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Abstract: In micro-electro-mechanical systems (MEMS) testing high overall precision and reliability
are essential. Due to the additional requirement of runtime efficiency, machine learning methods
have been investigated in recent years. However, these methods are often associated with inherent
challenges concerning uncertainty quantification and guarantees of reliability. The goal of this paper
is therefore to present a new machine learning approach in MEMS testing based on Bayesian inference
to determine whether the estimation is trustworthy. The overall predictive performance as well as
the uncertainty quantification are evaluated with four methods: Bayesian neural network, mixture
density network, probabilistic Bayesian neural network and BayesFlow. They are investigated
under the variation in training set size, different additive noise levels, and an out-of-distribution
condition, namely the variation in the damping factor of the MEMS device. Furthermore, epistemic
and aleatoric uncertainties are evaluated and discussed to encourage thorough inspection of models
before deployment striving for reliable and efficient parameter estimation during final module testing
of MEMS devices. BayesFlow consistently outperformed the other methods in terms of the predictive
performance. As the probabilistic Bayesian neural network enables the distinction between epistemic
and aleatoric uncertainty, their share of the total uncertainty has been intensively studied.

Keywords: MEMS testing; parameter extraction; uncertainty quantification; Bayesian inference;
BayesFlow

1. Introduction

Testing of MEMS is a challenging task due to the complexity of the systems, especially
with the progressing miniaturization of the devices. On top of that, the test process is heavily
time critical for economic reasons. Nevertheless, ensuring the robustness of parameter
extraction methods is crucial, because calibration and fabrication process control require
reliable determination of the system as well as process-related properties, which are often
not directly measurable. For parameter identification from dynamic tests, as they are carried
out during the final module testing of capacitive MEMS accelerometers, approaches based
on numerical solutions are generally most desirable in terms of interpretability of the test
results. However, due to nonlinear couplings and inhomogeneities in the system differential
equations, the computation time of these approaches exceeds targeted limits especially
for overdamped systems. Therefore, data-driven approaches have been suggested for the
parameter extraction [1–3], which results in a considerable reduction of the inference time.
Parameter identification approaches applying machine learning (ML) methods, however,
lack the reliability and interpretability of numerical methods. Thus, cautious evaluation
of the models is necessary before deployment. Furthermore, the unknown behavior of
data-driven approaches beyond their generalization regions usually makes a validation step
necessary, for example in the form of calculating an ordinary differential Equation (ODE)
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solution based on the estimated parameters. Theoretically, anomaly or out-of-distribution
(OOD) detection might also be addressed by additional evaluations, e.g., by analyzing
the reconstruction loss of an autoencoder applied before the main data-driven model [4].
However, such techniques extend the inference time as a subsequent ML procedure is still
required to provide the actual prediction.

Whereas in classical ML methods, network parameters ψ are solely trained to predict
some target parameters θ from a feature set x, Bayesian inference, which is also called prob-
abilistic or posterior inference, enables the estimation of a posterior distribution p(ψ|x, θ) of
the network parameters given knowledge or assumptions, i.e., the prior, and observed data,
i.e., the likelihood. Bayesian inference, therefore, offers a way to quantify the uncertainty
of model outputs θ̂ [5]. Thus, when a ML model using Bayesian inference trained on a

dataset
{
(x(m), θ(m))

}M

m=1
with M samples shows large uncertainty in one of the output

parameters during evaluation, on the one hand, this might indicate the need for more data
in this parameter region. On the other hand, if after deployment during inference in final
test large uncertainty is returned for a sample, this information could be used to make the
decision to apply a physical model or some heuristic methods instead of using the output
of the ML network for this specific device under test (DUT) to identify abnormal or OOD
samples and to deal with those separately.

Therefore, it is preferable to apply a ML Bayesian inference method, which computes
parameters precisely and with computational efficiency with reliable uncertainty estimates
providing interpretability and auditability.

1.1. Parameter Extraction from Dynamic MEMS Tests

During testing of capacitive MEMS accelerometers, dynamic measurements can be
carried out by applying electrical voltages to the capacitors through the application-specific
integrated circuit (ASIC) [6,7]. When the target parameters are ill-conditioned, i.e., are not
identifiable from electrical excitation only, these electrical tests are augmented by applying
mechanical stimuli, e.g., ±1 g deflections.

The system response appearing as capacitive changes can then be analyzed with respect
to the parameters of interest [1,7]. For capacitive MEMS accelerometers, these usually include
the damping factor DL, resonance frequency f0, inertial mass m, and offset do f f to the initial
position of the mass. Moreover, the Brownian noise and the sensitivity are also often of interest
[1], as well as process parameters such as the epitaxial layer thickness and edge loss.

Solving the underlying differential equations numerically becomes cumbersome when
inhomogeneities and nonlinearities, e.g., originating from electrical force feedback of the
ASIC, cannot be straightened out from the system differential equations [3].

1.2. Uncertainty in MEMS Testing

A variety of causes and influencing factors leads to uncertainties during the testing of
MEMS devices. To a large extent they can be attributed to fabrication process variations [8–11].
Slight changes in material properties, for example, changes in the Young’s modulus of the
polysilicon [9] or a change in the thermal conductivity [12] as well as material inhomogeneities
such as varying grain size [13], can affect the etch processes, and therefore lead to differences in
geometry, e.g., changing stiffness coefficients, gap distances, and capacitor areas. Furthermore,
variation can be introduced by machine wear and aging [9], which does not only affect the
tools in production, but also the measurement equipment, which might lead to different mea-
surement errors depending on individual test benches. Moreover, generation-recombination,
flicker, and Brownian noise [14], as well as the signal processing path of the sensor itself can
lead to uncertainties in the estimation of system parameters. An example for the latter are
low pass filters of the ASIC, which are applied for economic reasons and can also impede the
distinction between actual changes in the signal and noise. Finally, approximation errors in
numerical methods used for system identification especially in the presence of ill-conditioned
parameters also provide sources of uncertainty.
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The goal of this paper is to answer the question as to how to make parameter extraction
from dynamic measurements in MEMS testing more robust by analyzing the uncertainty
of neural network estimations. Four ML Bayesian inference architectures are investigated,
focusing on two main aspects. The first objective is to compare the architectures regarding
their general predictive performance. The second objective is to evaluate the reliability of the
uncertainty estimates given by the four architectures within the training distribution as well
as under OOD conditions. Thus, three scenarios are investigated using simulated turn-off
transients of capacitive MEMS accelerometers, namely the available training set size, sudden
increase of measurement noise, and a change in damping factor, e.g., due to leakage.

