 1, influences the flow and effective diffusion
of a passive solute in a two-dimensional channel. The channel is defined solely by
the dimensionless boundary roughness amplitude b with average channel half-width a.
The geometry is a simplified representation of generic rough-walled channels containing
sharp notches and grooves of various sizes, e.g. discontinuous jumps in the boundary
profile. The goal is to find and explain the effective diffusion coefficient’s dependency
on the boundary amplitude, Péclet and Reynolds number. The main result of the paper
is a previously unobserved decrease in the effective diffusion coefficient with increasing
Reynolds number, which is explained through the RZ trapping more solute particles into
effectively stationary regions at larger Reynolds numbers, reducing the correlation time of
horizontal solute transport.

The paper is organized as follows. In § 2, we summarize the necessary theory, and in
§ 3, we describe the geometry and numerical procedure underlying our computations. The
results on flow fields and effective diffusion coefficients are presented in § 4, and in § 5 we
summarize and conclude.

2. Theory

Passive transport of diffusive particles can be described by the evolution of the
concentration field C(r, t) in space r and time t, which is governed by the
advection–diffusion equation,

∂tC = Pe−1 ∇2C − u · ∇C. (2.1)

The equation is written in dimensionless form, with incompressible flow and a constant
molecular diffusion coefficient Dm. The Péclet number Pe is a dimensionless number
that measures the advective versus diffusive transport rate Pe ≡ aU/Dm, where U is the
average streamwise velocity and a is the mean channel half-width. The velocity field u is
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determined by solving the steady incompressible Navier–Stokes equations

u · ∇u = −∇P + Re−1 ∇2u + f , ∇ · u = 0. (2.2a,b)

Here, P is the pressure, and f is an external horizontal body force. The equation is written
in dimensionless form, with the Reynolds number Re relating the inertial and viscous
forces defined as Re ≡ Ua/ν, where ν is the kinematic viscosity. To achieve a stationary
velocity field, necessary for the application of Brenner’s theory, the time-derivative term
in the Navier–Stokes equations is ignored. For the simulations at Re = 0, we also neglect
the nonlinear term u · ∇u.

By solving (2.1) without flow and geometric constraints, one finds that the positional
variance of the concentration σ 2 in a given direction grows linearly in time with slope
2Dm. The effective diffusion coefficient parallel to the flow in d dimensions, with x being
the streamwise spatial coordinate, can therefore be defined as

σ 2
‖ (t) ≡

∫
Rd

x2 P(r) ddr −
(∫

Rd
x P(r) ddr

)2

≡ 2D‖t, (2.3)

where the probability P is the normalized concentration. The linear scaling is expected to
hold when the solute has traversed the channel height multiple times, i.e. when a2/Dm � t.
The effective diffusion coefficient D‖ will depend on the flow and geometry.

Brenner (1980) devised a general theoretical framework for calculating the effective
diffusion coefficient in an arbitrary periodic geometry with steady incompressible flow.
In this theory, the effective diffusion coefficient for dispersion along x can be found by
calculating

D‖ = Dm

〈
1 − 2

∂χ

∂x
+ |∇χ |2

〉
, (2.4)

where the angle brackets denote a spatial average, defined in two dimensions as

〈f 〉 = 1
VΩ

∫
Ω

f (r) dr2, (2.5)

with VΩ being the volume of the unit cell. The scalar field χ is the solution of the equation

∇2χ − Pe u · ∇χ = Pe x̂ · u′, (2.6)

where x̂ is the unit vector in the streamwise direction, and u′ is the velocity profile in
the reference frame following the mean velocity, u′ = u − 〈u〉. The scalar field must also
satisfy the boundary condition

n̂ · ∇χ = −n̂ · x̂ on ∂Ωwall. (2.7)

The solution must also be periodic on ∂Ωcell, which together with ∂Ωwall constitutes the
boundary of the unit cell:

∂Ω = ∂Ωcell ∪ ∂Ωwall. (2.8)

This is illustrated in figure 1. Additionally, we may remove the gauge freedom in χ by
requiring 〈χ〉 = 0.

