
ROSSi
A Graphical Programming Interface for ROS 2

Constantin Wanninger1,
Sebastian Rossi2, Martin Schörner3, Alwin Hoffmann4, Alexander Poeppel5, Christian Eymueller6, Wolfgang Reif7

Institute for Software and Systesm Engineering
University of Augsburg

Augsburg, Germany
Email: {wanninger1, rossi2, schoerner3, hoffmann4, poeppel5, eymueller6, reif7}@isse.de

Abstract—The Robot Operating System (ROS) offers devel-
opers a large number of ready-made packages for developing
robot programs. The multitude of packages and the different
interfaces or adapters is also the reason why ROS projects often
tend to become confusing. Concepts of model-driven software
development using a domain-specific modeling language could
counteract this and at the same time speed up the development
process of such projects. This is investigated in this paper by
transferring the core concepts from ROS 2 into a graphical
programming interface. Elements of established graphical pro-
gramming tools are compared and approaches from modeling
languages such as UML are used to create a novel approach for
graphical development of ROS projects. The resulting interface
is evaluated through the development of a large project built on
ROS, and the approach shows promise towards facilitating work
with the Robot Operating System

I. INTRODUCTION

The degree of automation has grown increasingly in recent
years, which is clearly illustrated by the statistics of the
VDMA [1]. Robotics in particular forms an essential part
of this automation, which opens up new possibilities, for
example, in production [2]. The field of robotics includes
not only the typical industrial robots such as jointed-arm
robots in the automotive industry, but also mobile ground
robots or flying robots, e.g. for the transport of goods. Due
to the variety of types of robots as well as the large num-
ber of companies that manufacture them, there are many
programming languages as well as tools, such as simulation
environments or graphical user interfaces. This is also leading
to the emergence of standards and frameworks that support
robots from different manufacturers and of different types,
since the underlying concepts, such as geometric description
of space and positions, do not differ. One example of those
frameworks is the RoboticsAPI [3]. This was developed by the
Institute for Software and Systems Engineering (ISSE) of the
University of Augsburg and provides both real-time control as
well as a 3D visualization. However, only a handful of robots
are supported, and the development has all but ceased due
to emergence of more comprehensive frameworks. Today, the
prevalent robotics framework in research is the Robot Oper-
ating System, or ROS [4]. This open source project supports
a variety of different robots and programming languages and

additionally provides visualization and simulation tools such
as RVIZ [5] and Gazebo [6]. However, due to the required
level of abstraction and the comprehensive node architecture,
the learning curve for developers new to ROS is comparatively
steep. In addition, the ability to debug the node associations
of ROS systems is still only rudimentary. This paper presents
the extent to which the principle of model-driven develop-
ment can be applied to the domain of ROS to facilitate the
application development process. Model-driven development
is a concept that has long been used in other industries, such
as the automotive industry, and has led to very powerful
programs like Simulink from Mathworks citeSimulinkBook.
But there are also great examples of model-driven development
in the field of game development that transcend the boundary
between game designer and developer, speeding up the entire
development process. The result of this work is a program
that provides tools for the graphical development of ROS 2
program code.

II. RELATED WORK

For an overview of related topics, concepts for model-driven
development from different domains are presented below.
Special focus was given to the efficiency of the concepts and
their relation to ROS or the possibility of applying them to
the domain of ROS.

A. RoboticsLanguage

The RoboticsLanguage is a domain-specific language for
ROS, which is developed by Robot Care Systems B.V. [7].
The goal is a modeling language that is based on mathematical
notation. In addition, it is possible to describe state machines
with the help of a so-called Mini Abstraction Language. The
combination of these two concepts allows a very abstract but
expressive definition of ROS nodes. Another interesting aspect
are temporal logic statements, which can be defined to evaluate
boolean values over time, similar to if statements. This enables
queries like, change state if there was no ”true” on a given
topic in the last n seconds.

The RoboticsLanguage divides a ROS node into four phases
as shown in fig. 1. In the first phase Definitions the callback
functions and state machines of, for i. a., Publisher, Subscriber



Fig. 1: Four phases of a node

are defined. To send messages via the publishers regularly, the
Cycle phase is needed. Before and after this phase there are
the Initialise and the Finalise phase, respectively. These are
executed once at the start or at the end before the node is
destroyed [7].

