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Abstract: The quantum Rabi model (QRM) with linear coupling between light mode and qubit
exhibits the analog of a second-order phase transition for vanishing mode frequency which allows
for criticality-enhanced quantum metrology in a few-body system. We show that the QRM including
a nonlinear coupling term exhibits much higher measurement precisions due to its first-order-like
phase transition at finite frequency, avoiding the detrimental slowing-down effect close to the critical
point of the linear QRM. When a bias term is added to the Hamiltonian, the system can be used as a
fluxmeter or magnetometer if implemented in circuit QED platforms.

Keywords: finite component phase transition; quantum metrology; quantum Rabi model; nonlin-
ear coupling

1. Introduction

The high susceptibility developed by critical systems [1,2] in proximity of phase
transitions is a compelling resource for metrology and sensing. For example, relevant
scientific and technological applications of critical systems are bubble chambers [3] and
transition-edge sensors [4]. However, even when these devices have a quantum working
principle, they follow a classical sensing strategy. However, it is well known that quantum
properties such as squeezing and entanglement can be used to outperform any classical
sensing protocol [5]. As systems in proximity of quantum phase transitions [6] are expected
to have a highly nonclassical behavior, it is natural to analyze the critical systems with
a quantum-metrology perspective. In the last decade, various theoretical works have
introduced different protocols able to leverage quantum critical phase transitions to achieve
a fundamental advantage over classical sensing strategies [7–13]. However, an often-
neglected fundamental hindrance limits the performances of critical quantum sensors: The
diverging susceptibility is counterbalanced by the critical slowing down, which implies
an extremely long protocol duration time. Only very recently it has been shown that,
counterintuitively, even in the presence of the critical slowing down, the optimal limit of
precision can be achieved [14]. Indeed, under standard assumptions, critical protocols can
achieve the Heisenberg scaling—a quadratic growth of parameter-estimation precision—
both with respect to the number of probes and with respect to the measurement time.
Furthermore, a recent theoretical work [15] demonstrated that the optimal limits of precision
can be achieved using finite-component phase transitions [16–28], which are criticalities
that take place in quantum optical systems where the thermodynamic limit is replaced by
a scaling of the system parameters [20,29–34]. Critical quantum sensors can then also be
implemented with controllable small-scale quantum devices, without requiring the control
of complex many-body systems. These results have prompted an intense research effort
dedicated to designing efficient protocols [35–51] in terms of high estimation precision and
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limited measurement time, and which can be implemented with experimentally feasible
operations. Practical applications in quantum magnetometry and superconducting-qubit
readout were also been proposed [52].

Critical quantum metrology protocols can be divided into two main approaches. The
static approach [7–11,14,15,42–48,53] consists of bringing the system in an equilibrium state
that depends on an external perturbation (such as a magnetic field). Such equilibrium states
can be represented by the ground state reached during an adiabatic sweep, or by the steady-
state achieved after a long-time evolution in a driven-dissipative setting. When the system
is brought in proximity of the phase transition, one can obtain a very precise estimate
of the parameter by measuring an observable on the equilibrium state. In contrast, the
dynamical approach [12,13,36] consists of preparing the probe in a known state to then apply
the perturbation and monitor the system time evolution, which can also have a critical
dependence on the system parameters. Recent results obtained with spin systems and finite-
component transitions suggest [14] that the dynamical and equilibrium approaches have
a similar scaling of the estimation precision in the thermodynamic (or parameter-scaling)
limit. However, the dynamical approach can achieve a constant factor advantage over
static protocols [36], and it can allow super-Heisenberg scaling in collective light–matter
interaction models [51]. For fully connected models, it has recently been shown that a
continuous connection [54] can be drawn between the static and dynamical approaches,
identifying universal time-scaling regimes.