Brenner’s result is a generalization of Aris’ solution (Aris & Taylor 1956), which is
valid only for axially invariant channels. Axially invariant geometry results in a horizontal
velocity field u = uxx̂, and χ becoming independent of x, i.e. χ(r) = χ(r⊥), where

944 A53-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

52
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.522


Dispersion in channels with square boundary roughness

the subscript ⊥ denotes the coordinates orthogonal to the flow direction. From these
simplifications, we find a special case of Brenner’s equation (2.4),

DAris
‖ = Dm

(
1 +

〈
|∇⊥χ(r⊥)|2

〉)
, (2.9)

where the scalar field is the solution of the simpler equation

∇2
⊥χ = Pe x̂ · u′. (2.10)

By introducing the dimensionless quantity φ through χ = a Pe φ, (2.9) becomes

DAris
‖ = Dm

[
1 + Pe2

〈
|∇φ|2

〉]
. (2.11)

By defining a geometric factor κ = 〈|∇φ|2〉, the result can be written identically to Aris’
expression (Aris & Taylor 1956, p. 75), with κ = 2/105 for a straight two-dimensional
channel.

To simulate the trajectories of the diffusive passive tracers and verify independently the
theoretical predictions made with Brenner’s theory, advected random walk simulations
are used (Bolster et al. 2009, 2014; Giona, Venditti & Adrover 2020). The discretization
method, boundary conditions and numerical implementation are discussed in
Appendix A.

3. Velocity fields, geometry and problem setup

Following the result from Aris (Aris & Taylor 1956), among others (Bolster et al. 2009;
Bouquain et al. 2012), we represent the effective diffusion coefficient in the form

D‖ = Dm

(
d‖

m(b)

Dm
+ κ Pe2 g (Pe, Re, b)

)
. (3.1)

The geometric factor g measures the effect of fluid flow on the asymptotic spreading
as a function of the Péclet number, Reynolds number and roughness amplitude b. The
constant κ is the geometric factor from the Taylor–Aris result, which for a two-dimensional
straight channel takes the value 2/105, such that g(Pe, Re, 0) = 1. We have further defined
d‖

m(b) as the effective diffusion coefficient for pure diffusion at roughness b, such that one
retrieves the correct value in the limit of zero Pe. The effective diffusion has therefore been
decomposed into one term, d‖

m(b), representing the effect of horizontal purely diffusive
transport that is important at small Péclet numbers, and another term representing the
effect of flow, where a scaling of order Pe2, similar to Taylor–Aris, is expected.

To understand dispersion phenomena in rough channels, the velocity field is found
by solving numerically the incompressible time-independent Navier–Stokes equations for
various boundary amplitudes and Reynolds numbers. After solving for the velocity profile,
the Reynolds number is calculated and the flow is normalized to have horizontal unit cell
average velocity 1. The Reynolds number is therefore changed by varying the kinematic
viscosity ν. Different transport rates are investigated in a wide range of Péclet numbers,
where the diffusion coefficient is varied upon the same velocity profile. By altering
the diffusivity of momentum and mass, the Reynolds and Péclet numbers are changed
independently. Hence the investigation is performed for various Schmidt numbers, defined
as Sc ≡ Pe/Re. Experimentally, the Péclet number can remain fixed while increasing the
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Figure 2. Visualization of the velocity fields at different roughnesses b and Reynolds numbers. For each panel,
the spatial axes are scaled equally, and the colour bar denotes the fluid speed in factors of the unit cell average
value. (a–c) Reynolds number 0, and roughness b = 0.4, 0.8 and 1.6, respectively. (d–f ) Reynolds number 32,
and roughness b = 0.4, 0.8 and 1.6, respectively.

Reynolds number by reducing the viscosity of the fluid, and increasing the average velocity
to compensate for a larger molecular diffusivity. This can be seen from the Stokes–Einstein
relation (Einstein 1905) where Dm ∝ 1/ν.

The study is purely numerical, primarily using the finite element method. Convergence
is verified by ensuring that the average velocity and effective diffusion coefficient change
by less than 1 % when doubling the spatial resolution of the finite element mesh. The
code for the Navier–Stokes equations, Brenner’s equation and diffusive passive tracers
simulations are public through a designated GitHub repository (Haugerud 2022). The
variational form of the equations is discussed in Appendix B.