Even though this is not a graphical tool, the individual
phases and also the state machines could easily be represented
graphically. However, the project is not yet advanced enough
to replace all nodes written in C++ or Python, since program
logic beyond state machines or temporal logic statements
cannot be created. It also appears that the project will not
continue, as the most recent changes were made over a year
ago.

B. Unreal Engine: Blueprints

The Unreal Engine is a game engine from Epic Games that
is free up to a certain revenue cap. Starting with version 4,
game developers can use blueprints to create program logic
using only graphical components [8]. Blueprints consist of
different colored blocks for events, functions and operations
connected with lines representing the program and data flow.
In addition, each data type also has its own color in order to
enable intuitive visual distinction [8]. Blocks have input pins
on the left and output pins on the right, to which lines can
be connected. The program flow is initiated from event blocks
and proceeds through the function blocks.

Blueprints can be viewed at runtime, allowing developers
to monitor object and program flow through animations of the
lines between the blocks. For debugging purposes, breakpoints
can be defined or the execution can be paused manually
in order to examine the current state and inspect the entire
graph. Nevertheless, game engines are generally not suitable
for evaluating sensors or controlling actuators in the real world.

C. Matlab Simulink

Simulink is an extension of the commercial software Matlab
by MathWorks [9]. Similar to the aforementioned blueprints,
this graphical programming environment also uses blocks,
which can be combined into a complex system by inter-
connecting them. With the integrated code generators, these
blocks can be converted into C program code, for example.
Simulink is mainly used in research and industry to easily
create simulations of mathematical or physical systems such as
circuits or signal processing [9]. There are numerous libraries
that contain, for example, mathematical and physical blocks.
Also there are built-in blocks to directly support the creation
of ROS and ROS 2 nodes.

Simulink simulates step-by-step, there is no data or program
flow comparable to blueprints. Instead, there are sources, such
as constants, waves, or the (simulated) time, from which
the simulation runs through all intermediate operations to
endpoints (sinks).

Although in Simulink ROS nodes can be created and
executed directly, in the open source project ROS a tool that is
also publicly available and that can be integrated directly into
ROS would be beneficial. In addition, only individual nodes
can be started in Simulink and the aspect of ROS launch files
is completely missing.

III. OBJECTIVES

The goal of this research is to apply concepts of model-
driven software development to ROS 2 in order to lower
the barrier to entry and facilitate the development of sys-
tems based on it. The goal of this research is to provide a
methodology for facilitating the development of systems based
on ROS 2. Typically, such applications are developed in a
bottom-up fashion, which can quickly lead to confusion about
the overall architecture and hamper further development. In
order to alleviate this, we propose inverting the design process
of robotics applications in ROS 2 by utilizing model-driven
development methods. To this end, the core principles of such
approaches from other disciplines examined in chapter II are
transferred into a graphical development tool for the domain of
ROS 2. To demonstrate the efficacy of the presented approach,
two projects previously developed for ROS 1 are converted
to ROS 2 with its support (cf. chapter V) and evaluated in
chapter VII.

IV. CONCEPTS

To cover the full spectrum of the ROS architecture, two
separate modeling languages were designed:

One for the design of nodes, and the other for the generation
of launchfiles. The following section gives a brief overview
over the core concepts of these languages.

A. Domain-specific modeling language for ROS nodes

Initially, all essential components of a ROS node must be
mapped to corresponding components of the newly defined
modeling language. Since completely dispensing with writ-
ten program code exceeded the scope of this work but is
nevertheless desirable, this is treated as a future extension
but still considered during the conception of this model.
Hence placeholders are defined in place of future graphical
implementations of those parts of a node where complex
program logic would be defined.

Thus the current result of the compiled modeling language
consists only of the skeleton code of a ROS Node, which must
be completed by the developer with a concrete implementation
of logic.

In the following, the structure of components in the mod-
eling language is presented before the individual phases of a
node’s lifecycle are subsequently explained.



Fig. 2: Inner structure of a node

1) Modeling a ROS node: Every ROS node is modeled as
a component in the proposed modeling language. This base
component internally models lifecycle of a node by dividing
it into three different phases and providing predefined areas for
the insertion of the appropriate program code for processing
in each of these phases. The graphical representation of this
structure within a node NodeB is shown in fig. 2. It is largely
inspired by the modeling of a component in UML, however the
UML specification had to be deviated from in some areas, for
example, to be able to represent the phases of a node within a
component. Additionally, in order to enable future extensions
of the modeling language, the component specification is
easily extendable with custom classes modeling the desired
behavior and lifecycle specification.