In the design of critical quantum sensing protocols, a variety of physical models were
considered, such as many-body spin systems [14], the ensemble of emitters coupled to cav-
ity modes [10], single atom-cavity models [15,36], and nonlinear quantum resonators [52].
To date, except for a few exceptions, most studies have focused on the parameter regime
defined by thermodynamic or parameter-scaling limits, where an effective analytical de-
scription can be derived. When considering finite-component phase transition, the most
widely studied case is the quantum Rabi model (QRM) [55–57], composed of a two-level
atom coupled to a single quantum harmonic mode. This model undergoes a second-order
critical phase transition in the slow-resonator limit [16–20,26–28], where the frequency of
the mode and the coupling strength are sent to zero with a given scaling law. Focusing on
the scaling limit, one can obtain interesting results on the growth of the estimation precision
in terms of fundamental resources such as the size of probe systems or photon number,
however, to assess the actual precision of practical protocols, finite values of the parameters
must be considered.

In this work, we propose quantum critical sensing protocols based on a generalization
of the quantum Rabi model which includes a nonlinear (two-photon) coupling term and a
transversal spin bias. The linear and nonlinear interactions lead to a ground state whose
dependence on the linear coupling is much stronger at the critical value, entailing the
equivalent of a first-order quantum phase transition. We consider the static approach
where an adiabatic sweep is used to bring the system in proximity of criticality and we
perform a numerical analysis which is not limited to the scaling regime. We show that
adding the nonlinear coupling and the bias improves the protocol efficiency in different
ways: (1) higher estimation precision, as measured by an increase in the quantum Fisher
information; (2) faster adiabatic sweep and so shorter protocol duration time, due to the
larger energy gap for finite values of physical parameters; (3) an extended range of the
efficient sensing region, as the position of the critical point can be tuned in the space of
parameters; (4) a less challenging requirement on the implementation of the slow-resonator
limit. The considered model can be feasibly implemented with atomic [58–61] and solid-
state [62–64] quantum devices with currently available technology.
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2. Model

The nonlinear QRM with bias is described by the Hamiltonian [58,65]

H = H0 + Ht + Hε,
H0 = ωa†a + Ω

2 σx + g1σz(a† + a),
Ht = g2σz

[
(a†)2 + a2], Hε = −εσz,

(1)

where σx,y,z are Pauli matrices and a†(a) creates (annihilates) a bosonic mode with frequency
ω. The term proportional to Ω corresponds to tunneling between two states of the flux
qubit in circuit QED implementations [62,66], or to the electronic-level splitting in trapped-
ion implementations [59]. The strengths of linear and nonlinear couplings are denoted
by g1 and g2 respectively. The bias term Hε can be easily tuned by a bias current or
by a static magnetic or electric field, depending on the implementation. In the slow-
resonator limit ω → 0, the model exhibits the analogue of both second-order and first-order
phase transitions as the thermodynamic limit in a many-body system is simulated here
through the infinitesimal level spacing [65]. At finite frequencies, the discontinuities in
the parameter dependence of expectation values are rounded off but show remnants of
criticality. It should be noted that the parity symmetry of the linear QRM (H0) is broken by
Ht and Hε. Notice that we are considering a Hamiltonian model, neglecting the effects of
decoherence and dissipation. This allows us to focus on the role played by the two-photon
coupling and bias terms, with respect to the standard quantum Rabi model. In practice,
this implies that the metrological performance analyzed here is strictly valid within the
coherence time of potential experimental implementations. In a recent experiment [67]
with circuit-QED devices, it was shown that Schrödinger cat states can be generated using
an implementation of the quantum Rabi model operated at criticality. The generation of
these highly nonclassical states shows that the purely quantum dynamics generated by
critical systems can indeed be applied in quantum-information tasks.

3. Relation between Transition Order and Accuracy

To discuss the difference between the linear (g2 = 0) and nonlinear (g2 6= 0) cases for
quantum metrology, let us start with zero bias ε = 0. The model has a phase transition

in the low-frequency limit ω → 0 at the critical point g1 = |g1c| = |gs|
√

1− g2
2/g2

t [65,68]

with gs =
√

ωΩ/2 [17,19], and gt = ω/2 is the critical value of g2 beyond which the Hamil-
tonian (1) is no longer self-adjoined and becomes unphysical [59,69–73]. The transition in
this limit is second-order-like at g2 = 0 [17–20,26–28] and first-order-like at finite g2 [65,68].
The precision (signal-to-noise ratio) of any experimental estimation of one of the parameters
λ in (1) is bound by I1/2