The paper is organized as follows. Section 2 briefly categorizes and summarizes
related work on uncertainty quantification in the context of MEMS fabrication and testing.
Section 3 introduces important concepts and methods for uncertainty quantification with
neural networks including the relevant evaluation metrics. Section 4 describes the datasets
used and provides details on the experimental procedure and the applied ML methods.
In Section 5, the results are divided into the comparison of the ML methods on the synthetic
data, evaluation on noisy data, and evaluation of systems with increased damping factor,
which are subsequently discussed in Section 6. The conclusion is drawn in Section 7.

2. Related Work

The related work is a summary of uncertainty quantification in MEMS concerning
applications. Extracting relevant system parameters from either electrically or mechanically
excited MEMS tests during wafer-level testing (WLT) [7,15] as well as final testing (FT) [1]
is targeted by various approaches, depending on the complexity of the underlying sys-
tem. Whereas for some systems, the fitting of coefficients of an equation for sensitivity
determination [1] provides sufficient precision, other systems require the application of
multivariate adaptive regression splines (MARS) [16], building ensembles of MARS or
support vector machines (SVMs) [2], or different variants of neural networks [3].

Most UQ related work in the application area of MEMS focuses on the analysis of
uncertainty arising from material properties and geometrical changes studying the resulting
effects on performance parameters. These include sensitivity studies based on Monte-Carlo
simulations from finite element models analyzing uncertainty propagation [9], sensitivity
due to uncertainty of diaphragm parameter [17], and the quantification of uncertainty
originating from process variations via tensor recovery [11]. Furthermore, stochastic effects
from the micro structure of polysilicon films [13], uncertainties in stiction [18], or uncertainty
arising from creep failure [19] have been evaluated. The work whose objectives come
closest to the work presented in this paper was made by Gennat et al. [20]. In the context
of rapid optical testing of a MEMS resonator, through multivariable finite element analysis,
a polynomial was developed describing the DUT-specific parameters mechanical stress,
flexure thickness and flexure width dependent on eigenfrequencies measured during WLT,
while providing uncertainty estimates for each parameter and DUT from the Chebyshev
optimization. However, for the overdamped MEMS accelerometers targeted within the
present paper, parameter identification relying on numerical solutions does not meet the
strict time constraints and therefore the use of ML-driven approaches is required, for which
uncertainty estimates need to be obtained in a different manner as described in Section 3.

Dealing with model selection for radio-frequency MEMS switches, Ling and Mahadevan [21]
evaluated a general polynomial chaos surrogate model through classical and Bayesian
hypothesis testing, reliability-based evaluation, and an area metric-based method, which
compares prior and posterior distributions. Mullins et al. [22] built on this work and
suggested a weighted evaluation of the different epistemic uncertainty estimates using a
Gaussian Process (GP) as surrogate model.

Even though UQ methods for ML architectures have not gained a lot of attention
in the area of MEMS production and testing as of yet, their use has been successfully
demonstrated in other safety and time-critical applications. Auspicious examples are
the application of MDNs in autonomous driving [23] and the use of bootstrapping and
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Monte-Carlo dropout for collision avoidance in robotics by controlling the movement
speed according to uncertainty estimates [24]. Furthermore, BayesFlow was shown to
reach encouraging accuracy in the parameter recovering on a macroeconomic agent-based
model [25] and its use to infer spreading dynamics of diseases via Bayesian inference has been
demonstrated [26].

3. Methods for Uncertainty Quantification

There are three categories of tasks which can be addressed by different methods for
uncertainty quantification, summarized by Lust et al. [27]; First, in the setup of predictive
uncertainty, mainly samples within the training distribution and thus within the generaliza-
tion envelope of a deep neural network (DNN) are taken into account. Samples with larger
uncertainty scores assigned are associated with a more error-prone output. The second
objective is anomaly or OOD detection, i.e., the identification of whether an input sample
belongs to the training distribution. The third objective is the security of the system by
aiming to detect synthetically generated or manipulated inputs, which might be used to
deliberately provoke wrong outputs, called adversarial examples.

In this work, the focus is on the first two tasks, where the distinction between them is
based on the fact that the overall predictive variance or uncertainty of a prediction arises
from two components, namely epistemic uncertainty and aleatoric uncertainty [28–31].
Epistemic uncertainty σ2

e is associated with the uncertainty which arises from the choice
of network parameters and is due to phenomena unexplained by the ML model [28], and
thus also called model uncertainty. The aleatoric uncertainty component σ2

a originates
from noise in data, e.g., due to the measurement error of a test bench. The ML model
cannot compensate for measurement error, thus this contribution cannot be reduced for
example by gathering more data. The aleatoric component can be either homoscedastic
if all samples are subjected to the same systematic noise, or heteroscedastic if the noise is

input dependent [32]. Thus, for a dataset
{
(x(m), θ(m))

}M

m=1
the total predictive variance

results from the sum of the two uncertainty components [23,33]:

E‖θ− f̂ (x)‖2 = σ2
a + σ2

e . (1)

For further information on the basics of decision making under uncertainty, and a
background on Bayesian inference, the reader is referred to [23,29,34].

Gaussian Processes and Markov Chain Monte-Carlo (MCMC) algorithms are designed
to capture the uncertainty of their predictions. However, their computational expense usually
disqualifies them for near real-time applications for complex systems [5,29,35]. For uncertainty
quantification (UQ) with DNNs, variational inference (VI)-based approaches are widely used
to approximate the posterior probability distribution. Since DNNs do not contain any con-
fidence representation, variability has to be introduced by either creating a distribution over
networks or over their parameters. An example for VI is the ensembling of multiple trained
models [29,33,36,37]. If the different models return similar outputs for an input sample, it is
more likely that the input lies within the generalization area of the models. However, a distinc-
tion of the uncertainty source is not possible with this method [29]. Another VI-based approach
is the application of Monte-Carlo Dropout during inference [38], i.e., passing the same input
sample through the same DNN multiple times while randomly setting weights to zero, and
thus creating a distribution over several predictions.

