
Towards fully automated inspection of large
components with UAVs

offline path planning and view angle dependent
optimization strategies

Martin Schörner1, Raphael Katschinsky2, Constantin Wanninger3, Alwin
Hoffmann4, and Wolfgang Reif5

University of Augsburg, Augsburg 86159, Germany
{schoerner, katschinsky, wanninger, hoffmann, reif}@isse.de

Abstract. Automation mechanisms are increasingly established in the
field of visual quality control. UAVs can be used for particularly large
components, such as those used in aircraft or ship production, but also
for critical infrastructures. This paper concentrates on the problem of vi-
sual quality control in the field of perspective-dependent route planning.
It is shown how the requirements for such a system can be implemented
and elaborated. Furthermore we investigate how sensor positions can be
calculated offline, based on optical- and geometrical requirements and
how a trajectory can be planned which contains the found sensor posi-
tions for each given area on the component. It is shown how the systems
architecture can be designed in order to be able to adapt it to different
requirements for the planning of sensor positions and trajectory. The im-
plementation was tested in a simulation environment, evaluated using a
benchmark data set and it was shown how above-average results can be
achieved on this data set.

Acknowledgements This work was created in collaboration with Kevin Dittel,
Teoman Ismail and Christian Adorian from Premium AEROTEC GmbH

2 M. Schörner et al.

1 Introduction

UAVs are increasingly used in the last years in private and commercial as well
as in scientific fields due to their easy availability and low cost. This also opens
up new possibilities for use in science and industry. With UAVs, camera images
can be taken from any perspective and infrastructures can be inspected and
measured. The possibilities range from rail tracks, buildings and construction
sites [3] to the routine inspection of entire airplanes [17] to the inspection of
ship hulls in dry docks [9] A less explored area is the use of UAV in quality
assurance in the production of large components such as wind turbine blades
and airplane fuselages This work focuses on this area. A problem with many
of the projects mentioned is that the inspection is performed manually or it is
being only partially automated. The UAV is either controlled manually by a
pilot, or a flight route has to be programmed before the flight. Projects with full
automation focus more on the complete visual coverage of a component, which
is practical, for example, to inspect an entire bridge for cracks. In production,
only individual parts of the assembly change from one step to the next, and
a complete inspection of the entire component is not necessary. The changes
made at the station are known in advance through the construction plan of the
assembly. An inspection can therefore focus on the changed positions or newly
installed components of the assembly.

In this paper we want to consider the case study of an aircraft fuselage in
production. This fuselage is assembled from multiple half-shells. The half-shells
are equipped with so-called brackets, which are used for the assembly of further

point of Interest (poi)

tablet/paper with CAD-model

airplane hull

Fig. 1: Inspection of an airplane hull after the installation of various brackets

Towards fully automated inspection of large components with UAVs 3

parts such as cables, insulation or cladding, at several stations during production
(see Fig. 1). The position and orientation of the brackets is critical to ensure that
subsequent components can be correctly mounted on them. In order to check the
correctness of the assembly, a worker checks the newly installed brackets after
each work step and compares them with the CAD model of the aircraft using
a tablet (see Fig. 1). This process is time consuming. Since the brackets look
very similar and the half-shells contain many similar, repetitive sections, human
errors can occur easily. To make the process faster and more reliable, approaches
for automated error detection already exist [1]. The inspector uses a camera that
compares the camera image with the 3D model of the fuselage and detects wrong
or incorrectly mounted components. However, this work still requires a worker
to inspect the complete half-shell with the camera. The goal of this work is
to further automate the inspection and to capture the required camera images
using a UAV. This will increase automation and avoid human error. By using
UAVs it might even be possible to perform the inspection while the half-shell is
on a crane ride from one workstation to the next.

This work presents a concept for the generation of paths for such automated
inspections. First of all, it is described how points can be determined from which
objects to be inspected can be seen (see Section 3.1). Then a shortest possible
path through all these points is planned, which the UAV can follow during the
inspection(see Section 3.5). This concept will then be implemented (see Sec-
tion 4) and evaluated (see Section 5) based on the case study already presented.
Inspection points on a half-shell are calculated and the shortest possible route
through exactly these points is calculated (see Section 4.2). In addition, an op-
timization strategy is presented which further reduces the number of inspection
points and thus shortens the inspection (see Section 4.2).