The square function blocks seen in fig. 2 define arbitrary
functionality in different parts of a ROS node. Function blocks
within a node component define an internal function, which
can be helpful in structuring and reusing implementation
fragments within a node. External function blocks define
communication interfaces with a node. In ROS communication
with a node can be realized in one of three ways:

• Topics: Asynchronous communication following the pub-
lish / subscribe principle

• Services: Synchronous communication following the
server / client principle

• Actions: Used for long running operations. Asynchronous
invocation and status updates.

Each of these communication interfaces can be modeled
with function blocks, which define a node’s actions and
reactions to specific events and messages. As such, a publisher
is defined as a function block, which responds to the update of
a variable by publishing it to the predefined topic. A subscriber
on the other hand responds to the reception of a message on the
desired topic by invoking the node’s corresponding callback
function.

Fig. 2 also shows the connection of two nodes via topics
as well as an abstract representation of the internal intercon-
nection of function blocks in order to realize the required
functionality.

The implementation of the actual logic of a function block
can again be performed using the modeling language, which
effectively produces nested components within the overall

Fig. 3: Activity diagram of the phases of a node

model. As of now, the implementation of function blocks
must be performed manually, since, as mentioned above, the
complete elimination of manually written code was outside
of the scope of this work. However, the developer is aided
by the generation of skeleton code from the model as further
described in chapter VI.

2) Lifecycle of a node: The lifecycle of any program can
loosely be divided into three steps: setup, looped execution and
destruction. By modeling the lifecycle of a node with these
distinct phases, the developer of a node need not care about
the manual definition of these phases and can concentrate
solely on the implementation of the actual logic that needs
to be executed within each of them. Later, when translating
the model into skeleton code, this can aid the developer by
generating method definitions for each of the three phases
within the node definition (cf. VI). An activity diagram of
the lifecycle of a ROS node and the three different phases is
shown in fig. 3.

a) Setup phase: Compared to the RoboticsLanguage this
initial phase combines the Definitions and the Initialise part
[?], as both are run only once and thus the distinction is
unnecessary in this context. This phase is intended for the
proper initialization of the node, its data members and all
required communication channels. Additionally, the node must
be registered in the overall system. After setup is completed,
the node is transitioned to the loop phase.

b) Loop phase: In this phase, the actual functionality
of the node is executed in every iteration of a global main
loop. The loop phases of all existing components are executed
consecutively by the system within each time step.

c) Destroy phase: This phase is responsible for correctly
destroying the node and all of its data members. After com-
pleting this phase, the node is terminated and no longer present
in the system.

In summation, the model definitions of nodes, their life-
cycles and their external communication interfaces allow the
automatic generation of skeleton code for the implementation
of fully fledged ROS nodes, as well as the automatic execution
and lifecycle management of thusly defined components.

B. Domain-specific modeling language for ROS launchfiles

Launchfiles are a useful part of ROS, as they can be used
to simultaneously start multiple nodes from one central point.
The modeling language defined for the generation of launch-
files does not add any additional concepts or functionality, but
is required in order enable automation of the entire deployment
and execution process of the generated ROS nodes described
in the previous section.

The basic concepts of launchfiles, and thus the defined
modeling language are as follows:



a) Node / Executable component: A node in the
roslaunch model is equivalent to those shown in 2. Within
a launchfile, however, nodes may be parametrized according
to a specific application. The only required information when
including a node in a launchfile are its name and the enclosing
package.

b) Launchfile component: Launchfiles can also be in-
cluded in other launchfiles and passed a set of parameters,
which those in turn pass down enclosed launchfiles and nodes.
As with nodes, the only required information is the name and
containing package.

c) Namespace component: For better organization of
a ROS application, launchfiles also support the concept of
namespaces, which consequently must also be represented in
the modeling language.

Together with the model for nodes and the automation of
their execution, the abstract modeling language for launchfiles
allows the automatic parametrization and execution of nodes
and, consequently, automatic execution of entire ROS appli-
cations.