3.1. Network Architectures of BNN, MDN, PBNN and BayesFlow
3.1.1. Bayesian Neural Networks

Instead of the deterministic weights, which are used in common DNNs, Bayesian
neural networks (BNNs) learn probability distributions over their weights starting from
given priors. However, there exists no universally valid approach on the choice of the
priors even though Gaussian distributions with zero mean are often assumed.
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As in all VI-based approaches, the posterior distribution for an input x(m)

p(θ̂|x(m), x, θ) =
∫

p(θ|x(m), ψ)p(ψ|x, θ)dψ (2)

needs to be approximated as it cannot be determined analytically [29,38]. In BNNs, this is
done by minimizing the Kullback–Leibler (KL) divergence DKL [39] between the true and
estimated posterior distribution, here denoted as p(θ|x) and pψ(θ|x) with

DKL(p(θ|x)‖pψ(θ|x)) =
∫

p(θ|x)log
p(θ|x)

pψ(θ|x)
dθ. (3)

This is equivalent to minimizing the negative log-likelihood (NLL), i.e., performing max-
imum likelihood estimation (MLE) [28,40]. Although the true posterior distribution is
unknown, minimizing the KL divergence enables the definition of the evidence lower
bound (ELBO), which is a lower bound of the log marginal likelihood [28,41]. The ELBO
can be maximized via stochastic variational inference (SVI), which enables the optimization
via deep learning methods. During inference, multiple predictions of one input through
network are conducted, sampling from the weight distributions multiple times. Thus, a
non-parametric distribution is obtained [42]. The cost function is composed of a weighted
sum of a term measuring how well the network fits the data Lδ(θ, θ̂) and the KL divergence
for comparing the difference between the true and estimated posterior, which is multiplied
by the KL weight wKL:

L = Lδ(θ, θ̂) + wKLDKL(p(θ|x)‖pψ(θ|x)). (4)

Within the training procedure, SVI can be implemented via the “Bayes-by-backpropagation”
algorithm [42].

The computational effort can be reduced by using distributions over weights only in
the last layer(s) [43]. However, a BNN constructed in the described way can only provide
information regarding its epistemic uncertainty [42].

3.1.2. Mixture Density Networks

An architecture which enables the prediction of parametric distributions and does not
use sampling or probability distributions within the network is the mixture density network
(MDN) [35]. It is trained to estimate the parameters of the posterior distribution, e.g., in the
form of a Gaussian mixture model (GMM) within one prediction pass. Thus, in the case
of a mixture of Gaussian distributions, θψ = {µj, σj, αj}K

j=1 with mean or expected value
µj, standard deviation σj, and weight coefficients αj, ∑j αj = 1, for a predefined number of
mixture components K [5]. In the case of a unimodal output, the weight coefficients are
discarded. The total expectation E and variance V of a Gaussian mixture are given by the
following equations [23,35,44]:

E[θ|x] =
K

∑
j=1

αj(x)µj(x), (5)

V[θ|x] =
K

∑
j=1

αj(x)σj(x) +
K

∑
j=1

αj(x)‖µj(x)−
K

∑
k=1

αk(x)µk(x)‖2. (6)

Although any posterior can be approximated by a mixture of sufficient components,
the MDN architecture is only able to capture aleatoric uncertainty as it does not provide
variability within an individual prediction. Choi et al. [23] argued that when using more
than one component, such a variability can though again be introduced. Additionally, the
known difficulty of mode collapse in this architecture can lead to the disregard of modes in
multimodal distributions [45].
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3.1.3. Probabilistic Bayesian Neural Networks

Probabilistic Bayesian neural networks (PBNN) are built up with the two network
architectures described above, i.e., network weights are defined as distributions and a
MDN output layer is attached to the network. Thus, each of T repeated prediction passes
of an unchanged input vector leads to a slightly different parameterized posterior. In case
of a mixture of Gaussian distributions, the total variance is calculated by applying Equa-
tion (6) with equal weights for each distribution. Furthermore, the mean over the standard
deviations represents the data uncertainty σ2

a [23]. Thus, with σ2
e as residual, PBNNs are

able to capture both aleatoric and epistemic uncertainty.

3.1.4. BayesFlow

BayesFlow [46] is a Bayesian inference method in use of an invertible neural network.
The invertible neural network is based on normalizing flows, which allow for inference
from a simple probability density to a complex distribution through a series of invertible
mappings [47]. The distribution inference with implicit form is directly obtained from the
neural network, and thus can be very exact. The network is trained to learn a global estima-
tor for the probabilistic mapping from observed data to underlying physical parameters,
then the well-trained network can directly infer the posterior of physical parameters from
the same physical model family.

The architecture of BayesFlow (shown in Figure 1) consists of a summary network
to reduce the dimensionality of the observed data x and a conditional invertible neural
network (cINN) to transform the distributions implicitly between the physical parameters
θ and latent variables z. The network parameters of the summary network and cINN are
denoted as ψ and φ, respectively. Both parts can be optimized jointly via back propagation
by minimizing the KL divergence between the true and the model induced posterior of θ.
Then, the objective function can be written as follows:

φ̂, ψ̂ = argmin
φ,ψ

Ep(x)[KL(p(θ|x)||pφ,ψ(θ|x)]. (7)

summary 
network     

conditional 
Invertible Neural 
Network (cINN)

Figure 1. BayesFlow Architecture. ψ contains the network parameters of the summary network, φ

the network parameters of the cINN. The blue arrows stand for the forward process; the red arrows
stand for the inverse process.

The summary network hψ is supposed to be adjusted to the observed data x. For exam-
ple, a long short-term memory network (LSTM) [48] is a typical architecture for time-series
data. In this way, the compressed data x̃ with informative statistics can be passed through
the cINN and taken as the condition while inducing the posterior of physical parameters θ,
namely pφ(θ|x̃ = hψ(x)).