λ [74], where Iλ is the quantum Fisher information [14,74,75], which
takes the following form for pure states

Iλ(|ψ〉) = 4
(
〈ψ′(λ)|ψ′(λ)〉 −

∣∣〈ψ′(λ)|ψ(λ)〉∣∣2), (2)

where ′ denotes the derivative of the ground state (GS) |ψ(λ)〉 of H in (1) with respect to λ.
Obviously, a higher QFI means a higher measurement precision.

The Hamiltonian H has several parameters that can drive a phase transition. Let
us begin with the linear coupling g1 and set λ = g1/Ω with Ω fixed. λ and Iλ are thus
dimensionless. In Figure 1a, we compare the QFI for first- and second-order scenarios, as
calculated with exact diagonalization [65] by plotting ln Iλ. The dashed lines illustrate the
second-order case g2 = 0 for two different ω. One sees that the variation of the ground
state with λ and therefore the maximal value of Iλ becomes larger for smaller frequencies.
The QFI for comparatively large ω = 0.1 Ω shows a broad peak shifted away from the
critical point gs for ω = 0 due to the finite GS extension at finite frequency [19]. The peak
becomes sharper at lower frequency and tends to diverge in the limit ω → 0, as indicated
by the dotted red line with ω = 0.01Ω. At a finite frequency, the QFI does not diverge for
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g2 = 0. The situation changes profoundly for non-zero g2. The GS wave function behaves
much more singularly even for ω = 0.1 Ω (blue solid line), leading to a narrow peak in
ln Iλ. Naturally, the maximal QFI is even higher for smaller frequency. By comparing the
solid blue and dashed orange lines, we see that the same measurement precision can be
obtained if g2 6= 0 as in the model with g2 = 0, although the mode frequency is an order
of magnitude larger. Obviously, the presence of the nonlinear term in H simplifies the
requirement to implement the slow-resonator limit.

These features of the QFI can be understood by comparing the behavior of the gap ∆
between GS and the first excited state when tuning through the phase transition, shown in
Figure 1b. For g2 = 0, the scaled gap ∆/ω goes to zero for g1 & gs. The transition becomes
continuous with ∆/ω = 0 for g1 ≥ gs in the limit ω → 0, typical for a second-order
transition. Likewise, the GS wave function changes smoothly close to gs leading to the
lower values for the QFI. The closing of the gap means that the dynamical time scale ∆−1

diverges in approaching the critical coupling which means that an adiabatic sweep through
gs would be extremely slow for ω ≈ 0. This problem will be addressed in the next section.

Figure 1. (a) ln Iλ for λ = g1/Ω and different g2: g2 = 0 with ω/Ω = 0.01 (dotted red line) and
ω/Ω = 0.01 (dashed blue line). g2/gt = 0.8 with ω/Ω = 0.01 (solid orange line) and ω/Ω = 0.01
(solid blue line); (b) gap ∆/ω for the same parameters as in (a); (c) ln Iλ in the g1/g2 plane for
ω/Ω = 0.1; and (d) gap ∆/ω for the same parameters as in (c). The dashed-dotted line represents
the phase boundary given in (4).

On the other hand, the gap stays always finite for g2 6= 0 due to the broken parity
symmetry [65], although it changes very fast close to the critical point, even for a large
ω, and therefore resembles a first-order transition. This explains the higher QFI in the
nonlinear case. The QFI and the gap as a function of g1 and g2 are shown in the colorplots
of Figure 1c,d for ω = 0.1 Ω. A larger g2 means a higher maximal QFI, which dramatically
increases if g2 reaches ∼0.6gs. In Figure 1c, we only plot up to g2 = 0.7gt as the maximal
QFI for a larger g2 ≈ gt would be out of scale. For these values, the system is close
to the point of spectral collapse [59,71–73] where part of the discrete spectrum becomes
continuous. Although this regime may not be easily realizable, we see that it has by far the
greatest potential with regard to quantum metrology.