4 M. Schörner et al.

2 Related Work

An overview of the current state of the art in inspections using UAVs is given
in Jordan et al. [12]. In most cases, a fully automated inspection using drones
aims to completely cover the component to be inspected. This procedure is called
Coverage Path Planning [10], [6]. The approach by Bircher et al. [5] provides for a
two-step inspection: First, viewpoints are generated from which the entire surface
can be seen by the UAV. For doing that, the surface of the architecture to be
inspected is considered as a triangle mesh. For each of the triangles a viewpoint is
calculated from which the triangle can be viewed. The generation of viewpoints
can be described as Art Gallery problem [16], [11]. After that a shortest possible
route covering all viewpoints is calculated. This calculation can be modeled as
traveling salesman problem [13]. At first it is assumed, that there are no obstacles
on the way between directly connected viewpoints. If obstacles occur, the RRT*
search algorithm (see [14]) is used to plan a collision free route between the two
viewpoints. Since in a production scenario the changed areas of an assembly
can be defined precisely for each working stage, a complete inspection of the
assembly seems not efficient for our approach. Instead of using triangles of the
models mesh, only the changed areas of the assembly should be inspected. This
is why our approach uses data of the modified or added parts of the last working
step, to generate an optimized route inspecting only relevant points of interest.
However the calculation of the shortest path between the viewpoints will be
modeled as a traveling salesman problem in our approach.

For the inspection of ship hulls Englot et al. [9] also use Coverage Path
Planning. Like the previous procedures, this one is also divided into two steps.
However, instead of a UAV, an autonomous underwater vehicle is used due to
the nautical environment However, the basic principle of off-line planning and in-
spection points is applicable to our application. First, the Redundant Roadmap
Algorithm is used to sample random configurations to ensure complete cover-
age of the hull surface Then an RRT is used to find a route that connects all
goals. Additionally, a Local Coverage Algorithm (LCA) is used to further reduce
the length of the route. By this optimization the originally found route with
192 viewpoints and 246m length could be reduced to 169 viewpoints and 157m
length, which can be seen in Fig. 2 The previously presented approaches use the
concept of viewpoints that guarantee visibility of a certain area of the part that
needs to be inspected. It is assumed that the inspection camera can take any
orientation. This can be achieved by using a gimbal, for example. This opens
up the problem of calculating the right orientation for the inspection camera.
The work of Alarcon-Herrera et al. [4] describes the optimal orientation and po-
sition of a viewpoint so that the camera looks directly at it. More precisely, the
normal vector to the surface of the POI must run along the optical axis of the
camera. This means that the POI is always in the center of the camera image,
which ensures optimal visibility during the inspection and prevents distortion of
the poi. By keeping a so-called standoff distance the position of the viewpoint
is described exactly. The standoff distance depends on data such as the resolu-
tion of the camera, size of the poi, dimensions of the image sensor and the used

Towards fully automated inspection of large components with UAVs 5

opening angle of the camera lens. By optimizing the standoff distance, the POI
occupies an area of the camera image as large as possible without protruding
from it. During an inspection it might not always be possible to look directly
at a POI due to obstacles or other parts of the assembly that are blocking the
view. To counteract this problem, our approach allows for alternative viewpoints
that deviate a certain amount from the normal vector of the poi and the optimal
distance from it. Malandrakis et al. [15] describe a procedure for performing
non destructive testing on aircraft wing panels using a multirotor. The UAV is
equipped with a wide-angle camera and a UV lamp. The video recordings of the
camera are streamed to a ground control station and evaluated there. Due to
the flat structure of a wing, viewpoints are generated in a grid-like formation on
a plane (s. Fig. 3). The route consists of flying off this grid line by line.

(a) (b)

Fig. 2: Optimization of the route length from 192 viewpoints and 246m length
(2a) to 169 viewpoints and 157m (2b) [9].

(a)
(b)

Fig. 3: Grid-like formation of the viewpoints (3a) and the trajectory correspond-
ing (3b) [15].

6 M. Schörner et al.

3 Concept

This chapter covers the conceptual implementation of viewpoint generation and
trajectory planning. It is shown how viewpoints can be calculated for POIs of any
given orientation and how a trajectory based on the viewpoints can be calculated.
The viewpoint planning part shows how viewpoints can be planned so that they
meet visual requirements and take into account the characteristics of the camera.
The trajectory orientation planning part deals with how the calculation of the
trajectory can be interpreted as a traveling salesman problem and solved by ant
colony optimization. We also propose a concept for optimizing the length of the
resulting trajectory by combining multiple viewpoints to a single one from which
multiple POIs can be inspected.