V. CASE STUDY

At the Institute for Software & Systems Engineering, there
is an experimental setup that takes place in an indoor flying
hall. Quadrocopters (flying robots with four rotors) can be
moved through space only using sensor-based manipulation
via an external tracking system. Virtual walls keep the flying
robots from causing damage to people and objects in the
room. A lightweight collision avoidance strategy prevents
quadrocopters from colliding within the flight area. Teaching
paths for a quadrocopter is also possible using gesture control
only. This allows repetitive tasks to be set up intuitively and
flown repeatedly by the robots. If there is a risk of collision,
the aforementioned collision avoidance strategy ensures that,
if necessary, the taught path is left and then flown to again. By
stabilizing the quadrocopter, the built-in flight controller makes
it possible to move objects such as a water glass, which is
placed unattached on the robot, through space without spilling
any liquid. This experiment shall serve as a case study for
the graphical development environment for ROS 2 programs
developed in this thesis. It is currently only available as ROS
1 project and shall be rewritten to an executable ROS 2
project using the development environment. Nevertheless, a
simplified version, which was developed for this work as ROS
1 project, will be used to explain the underlying concepts of
the indoor flying hall and the external tracking system and will
be converted from ROS 1 to ROS 2 as well. The sequence
of the example experiment consists of a quadrocopter that
is first activated (arm) and then automatically ascends to a
point exactly one meter above its starting position. There the
quadrocopter remains for a short time and then land again and
deactivate itself (disarm). After that, the actual experiment will
be used to cover the use case of a larger project as well.

VI. IMPLEMENTATION/REALIZATION

In view of already existing plugins of the RQT package
for ROS and ROS 2, especially the rqt graph, the program

Fig. 4: Live diagram of the system after starting an example
program provided by ROS 2

developed for this work should also be able to be used as
RQT plugin. For this the name ROS - Simple was chosen,
in short ROSSi. It is implemented exclusively with Python
3, the second programming language directly supported by
ROS 2 besides C++. In total ROSSi supports three different
diagram editors, the Node Editor, the Launchfile Editor and
the Live Diagram, which can be managed in tabs. There is
also a library window which, like Simulink’s, is detached from
the diagram editor windows. All diagram editors derive from
the same parent class, which in turn builds directly on QT
elements. It brings some methods that must be overridden and
their information is used to create menu items appropriate to
the particular diagram. ROSSI is then able to automatically
find all subclasses and display them as an option the user
can choose from. This makes the main ROSSi window easily
extendable by new editors and free of menu items irrelevant
to the selected diagram editor.

A. Live Diagram

The live diagram provides an overview of all running nodes
and their served topics. This functionality is also provided by
the RQT plugin rqt graph. However, the live graph addition-
ally reacts to changes over time in the system and removes
components or adds new ones. Three different types of boxes
are used to distinguish between nodes, namespaces and served
topics. In order to prevent that newly added boxes cover others,
all components distribute themselves with the help of a so-
called Spring Embedders similar to that of Fruchterman and
Reingold [10] independently in the space.

In the topic boxes you can see all corresponding messages
that are published at runtime. To distinguish whether a node
publishes to a topic or subscribes to it there are left and right
ports. Topic components, such as those shown in figure 4, can
also be intuitively identified as publishers or subscribers by
the placement of the ports.

B. Node Editor

The node editor is the realization of the domain-specific
modeling language for ROS 2 nodes presented in the chapter
IV. A small example can be seen in figure 5. Due to the
component-based architecture of the diagram editors presented
here, additional extensions can easily be added to the node
editor later on.



The generation of program code strictly follows the three
phases defined in chapter IV. All of the components developed
for the node editor implement an interface function that has
program code relevant to themselves in each phase as a return
value. Thus, by simply querying each component placed in the
diagram, the node editor is able to generate the entire program
code of the node developed with it.

1) Base component: The base component is representative
of the node to be created and provides the executable basis
of a node, which all other components build upon. Two of
these basic components and their interaction can be seen in
the figure 2. The component is implemented by the Ros-
BaseNodeGraphEntity class and contains, in addition to the
name configurable in the options menu, with which the node
registers itself in the ROS system by default at startup, also
the template for the structure of the program code of the
class generated from the modeled node. A base component is
automatically created with the creation of a new node editor
diagram and cannot be removed from it.

2) Function component: This component serves as a place-
holder for the initially described extension possibility of the
model by a program logic generating component. Depicted
are the functions as squares within the different phases of the
node in figure 2. The dashed lines between the functions are
meant to indicate mutual calls. It is added to the diagram by
the PythonFunctionGraphEntity class and can currently only
be used in conjunction with other components. By the name
given to it by connected components, the function header can
be created during program code generation. After inserting the
extension, it should be possible with the function component to
display any program logic within the node editor. This means
that functional components can be chained and supplied with
required parameters by other components.