4. Preparation Time

The protocol we consider is composed of three steps: first, the system is initialized in
its ground state in a region of parameters far from criticality, e.g., g1 = 0, g2 < gt; then,
an adiabatic sweep is performed in order to bring the system in proximity of criticality;
finally, a measurement is performed on the system final state. Notice that the ground state
is always nondegenerate, even for vanishing values of ω, i.e., the energy gap is always
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finite outside the critical region, so the initial and final states are adiabatically connected on
any line in the g1/g2-plane which does not cross the critical points. To estimate the time
needed to perform the adiabatic sweep from λ = 0 to the intended sensing value λs, we
may use the condition dλ/dt� ∆(λ) where ∆(λ) is the energy gap between the ground
state and first excited state (see the supplemental material in [15]). This condition gives us
an intrinsic lower bound to the time required to adiabatically prepare the system ground
state for a given value of λ, even when using an adaptive sweep whose speed of variation
is adjusted to the instantaneous value of the energy gap. In this way, we obtain a lower
bound for the preparation time

T(λs) ≥
∫ λs

0

1
∆(λ)

dλ. (3)

In our present case, we have λ = g1/Ω. In Figure 2, we compare the preparation times
for pure linear coupling g2 = 0 (second-order transition) and nonlinear coupling (first-order
transition) at the experimentally feasible frequency ratio ω/Ω = 0.1. While the preparation
time seems to diverge at the critical point (which is also the point of maximal QFI) due to
critical slowing down in the first case, it stays low in the second. In Figure 2b, we plot the
logarithm of Iλ/(TΩ), a figure of merit to assess the practicability of the sensing protocol.
Around the coupling with maximal accuracy, gm, the system with nonlinear coupling
exhibits a precision several orders of magnitude higher than the linear one. In Figure 2c,d,
T and ln(Iλ/(TΩ)) taken at gm are shown as a function of ω/Ω. The preparation time
rises if one approaches the low frequency limit for linear and nonlinear coupling alike
because the phase transition features become more pronounced and the gap in the critical
region shrinks. Nonetheless, one can see that the preparation time in the presence of
nonlinear coupling is much lower than without it. For values above ω/Ω ∼ 0.2, the time
does not change much in both cases. Likewise, the “effective accuracy” as measured by
ln(Iλ/(TΩ)) slowly drops for larger values of ω, while the nonlinear system keeps a much
higher precision.

Figure 2. (a) Time T needed to prepare the ground state of the system at g1 for different g2: g2 = 0
(orange) and g2 = 0.8gt (blue), for ω = 0.1 Ω. gm denotes the coupling g1 with maximal Fisher
information Iλ. (b) ln(Iλ/(TΩ)) for g2 = 0 (orange) and g2 = 0.8gt (blue), for the same parameters
as in (a). (c) Dependence of T at gm on the mode frequency ω for the two values for g2 shown in (a,b).
(d) ln(Iλ/(TΩ)) at gm as a function of ω for the same parameters as in (c).

5. Behavior of the Wave Function

As mentioned above, the high sensitivity of quantum metrology results from the
sudden change of the GS wave function |ψ〉 in the vicinity of the critical point. In Figure 3a,b,
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we show the components of |ψ〉 = (ψ+(x), ψ−(x))T in position space for g2 = 0 and as
a function of g1. The frequency ω is relatively large (ω/Ω = 0.1) so that the transition
is smeared out. Below g1 ≈ gs, both spin components of |ψ〉 are centered around x = 0
which corresponds to unbroken left/right-symmetry. Around gs, the upper component
is displaced to the left and the lower component to the right. This does not mean that the
parity symmetry of the model with the Hamiltonian H0 is broken for g1 > gs, because the
parity operator eiπa†aσx acts in both spin and position space. Nevertheless, the change in the
GS wave function in position space is the analogue of a symmetry breaking quantum phase
transition in the QRM. For vanishing nonlinear coupling g2, the change in both components
is smooth, as seen in Figure 3a,b. The situation is quite different if the nonlinear coupling is
turned on: for non-zero g2, which breaks the parity symmetry of H0, we essentially have
the same behavior of ψ±(x) for g1 < 0.66gs as in the linear case. However, at g1 ≈ 0.66gs,
the wave functions change abruptly: basically, the whole weight is transferred to the right
and lower branch ψ−(x) and the parity symmetry is strongly broken. Of course, this is no
symmetry breaking in the usual sense because parity is already broken on the Hamiltonian
level. The fast change of |ψ(x)〉 in tuning through the transition region is responsible for
the large QFI, while the gap to the first excited state always remains non-zero.