3.1 point of interest

The areas on the component to be inspected during the inspection are called
point of interest, or POI for short. These are individual parts or a low-order
assembly on the component. POIs are parameterized by their ID, according to
the CAD file of the component, their position and orientation, a maximum devi-
ation angle, a semantic annotation and their size. In order to achieve an optimal
view of the POI, the deviation angle ϕmax defines the maximum angle between
the optical axis of the camera and the normal of the POI. For the evaluation of
the image material, a POI has a semantic annotation, which describes the POI
itself in more detail. Finally, the size of the POI is required for the calculation of
sensor positions to ensure that the POI is completely visible within the image.

3.2 Viewarea and viewpoint

Based on the aperture angle and the resolution of the camera, a so-called viewarea
is calculated for each POI. It contains all possible camera positions that can be
taken to inspect a POI and there is exactly one viewarea for each POI. The
viewarea is calculated based on the POI size, the maximum deviation angle
ϕmax of the POI and the resolution of the camera. The minimum and maximum
distance to the POI is specified by its parameters min-standoff and max-standoff.
These specify the radius around the POI in which the POI is completely visible
in the picture and the POI can be focused by the camera. The range between the
min-standoff-distance and the max-standoff-distance is additionally trimmed by
the maximum deviation angle or the opening angle of the camera, depending on
which angle is smaller. This can be seen in Fig. 4.
The possible camera positions within the viewarea are so-called viewpoints. A

viewpoint is parameterized by its position, list of camera orientations, associated
POI and its viewarea. In the best case, the optical axis of the camera and the
normal of the POI lie on each other. However, since this is not always possible,
the position of the POI (center of the POI) should lie on the optical axis of the
camera. From each viewpoint one or more POIs can be inspected, if the viewarea
of the respective POIs overlap. Therefore a viewpoint has one or more camera

Towards fully automated inspection of large components with UAVs 7

Fig. 4: Viewarea and POI properties.

orientations. Each of these orientations is parameterized as a quaternion and
calculated according to Eq. 5 to 1. First the vector ~z is determined by subtract-
ing the x, y and z coordinates of the POI poi from the viewpoint vp (Eq. 1), to
get the line of sight.

~z = [vpx − poix vpy − poiy vpz − poiz] (1)

To determine the whole frame of the viewpoint the vectors ~x and ~y are calculated.
The vector ~x (Eq. 2) is the cross product of the unit vector ~e2 with the vector
~z. Vector ~y (Eq. 3) is the cross product of ~z with ~x.

~x = ~e2 × ~z (2)

~y = ~z × ~x (3)

Next, the matrix M is determined from the normalized vectors x̂, ŷ and ẑ, which
result from the normalization of ~x, ~y and ~z.

M =

x̂ŷ
ẑ

 (4)

The orientation of the viewpoint is then the quaternion q (Eq. 5).

q = qM · (cos(
π

4
) + 0i+ sin(

π

4
) + 0k) (5)

where qM is the quaternion that is formed from the matrix M (Eq. 4. By this
calculation the optical axis always points to the position of the respective POI.

8 M. Schörner et al.

vp 1

vp 6

viewpoints

block distance

viewarea

Fig. 5: Viewarea with dividing grid inside. Possible viewpoints lie on the grid.

The benefit of using an area from which the POI can be seen instead of a single
point is that alternative viewpoints can be calculated rather easily. If the desired
POI can not be seen from a specific viewpoint (e.g. because it is obstructed by
an unforeseen obstacle), an alternative viewpoint in the viewarea can be used for
the inspection. In order to generate a finite set of alternative viewpoints from
the infinite number of possible viewpoints in a viewarea, we sample points in
a grid formation with equal spacing within the viewarea. By generating view-
points that way, we ensure an equal geometric distribution of viewpoints within
the viewarea and reduce the number of alternative viewpoints to a manageable
amount.

3.3 Viewpoint Optimization

The overall length and duration of the trajectory of the inspecting drone can
be shortened by choosing viewpoints, that lie in the intersecting area of multi-
ple viewareas. That way multiple POIs can be seen from a single viewpoint at
once. Additionally the drone has to stop at every viewpoint for a specific amount
of time in order to give the software time to inspect the POIs. By having less
viewpoints the drone needs to make less stops and can therefore complete the
inspection in less time. For this purpose it is checked whether overlapping viewar-
eas exist. In the overlapping section of multiple viewareas multiple viewpoints
can be inspected from the same position. This leads to fewer sensor positions in
total and thus to a shorter trajectory. However, it must be taken into account
that an alternative viewpoint in the intersection of two viewareas can have a
worse visibility on the POI than the original viewpoint located in the center of
the viewarea.