3) Publisher component: This component allows develop-
ers to create a publisher in his node via drag-and-drop. In
the options menu of the component they can choose from
all known message definitions. Additionally, a clock rate at
which messages should be published and the name of the
topic through which the messages should be sent can be set.
Internally, this component holds a reference to a function
component that is also inserted into the node editor with each
publisher. There, the sending behavior of the publisher can be
modeled directly.

4) Subscriber component: Similar to the publisher compo-
nent, subscribers require the message definition and topic name
to be selected. However, an obvious difference is the resulting

Fig. 5: Node editors of a simple publisher / subscriber pair

program code of this component, which defines a subscriber
in the setup phase of the node and adds a callback function
to the generated class. Together with the publisher component
just mentioned, interfaces between nodes can be realized as in
figure 2.

5) Parameter component: ROS nodes can be configured by
values from the so-called parameter server of the ROS system
from outside. The parameter component allows the user to use
this aspect of nodes within the node editor. Only a name and
a default value must be specified.

6) Other components: By inheriting the CodeHolder class,
it is easy to integrate your own program code into the individ-
ual phases of a node. By inheriting the StandardGraphEntity
only a few steps to a visual representation in the diagram are
necessary.

7) Generation of program code: Dividing a node into
phases helps to model the individual components. Each of
them can represent its own implementation details in the
desired phases. That is, depending upon need certain behavior
of a component can be implemented in one of the three
following phases. From the four phases presented in the
RoboticsLanguage, three are extracted for the model developed
in this work [?]. These can be seen in the figure 3 as well
as indicated in the component diagram of the figure 2. The
setup phase combines the Definitions and the Initialise part
of the RoboticsLanguage, as both are run only once each
[?]. At this point, the node is parameterized and registered
in the system and necessary initialization processes of all
components added to the model are performed. This includes,
for example, registering a publisher in the ROS system.After
completion of this phase, the system switches directly to the
loop phase. There the actual functionality of the node is
processed in the loop phase at a clock rate specified in the
base component. The loop is executed from the start time of
the node until the node or the whole ROS system is terminated.
After completing the destroy phase, the node is terminated and
no longer present in the system. The program code defined
in the function components can be added as methods within
the generated class. All references from other components to a
function component can now be realized by calling the method
with its name.

C. Launchfile Editor

An elementary part in the development of a ROS project is
the development of launch files, as they can be used to simul-
taneously start multiple nodes in a grouped and parameterized
manner. In addition, they can be nested, i.e. one launchfile can
launch other launchfiles. This can become unclear and often
requires a significant amount of time. With the help of the
launchfile editor, which is integrated in ROSSi by default, this
process shall be accelerated and at the same time facilitated.
Since for ROS 2 projects launchfiles are implemented as
Python 3 scripts, they offer significantly more functionality
than in ROS 1. With respect to the limited time frame of this
work, only the functionality known from ROS 1 is therefore
mapped within the launchfile editor. Specifically, this means



that the user can use namespaces, arguments, executables, and
external launchfiles in the diagram editor to create custom
launchfiles.

Figure 6 shows an example of a launch file configuration
from ROSSi. Three arguments are created and an executable
is launched within a namespace. One argument is the names-
pace name in which the executable publisher old school
from the package examples rclpy minimal publisher should
be launched. The other two are in sequence and their com-
pound value is passed to the executable as parameters named
arg1. The four basic components of a launchfile diagram are
now briefly explained.

1) Parameter component: In ROS there are launch argu-
ments - consisting of a name and a default value. These
can be usually overridden by command line parameters when
the launch file is started. A parameter component consists
of three parts whose combination results in the value stored
by the component. These parts are the prefix, the suffix and
the actual value of the parameter to which a default value is
assigned. Prefix and suffix can be activated or deactivated. If
there is a connection to another parameter, the own default
value is ignored and replaced by the value of the other
parameter. In figure 6 you can see how a compound value
is created using two parameters, which can then be used, for
example, as a value for a parameter of an executable or as the
name of a namespace. By concatenating multiple parameter
components it is possible to compose complex values which
can be overwritten in whole or in part when the launchfile is
started. This is a convenient functionality, since for example
namespaces can be named correctly just by combining some
arguments.

2) Node component: A complete list of all executables of
all packages of the current ROS environment can be found in
the library window. They are graphically represented by node
components. These have an arbitrary extensible list of param-
eters, which each require a name and a value.A parameter is
represented by instances of the class ParameterGraphEntity
and its value must be obtained from a RosArgumentGraphEn-
tity.