Figure 3. Ground state wave function ψ±(x) for spin component + or − as a function of g1 at
ω/Ω = 0.1: (a) −ψ−(x) for g2 = 0; (b) ψ+(x) for g2 = 0; (c) ψ−(x) for g2 = 0.75gt; and (d) ψ+(x) for
g2 = 0.75gt. Here, xs =

√
2gs/ω.

6. Extended Range Quantum Sensing

Up to now, we set the bias ε to zero to demonstrate the main differences between the
linear and nonlinear models with regard to quantum sensing. From Figure 1c,d, we see
that, in varying g2 between zero and 0.7gt, we can drive the critical coupling g1 which is
the quantity to be measured, from gs to lower values ∼0.7gs, thus extending the range of
couplings which can be measured with an accuracy enhanced by criticality. A much larger
region of couplings becomes available if the bias ε is varied as well which can be easily
achieved, e.g., in circuit QED platforms.

In Figure 4a, we show the QFI in the g1/g2 plane in the presence of finite bias ε = 0.1 Ω
at ω = 0.1 Ω. The phase transition occurs along the thin red line indicating the sharp
maximum of the QFI. The transition line is accurately given by a semi-classical calculation
(black dashed line) in closed form as [65]

gε
1c = gs

[
1 +

gtε

g2Ω

]√
1− g2

2/g2
t , (4)

εc =
g2

gt

 g1

gs

√
1− g2

2/g2
t

− 1

Ω. (5)
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This phase boundary no longer cuts the x axis at a finite value of g1 as in Figure 1c, but
allows for arbitrary large critical values of g1 for non-zero g2. The range of accessible cou-
plings is therefore also extended to values above gs. As such, the whole range 0 < g1 < ∞
can be measured with enhanced precision if the couplings g2 and ε are properly tuned.

The QFI has a peak along the phase boundary. This is shown in Figure 4b for various
values of g2. One may notice a shallow maximum of the lines for g2/gt = 0.15 and 0.25,
around g1/gs = 1.2 before the sharp peak associated with the first order transition. This
originates in a second-order transition because the system is located in the vicinity of a
tricritical point [65]. However, these maxima only lead to the marginal enhancement of
QFI and play no role in the optimal measurement protocol. The contrast between the
shallow maximum and the sharp peak for the same g2 again demonstrates the much
higher measurement accuracy made possible by a first-order-like transition compared to a
second-order transition.

Figure 4. (a) ln Iλ in the g1/g2 plane at a fixed frequency ω/Ω = 0.1 and finite bias ε = 0.1 Ω. The
black dashed line denotes the analytic phase boundary where Iλ is maximal; (b) ln Iλ as a function of
g1 for different nonlinear couplings: g2/gt = 0.75 (blue), 0.5 (dark gray), 0.25 (orange), 0.15 (green).