The general Idea is to generate viewareas for each POI and check them for
intersections with each other. If Intersecting areas are found, a new viewarea is

Towards fully automated inspection of large components with UAVs 9

poi a

poi b

viewarea : poi b

viewarea : poi a

intersection :
poi a, poi b

poi a

poi b

Fig. 6: Combined viewarea from two intersecting viewareas

calculated by using an intersection operation comparable to the intersect oper-
ation in Constructive Solid Geometry [18]. The resulting intersecting viewareas
are checked for a minimum volume in order to eliminate viewareas that are too
small for generating multiple viewpoints. If a combined viewarea meets the min-
imum Size requirements, its original viewareas are deleted and replaced with the
new, combined viewarea.

3.4 Key-Viewpoints

The route for the inspection is a sequence of so-called key-viewpoints. key-
viewpoints are those viewpoints that are used as sensor positions for the in-
spection and hence the trajectory planning. Each POI has at most one key-
viewpoint, which implies that the number of key-viewpoints is less than or equal
to the number of POIs. If there is no feasible way of reaching any of the points
in the viewarea with the drone (because of obstacles or the inability of the drone
pointing it’s camera at the POI), no key-viewpoint can be found and an error
is displayed. Because a UAV has so-called holonomic properties (its controllable
degree of freedom with respect to its position corresponds to its total degree of
freedom with respect to its position), Viewpoints can be approached directly and
the movement between two viewpoints can be described as linear movement.

3.5 Trajectory-Planning

When planning the trajectory, three main requirements must be considered:
The trajectory must contain all key-viewpoints, be as short as possible and
end at the position where it started. These requirements can be modeled as a
Traveling-Salesman-Problem and solved by implementing it using Ant-Colony-
Optimization (ACO) [8].
ACO imitates the ants’ behaviour when searching for the shortest possible route
from the nest to a food source. To find ever shorter routes, an ant leaves a
pheromone trail on its route when it has found a food source. The more intense
the pheromone trail is the more likely it is that other ants will follow it. As more
pheromone can be deposited on a shorter route in the same time span than on
a longer route, the intensity of the pheromone increases more on shorter routes

10 M. Schörner et al.

while the pheromone decreases on less frequented routes.
Here the Ant-Colony-System (ACS)[7], a variant of the ACO, was used. ACS
differs from the original ACO in three main aspects: i) The state transition rule
allows a better balance between exploration of the graph and exploitation of
stronger pheromone traces, ii) while constructing a solution, ants use a local
pheromone updating rule, iii) only the globally best ant is allowed to deposit
pheromone on edges which belong to its tour, via a global pheromone updating
rule.
To decide which viewpoint s should be visited next from viewpoint i, the state
transition rule is defined by rule given by Eq. 6

s =

 argmax
cij∈N(jp)

{τij · ηβij} if q ≤ q0

S otherwise
(6)

where N(jp) is the set of all not yet visited edges.

ηij = ||i− j||−1 (7)

where τij is the pheromone deposited on edge (i, j), ηij the heuristic information
and β a constant that determines the influence of the heuristic information. q is
a random value in the interval [0,1] and q0 is a constant in the interval [0,1] that
determines whether the focus should be on exploring the graph or exploiting
good pheromone trails. S is a randomly calculated viewpoint s which is not yet
visited and is calculated according to Eq. 8.

pkij =


τij · ηβij∑

cil∈N(jp) τil · η
β
il

if cij ∈ N(jp)

0 otherwise

(8)

The combination of Eq. 6 and 8 is called pseudo-random-proportional rule [7] and
favors viewpoints that are connected to the current node with short distances
and bigger quantities of pheromone. For updating the pheromone, a local as well
as a global update formula is used. While calculating a solution, each ant is
visiting and updating its pheromone by Eq. 9

τij = (1− ρ) · τij + ρ · τ0 (9)

where ρ is the evaporation rate of the pheromone and τ0 = (n · Lnn)−1 the
initial pheromone level. Lnn the route length according to the nearest neighbor
heuristic. By using the local update formula already visited edges are getting
less interesting for other ants and the exploration of not yet been visited edges
increases. When all ants have found a route, only the globally best ant is allowed
to update the pheromone on the edges of its route according to Eq. 10

τij = (1− ρ) · τij + ρ ·∆τ bestij (10)

∆τ bestij =
||i− j||best2

Lbestk

(11)

where Lbestk is the route length of the shortest route.