3) Launchfile component: Just as the executables of a pack-
age are listed in the library window, the launchfiles contained
in each package are also provided as entries. They, too, can
have a list of paramaters attached to them that behave exactly
like those of a node component, although they must be dealt
with slightly differently during program code generation.

4) Namespace component: The special feature of this com-
ponent is that it can be scaled in size as desired. If this

Fig. 6: Example of a launch diagram

component completely encloses another one, the latter is
placed inside the namespace in the program code generation.
This provides an intuitive way to assign a namespace to
executables and launchfiles.

5) Additional information: In chapter IV the idea of find-
ing and displaying publisher / subscriber pairs between all
included nodes during the creation of a diagram within the
launchfile editor was already mentioned. Since simple analysis
of the program code is not sufficient for finding such pairs,
additionally a black box test was used to try to get more
information about the behavior of a node. For each new node
component placed in the diagram, a subprocess was started,
which in turn starts the corresponding node in a separate
namespace. Subsequently, all topics used by the node were
examined with the help of the interfaces offered by ROS.
Hence, even after a certain amount of time, the complete
registration of all topics used in a node is not necessarily
complete if it was started alone in a encapsulated system. One
way to get around the error-prone automated topic discovery
would be to include a self-description of each node within its
own package. This could be provided as a simple JSON [11]
or YAML [12] file by developers.

6) Generation of program code: In contrast to generating
program code from node editor diagrams, this procedure is
comparatively easy for launchfiles. The same procedure can be
used recursively for each namespace. All components of the
diagram within a namespace can be appended to the resulting
LaunchDescription in any order. The only exception to this are
chained launch arguments. These must first be sorted by order
of appearance in the diagram. Since they are not affected by
the namespaces, but are available throughout an entire launch-
file, they are initially appended to the LaunchDescription, now
put in correct order. After that the generated program code of
all other components is appended to the resulting launchfile
in the way described above.

The plugin for RQT for the graphical modeling of ROS 2
projects called ROSSi developed in this thesis currently con-
sists of the three different editors, but its architecture allows
the connection of new ones. While the Live Diagram supports
the development process by providing a visual representation
of the current system, the node editor can be used to lay the
foundation for the nodes to be developed. Once these have
been compiled into executable program code in a package and
added to the environment of the terminal that runs the RQT
plugin, the launch file editor can be used to intuitively create
all the necessary launch files and then export them in a fully
functional form.

VII. PROOF OF CONCEPT

In this chapter, ROSSi is used to translate the two technical
demonstrators of the ISSE chair presented in chapter V from
ROS 1 to ROS 2 and thus prove the functionality of the
plugin. For this purpose, the underlying technical details of
both projects will be discussed first, followed by the steps
necessary to translate the projects to ROS 2 using ROSSi.



Fig. 7: Main components of the minimal example

A. Test setup

Both technical demonstrators take place in a flight area,
with a Vicon [13] infrared camera system mounted around
its borders. With its help, movements of objects within the
area visible to the camera system can be tracked. The Vicon
system has an average measurement error of 0.15 millimeters
for standing and less than 2 millimeters for moving objects
[14]. In the case of our experimental setup, this is used
to measure the positions and orientations of quadrocopters
located in the flight area. To make them visible to the camera
system, reflective markers must be attached to them. If the
markers are distributed asymmetrically and in an unique
way, the orientation of each individual quadrocopter can be
determined. The quadrocopters used are equipped with a flight
controller from Autoquad [15], which can be controlled with
MAVLink [16] commands.

Another component of the experimental setup is a wand
equipped with markers. With its help, it is possible to select
or deselect individual quadrocopters or even navigate through
space using gestures such as pointing to a target position.

1) Minimal example for quadrocopter control: The mini-
mal example was created for both ROS Melodic and ROS 2
Eloquent and will subsequently be developed using only the
tools provided by ROSSi to demonstrate any differences that
may arise.

Figure 7 shows the technical structure of the experiment.
In addition to the program code of the experiment itself,
components, or executables, of the packages shown in the
figure are also running on the ROS side, which communicate
with the Vicon camera system and the flight controller on the
quadrocopter. The Vicon camera system periodically publishes
the position of the quadrocopter equipped with reflectors into
designated topics within the TF graph. These messages are
now used to determine the next target position to approach and,
if available, to send it to the flight control of the quadrocopter.