The cINN, assumed as an invertible function fφ, is built up from a chain of condi-
tional affine coupling blocks [49], the structure of which ensures the neural network to
be invertible, bijective and to have easily calculable Jacobian determinant J fφ

[50]. In the
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forward direction, the input is the physical parameters θ ∈ RN, while the output is the
latent variables z, which follow a standard normal distribution p(z) = NN(z|0, I). Via the
change-of-variables formula of probability, the posterior can be reformulated as

pφ(θ|x̃) = p(z = fφ(θ; x̃))|detJ fφ
|. (8)

For a batch of dataset
{
(x(m), θ(m))

}M

m=1
, the objective function becomes

φ̂, ψ̂ = argmin
φ,ψ

1
M

M

∑
m=1

(

∥∥∥ fφ(θ
(m); hψ(x(m)))

∥∥∥2

2
− log|detJ(m)

fφ
|). (9)

In the inverse direction, the physical parameters θ can be obtained by calculating the
mean of the posterior pφ(θ|x̃) with the well-trained network and sampled variables z. For an
observation of test x with sampling a latent variable T times, this process can be formulated as
follows:

θ̂
(m)

=
1
T

T

∑
t=1

f−1
φ̂

(z(t); hψ̂(x
(m))). (10)

3.2. Metrics

To evaluate the quality of Bayesian inference, on the one hand, the accuracy, precision,
and reliability of the estimation of model parameters are taken into consideration. On the other
hand, the posterior distribution of model parameters is investigated, regarding uncertainty,
consistency with the prior distribution, and multicollinearity between model parameters.

1. In terms of the regression accuracy between the estimation and the ground truth of the
model parameters, normalized root mean squared error (NRMSE) and coefficient of
determination (R2) are two standard metrics. Moreover, in practice it is also important
to have information about the maximum absolute error (MAXAE) and mean absolute
error (MAE). For a group of estimated {θ̂(m)}M

m=1 and true parameters {θ(m)}M
m=1 with

the mean of the true parameters θ, these metrics can be calculated as follows:

NRMSE =

√
1
M ∑M

m=1(θ
(m) − θ̂(m))2

θmax − θmin
, (11)

R2 = 1−
M

∑
m=1

(θ(m) − θ̂(m))2

(θ(m) − θ)2
, (12)

MAXAE = max
m=1,...,M

|θ(m) − θ̂(m)|, (13)

MAE =
1
M

M

∑
m=1
|θ(m) − θ̂(m)|. (14)

2. In terms of the precision and reliability of the estimation, the normalized mean confidence
interval width (NMCIW) and confidence interval coverage probability (CICP) at the 95%
confidence level are assessed. The higher the CICP is, the more reliable the estimation
could be. Whereas the smaller the NMCIW is, the more precise the estimation could be.
For the m-th parameter by sampling it T times, the standard deviation is σ

θ̂(m) , the 95%
confidence interval (CI) with lower limit Lm and upper limit Um is

CI(m)(95%) = [Lm, Um] = θ̂(m) ± 1.96σ
θ̂(m) . (15)

Then, the NMCIW and CICP for the entire group of parameters are
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CICP =
1
M

M

∑
m=1

cm, with cm =

{
0 if θ(m) /∈ [Lm, Um],
1 otherwise.

, (16)

NMCIW =
1
M

M

∑
m=1

Um − Lm

θmax − θmin
. (17)

3. In terms of the uncertainty of posterior distribution, the negative log-likelihood
(NLL) is calculated by assuming the posterior to be Gaussian distributed, which is
guaranteed for MDN and PBNN. When the mean is taken to be the Gaussian NLL of
the M data samples, the NLL is

1
M

M

∑
m=1

1
2
(logσ2

θ̂(m) +
(θ̂(m) − θ(m))2

σ2
θ̂(m)

) +
1
2

log(2π). (18)

4. Experiments
4.1. Data Sets and Preprocessing

A high-granularity ASIC-MEMS reduced order model (ROM) of a capacitive MEMS
accelerometer, which was described in [3], served as the basis for simulating 500 turn-off
transients followed by the system response to a ±1 g excitation in a Monte-Carlo approach.
The damping factor DL, resonance frequency f0, inertial mass m, offset do f f , as well as two
process parameters p1,2, served as labels. The dataset was partitioned into 200 simulated
devices for training, 50 for validation, and 50 samples were retained for testing, thus
never presented to the ML models during training and hyper parameter optimization.
Additionally, the time series with a total number of 384 steps consisted of three non-
continuous turning points, and thus were difficult to handle for the NNs. Therefore, they
were split up into four segments with equal length. These are provided to the ML models
as four input channels such that the dimension of the time series with 384 × 1 is changed
to 96 × 4.

In particular, to evaluate the model’s performance and its uncertainty scores on noisy
time series, the training set was combined with white noise with amplitudes of 0.01, 0.025,
and 0.05. Furthermore, the complete test set was perturbed with each of the noise variants
for the regarding evaluation. The results are shown in Section 5.3. In addition, 300 devices
were simulated around two higher damping factors, in the following denoted as condition
B and C as shown in Figure 2. With these samples, two types of OOD experiments were
performed. First, the models were trained on 200 samples and validated on 50 samples
randomly drawn from all three distributions and subsequently evaluated on 50 additional
samples, also drawn from all three distributions. Second, the models were trained only on
200 samples from the lowest DL distribution A and separately evaluated on 50 samples
from each of the three distributions. The respective results are given in Section 5.4. Data
from condition A was used in the other experiments. The preprocessing of data included
standardization of the labels and scaling of the time series.

A B C

Figure 2. DL conditions denoted as A, B, and C.
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4.2. Implementation and Training of ML Models

All models were implemented in PyTorch [51]. A residual neural network (ResNet) [52]
served as a reference for the predictive performance. The BNN, MDN, and PBNN were
built on the ResNet architecture. For the BNNs, the implementation was based on [53], for
the MDNs on [54]. Unless specified otherwise, the weights of the BNNs and PBNNs were
initialized with zero-mean Gaussian priors, a KL weight wKL of 0.1 was used, and training
was performed using the Adam optimizer. Early stopping was applied to prevent overfit-
ting and for all models except for BayesFlow a dropout rate of 0.2 was used throughout
the training process. Additional hyper parameters such as the number of neurons and
layers, the learning rate and scheduler, as well as the stopping iteration, were optimized via
Bayesian optimization [55]. The optimized BNN had 389,068 trainable parameters includ-
ing mean and standard deviation for each weight, a fixed learning rate of 3× 10−4 and a
stopping iteration of 200 epochs. The MDN had 349,389 trainable parameters, an unvaried
learning rate of 3× 10−4 and early stopping was applied after 150 epochs. 487,945 trainable
parameters were used for the optimized PBNN with a fixed learning rate of 10−4 and
with a stopping iteration of 150. For BayesFlow, the optimization resulted in the use of
416,176 trainable parameters, a start learning rate lr of 0.001 and an exponential learning
rate scheduler with lrepoch = 0.5(epoch/2000)lr(epoch−1). During the uncertainty evaluation of
the BNNs, PBNNs, and BayesFlow, 100 prediction passes were carried out for each sample.
All metrics and plots are reported on standardized labels.