Towards fully automated inspection of large components with UAVs 11

4 Implementation

This chapter covers the realization an implementation of the proposed concept.
First the underlying software architecture of the offline viewpoint and trajectory
planning is presented. Then the implementation and parameter setting of the
offline viewpoint and trajectory planning is described.

4.1 Software Architecture

The procedure of the inspection consists of three major parts (see Fig. 7). First
viewpoints are being derived from the CAD file and a list of POIs using the
Concept of ViewAreas. In this step the ViewArea Optimization is used to merge
intersecting ViewAreas. In a next step, a Path is generated for visiting all cal-
culated viewpoints using the ant colony optimization algorithm. In a last step a
Trajectory is executed to visit all viewpoints on the Path. This paper will focus
on the first two steps of the process. The Trajectory generation will be the focus
of future work.

Fig. 7: Viewarea and POI properties.

In the beginning of the inspection process, an inspector needs to specify
relevant POIs in the CAD file. This could be parts, drilled holes or the position
of rivets that were added to the product in the last assembly step. In the next
step, ViewAreas are calculated for each point of interest based on the Parameters
of the inspection camera and maximum deviation angles for the inspection of
a POI (see Fig. 8). After that, the optimization of the viewareas is performed
by combining intersecting viewareas. This results in a shorter list of viewareas
to be visited by the drone. For each viewarea in this List, a discrete number

Fig. 8: Information flow and change from annotated CAD file to list of optimized
ViewAreas

12 M. Schörner et al.

of viewpoints are sampled by picking viewpoints on a grid-like structure inside
of the viewarea (see Fig. 9). From these viewpoints, a KeyViewpoint is chosen
for each ViewArea. The other viewpoints are stored for later use during the
inspection if a POI can not be detected from the perspective of the KeyViewpoint
during the trajectory execution.

Fig. 9: List of KeyViewpoints from list of optimized ViewAreas

In a last step a short path visiting all KeyViewpoints is generated from the
resulting list of KeyViewpoints using the ant colony optimization algorithm.
This will be used in future work to calculate a trajectory that visits all key-
viewpoints. Additionally other factors like static and dynamic obstacles in the
drones flightpath and obstacles obstructing the view of the inspection camera
on the drone need to be considered in this step.

The requirements for the inspection of components can be very different. For
example, an inspection path may be required for more complex components
where the structure of it must be considered during the offline planning. It can
also be necessary that static external obstacles have to be co nsidered during
planning, because they partly overshadow the component or block areas within
the component. Therefore, offline planning should allow to offer different plan-
ning options and optimization possibilities which can be used depending on the
requirements. Independent of the inspection route, it should also be possible to
integrate new requirements for the composition and calculation of the viewareas,
viewpoints and the trajectory into the system. In order to make the system scal-
able, to make individual components interchangeable and to be able to adapt
the planning to different requirements, a combination of Strategy and Abstract
Factory Pattern was implemented for viewarea, viewpoint and Trajectory Plan-
ning.
The architectural implementation of the system can be seen in Fig. 14. There
you can see that the system consists of the four components Path Strategy,
Path Factory, State Space and ACO. The Path Strategy component is respon-
sible for aggregating the data required for viewarea and viewpoint planning.
The CAD file, the camera parameters and the desired strategy are transferred
to the PathConfigurator and forwarded to the PathController. In a first step
the PathController extracts the POIs from the CAD file and in a second step
it selects the PathFactory according to the chosen strategy. The PathFactory
component receives the extracted POIs and the camera parameters as input and
is again divided into two steps. In the first step the viewpointPlanner calculates

Towards fully automated inspection of large components with UAVs 13

and optimizes the viewareas and viewpoints according to the selected strategy.
The viewpointPlanner returns a list with all key-viewpoints. The result of the
first step is then transferred from the PathFactory to the PathPlanner, which
calculates the trajectory according to the chosen strategy in a second step. In
Future Work this component also takes care of optimizing the trajectory. For
the planning of the trajectory the key-viewpoints are passed on to a trajectory
planning component, in this case the ACO component. This component takes
over the calculation of the trajectory by the Ant-Colony-System described in
section 3.5. As a result, the PathFactory then returns the viewareas and the tra-
jectory. The trajectory can then be executed and the viewareas can be accessed
during the inspection if alternative viewpoints are required.

In the remaining part of this section we will focus on the implementation of
the viewarea Optimization and the optimization of the length of the path for
visiting all key-viewpoints.