Figure 8 illustrates the concept of the minimal example for
quadrocopter control as a launchfile diagram in the launchfile
editor of ROSSi. Due to space constraints, the parameters
and the rest of this launchfile diagram had to be separated.
The corresponding parameters can be seen in figure 9. The
component, in this case another launchfile, that connects the
Vicon camera system to ROS is already present and can

be included directly in the diagram. This is in contrast to
mavros, a package that is currently not directly available in
ROS 2. It must be attached to the project using the ros1 bridge
executable and a parallel running ROS 1 system when using
this launchfile. On the ROS 1 system all missing components
(here only the interface to MAVLink with the name mavros)
have to be started. The ros1 bridge will then find and connect
all publisher / subscriber pairs regardless of the ROS version.

Finally, for the minimal example for quadrocopter control,
there is a namespace within which the missing components
from figure 7 are placed. The namespace name is set using
the mav id parameter and the namespaceName for the quadro-
copter with that same id. This includes, on the one hand, the
conversion between the coordinates given by the Vicon system
to the ROS system and, on the other hand, those sent to the
Autoquad flight control software via mavros. This is done
in a dedicated node called autoquad vicon bridge, which is
supplied with the necessary information by the four parameters
seen in it. The node named autoquad pos vel target, which
also sends messages to the flight control of the quadrocopter
whenever the target frame intended for the flying robot
changes within the TF-graph. This target frame is given to
all relevant nodes via the parameter copter target. Changing
the target frame is the task of the last node in the diagram
and is only changed twice in this example. Once to give the
quadrocopter the signal to fly to one meter above the ground
and the second time to get back to the ground.

2) Large technical demonstrator: In the flight area there
are two quadrocopters, which are brought into two different
positions via the wand with gesture control. During this
process, the flown path of the first quadrocopter can be
recorded via a gesture. Meanwhile, the collision avoidance
of the quadrocopters can now be demonstrated by steering the
second flying robot with the wand into the path of the recorded
trajectory.

In addition to the components already known from the
minimal example, this experiment also has nodes for gesture
control of the wand and collision avoidance. All these com-

Fig. 8: Launchfile diagram of the small demonstrator (Part 2)



Fig. 9: Launchfile diagram of the small demonstrator (Part 1)

ponents obtain the necessary information from the TF-graph
and in the end jointly manipulate the next target position of
the respective quadrocopter.

Although the structure of the large technical demonstrator is
the same, other nodes are involved in finding the next target
frame of a quadrocopter. One of these is the control wand,
whose position is used as the target point for one of the two
quadrocopters, depending on the state set in advance by a
gesture. The position of the wand is artificially increased so
that the flying robot comes to a stop at some distance in front
of it. Also, the collision avoidance strategy implemented in the
demonstrator operates as a high-priority instance on the target
frames of the two robots, adjusting them as necessary. These
additional components are also placed within the particular
namespace for one quadrocopter in the large demonstrator
and are consequently executed simultaneously for both without
interfering with the other. Only the collision avoidance strategy
obviously needs to know both quadrocopters in order to
compare and adjust their target frames.

Through ROSSi, complex demonstrators could be easily
modeled in ROS and components from other demonstrators
could be reused. Also the conversion from ROS to ROS 2
could be facilitated.

VIII. CONCLUSION

ROSSi includes different modeling tools that can acceler-
ate new developments or the maintenance of existing ROS
applications. Repetitive implementation tasks can be reduced
by using reusable components and their clear and editable
relationships. The launchfile editor prepares the otherwise
easily confusing files in a visually appealing way and offers a
quick insight into the structures of a project. The live diagram
also helps to detect errors during runtime by visualizing the
real time message flow within the node components. In the
future, the live diagram can be further developed in the sense

of the UML deployment diagram in order to better reflect the
often highly distributed systems of ROS applications.

Due to the extensibility of ROSSi, new specialized compo-
nents can be added to the already existing diagram editors
in the future. But also the integration of completely new
diagram editors is intentionally supported by the architecture.
These include, above all, the modeling of program logic
within the node editor and the possibility of including self-
descriptions in ROS packages to provide developers with
tools such as the launchfile editor deeper insights into the
behavior of a node within a specific context. Simultaneous
development of launchfiles and nodes that have not yet been
converted to program code is another useful extension of
ROSSi. Specifically, it would be conceivable to create a launch
file based on a previously made conceptualization of a project
and to create missing nodes in the launch file diagram using
the node editor. This would even allow ROSSi to export a
complete ROS package at once. With ROSSi, a foundation
has been laid for testing the still little-used concept of model-
driven development on state-of-the-art frameworks such as the
Robot Operating System, and it has been shown that promising
tools can be developed with it.