5. Comparison and Evaluation of the UQ Methods

The performance evaluations of the architectures are divided into the evaluation on
simulated MEMS devices, on varied training set size, on noisy test sets and on higher damp-
ing factors. Especially, the epistemic and aleatoric uncertainty under those circumstances
are analyzed with the PBNN, as it is impossible to perform this uncertainty decomposition
from the other three architectures without major changes.

5.1. Evaluation on Simulated MEMS Devices

All four uncertainty representing methods increased the predictive performance com-
pared to a pure ResNet with an average NRMSE over all six parameters of 0.0831 on the
test set. The MDN achieved an average NRMSE of 0.0424. BNN and PBNN showed similar
results with an average NRMSE of 0.0278, and 0.0254, respectively. Figure 3a shows the
predictions of the PBNN on the test set including the 95%CI calculated from the total
variance for each sample. In Figure 3b, the composition of the 95%CI from the distributions
given from 100 prediction passes for a single sample is shown. The BayesFlow architec-
ture was able to capture the underlying relations best with an average NRMSE of 0.0112.
A breakdown by the individual parameters is given in Table 1. Additional performance
metrics on the test set, namely the R2, MAE, and MAXAE can be found in Appendix A.

(a) (b)

Figure 3. Performance of ResNet PBNN on test set for DL; (a) scatter plot with 95%CI as error bars;
(b) density plot for test observations composed of 100 evaluations of one sample. The highlighted
area represents the 95%CI, the dashed line the target, the solid line the mean estimate.
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Table 1. NRMSE on test set. Lower is better.

ResNet BNN MDN PBNN BayesFlow

DL 0.0893 0.0235 0.0500 0.0264 0.0251
f0 0.0883 0.0273 0.0394 0.0207 0.0111
m 0.102 0.0286 0.0486 0.0280 0.0100

do f f 0.047 0.0269 0.0269 0.0260 0.00116
p1 0.087 0.0332 0.0501 0.0300 0.00870
p2 0.085 0.0275 0.0394 0.0214 0.0111

NRMSEtest 0.0831 0.0278 0.0424 0.0254 0.0112

Furthermore, differences became visible in the comparison of the NMCIWs and CICP
scores on the test set, which are given in Table 2. Whereas BayesFlow returned narrow
intervals with an average NMCIW over all parameters of 0.0417, the NMCIW of the MDN
was 0.146, for the BNN 0.211, and for the PBNN 0.272. Accordingly, the CICP of the PBNN
was always higher than that of the BayesFlow model.

Table 2. NMCIW and CICP on test set.

BNN MDN PBNN BayesFlow

NMCIW

DL 0.174 0.135 0.261 0.0823
f0 0.199 0.157 0.269 0.0442
m 0.182 0.140 0.285 0.0405

do f f 0.234 0.145 0.252 0.00237
p1 0.179 0.141 0.292 0.0363
p2 0.198 0.156 0.270 0.0444

CICP

DL 1.0 0.86 1.0 0.90
f0 1.0 0.94 1.0 0.90
m 0.98 0.84 1.0 0.90

do f f 1.0 1.0 1.0 0.90
p1 0.98 0.86 1.0 0.96
p2 1.0 0.94 1.0 0.90

A variation of the KL weight wKL in the BNN led to strong changes in performance
and quality of uncertainty scores, which are shown in Figure 4.

Figure 4. (a) NRMSE and (b) NMCIW for BNN prediction of DL on the test set using different KL
weights during training.
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On the one hand, the NRMSE of all parameters was reduced for 10−4 ≤ wKL ≤ 10−2

with a minimum of 0.0156 at wKL of 10−4. Smaller values for the KL weight, however, led
to a performance deterioration. On the other hand, the NMCIW decreased with lower KL
weights and the uncertainty scores of the network did not reveal meaningful changes for
the OOD conditions reported in the next sections. A change in the standard deviation of
the priors led to a decrease in performance and deteriorated the training process.

Figure 5 shows the influence of the number of predictions for each test sample carried
out with a PBNN for each sample on NRMSE and NMCIW. For up to 50 evaluations,
NRMSE and NMCIW showed large deviations when the experiment was repeated 10 times,
which flattened with more evaluations.

(a) (b)

Figure 5. (a) NRMSE and (b) NMCIW of PBNN in prediction of DL with varied number of forward
passes. Error bars show the standard deviation over 10 iterations.

As visualized in Figure 6, the variance in estimating the epistemic uncertainty also
decreased with the number of evaluations. Mean and standard deviation of the aleatoric
uncertainty, however, remained mostly unaffected by the number of evaluations per sample.

(a) (b)

Figure 6. (a) Aleatoric and (b) epistemic uncertainty with number of prediction passes. Error bars
show the average over standard deviations.

5.2. Influence of Varied Training Set Size

The NRMSE as well as the NMCIW of all models increased upon halving the training
dataset as shown in Table 3. Accordingly, these metrics decreased upon doubling the
number of training samples in all models but the BNN. For reference, the NRMSE of
the deterministic ResNet was 0.132 and 0.0622 for DL with 100 and 400 training samples,
respectively. For the MDN, the ratio of samples, for which the true parameters were not
captured by the CI, decreased especially noticeably with less training data, whereas, in
contrast, the CICP of BayesFlow dropped to 0.147 with 400 training samples.
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Table 3. NRMSE, NMCIW, and CICP for the prediction of DL on the test set with models trained on
100, 200, and 400 samples.