4. Results

4.1. Velocity field
In figure 2, the streamlines in the bottom half of the unit cell are visualized for roughnesses
b = 0.4, 0.8 and 1.6, for Reynolds numbers 0 (figure 2a–c) and 101.5 ≈ 32 (figure 2d–f ).
For b = 0.4, the RZ are close to filling the full cavity area, independent of Reynolds
number. With increasing roughness, the high-speed central streamlines move further into
the cavities at low Re, reducing the relative size of the RZ. This does not occur for Re = 32,
where the RZ fill the entire cavity area for all boundary amplitudes.

4.2. Verification: comparisons between Brenner’s solution and diffusive passive tracers
The numerical implementation of the solver for Brenner’s equations (2.6) and (2.7) is
verified by comparing its predicted effective diffusion coefficient with those found using
advected random walk simulations, as shown in figure 3. The comparison without flow,
shown in figure 3(a), shows that the effective diffusion coefficient decreases linearly until
around b = 1 with slope −0.42, and approaches zero when the channel is completely
closed at b = 2. The result is compared further to the theories due to Fick–Jacobs (Jacobs
1935) and Dagdug et al. (2021). While Fick–Jacobs overestimates and Dagdug et al.
underestimates the effective diffusion coefficient, the latter is much closer to the correct
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Figure 3. The effective diffusion coefficient (a) without advection and (b) with advection, at zero Reynolds
number, found by different methods, i.e. solving Brenner’s equation, random walk (RW) simulations and the
analytic expressions from Fick–Jacobs (Jacobs 1935) and Dagdug et al. (2021).

values produced by Brenner’s theory. This is understood by the former being valid only
for slowly varying boundaries, and the latter being valid even for abruptly varying channel
diameters (Dorfman & Yariv 2014). All methods agree when the narrowest channel width
approaches zero, as the horizontal transport is then dominated by this portion of the
channel. For the case with flow, shown in figure 3(b), the roughness results in a large
increase for small values of the Péclet number, which approaches a scaling with the Péclet
number similar to the Taylor–Aris expression (2.11). For b = 0, the results also agree with
the Taylor–Aris result. Based on this, we have established that the Brenner equations
solver produces the correct effective diffusion coefficient. For the following results, the
Brenner equations solver is used, as it is exact and computationally much more efficient
than advected random walk simulations.

4.3. Effective diffusion for creeping flow
With a verified solver of Brenner’s equations, the effective diffusion coefficient is
calculated as a function of both the Péclet number and the roughness at creeping flow.
The form of the geometric factor g, defined in (3.1), at Stokes flow conditions (Re = 0)
is displayed as functions of Péclet number and roughness in figure 4. The figure shows
that increasing the roughness always results in more efficient spreading, but the effect is
diminished at higher Péclet numbers. Furthermore, the geometric factor is always larger
than 1, meaning that an increase in the amplitude b always increases the dispersion due
to flow. For very large Péclet numbers, g moves closer to 1, i.e. more similar to the
Taylor–Aris result.

Even though the geometric factor is always larger than 1, the effective diffusion is not
necessarily larger than the Taylor–Aris result from (2.11). In figure 5, the relative change
in the dispersion from Poiseuille flow to our geometry, defined as

	D‖ ≡
D‖(Pe, b, Re = 0) − Daris

‖ (Pe)

Daris
‖ (Pe)

, (4.1)

is displayed. A slight decrease is observed when both transport mechanisms are of equal
importance, Pe = 1, due to the horizontal diffusive spreading being limited by the varying
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Figure 4. At Reynolds number 0, the geometric factor (3.1) as functions of (a) Péclet number and (b)
boundary roughness.

0 0.5 1.0 1.5

b

0

5

10

15

20

25

�D
׀׀

Pe = 1

Pe = 3

Pe = 10

Pe = 32

Pe = 100
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Figure 5. At Reynolds number 0, the relative change in the effective diffusion coefficient (4.1), compared to
the Taylor–Aris result, is positive except at Pe = 1.

boundary amplitude. This is true only for small boundary amplitudes, and the relative
change becomes positive at around b = 1.25. The relative change is maximized for an
intermediate value Pe = 32. Except for Pe = 103, the relative change is largest for the
largest boundary amplitude.

