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Abstract: Artificial intelligence is gaining increasing relevance in the field of radiology. This study
retrospectively evaluates how a commercially available deep learning algorithm can detect pneumo-
nia in chest radiographs (CR) in emergency departments. The chest radiographs of 948 patients with
dyspnea between 3 February and 8 May 2020, as well as 15 October and 15 December 2020, were
used. A deep learning algorithm was used to identify opacifications associated with pneumonia, and
the performance was evaluated by using ROC analysis, sensitivity, specificity, PPV and NPV. Two
radiologists assessed all enrolled images for pulmonal infection patterns as the reference standard.
If consolidations or opacifications were present, the radiologists classified the pulmonal findings
regarding a possible COVID-19 infection because of the ongoing pandemic. The AUROC value of
the deep learning algorithm reached 0.923 when detecting pneumonia in chest radiographs with a
sensitivity of 95.4%, specificity of 66.0%, PPV of 80.2% and NPV of 90.8%. The detection of COVID-
19 pneumonia in CR by radiologists was achieved with a sensitivity of 50.6% and a specificity of
73%. The deep learning algorithm proved to be an excellent tool for detecting pneumonia in chest
radiographs. Thus, the assessment of suspicious chest radiographs can be purposefully supported,
shortening the turnaround time for reporting relevant findings and aiding early triage.

Keywords: chest radiograph; artificial intelligence; deep learning; early detection; COVID-19;
pneumonia

1. Introduction

The AWMF (Guidance Manual and Rules for Guideline Development) recommends
chest radiographs (CRs) for patients clinically suspected of community-acquired or hospital-
acquired pneumonia [1]. As a result, patients with dyspnea or presenting other respiratory
symptoms for pneumonia in the emergency department are usually given a CR. CRs
have the advantage of lower radiation exposure, faster feasibility and better equipment
portability compared to other imaging modalities, e.g., computed tomography (CT) [2,3].
This diagnostic examination can provide supplemental and timely information regarding
a patient’s cardiopulmonary condition and probable changes (acute and chronic) from
COVID-19 infection [4,5]. Additionally, the ongoing COVID-19 pandemic has been chal-
lenging healthcare systems all around the world since December 2019. Accordingly, the
number of CRs performed is increasing. In the context of high levels of infection and an
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increasing number of variants of concern, the early detection and isolation of patients is
very important. This especially challenges radiology departments. Studies have shown
that with faster reporting of pneumonia in CRs, the median length of hospital stays is
significantly shorter, the likelihood of receiving appropriate therapy is higher, and the
probability of infectious spread is lower [6,7].

However, the interpretation of CR examinations is variable and examiner-dependent [8,9].
To increase the sensitivity and specificity of imaging patterns for pneumonia in CR, deep
learning (DL) algorithms must become more prevalent. Prior studies have shown that
the use of artificial intelligence (AI) significantly improves the detection of pneumonia in
CR [10–19]. However, the number of relevant studies is comparatively low [11,16].

Given the large number of examinations, reporting using AI can highlight CRs with
abnormalities, helping to prioritize reporting by radiologists. Further, where CRs are
initially evaluated by clinicians outside regular operations, AI can be of assistance. In this
situation, a well-functioning evaluation of CR by AI can significantly support clinicians’
decision making.

This retrospective study evaluates the accuracy of a commercially available DL al-
gorithm in detecting any kind of pneumonia in CR, aiming to prove its reliability and
robustness in a large real-world patient collective during the COVID-19 pandemic in Ger-
many. In addition, the assumed specific imaging patterns of COVID-19 and non-COVID-19
pneumonias are contrasted according to an evaluation performed by experienced radiolo-
gists and evaluated for their predictive value.

2. Materials and Methods

The conduction of this retrospective study was approved by the institutional review
board (“Beratungskommission für klinische Forschung—BKF”, Augsburg; ID: BKF2020-
28). All data were fully anonymized. The ethics committee waived the requirement for
informed consent.