Training
Samples BNN MDN PBNN BayesFlow

NRMSE 0.0431 0.0779 0.0511 0.0758
100 NMCIW 0.196 0.165 0.340 0.247

CICP 0.96 0.74 0.98 0.90

NRMSE 0.0235 0.0500 0.0264 0.0251
200 NMCIW 0.174 0.135 0.261 0.0823

CICP 1.0 0.86 1.0 0.90

NRMSE 0.0242 0.0328 0.0228 0.0114
400 NMCIW 0.190 0.122 0.243 0.00332

CICP 1.0 0.98 1.0 0.147

When decomposing epistemic and aleatoric uncertainty components during the pre-
diction of DL with the PBNN as shown in Figure 7, both components decreased with larger
training set sizes. On all three datasets, the aleatoric uncertainty had the greater share of the
overall uncertainty. However, the aleatoric uncertainty decreased with higher KL weights,
whereas the epistemic uncertainty remained unaffected. Additionally, a visible decrease
between the uncertainty scores for the model trained on only 100 samples compared to
a training set size of 200 and 400 became apparent. The difference between the aleatoric
uncertainty predictions when trained on 200 and 400 samples was reduced with increasing
KL weight.

(a) (b)

Figure 7. Aleatoric (a) and epistemic (b) uncertainty components of PBNN under variation of the
training set size and the KL weight.

5.3. Performance on Noisy Data

Predictions on input signals disturbed by varying levels of noise led to performance
deterioration of all networks as shown in Figure 8. In particular, the NRMSE of the BNN
increased considerably stronger than the NRMSE of the other architectures. The NMCIW
revealed further differences: whereas the interval widths of the BayesFlow model and the
BNN remained at a constant level, the NMCIW of the MDN increased monotonously over
the applied noise magnitudes. For the PBNN, the NMCIW almost doubled in the presence
of noise, but the noise magnitudes were indistinguishable by the size of the NMCIW.
Consequently, the CICP of BayesFlow was constantly very low, the CICP of the PBNN
constantly high and slightly decreasing for the highest noise amplitude. The CICP of the
MDN dropped at the lowest noise amplitude to around 0.4, the CICP of the BNN dropped
at a noise magnitude of 0.025 to the level of BayesFlow.
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(a)

(b)

(c)

Figure 8. (a) NRMSE, (b) NMCIW, and (c) CICP plotted for each magnitude of white noise added to
the test set in the prediction of DL. All noise variants were included in the training set.

Table 4 summarizes the effect of the noise magnitude on the uncertainty components
identified by the PBNN. Comparison of the uncertainty components shows that the epis-
temic uncertainty comprised about 18% on clean and 5.9% to 8.6% on noisy inputs. Whereas
for increased noise levels, the epistemic uncertainty of the PBNN constantly remained
around a mean of 0.0854, a sharp increase between the aleatoric uncertainty on clean and
noisy samples was observed even if no clear distinction between the noise levels was
possible based on the returned aleatoric uncertainty scores.

Table 4. Aleatoric and epistemic uncertainty of the PBNN in the prediction of DL from perturbed
time series with the PBNN trained on samples from all noise domains.

Noise Magnitude 0.0 0.01 0.025 0.05

σ2
a 0.479 1.028 1.032 1.069

SD 0.108 0.104 0.103 0.134
perc. of V[θ|x] 82.0% 91.4% 94.1% 93.5%

σ2
e 0.105 0.0968 0.0650 0.0746

SD 0.0387 0.0291 0.0261 0.0194
perc. of V[θ|x] 18.0% 8.6% 5.9% 6.5%

V[θ|x] 0.584 1.125 1.097 1.1436

5.4. Performance on Higher Damping Factors

The NRMSE, NMCIW, and CICP of networks trained on samples from all three
damping areas are reported in Table 5. The total uncertainty of the PBNN for DL was 0.503
with an aleatoric share of 90.5%.
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Table 5. NRMSE, NMCIW, and CICP are reported on test samples for BNN, MDN, PBNN, and a
BayesFlow model trained on samples from all three DL modes A, B and C. The metrics evaluated on
the test set are given for DL and the average over the parameters f0, m, do f f , p1 and p2, which were
not subject to a shift in the distribution.

Metric Parameter (s) BNN MDN PBNN BayesFlow

NRMSE DL 0.0391 0.0572 0.0391 0.0134
NRMSE all w/o DL 0.0511 0.110 0.0817 0.0215
NMCIW DL 0.249 0.143 0.357 0.0388
NMCIW all w/o DL 0.193 0.299 0.346 0.0635
CICP DL 1 1 1 0.80
CICP all w/o DL 0.92 0.88 0.95 0.79

NRMSE and NMCIW for the prediction of DL and f0 with the four architectures
subsequently applied to the three damping modes after the networks have only been
trained on the lowest damping mode, here denoted as A, are visualized in Figure 9. The
predictive performance of all four models diminished for the OOD conditions. In the
prediction of DL, the MDN had the lowest NRMSE of the four models with 1.82 and 1.91
for B and C, respectively. The NRMSE of the BNN was 2.57 for the predictions on B and
2.93 for the samples from C, the NRMSE of the PBNN decreased to 2.08 and 2.55, and the
BayesFlow model showed the largest NRMSE with 2.73 and 3.09 for B and C, respectively.
The NMCIWs of all architectures were larger for DL than for the other parameters on OOD
samples, even though the NMCIW did not increase with the distance from the training
distribution as was the case for the other five parameters.

(a) (b)

(c) (d)

Figure 9. NMCIW and NRMSE in prediction of DL and f0 with model trained only on samples from
condition A. A, B, and C denote the three distributions over the true DL with increasing means.
(a) NRMSE for DL, (b) NRMSE for f0, (c) NMCIW for DL, (d) NMICW for f0.