4.4. Effective diffusion with fluid inertia
The effect of fluid inertia on D‖ is displayed in figure 6, through its relative change from
creeping flow to a non-zero Reynolds number:

	DRe
‖ ≡ D‖(Pe, b, Re) − D‖(Pe, b, Re = 0)

D‖(Pe, b, Re = 0)
. (4.2)

For each panel of figure 6, the Péclet number is constant, while changing the flow through
the roughness and Reynolds number. For small roughnesses the relative change is zero,
independent of the Reynolds and Péclet numbers. When the two transport mechanisms
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Figure 6. The relative change in the effective diffusion coefficient with Reynolds number (4.2) is displayed
for a constant Péclet number, while changing the flow through the roughness and Reynolds number.

are of equal importance, an increase in the Reynolds number increases the spreading,
and this is further magnified with increasing roughness. On the contrary, for high Péclet
numbers, the same change in flow decreases the value of the effective diffusion coefficient
by as much as 50 %. The consequence of fluid inertia is therefore highly dependent on the
relative transport rates.

4.5. Residence times of diffusive passive tracers
By analysing the positions and trajectories of the diffusive passive tracers, a physical
explanation for the behaviour observed above can be found. We are especially interested in
understanding how an increase in Reynolds number can increase or decrease the effective
diffusion, depending on the Péclet number. Therefore, the simulations are performed at
creeping flow and Re = 32 – the same values for which the streamlines in figure 2 are
displayed. Three different orders of magnitudes of the Péclet number are also investigated,
1, 10 and 100, corresponding to three of the graphs in figure 6.

By finding the shape of the RZ, the average number of particles in the RZ is measured
and displayed in figure 7. The proportion of particles always increases for creeping flow,
although the slope decreases for the largest boundaries. For Reynolds number 32, on the
other hand, the linear increase matches the fact that the RZ fill the whole cavity area. This
behaviour is consistent with the behaviour of the RZ area, inferred from figure 2. For both
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Figure 7. The average number of particles in RZ for Re = 0 (crosses) and Re = 32 (dots) is displayed versus
boundary roughness for a variety of Péclet numbers.
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Figure 8. The characteristic residence times in (a) the recirculation zones τRZ , and (b) the central channel τCC,
for both creeping flow (dots) and inertial flow with Re = 32 (crosses), with boundary roughness for a variety
of Péclet numbers.

cases, the effect of changing the Péclet number is negligible compared to the fluctuations
around the averaged values, as one would expect.

The probability density of residence times in the RZ and the central channel (CC)
decays exponentially as P(t) = exp(−t/τi) for i ∈ {CC, RZ}. For the set of Péclet numbers,
Reynolds numbers and roughnesses investigated above, the behaviour of the characteristic
residence times τCC, τRZ are displayed in figure 8. With increasing Péclet number, the
residence times in both the CC and the RZ increase due to the diffusive transport between
the two regions diminishing. With a larger roughness, the RZ area increases and the CC
area decreases, resulting in the same behaviour with their corresponding residence times.
Increasing fluid inertia has a minimal effect on the RZ residence time, but drastically
decreases the CC residence time, especially at large boundary amplitudes.
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5. Discussion

To achieve a large value of the effective diffusion, the average autocorrelation time
for the advected horizontal velocity should be maximized, with a broad distribution
in advection speed between particles (Bolster et al. 2009). This can also be realized
from the Taylor–Green–Kubo relation (Taylor 1922; Green 1951; Kubo 1957), which
is an alternative way of retrieving the dispersion coefficient D‖ = ∫∞

0 Cv(t) dt, where
Cv = u′

x(t), u′
x(0) is the ensemble averaged autocorrelation function for the streamwise

Lagrangian velocity of the particles. A varying boundary geometry can result in a decrease
in the effective diffusion coefficient due to the autocorrelation time being reduced with
enhanced vertical diffusive transport at the pore throats. It can equally well increase due to
the width of the velocity distribution increasing with additional fluid shear and RZ. This
has been studied for smoothly varying boundary amplitudes (Bolster et al. 2009; Bouquain
et al. 2012), where a threshold value of the boundary amplitude is necessary for RZ to
appear. RZ are present at all boundary amplitudes for the discontinuous geometry studied
here, resulting in an effective diffusion coefficient larger than the Taylor–Aris result even
at small boundary amplitudes, as shown in figure 5.