2.1. Patient Collective

This study includes a total of 948 patients of legal age who presented with respiratory
symptoms raising the suspicion of a pulmonal infection necessitating hospitalization.
All patients received a CR on admission directly in the emergency department or after
referral from external clinics and practices. This study includes data from the first and
second waves of the COVID-19 pandemic. First-wave data recording began with the first
patient testing positive in our hospital on 3 February 2020 and lasted until 8 May 2020
(n = 321 patients). The second wave started on 15 October 2020 and included all patients
until 15 December 2020 (n = 627). Sex, age, confirmed COVID-19 infection by repeated
RT-PCR and, if present, data about other pulmonary pathogens were included in the data
collection. All other pulmonary pathogens were summarized as non-COVID-19 infections
and are not investigated in more detail.

2.2. Imaging Evaluation

All CRs were digitally recorded and conducted in compliance with the applicable re-
gional statutory requirements. For this study, only the first CR on admission was included.
All available projections were used. The retrospective assessment of the radiographs by the
radiologists and the AI program were carried out separately and independently of each
other. A senior resident and an experienced senior radiologist evaluated the images in
consensus. Both assessors were blinded to further patient treatment, pathogen detection
status or COVID-19 status. The presence of opacifications or consolidations consistent
with pneumonia was determined. Additionally, the imaging pattern was assigned to one
of the following categories: bilateral and predominantly peripherally located opacifica-
tions/consolidations were classified as typical for a COVID-19 infection; the unilateral
presence of predominantly peripherally located opacifications/consolidations with no or
minimal signs of infection on the contralateral side was rated as almost typical; and opacifi-
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cations/consolidations limited to one pulmonary lobe consistent with lobar pneumonia
were rated as non-typical for a COVID-19 infection. All changes that could not be clearly
assigned to one of the aforementioned categories were rated as indeterminate. All images
without any signs of infection were classified as none. Figure 1 shows examples of the
distribution patterns described (Figure 1).

Figure 1. Chest radiographs with the distinguished distribution patterns regarding the probability of
COVID-19 infection. (a) Typical (bilateral, peripheral opacifications), (b) almost typical (unilateral,
peripheral opacifications), (c) non-typical (limited to one pulmonary lobe consistent with a lobar
pneumonia) and (d) indeterminate (opacifications that could not be clearly classified as typical, almost
typical, or non-typical).

All CRs included were anonymized, exported as DICOM data and retrospectively
analyzed by the Lunit INSIGHT CXR3 DL algorithm (https://insight.lunit.io (accessed on
17 December 2020)). Note that this program only analyzes anterior–posterior or posterior–
anterior projections. The algorithm identifies ten radio-morphological pathologies includ-
ing pulmonal nodules, pneumothorax, fibrosis, atelectasis, cardiomegaly, calcification, pleu-
ral effusion, pneumoperitoneum, mediastinal widening and consolidations/opacifications.
For this study, we solely focused on the “consolidation/opacification” score, which was
validated for detecting all types of pneumonia causing opacification and consolidation [20].
The retrospective analysis was based on abnormality scores. The scores range from 0 to 100
with a threshold of 15 for discriminating normal (<15) from abnormal (≥15) image patterns.
The results of the AI-based assessments were compared with the radiologists´ interpreta-
tion as the reference method. The AUROC, sensitivity and specificity were evaluated.

https://insight.lunit.io
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2.3. Laboratory Testing

COVID-19 infections were confirmed by repeated oronasal swabs or bronchoalveolar
lavage and analyzed by RT-PCR. Other suspected pulmonary pathogens were not regularly
confirmed by laboratory testing and are not further distinguished in this study.

2.4. Statistical Analysis

Statistical analysis was performed using R version 4.0.3 (https://www.r-project.org/
(accessed on 10 February 2021)). Demographic data are shown as the median and cor-
responding ranges. Categorical parameters are given in total numbers and percentages.
Diagnostic performance of the DL algorithm was analyzed using receiver operating charac-
teristic (ROC) and the corresponding area under the receiver operating curve (AUROC)
with the assessment of the radiologists as the reference standard. Sensitivity and specificity
as well as positive (PPV) and negative predictive values (NPV) were calculated including
the corresponding 95% confidence interval (CI). To compare categorical variables, the
Chi-square test was used. A p-value ≤ 0.05 was defined as statistically significant.