REFERENCES

[1] Aktuelle branchendaten - robotik und automation auf rekordniveau.
VDMA. (last visited 05.07.21). [Online]. Available: https://www.vdma.
org/v2viewer/-/v2article/render/15372372

[2] Produktionswert von mehrzweck-industrierobotern in deutschland
in den jahren 2009 bis 2019. (last visited 05.07.21). [Online].
Available: https://de.statista.com/statistik/daten/studie/445206/umfrage/
produktionswert-von-mehrzweck-industrierobotern-in-deutschland/

[3] A. Angerer, A. Hoffmann, A. Schierl et al., “The robotics api: An
object-oriented framework for modeling industrial robotics applications,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 4036–4041.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust et al., “Ros: an open-source
robot operating system,” in ICRA workshop on open source software,
vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[5] Ros rviz. Open Source Robotics Foundation, Inc. (last visited 05.07.21).
[Online]. Available: http://wiki.ros.org/rviz

[6] Ros gazebo. Open Source Robotics Foundation, Inc. (last visited
05.07.21). [Online]. Available: http://gazebosim.org/

[7] Roboticslanguage. Robot Care Systems. (last visited 05.07.21). [Online].
Available: https://github.com/robotcaresystems/RoboticsLanguage

[8] B. Sewell, Blueprints Visual Scripting for Unreal Engine. Packt
Publishing Ltd, 2015.

[9] D. K. Chaturvedi, Modeling and simulation of systems using MATLAB
and Simulink. CRC press, 2017.

[10] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Softw.: Pract. Exper., vol. 21, no. 11, pp. 1129–
1164, Nov 1991.

[11] F. Pezoa, J. L. Reutter, F. Suarez et al., “Foundations of json schema,” in
Proceedings of the 25th International Conference on World Wide Web,
2016, pp. 263–273.

[12] O. Ben-Kiki, C. Evans, and B. Ingerson, “Yaml ain’t markup language
(yaml) version 1.1,” Working Draft 2008-05, vol. 11, 2009.

[13] Vicon. Vicon Motion Systems Ltd UK. (last visited 05.07.21). [Online].
Available: https://www.vicon.com/about-us/what-is-motion-capture/

[14] P. Merriaux, Y. Dupuis, R. Boutteau et al., “A study of vicon system
positioning performance,” Sensors, vol. 17, no. 7, p. 1591, 2017.
[Online]. Available: https://www.mdpi.com/1424-8220/17/7/1591

[15] Autoquad website. Autoquad. (last visited 05.07.21). [Online].
Available: http://autoquad.org/?lang=de

[16] Mavlink website. dronecode. (last visited 05.07.21). [Online]. Available:
https://mavlink.io/en/

https://www.vdma.org/v2viewer/-/v2article/render/15372372
https://www.vdma.org/v2viewer/-/v2article/render/15372372
https://de.statista.com/statistik/daten/studie/445206/umfrage/produktionswert-von-mehrzweck-industrierobotern-in-deutschland/
https://de.statista.com/statistik/daten/studie/445206/umfrage/produktionswert-von-mehrzweck-industrierobotern-in-deutschland/
http://wiki.ros.org/rviz
http://gazebosim.org/
https://github.com/robotcaresystems/RoboticsLanguage
https://www.vicon.com/about-us/what-is-motion-capture/
https://www.mdpi.com/1424-8220/17/7/1591
http://autoquad.org/?lang=de
https://mavlink.io/en/

	Introduction
	Related Work
	RoboticsLanguage
	Unreal Engine: Blueprints
	Matlab Simulink

	Objectives
	Concepts
	Domain-specific modeling language for ROS nodes
	Modeling a ROS node
	Lifecycle of a node

	Domain-specific modeling language for ROS launchfiles

	Case Study
	Implementation/Realization
	Live Diagram
	Node Editor
	Base component
	Function component
	Publisher component
	Subscriber component
	Parameter component
	Other components
	Generation of program code

	Launchfile Editor
	Parameter component
	Node component
	Launchfile component
	Namespace component
	Additional information
	Generation of program code


	Proof of concept
	Test setup
	Minimal example for quadrocopter control
	Large technical demonstrator


	Conclusion
	References