4.2 Viewpoint-Planning

The positions and rotations of the points of interest (POI) can be derived from
the CAD files. Based on these transformations and including the camera param-
eters the viewareas are created. The viewareas contain viewpoints, i.e. frames
(position and orientation) from which the POI can be seen. Since some viewareas
(see Fig. 10) overlap there are viewpoints from which several pois can be seen.
This property is used to minimize the route in the number of existing nodes and
to speed up both planning and execution. If a POI cannot be seen from a view-
point during execution, viewareas should be used to generate new viewpoints.
The algorithms for the creation of viewareas, as well as the optimization for over-
lapping viewareas and the distribution of pois within viewareas were written in
python 3.x using the blender 2.9x libraries.

Viewareas
From the CAD data the id, its frame and a simple 2 dimensional bounding box

of the POI must be extracted. The frame is defined in the center of the bounding
box (see Fig. 11). As port for the definition of the POI bounding boxes json is
used. The camera parameters like the maximum and minimum distance and the
opening angle are defined in a separate json file.

The algorithm uses the minimum and maximum distance to create two
spheres and a trapezoid that is extruded from the POI bounding box using
the alpha angle to the maximum distance. The three meshes (geometric defi-
nition based on triangles) are intersected and transformed to the position and
orientation of the bounding box in the last step of the algorithm. In this proce-
dure viewareas are created in which the pois can be seen. viewareas which can
see the complete bounding box in every point of view are much smaller and are
explicitly not desired for later evaluations of the optimization at runtime in this
project.

14 M. Schörner et al.

viewarea

point of interest
airplane hull

viewpoint

route

Fig. 10: airplane hull with some point of interests, viewareas, point of views and
a simple optimized route

Viewarea intersection
Especially in the example of the inspection of aircraft inner paneling, the pois

are very close together. So that not every POI gets its own viewpoint the viewar-
eas should be checked for overlaps. The algorithm checks for any possible overlap
and decides on the basis of a heuristic whether the two viewareas in question
will be intersected. The heuristic should prevent that too small areas are created
(as shown in Fig. 12, in which the viewareas VA 1 and VA 2 were not intesected
due to heuristics).

POI bounding box

max_dist

min_dist

alpha

viewarea

Fig. 11: Viewpoint, generated from the dimensions of the POI bounding box
and the camera parameters: minimum distance (min dist), maximum distance
(max dist) and opening angle (alpha) of the camera

Towards fully automated inspection of large components with UAVs 15

4 viewareas 3 viewareas (optimized)

VA 1

VA 2

VA 3

VA 4 VA 1

VA 2
VA 3_4

Fig. 12: On the left side there are four viewareas, where VA 1 and VA 2 as well
as VA 3 and VA 4 overlap. On the right side of the picture, only 3 viewareas can
be seen, with VA 3 and VA 4 being combined

The parameters for the heuristic are the number of desired viewpoints and
their block spacing in 3 dimensional space. These parameters are used to es-
timate the extent of an intersection between two viewareas. After a successful
intersection, all remaining viewareas are tested again, so that multiple intersec-
tions (e.g. VA 3 4 5) are taken into account.

Viewpoints
For a reasonable division of viewareas into viewpoints a 3D grid approach was

chosen and the inner area was divided into squares (see Fig. 13).

VA 1

VA 2

VA 3_4

viewpoint

Fig. 13: The three viewareas from image 12 (right) are shown here in a different
perspective after the clustering algorithm There are 120 cluster elements in total

16 M. Schörner et al.

Fig. 14: Component Diagram of the System Architecture of the Offline Planning

The algorithm uses an axis aligned collision hull around the viewareas and
divides them into the desired squares of the specified parameters. The collision
hull can be enlarged but not reduced. Then there are two alternative procedures.
In Fig. 13, the rule is only to use complete inner blocks, so all blocks that are
either outside or only partly inside the viewarea will be deleted. Alternatively,
only blocks located outside the viewarea are deleted. If the block size is small,
the first variant can be used to minimize the number of blocks located at critical
edge areas. Accordingly, the center of mass of a block forms the frame of the
viewpoint, which is used for trajectory planning.

To calculate the camera orientation(s) at each viewpoint, one key-viewpoint
from all possible viewpoints is randomly selected for each viewarea and the orien-
tation is calculated according to the equations 5 to 1 in chapter 3.2. Afterwards
the key-viewpoints are handed over to the Trajectory-Planning Part.