3. Results
3.1. Patient Collective

A total of 948 patients with a median age of 73 years (range: 18–99 years) were
included in this retrospective study (400 female/548 male). A total of 569 patients (60%)
tested positive for COVID-19 infection by RT-PCR (237 female/332 male).

3.2. Identification of Pneumonia by Radiologists

Of the 948 CRs performed, radiologists diagnosed consolidations/opacifications con-
sistent with pneumonia in 560 examinations (59.07%). In 388 CRs, no radio-morphological
changes for pneumonia were found (40.93%). Because of the ongoing COVID-19 pandemic,
the present consolidations/opacifications consistent with pneumonia were classified with
regard to a possible COVID-19 infection. The pre-defined and assigned distribution pat-
terns of opacifications/consolidations differed significantly between patients with and
without a confirmed COVID-19 infection (p < 0.0001) (Figure 2).

Figure 2. Different distribution patterns in patients with and without COVID-19. Significantly
different distribution patterns of opacifications and/or consolidations in chest radiographs between
patients with confirmed and ruled-out COVID-19 infections.

https://www.r-project.org/


Diagnostics 2022, 12, 1465 5 of 10

Of the 569 confirmed COVID-19 cases within the patient collective, 401 (70.5%) exhib-
ited consolidations/opacifications of varying degrees consistent with a viral pneumonia in
their CRs. Among these patients, a typical distribution pattern for predicting a COVID-19
infection corresponds to a sensitivity of 35.9% (CI: 31.2–40.6) and a specificity of 86.8%
(CI: 81.5–92.1) with a PPV of 87.3% (CI: 82.8–92.4) and NPV of 34.9% (CI: 30.2–39.6). If the
category almost typical is included for predicting a COVID-19 infection, the sensitivity
increases to 50.5% (CI: 45.7–55.5), while specificity decreases to 73.0% (CI: 66.1–79.9) with a
PPV of 82.5% (CI: 77.8–87.3) and NPV of 36.9% (31.6–42.3).

3.3. AI-Based Diagnostic Performance

The diagnostic accuracy of the DL algorithm in detecting pneumonia proved to be ex-
cellent compared to the radiologists’ assessment, with an AUROC value of 0.923 (Figure 3).
For the predefined consolidation threshold value of 15, the sensitivity in detecting pneu-
monia was 95.4% (CI: 93.6–97.1) with a specificity of 66.0% (CI: 61.3–70.7), a PPV of 80.2%
(77.2–83.2) and an NPV of 90.8% (87.4–94.2).

Figure 3. Diagnostic accuracy of the deep learning algorithm for detecting pneumonia. Opacifications
and/or consolidations associated with pneumonia can be detected with a corresponding AUROC
value of 0.923.

The AI-based evaluation was able to detect 534 out of 560 cases (95.4%) with pneu-
monia. In 132 CRs, the DL algorithm detected opacifications/consolidations, whereas
radiologists did not. During a reassessment by both radiologists, the absence of signs of
infection was reconfirmed. In most cases, no abnormality could be detected (see Figure 4).
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Figure 4. Performance of the artificial intelligence in detecting pneumonia in chest radiographs.
Performance of the artificial intelligence in detecting pneumonia in chest radiographs with the
radiologists’ assessment as reference standard.

However, in some cases, dystelectasis or large pleural effusions might have been mis-
interpreted by the algorithm. Figure 5 shows examples of CR that have been misinterpreted
by the DL algorithm (see Figure 5). Shifting the recommended threshold from 15 to a higher
value did not lead to a better evaluation. In 26 CR, AI detected no opacifications, whereas
radiologists identified imaging patterns consistent with pneumonia.

Figure 5. False positive assignments by the AI. Examples of chest radiographs with false positive
assignments by the artificial intelligence possibly caused by large pleural effusions (a,b) or a small
dystelectasis in the right lower field (c).