We observe that the geometric factor comes closer to the Taylor–Aris result for higher
Péclet numbers, as seen in figure 4. The effect occurs at all roughnesses, but is enhanced
at larger values. This result can seem surprising, as the Péclet number increases the
importance of the flow field, which is highly dependent on the geometry. The behaviour
can be understood from the characteristic residence time in both the CC and RZ scaling
as Peα with α < 1 as seen in figure 8. This means that transitions between the CC and
RZ are larger than what would be expected from the same change in the molecular
diffusivity without flow, effectively reducing the correlation time, hence the geometric
factor decreases.

Figure 2 shows that at large Re, the open streamlines of the CC occupy a smaller area
over the RZ than they do at small Re. For this reason, the typical distance that a particle
needs to diffuse in order to pass from open to closed streamlines is reduced with increasing
Re. This explains the decrease in the CC occupation times with Reynolds number, as seen
in figure 8. The increased accessibility of the RZ, decreasing the correlation time in the
CC, governs the change of D‖ with Re and b.

Two competing effects give rise to the changes with Reynolds number observed in
figure 6. On the one hand, when particles get stuck in the RZ, their distance to the particles
moving in the CC increases quickly. This enhances the dispersion. On the other hand, the
particles that get stuck in the RZ deplete the population of particles that move on the open
streamlines. When the CC is depleted by a reduced mean residence time in the CC, the
dispersion is reduced as the correlation time decreases.

The observed decrease in D‖ with Reynolds number disagrees with both Bouquain
et al. (2012) and Bolster et al. (2009), who postulate a monotonic relationship between
D‖ and Re. While this relationship has been observed for the smooth geometries in their
investigation, it does not appear to extend to discontinuous geometries.

For the linear regime in figure 7, the velocity profile is similar to that of Poiseuille flow
in the CC, with lid-driven flow in the cavity. The dynamics may therefore be captured by
modelling the RZ as stationary areas, where the exact shape of the RZ is not of importance,
only their accessibility and characteristic residence time. Analytical expressions might be
achievable through effective models, specifically along the lines of Levesque et al. (2012)
and Dagdug et al. (2014). The model by Dagdug et al. (2014) may be a good starting point;
however, in its current form it is insufficient to model our system, because the square
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boundary roughness violates their assumptions of narrow cavity (dead-end) openings not
affecting the main channel flow and the assumption of no flow inside the cavities. Our
simulations indicate that it remains a challenge to model the complex dependence of the
residence times on Re, Pe and b.

A recent publication by Yoon & Kang (2021) focused on dispersion under the combined
effect of self-similar rough surfaces and fluid inertia. Their investigation found that the
increase of roughness and Reynolds number can increase or decrease the transport,
depending on the Péclet number. When advective transport was dominating, Pe = 105,
their channel is flushed efficiently due to RZ not being entered by the random walk. The
RZ are not entered at advected-dominated transport due to the region separating the RZ
and the CC acting as a slip boundary moving at a large velocity. In the asymptotic regime,
RZ will necessarily be entered, and their findings are therefore valid only in the transient
regime. The dynamics behind the transport efficiency increasing or decreasing depending
on the Péclet number found here is therefore different from that found by Yoon & Kang
(2021).

6. Conclusion

In this paper we have investigated numerically the spreading of solutes in rough channels,
considering a periodic square boundary roughness as a prototype for the discontinuous
roughness profiles found in fractures and microfluidic devices. The purpose of the work
was to understand how the combination of a discontinuous boundary and fluid inertia
could influence solute dispersion.

By comprehensive numerical simulations using Brenner’s theoretical framework
(Brenner 1980), we have mapped out the dependence of the effective diffusion coefficient
on Péclet number, Reynolds number and the amplitude of the discontinuous roughness.
The most important findings, compared to the established knowledge on flow in channels
with smoothly varying apertures, can be summarized in the following two points.