7. Magnetometry

The general Hamiltonian (1) contains five parameters, all of which can be subjected
to quantum metrology. We focused, as an example, to the linear coupling g1 but other
parameters are also interesting from a metrological point of view. The bias ε is of particular
interest as it can be directly proportional to the intensity of external electric or magnetic
fields in atomic and circuit–QED implementations, respectively. Using such a platform,
it would be possible to construct a magnetometer analogous to a SQUID with enhanced
precision. We computed the QFI for λ = ε/Ω in different parameter regions at finite
frequencies. The results are shown in Figure 5b,d as a function of the measured quantity ε
for non-zero values of g2 to take advantage of the nonlinear coupling. Qualitatively, we
find the same features as for the previous case with λ = g1/Ω. In Figure 5a,c, the phase
boundaries are shown in the ε/g1 plane and the ε/g2 plane, respectively. In each case,
the whole range for ε can be attained by a phase boundary point if g1 and g2 are adjusted
through a suitable adiabatic preparation process.
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Figure 5. (a) Phase boundaries as a function of g1 at g2/gt = 0.2 (orange), 0.5 (blue), 0.7 (green);
(b) ln Iλ for λ = ε/Ω as a function of ε for g2/gt = 0.7 and (g1/gs, ω/Ω) = (0.8, 0.1) (green),
(1.0, 0.2) (orange), (1.2, 0.3) (dark gray) and (1.4, 0.4) (blue). (c) Phase boundaries as a function
of g2 at g1/gs = 0.7 (green), 1.1 (blue) and 1.6 (gray). (d) Iλ as function of ε for g1/gs = 0.7 at
(g2/gt, ω/Ω) = (0.2, 0.2) (green), (0.4, 0.2) (orange), (0.6, 0.3) (dark gray) and (0.7, 0.4) (blue).

8. Discussion

Via a study of the QFI and the gap of the nonlinear quantum Rabi model with bias,
we compared the critical metrology provided by quantum phase transitions of a different
order. While the model with only linear coupling shows a transition of second-order
type with a closing gap and smooth GS wave function, the transition of the model with
additional nonlinear coupling can be classified as first order and featuring a finite gap
and a discontinuous change of the GS wave function. The reason for this difference is
that the broken parity symmetry of the nonlinear model which manifests itself in the GS
wave function only at and above the critical point. In contrast, the linear, parity symmetric
model has a GS changing smoothly across the transition. This leads to a dramatic increase
in the QFI close to criticality in the nonlinear case. Moreover, the critical slowing down
due to the gap closing which extends the preparation time in the linear model is absent
for nonlinear coupling. A third advantage of the nonlinear over the linear model is the
possibility of avoiding the slow-resonator limit as frequency rations of ω/Ω ∼ 0.1 are
sufficient to utilize the critical quantum enhancement of the measurement precision. This
condition substantially eases the requirements for an experimental implementation. Finally,
adding a standard bias term to the Hamiltonian extends the measurement range for the
couplings to all realizable values because the critical point can be shifted by adjusting the
bias. On the other hand, one may construct a new type of magnetometer with critically
enhanced precision if the bias itself is subjected to the measurement.

Therefore, the extension of the standard quantum Rabi model by including a nonlinear
coupling and the bias term may lead to a major improvement of quantum metrology in not
just one but several respects.
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13. Macieszczak, K.; Guţă, M.; Lesanovsky, I.; Garrahan, J.P. Dynamical phase transitions as a resource for quantum enhanced

metrology. Phys. Rev. A 2016, 93, 022103. [CrossRef]
14. Rams, M.M.; Sierant, P.; Dutta, O.; Horodecki, P.; Zakrzewski, J. At the Limits of Criticality-Based Quantum Metrology: Apparent

Super-Heisenberg Scaling Revisited. Phys. Rev. X 2018, 8, 021022. [CrossRef]
15. Garbe, L.; Bina, M.; Keller, A.; Paris, M.G.A.; Felicetti, S. Critical Quantum Metrology with a Finite-Component Quantum Phase

Transition. Phys. Rev. Lett. 2020, 124, 120504. [CrossRef]
16. Bakemeier, L.; Alvermann, A.; Fehske, H. Quantum phase transition in the Dicke model with critical and noncritical entanglement.

Phys. Rev. A 2012, 85, 043821. [CrossRef]
17. Ashhab, S. Superradiance transition in a system with a single qubit and a single oscillator. Phys. Rev. A 2013, 87, 013826.

[CrossRef]
18. Hwang, M.J.; Puebla, R.; Plenio, M.B. Quantum Phase Transition and Universal Dynamics in the Rabi Model. Phys. Rev. Lett.