4. Discussion

In the context of the current pandemic, the role of imaging in rapid and accurate
diagnosis has become enormously important. It has been shown several times that differ-
ent imaging modalities can make a valuable contribution in this regard, whether in the
assessment of acute or chronic pulmonary changes [21–23]. With this study, we demon-
strated that the commercially available DL algorithm used was able to identify consolida-
tions/opacifications associated with pneumonia on plain CR with a very high sensitivity
(95.4%) and in the context of an automated pre-evaluation with an absolutely acceptable
specificity of 66%, a PPV of 80.2% and an NPV of 90.8%. The algorithm worked robustly
in this large real-world patient collective, regardless of the kind of pneumonia. In addi-



Diagnostics 2022, 12, 1465 7 of 10

tion, with respect to the ongoing COVID-19 pandemic, radiologists were able to identify
radio-morphological imaging features consistent with a COVID-19 infection based on CR
reaching a sensitivity of 50.5% and a specificity of 73%.

Despite the superior accuracy of pulmonary CT, CRs are one of the most important
imaging modalities in emergency departments worldwide due to their feasibility. Acceler-
ating the reporting of CRs with relevant abnormalities is of high relevance and can lead to
faster treatment and, if necessary, the isolation of the patient. In CRs, consolidations and
opacifications are assumed to be mainly caused by infectious diseases [24,25]. Yet, the inter-
pretation of CR, especially in regard to pneumonia, is subject to high variability even among
radiologists [8,9]. This issue is even more prevalent where CRs are performed by clinicians
in the absence of radiologists. Studies have shown that relevant misinterpretations of
pneumonic patterns in CRs occur between the interpretations of CR in radiologists and
clinicians [26,27]. Accordingly, the additional evaluation and highlighting of findings in
CRs by AI is advisable. Recent studies have proved that with the help of DL algorithms the
diagnosis of pneumonia (among others, including COVID-19 infections) can be detected
with high sensitivity in CR [10,14,18,28]. Tajmir et al. even showed that with the help
of AI, the inter-observer variability in the interpretation of imaging can be reduced [29].
Another advantage of using AI compared to human-based analysis is the non-existence of
fatigue, leading to the risk of missing significant abnormalities in CRs [30]. In this respect,
a robust DL algorithm supports rapid and reliable reporting. An integrated AI tool could
highlight suspicious patterns, increase radiologists’ and clinicians’ awareness of suspicious
pulmonary patterns and lead to more objective diagnoses.

In 132 patients, the AI falsely assessed the presence of pneumonia. However, in
some of these patients, large pleural effusions were found, which may also require urgent
treatment. In the study by Jang et al., false positive interpretations by the DL algorithm were
attributed to increased vascular marking, emphysematous changes, interstitial thickening
and subsegmental atelectasis [11].

All 26 falsely negative classified cases for signs of pneumonia by the DL algorithm
showed slight radio-morphological pathologies according to the radiologists. Radiolo-
gists’ classifying of these mild changes as pneumonia may be attributable to the high
prevalence of COVID-19 infections during the pandemic and the respiratory symptoms
of the patients. This represents a human bias to which the AI is not subject. The com-
mercially available product used in this study is the Lunit INSIGHT CXR3. It comprises
ten radio-morphological patterns including pulmonal nodules, pneumothorax, fibrosis,
atelectasis, cardiomegaly, calcification, pleural effusion, pneumoperitoneum, mediastinal
widening and consolidations/opacifications. Other studies have proved that this pro-
gram’s performance in detecting the aforementioned imaging patterns is excellent [11,31,32].
With the recommended cut-off value of 15 for the consolidation score, a high sensitivity
(95.4%) and moderate specificity (66.0%) were achieved, which is optimal for application
in the context of an automated preliminary assessment. Therefore, the applied cut-off
value should identify all patients with CR as suspicious for consolidations/opacifications,
even in a post-pandemic scenario. The high accuracy of AI-based analyses of opacifica-
tions/consolidations in CR is important during pre-testing for the prioritization of further
assessments. During our evaluation, AI showed an excellent AUROC value of 0.923. This
value is similar to the published AUROC value of 0.921 by Jang et al. They evaluated the
accuracy of AI on 279 COVID-19-positive individuals [11]. We can conclude, therefore, that
the DL algorithm works robustly. Jang et al. reported comparable sensitivity (95.6%) but a
significantly higher specificity of 88.7%. This difference is explained by the fact that only
patients with confirmed COVID-19 infections were included, in contrast to the representa-
tive real-world population including all patients with respiratory symptoms used in this
study. Therefore, the Lunit INSIGHT CXR3-based analysis of opacifications/consolidations
is not limited to detecting COVID-19 infections and has been applied in real-life scenarios
without any prior patient selection.
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As the COVID-19 pandemic is still prevalent, we controlled the radio-morphological
changes regarding COVID-19 pneumonia.