5.5. Overall Comparison of Predictive Performance and Uncertainty Estimates

Figure 10 compares the findings for the prediction of DL with respect to the predictive
performance in terms of the NRMSE and the consistency of the uncertainty estimates
in terms of the NRMSE and 1-CICP value for the BNN, MDN, PBNN, and BayesFlow.
Based on the areas covered by the triangles arising from the three metrics visualized in
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the radar charts, in Table 6, a ranking of the four methods is derived for the four train-test
conditions, juxtaposed in Figure 10. In this case, the networks were only trained and tested
on clean training and test data originating from the same distribution, the resulting area
between the metrics was lowest for the BNN, followed in decreasing order by the PBNN,
BayesFlow, and MDN. For models trained on 200 variously noisy training samples and
tested on samples with a noise amplitude of 0.05, the area was smallest for the PBNN,
closely followed by the BayesFlow model. The later showed the smallest area of all models
trained on 200 samples from damping condition A and evaluated on DUTs from condition
C.

(a) (b)

(c) (d)

Figure 10. Radar charts summarizing the findings on the test sets with respect to the predictive
performance and consistency of uncertainty estimates for the prediction of DL of BNN, MDN, PBNN,
and BayesFlow. (a) 200 training samples, (b) 100 training samples, (c) 200 noisy training samples,
noise amplitude of 0.05 in test set, (d) 200 training samples from damping condition A evaluated on
C with logarithmically scaled axes.

Table 6. Ranking of methods based on the area covered by the triangles built from the NRMSE,
NMCIW, and 1-CICP values in the radar charts shown in Figure 10. Smaller areas are considered
superior.

Method

Condition
100 Training Samples 200 Training Samples

200 Noisy Training Sam-
ples, Noise Amplitude

of 0.05 in Test Set

200 Training Samples
from Damping Condi-
tion A Evaluated on C

BNN 0.00177 0.00780 0.297 2.69
MDN 0.0141 0.0329 0.283 10.3
PBNN 0.00298 0.0109 0.0882 2.07

BayesFlow 0.00554 0.0221 0.125 1.54
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6. Discussion

All uncertainty expressing methods showed an increase in the overall performance
compared to a pure ResNet architecture. This effect was reported by other works as well,
e.g., [56,57], especially for OOD samples and small datasets. By taking the probabilistic
perspective, averaging predictions drawn from continuous distributions resembles the
usage of an infinite ensemble, which explains the improvement in performance.

The predictive performance of the BayesFlow architecture, however, was considerably
higher than that of BNN, MDN, and PBNN on the same amount of training data. After
doubling the training set size, the performance of the latter three architectures, however,
improved, but they still did not outperform the BayesFlow network on average. The reason
for this is twofold: First, the separate summary network of the BayesFlow architecture,
which focuses on learning the representation of observed data, is optimized jointly with the
inference network, which learns the posterior distribution of physical parameters. This sep-
aration of architecture encourages the learned representation to be as improving as possible
for the inference of parameters’ distribution. Second, BayesFlow generates samples of
posterior distribution of physical parameters according to the well-trained network with-
out assuming its shape. This implicit network-induced posterior contributes to the more
precise estimation of physical parameters. Another difference between the architectures
was the quality of their uncertainty scores. In BayesFlow and PBNN, parameters with small
predictive errors such as do f f were predicted with smaller intervals. For BNN and MDN
this was not the case, thus, the latter two architectures require the definition of a parameter
individual threshold for OOD detection.

Furthermore, in all experiments, BayesFlow gave the narrowest intervals and, associ-
ated therewith, the lowest CICP values, thus overestimating its predictive performance or
underestimating the underlying uncertainties. On the contrary, the NMCIW of the MDN
was often the largest. Despite that, the CICP of the MDN was often smaller than 0.95, even
on the unperturbed test set. This can be explained by the general lower performance of
the MDN compared to BNN, BayesFlow, and BPNN with at the same time underestimated
uncertainty. Overall, the PBNN led to the best CICP scores, which might be due to its capa-
bility of capturing both aleatoric and epistemic uncertainty components. For the remaining
architectures, calibration of the uncertainty scores on a separate calibration dataset might
prove useful [58,59].

The influence analysis of the number of evaluations for one input signal showed
that for a sound statement on the predictive uncertainty at least 25, or better still, 50 to
200 evaluations were required. The NRMSE also benefited from an increased number of
evaluations, analogous to ensemble methods. This should be considered when assessing
the suitability of the models for deployment.

For the BNN, another adjusting option for performance improvement was provided by
the KL weight wKL. At a weight of 10−4, the BNN even outperformed BayesFlow regarding
the NRMSE, however, the NMCIW did not reliably reflect the uncertainty anymore as the
share of the KL loss in the cost function then becomes negligible. However, decreasing
wKL led to a further drop in performance as the training stimulus to optimize the distri-
butions over weights vanishes. In other works, 10−2 ≤ wKL ≤ 10−4 was also found to be
optimal [60]. Thus, a trade-off has to be accepted between predictive performance and
quality of uncertainty score.

This becomes even more relevant when investigating the influence of the KL weight
on the distinction between aleatoric and epistemic uncertainty in PBNNs, as shown in
Figure 7. As expected, the epistemic uncertainty decreased with the doubling of the training
set size. Counterintuitively, especially for low KL weights, the aleatoric uncertainty also
decreased with larger training set sizes. This might be explained by the poor generalization
of the model trained on a too small dataset reflected by the comparatively high epistemic
uncertainty. The effect is therefore expected to vanish for larger datasets. Huseljic et al.
postulated that high epistemic uncertainty entails high aleatoric uncertainty [61]. Thus,
even for a KL weight of 0.1, the difference in the aleatoric uncertainties between the model



Sensors 2022, 22, 5408 17 of 22

trained on 100 samples compared to the ones trained on 200 and 400 samples remained
visible even if the difference between the latter two equalized as expected. In practice, if
very few training samples are available and the model uncertainty is high, the distinction
between the two uncertainty components therefore has to be regarded with special caution.

Furthermore, a relation between KL weight and returned aleatoric uncertainty ap-
peared for 100 and 200 training samples. For 400 training samples, the KL weight did not
influence the aleatoric uncertainty anymore, indicating that here the number of training
samples was sufficient to reduce both loss terms irrespective of their weighting.