Towards fully automated inspection of large components with UAVs 17

4.3 Trajectory-Planning

The Ant Colony system as described in chapter 3.5 was implemented multi-
threaded. This means that each ant in the colony runs as a separate thread. The
Euclidean norm was used as distance measure, because the movement between
the viewpoints is considered as linear. The pheromone intensity on each edge is
initially set to τ0:

τ0 =
1

1

2N
·
∑
cij
||i− j||2

(12)

where N is the number of key-viewpoints. The assignment of the ACS param-
eters is as follows: β = 5, q0 = 0.5, ρ = 0.5. The amount of ants m is set to
m = b0, 3 ·Nc, where N ist the number of key-viewpoints. The implementation
of the formula as in Eq. 8, is implemented as a roulette wheel-style selection pro-
cedure. This is done by taking the average value of the pheromone and heuristic
information of all edges cil ∈ N(jp):

avg =

∑
cil∈N(sp) τil · η

β
il

NR
(13)

where NR is the number of viewpoints not yet visited. The edge to the first
viewpoint in the list of unvisited viewpoints whose pheromone and heuristic
information value of the edge is greater than avg is taken.

18 M. Schörner et al.

5 Evaluation

In the previous chapter we presented the implementation of our concept for
planning a path for the inspection of large components using a drone. In this
chapter we will evaluate the implementation in two steps. As a first step, a
list of viewpoints for the inspection of a sample model with 49 POIs will be
calculated. We do this by first generating a viewarea for each POI and then
using our optimization strategy to reduce the number of viewpoints by finding
intersecting viewareas. The optimized viewareas are used to generate viewpoints
and key-viewpoints using the strategy mentioned in section 3. In a second step,
we use our ACO implementation to find a near optimal length path visiting all
viewpoints. We also compare the length of the two paths with and without the
optimized viewareas.

5.1 Viewarea and viewpoint-Planning

For the evaluation of the viewarea and viewpoint planning a fictitious simpli-
fied model of an aircraft hull was considered. This model consists of 49 POIs,
which are evenly distributed on the inside of the stressed skin. Without view-
point optimization the 49 POIs result in 49 viewareas with again a trajectory
consisting of 49 key-viewpoints. With optimization the number of viewareas
and key-viewpoints is reduced to 21. In our use case this is a 57 % reduction
of key-viewpoints. Since the drone has to stop at each viewpoint for a certain
amount of time to inspect the respective POI, the number of required stops is
reduced by just over half, which also reduces the total time required for the
inspection. The optimization also significantly minimizes the problem space of
the Trajectory-Planning part. A further advantage of viewpoint optimization is
that by intersecting the viewareas, they take up less space overall and therefore
fewer inner cubes have to be calculated. This means that significantly less time
and effort is required for the calculation of viewpoints.

5.2 Trajectory-Planning

For the evaluation of the trajectory the component described in the section
before was considered as well. Ten iterations each were performed with the op-
timized and non-optimized viewpoints and the average was taken as the result.
There it could be observed that the optimization not only reduces the number
of key-viewpoints, but also shortens the length. The average distance using the
optimized ones was 41.3 m and the unoptimized ones 66.2 m. This means that
the trajectory length could be reduced by 37.6 % through the viewpoint opti-
mization. The course of the trajectory for optimized and unoptimized viewpoint
calculation is shown in Fig. 16.

Towards fully automated inspection of large components with UAVs 19

49 Viewareas
not optimized

21 Viewareas
optimized

aerial view

ground view

Fig. 15: Result of the unoptimized (left) and optimized (right) viewarea calcula-
tion. The optimization reduces the number of viewareas from 49 to 21.

5.3 Ant-Colony-System

The performance of the ACS implementation was evaluated on the TSP data
set Att48 [2]. Since this data set consists of two-dimensional coordinates and our
implementation is designed for calculation in the three-dimensional, the x and
y values were assigned according to the values from the data set and z was set
equal to 0. Our Implementation achieved an average distance of 36117.34 after
60 iterations. The best result we achieved on this data set is 34023.35, whose
route is shown in Fig. 17.

20 M. Schörner et al.

(a)

(b)

Fig. 16: (a) optimized trajectory consisting of 21 key-viewpoints with a length
of 41.3 m and (b) unoptimized trajectory consisting of 49 key-viewpoints with a
length of 66.2 m

Fig. 17: Course of the route for the distance of 34023.35.