2015, 115, 180404. [CrossRef] [PubMed]
19. Ying, Z.J.; Liu, M.; Luo, H.G.; Lin, H.Q.; You, J.Q. Ground-state phase diagram of the quantum Rabi model. Phys. Rev. A 2015,

92, 053823. [CrossRef]
20. Liu, M.; Chesi, S.; Ying, Z.J.; Chen, X.; Luo, H.G.; Lin, H.Q. Universal Scaling and Critical Exponents of the Anisotropic Quantum

Rabi Model. Phys. Rev. Lett. 2017, 119, 220601. [CrossRef]
21. Puebla, R.; Hwang, M.J.; Plenio, M.B. Excited-state quantum phase transition in the Rabi model. Phys. Rev. A 2016, 94, 023835.

[CrossRef]
22. Puebla, R.; Hwang, M.J.; Casanova, J.; Plenio, M.B. Probing the dynamics of a superradiant quantum phase transition with a

single trapped ion. Phys. Rev. Lett. 2017, 118, 073001. [CrossRef]
23. Hwang, M.J.; Rabl, P.; Plenio, M.B. Dissipative phase transition in the open quantum Rabi model. Phys. Rev. A 2018, 97, 013825.

[CrossRef]
24. Zhu, H.J.; Xu, K.; Zhang, G.F.; Liu, W.M. Finite-Component Multicriticality at the Superradiant Quantum Phase Transition. Phys.

Rev. Lett. 2020, 125, 050402. [CrossRef]
25. Puebla, R. Finite-component dynamical quantum phase transitions. Phys. Rev. B 2020, 102, 220302(R). [CrossRef]
26. Ying, Z.J. From Quantum Rabi Model To Jaynes-Cummings Model: Symmetry-Breaking Quantum Phase Transitions, Symmetry-

Protected Topological Transitions and Multicriticality. Adv. Quantum Technol. 2022, 5, 2100088. [CrossRef]
27. Ying, Z.J. Hidden Single-Qubit Topological Phase Transition without Gap Closing in Anisotropic Light-Matter Interactions. Adv.

Quantum Technol. 2022, 5, 2100165. [CrossRef]
28. Liu, J.; Liu, M.; Ying, Z.J.; Luo, H.G. Fundamental Models in the Light-Matter Interaction: Quantum Phase Transitions and the

Polaron Picture. Adv. Quantum Technol. 2021, 4, 2000139. [CrossRef]
29. Casteels, W.; Fazio, R.; Ciuti, C. Critical dynamical properties of a first-order dissipative phase transition. Phys. Rev. A 2017,

95, 012128. [CrossRef]

http://doi.org/10.1017/CBO9781139046213
http://dx.doi.org/10.1146/annurev-nucl-101916-123130
http://dx.doi.org/10.1007/10933596_3
http://dx.doi.org/10.1103/RevModPhys.89.035002
http://dx.doi.org/10.1103/PhysRevA.78.042105
http://dx.doi.org/10.1103/PhysRevA.78.042106
http://dx.doi.org/10.1103/PhysRevA.88.023803
http://dx.doi.org/10.1103/PhysRevE.93.052118
http://dx.doi.org/10.1103/PhysRevA.96.013817
http://dx.doi.org/10.1103/PhysRevA.88.021801
http://dx.doi.org/10.1103/PhysRevA.93.022103
http://dx.doi.org/10.1103/PhysRevX.8.021022
http://dx.doi.org/10.1103/PhysRevLett.124.120504
http://dx.doi.org/10.1103/PhysRevA.85.043821
http://dx.doi.org/10.1103/PhysRevA.87.013826
http://dx.doi.org/10.1103/PhysRevLett.115.180404
http://www.ncbi.nlm.nih.gov/pubmed/26565443
http://dx.doi.org/10.1103/PhysRevA.92.053823
http://dx.doi.org/10.1103/PhysRevLett.119.220601
http://dx.doi.org/10.1103/PhysRevA.94.023835
http://dx.doi.org/10.1103/PhysRevLett.118.073001
http://dx.doi.org/10.1103/PhysRevA.97.013825
http://dx.doi.org/10.1103/PhysRevLett.125.050402
http://dx.doi.org/10.1103/PhysRevB.102.220302
http://dx.doi.org/10.1002/qute.202100088
http://dx.doi.org/10.1002/qute.202100165
http://dx.doi.org/10.1002/qute.202000139
http://dx.doi.org/10.1103/PhysRevA.95.012128