(i) The effect of a discontinuous boundary is seen in the velocity field for Stokes flow,
as RZ are present for small boundary amplitudes, unlike what is observed for smooth
boundaries (Bolster et al. 2009). This, in turn, results in an increase in the effective
diffusion for all boundary amplitudes, making the effective diffusivity more than an
order of magnitude larger than the Taylor–Aris result.

(ii) The relative change of the effective diffusion coefficient with the Reynolds number
is found to be able to either increase or decrease depending on the Péclet number. For
large boundary amplitudes, the relative change is positive for small Péclet numbers,
and negative for large Péclet numbers. This effect is contrary to what is observed
for smooth boundaries (Bolster et al. 2009; Bouquain et al. 2012). In this paper,
through measurements of residence times in the RZ and in the main channel, we
have made the case that this is due to the accessibility and size of the RZ increasing
with the Reynolds number, reducing the correlation time in the CC significantly at
small diffusive transport rates. This represents our main result.
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Appendix A. Advected random walkers

Advected random walkers follow the Langevin equation on a background velocity field

drk

dt
= u(rk(t)) + ξ k(t), (A1)

where k denotes the particle index. Each component i of the noise vector ξk follows a
directionally unbiased and uncorrelated Gaussian distribution with width proportional to
the diffusion coefficient:

〈ξi,k〉 = 0, 〈ξi,k(t) ξj,l(t′)〉 = 2Dmδijδklδ(t − t′), (A2)

where i denotes the spatial direction, and both the Kronecker-delta and Dirac-delta are
used. Using the Itô formalism (Mannella & McClintock 2012), this is integrated to find
the numerical updating scheme

rk(t + 	t) = rk(t) + u(rk(t))	t + ηk

√
2Dm 	t, (A3)

where 	t is the numerical time step of the random walkers, and η is a vector of
uncorrelated random numbers drawn from a Gaussian distribution with mean 0 and
variance 1. Numerically, we first compute the velocity field by a finite element method
and then perform the updating scheme for the random walkers by using the interpolated
velocity field. A bounce-back boundary condition is used for the particles, where they
move back to their previous position if they move out of the fluid domain. The code can
be found in a designated GitHub repository (Haugerud 2022).

Appendix B. Variational form and finite element scheme

To use the finite element method, the variational formulation of the equation must be
found. This is done by multiplying the equation by an arbitrary test function v and
performing a volume integral over the domain Ω . Through integration by parts, double or
higher-order derivatives must be removed. Following this procedure yields the variational
form of the dimensionless Navier–Stokes equations (2.2a,b):

Re
∫

Ω

vuj ∇jui +
∫

Ω

∇jui ∇jv −
∫

Ω

P ∇iv =
∫

Ω

fiv +
∫

∂Ωwall

vn̂j ∇jui, (B1)

where the no-slip Dirichlet boundary condition for the velocity field is applied at the
boundary wall. Additionally, the incompressibility of the fluid (2.2a,b) should be solved
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simultaneously: ∫
Ω

q ∇iui = 0, (B2)

where the test function for this equation is denoted by q. The Neumann boundary
conditions for Brenner’s equation (2.7) are included through the variational form

Pe
∫

Ω

vui ∇iB +
∫

Ω

∇iB ∇iv = −Pe
∫

Ω

u′
xv +

∫
∂Ωwall

n̂ix̂iv. (B3)

In our numerical implementation, kth degree piecewise polynomials (Lagrange elements)
Pk are used as basis functions. When solving the Navier–Stokes equations, P3 elements
have been used for the velocity field, and P2 elements have been used for the pressure
in order to satisfy the Babus̆ka–Brezzi condition (Langtangen, Mardal & Winther 2002),
and P2 elements are also used to solve for the Brenner field. To solve the equations, the
FEniCS package (Logg, Mardal & Wells 2012) is used, which efficiently assembles and
solves both nonlinear and linear variational problems. For a more detailed description, we
refer to the GitHub repository (Haugerud 2022).
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