Towards fully automated inspection of large components with UAVs 21

6 Conclusion

In this chapter we demonstrated our approach for inspecting POIs on large struc-
tures like an airframe in a production scenario. Instead of using an approach that
tries to achieve complete visual coverage of the part to be inspected, we focus on
inspecting only predefined POIs of the assembly. Since in a production scenario
the changed parts of the assembly between two work steps are well known, it is
possible to reduce the overall length of the inspection by focusing on these areas.
Our approach generates ViewAreas for each point of interest from which the POI
can be seen by the inspecting drone. The number of viewareas is being further
reduced by combining intersecting viewareas and a KeyViewpoint is calculated
for each ViewArea. Afterwards a Path visiting all KeyViewpoints is planned us-
ing the ant colony optimization algorithm. We evaluated our approach using a
mockup shell section of an airplane with 49 POIs on the inside. The combination
of intersecting ViewAreas resulted in the reduction of the KeyViewpoints on the
route from 49 to 21. In future we plan on using the generated path to plan a
trajectory for the inspection by a drone. This trajectory doesn’t only need to
avoid static and dynamic obstacles that could possibly collide with the drone, it
also needs to dynamically must also automatically switch to another viewpoint
of the viewarea if the view of the POI1 is blocked by an obstacle.

22 M. Schörner et al.

References

1. Diota inspection tool, https://diota.com/en/home, last accessed: 30.10.2020
2. Mp-testdata - the tsplib symmetric traveling salesman problem instances,

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/att48.tsp, last accessed:
25.04.20

3. AG, D.B.: Kompetenzcenter multicopter db, https://www1.deutschebahn.com/
dbsicherheit-de/Unsere Leistungen/Weitere-Leistungen/02 Multicopter-3269322,
last accessed: 05.08.2020

4. Alarcon-Herrera, J.L., Chen, X., Zhang, X.: Viewpoint selection for vi-
sion systems in industrial inspection. In: 2014 IEEE International Con-
ference on Robotics and Automation (ICRA). pp. 4934–4939 (May 2014).
https://doi.org/10.1109/ICRA.2014.6907582

5. Bircher, A., Alexis, K., Burri, M., Oettershagen, P., et al.: Structural inspec-
tion path planning via iterative viewpoint resampling with application to aerial
robotics. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA). pp. 6423–6430 (5 2015). https://doi.org/10.1109/ICRA.2015.7140101

6. Danner, T., Kavraki, L.E.: Randomized planning for short inspection paths. In:
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). vol. 2,
pp. 971–976 vol.2 (4 2000). https://doi.org/10.1109/ROBOT.2000.844726

7. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

8. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics) 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436

9. Englot, B., S. Hover, F.: Sampling-based coverage path planning for inspection of
complex structures. ICAPS 2012 - Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (06 2014)

10. Galceran, E., Carreras, M.: A survey on coverage path planning for
robotics. Robotics and Autonomous Systems 61, 1258–1276 (12 2013).
https://doi.org/10.1016/j.robot.2013.09.004

11. González-Banos, H.: A randomized art-gallery algorithm for sensor place-
ment. Proc. 17th ACM Symp. Comp. Geom. pp. 232–240 (01 2001).
https://doi.org/10.1145/378583.378674

12. Jordan, S., Moore, J., Hovet, S., et al.: State-of-the-art technologies for
uav inspections. IET Radar, Sonar Navigation 12(2), 151–164 (2018).
https://doi.org/10.1049/iet-rsn.2017.0251

13. Laporte, G.: The traveling salesman problem: An overview of exact and approxi-
mate algorithms. European Journal of Operational Research 59, 231–247 (06 1992).
https://doi.org/10.1016/0377-2217(92)90138-Y

14. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006).
https://doi.org/10.1017/CBO9780511546877

15. Malandrakis, K., Savvaris, A., Domingo, J.A.G., et al.: Inspection of aircraft
wing panels using unmanned aerial vehicles. In: 2018 5th IEEE International
Workshop on Metrology for AeroSpace (MetroAeroSpace). pp. 56–61 (6 2018).
https://doi.org/10.1109/MetroAeroSpace.2018.8453598

16. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press,
Inc., New York, NY, USA (1987)

Towards fully automated inspection of large components with UAVs 23

17. Sappington, R.N., Acosta, G.A., Hassanalian, M., et al.: Drone stations in airports
for runway and airplane inspection using image processing techniques. In: AIAA
Aviation 2019 Forum. p. 3316 (2019)

18. Voelcker, H., Requicha, A.: Constructive solid geometry (1977)