Entropy 2022, 24, 1015 10 of 11

30. Bartolo, N.; Minganti, F.; Casteels, W.; Ciuti, C. Exact steady state of a Kerr resonator with one- and two-photon driving
and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions. Phys. Rev. A 2016, 94, 033841.
[CrossRef]

31. Minganti, F.; Biella, A.; Bartolo, N.; Ciuti, C. Spectral theory of Liouvillians for dissipative phase transitions. Phys. Rev. A 2018,
98, 042118. [CrossRef]

32. Peng, J.; Rico, E.; Zhong, J.; Solano, E.; Egusquiza, I.L. Unified superradiant phase transitions. Phys. Rev. A 2019, 100, 063820.
[CrossRef]

33. Felicetti, S.; Le Boité, A. Universal Spectral Features of Ultrastrongly Coupled Systems. Phys. Rev. Lett. 2020, 124, 040404.
[CrossRef]

34. Kewming, M.J.; Mitchison, M.T.; Landi, G.T. Diverging current fluctuations in critical Kerr resonators. arXiv 2022, arXiv:2205.02622.
35. Ivanov, P.A. Enhanced two-parameter phase-space-displacement estimation close to a dissipative phase transition. Phys. Rev. A

2020, 102, 052611. [CrossRef]
36. Chu, Y.; Zhang, S.; Yu, B.; Cai, J. Dynamic Framework for Criticality-Enhanced Quantum Sensing. Phys. Rev. Lett. 2021,

126, 010502. [CrossRef] [PubMed]
37. Gietka, K.; Metz, F.; Keller, T.; Li, J. Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts

to adiabaticity are applied. Quantum 2021, 5, 489. [CrossRef]
38. Hu, Y.; Huang, J.; Huang, J.F.; Xie, Q.T.; Liao, J.Q. Dynamic sensitivity of quantum Rabi model with quantum criticality. arXiv

2021, arXiv:2101.01504.
39. Liu, R.; Chen, Y.; Jiang, M.; Yang, X.; Wu, Z.; Li, Y.; Yuan, H.; Peng, X.; Du, J. Experimental Adiabatic Quantum Metrology with

the Heisenberg scaling. arXiv 2021, arXiv:2102.07056.
40. Ilias, T.; Yang, D.; Huelga, S.F.; Plenio, M.B. Criticality-Enhanced Quantum Sensing via Continuous Measurement. PRX Quantum

2022, 3, 010354. [CrossRef]
41. Frérot, I.; Roscilde, T. Quantum Critical Metrology. Phys. Rev. Lett. 2018, 121, 020402. [CrossRef]
42. Heugel, T.L.; Biondi, M.; Zilberberg, O.; Chitra, R. Quantum Transducer Using a Parametric Driven-Dissipative Phase Transition.

Phys. Rev. Lett. 2019, 123, 173601. [CrossRef]
43. Mirkhalaf, S.S.; Witkowska, E.; Lepori, L. Supersensitive quantum sensor based on criticality in an antiferromagnetic spinor

condensate. Phys. Rev. A 2020, 101, 043609. [CrossRef]
44. Wald, S.; Moreira, S.V.; Semião, F.L. In- and out-of-equilibrium quantum metrology with mean-field quantum criticality. Phys.

Rev. E 2020, 101, 052107. [CrossRef]
45. Ivanov, P.A. Steady-state force sensing with single trapped ion. Phys. Scr. 2020, 95, 025103. [CrossRef]
46. Salado-Mejía, M.; Román-Ancheyta, R.; Soto-Eguibar, F.; Moya-Cessa, H.M. Spectroscopy and critical quantum thermometry in

the ultrastrong coupling regime. Quantum Sci. Technol. 2021, 6, 025010. [CrossRef]
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