The classification of radio-morphological findings into ‘typical’, ‘non-typical’ or ‘inde-
terminate’ for COVID-19 infection has been widely applied during the COVID-19 pandemic.
When unilateral peripheral opacifications/consolidations were added to the ‘typical’ class,
COVID-19 infections were identified with a sensitivity of 50.5%, a specificity of 73.0%, a
PPV of 82.5% and an NPV of 36.9%. This is important, since unilateral morphological
changes as a distribution pattern have so far only been included in a few studies, although
they are also described as a typical pattern for COVID-19 infection [33,34].

The sensitivity for correctly detecting COVID-19 infections in CR in our study appears
low (50.5%). Cozzi et al. achieved a sensitivity of 89–92.8% in their real-world analysis
during the pandemic [35]. However, their study reports a low to moderate specificity of
40.7–66.0%, while we achieved a specificity of 86.8%.

In the ongoing pandemic, the faster detection of pulmonary infections by analysis
of CRs may lead to faster isolation of patients and therefore might reduce the risk of
spreading the infection. Nevertheless, prospective studies need to follow with a focus
on the practicability of AI use in clinical processes and integration into clinical decision
making [36]. This is of special relevance as some studies showed ambivalent results when
combining AI with clinical processes [28,37]. A beneficial effect on the workflow and
turnaround times is not readily assured. However, the combined reporting of images by AI
and radiologists is a promising model. The high sensitivity of AI can be complemented by
the comparatively high specificities of radiologists. Thus, the best possible assessment of a
CR could be achieved.

The main limitation of this analysis is its retrospective character. The achievable time
benefit is therefore theoretical and largely dependent on the way the software is integrated
into existing infrastructure. However, the used AI software is commercially available and
can usually be put into operation within two weeks. By blinding the radiologists to the
further treatment of the patients or the results of COVID-19 tests, a realistic scenario for
interpreting CR in the emergency department was simulated. However, in comparison to
the AI, radiologists still have the advantage of including more information about the patient
in their interpretation, such as blood parameters, symptoms and known comorbidities.
Although some programs already have the functionality to take up this information, their
use is not yet widespread [38]. This study did not investigate the possible integration
of AI into clinical routines, but that integration is a very important question and should
be the subject of future studies. Another factor limiting the applicability of the results to
other populations is the comparatively high prevalence of pneumonic infections during the
pandemic, which could have biased the results. Thus, it would be more accurate to speak
of a real-pandemic collective rather than a real-world one.

5. Conclusions

Based on the currently largest-available patient collective assessed during the COVID-
19 pandemic, this study demonstrates the high sensitivity (95.4%) and acceptable specificity
(66%) of a DL algorithm in detecting pneumonia in CRs. The corresponding AUROC value
reached an excellent value of 0.923, underlining its robustness, which was not necessarily
guaranteed in advance. In addition, based on the evaluation of specific patterns of findings
by experienced radiologists, the diagnosis of COVID-19 pneumonia was achieved with a
sensitivity of 50.5% and a comparatively high specificity of 73%. The combination of the
algorithm’s high sensitivity with the radiologists’ high specificity seems to be of great value.
The pre-selection and highlighting of suspicious CR by AI could hasten the reporting of
pulmonal infections and therefore may shorten the turnaround time, aiding faster clinical
decision-making. However, the integration of AI into everyday clinical practice remains an
open challenge and is still subject to further investigation.
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