In the presence of noisy inputs, as expected, the epistemic uncertainty given by
the PBNN remained on a constant level, as noisy time series were already contained in
the training dataset, and the aleatoric uncertainty sharply rose for disturbed inputs. This
matches the observation that the NMICW of the MDN increased strictly monotonously with
the noise amplitude whereas BNN and BayesFlow, unable to capture aleatoric uncertainty,
did not show an increase of the NMICW resulting in low CICP values. For the PBNN, a
notable step between clean and noisy data was visible, making it the only model with a
high CICP even for noisy inputs. The increased epistemic uncertainty when trained on
samples with varying noise levels compared to clean data is plausible as the model thereby
was trained on less data for each individual noise domain. During all experiments, only
homoscedastic noise has been applied, which might in practice not always be the case,
e.g., due to influences from measurement equipment or ASIC. Additionally, it might be
interesting for the application in FT to further split the detected data uncertainty into the
individual sources described in Section 1.2.

It is well-known from the literature that purely data-driven models usually do not
perform well outside of their training distribution. Thus, as expected, the NRMSE in the
prediction of DL from the test set containing DUTs with higher damping factors than the
training set decreased compared to models trained on samples from all three distributions,
e.g., from 0.0391 to 1.82 for B and 1.91 for C for the BNN. Process drifts and defects,
however, are commonly observed from productive data, which makes it important to
closely evaluate how the confidence interval widths of the individual architectures reflect
their uncertainty. From the OOD-experiments with DUTs with damping factors outside of
the training distribution, it became visible, that the uncertainty intervals of BNN, MDN,
and PBNN increased steeply for these test samples. However, similar to the observations
for the incremental noise magnitudes, the predictive error of the BayesFlow model, which
by far outperformed the other architectures on samples within the training distribution,
heavily increased for DUTs with higher damping factors, but the interval widths did not
reflect this behavior as distinctly as the other architectures. As the BayesFlow network
also showed the worst generalization performance for the prediction of the resonance
frequency for DUTs with previously unseen damping factors and gave low CICP scores
for the other experiments, one might conclude that the BayesFlow model constituting the
most complex one of the evaluated network architectures, slightly overfitted during the
training process. This hypothesis is supported by the tremendous influence of the training
set size on the NMCIW and CICP of BayesFlow. It could be interesting to investigate
whether countermeasures to overfitting might also increase the CICP of BayesFlow models,
for samples outside of the training distribution. To increase the confidence interval and
improve the robustness of BayesFlow, some stochastic components should be extended in
the future work.

7. Conclusions

Even if methods for uncertainty quantification in NNs have a strong theoretical
foundation and provide the opportunity to augment the expressive power of network
predictions without much overhead, they are rarely used in the context of manufacturing
and MEMS testing in particular. As a wide variety of methods exist, this paper sought to
identify a suitable approach based on Bayesian inference for the task of system identification
from turn-off transients of capacitive MEMS accelerometers during FT. It was shown that



Sensors 2022, 22, 5408 18 of 22

the considered uncertainty representing methods did not only provide error estimates for
individual predictions, but also increased the overall predictive performance. In particular,
this applies to the BayesFlow architecture, which outperformed the other considered
architectures in almost all experiments. Despite its high overall predictive performance, the
BayesFlow model overestimated its predictions resulting in too small uncertainty scores
requiring subsequent calibration. Thus, the choice of the specific architecture depends on
whether priority is given to an excellent performance or an increased interpretability. For the
BNN, this trade-off became apparent in the choice for the KL weight hyper parameter.
If the goal is to accurately distinguish between uncertainty components aiming to increase
the understanding of the model, PBNNs have been proved useful. As the epistemic
uncertainty usually only had small shares of one up to ten percent of the total uncertainty,
the specific uncertainty composition might be analyzed before deployment on test cases
such as shown above with a large number of prediction passes. Thereafter, it might be
sufficient to only capture aleatoric uncertainty during testing to decide whether to trust the
NN output or fall back on numerical ODE solutions. For future research on the parameter
identification from dynamic MEMS tests, it might be interesting to combine UQ approaches
with physics-informed NNs as, e.g., suggested by Yang et al. [62].
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Abbreviations
The following abbreviations are used in this manuscript:

ASIC application-specific integrated circuit
BNN Bayesian neural network
CI confidence interval
CICP confidence interval coverage probability
cINN conditional invertible neural network
DNN deep neural network
DUT device under test
ELBO evidence lower bound
FT final test
GMM Gaussian mixture model
GP Gaussian Process
KL Kullback–Leibler
LSTM long short-term memory network
MAE mean absolute error
MARS multivariate adaptive regression splines
MAXAE maximum absolute error
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MCMC Markov Chain Monte-Carlo
MDN mixture density network
MEMS micro-electro-mechanical system
ML machine learning
MLE maximum likelihood estimation
NLL negative log-likelihood
NMCIW normalized mean confidence interval width
NN neural network
NRMSE normalized root mean squared error
ODE ordinary differential Equation
OOD out-of-distribution
PBNN probabilistic Bayesian neural network
ROM reduced order model
SVI stochastic variational inference
SVM support vector machine
UQ uncertainty quantification
VI variational inference
WLT wafer-level test

Appendix A

Table A1. R2 on test set. Larger is better.

ResNet BNN MDN PBNN BayesFlow

DL 0.754 0.983 0.923 0.979 0.981
f0 0.866 0.987 0.973 0.993 0.998
m 0.694 0.976 0.931 0.977 0.997

do f f 0.988 0.988 0.987 0.988 1
p1 0.821 0.974 0.940 0.979 0.998
p2 0.876 0.987 0.973 0.992 0.998

Table A2. MAE on test set. Smaller is better.

ResNet BNN MDN PBNN BayesFlow

DL 0.397 0.0802 0.147 0.0865 0.0969
f0 0.275 0.0898 0.122 0.0573 0.0367
m 0.342 0.0992 0.167 0.0870 0.0354

do f f 0.156 0.0821 0.0834 0.0777 0.00256
p1 0.279 0.115 0.173 0.0971 0.0314
p2 0.267 0.0885 0.121 0.0600 0.0373

Table A3. MAXAE on test set. Smaller is better.

ResNet BNN MDN PBNN BayesFlow

DL 1.159 0.293 0.792 0.459 0.261
f0 0.984 0.251 0.495 0.307 0.0993
m 1.304 0.359 0.634 0.477 0.123

do f f 0.361 0.243 0.201 0.276 0.0215
p1 1.147 0.383 0.692 0.458 0.104
p2 0.968 0.255 0.491 0.320 0.101
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