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ABSTRACT
While utilization of digital agents to support crucial decision mak-
ing is increasing, trust in suggestions made by these agents is hard
to achieve. However, it is essential to profit from their application,
resulting in a need for explanations for both the decision making
process and the model. For many systems, such as common black-
box models, achieving at least some explainability requires com-
plex post-processing, while other systems profit from being, to
a reasonable extent, inherently interpretable. We propose a rule-
based learning system specifically conceptualised and, thus, espe-
cially suited for these scenarios. Its models are inherently trans-
parent and easily interpretable by design. One key innovation of
our system is that the rules’ conditions and which rules compose a
problem’s solution are evolved separately. We utilise independent
rule fitnesses which allows users to specifically tailor their model
structure to fit the given requirements for explainability.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression; Rule learning.

KEYWORDS
rule-based learning, learning classifier systems, evolutionary ma-
chine learning, interpretable models, explainable AI

                   
                                                            
                                                            
                                                            
                                                             
                                                           
                    

                                                                     
                                                                        
                                                                           
                                                                         
                                          
                                             
                                       
                               
                                       

1 INTRODUCTION
With increasing automation and digitisation, interaction between
humans and trained digital agents becomesmorewidespread. Such
socio-technical systems are for example encountered in smart fac-
tory settings. Here, human stakeholders are dependent on recom-
mendations made or decisions taken by an agent, e.g. for (re-) con-
figuring a machine. However, at the moment complex learning
tasks can rarely be solved perfectly—often because the available
data for training is rather limited, e.g. small sample, large imbal-
ances. This creates a distrust in the entire model among stakehold-
ers, supposedly even if only edge cases were affected. Hard to un-
derstand models even exacerbate this issue. The cases of poor per-
formance are rarely easily identifiable and even for good perfor-
mance on test data, stakeholders often doubt the ability of models
with a low transparency.

A common approach to increase stakeholder trust in predictions
is explaining the training and prediction processes themselves or
the model in its entirety. With increasing model complexity, which
is needed for difficult learning tasks, explaining the model or its
predictions is less straightforward, leading to some types of mod-
els, e.g. rule-based learners, being favoured for these situations,
sometimes over better performing ones. Learning Classifier Sys-
tems (LCSs) are a family of rule-based learning algorithms that in-
herently allow application in the aforedescribed settings. [8]

LCS models are composed of a finite set of if-then rules for
which the conditions are optimized using a—typically evolution-
ary—metaheuristic [20]. Rules contain submodels of the problem
that apply to certain areas of the feature space. These submodels
are comparatively simpler than models for the full problem, thus,
increasing their comprehensibility by humans. Most LCSs follow
theMichigan-style (a single set whose rules are adapted over time),
featuring strong online learning capabilities and being employed
to solve all major machine learning tasks. However, these types of
systems typically construct (and keep in their population) many
more, sometimes suboptimal, rules thanwould be required to solve
the problem at hand. A common approach is, therefore, the reduc-
tion of the population to the essential rules after training has con-
cluded, using so called compaction techniques [15, 17]. The main
other style LCSs follow is the Pittsburgh-style. Here, a population
of sets of rules is evolved over time to solve learning tasks. As a
set of rules is assigned a combined fitness, rather than individual
fitnesses for rules, optimal positioning/selection of rules is more
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difficult to achieve for the optimizer, especially as usually multi-
ple changes to the set are performed per optimization step. Subop-
timal positioning does not necessarily substantially harm system
performance. However, the importance of improving it increases
when explanations for rule conditions or the training process are
requested. In general, the learning process is envisioned to cre-
ate an “accurate and maximally general” [18], “maximally accu-
rate and maximally general” [4] or “maximally general as well as
accurate” [10] set of rules. Existing LCS rarely specifically target
explanations or transparency beyond the non formally specified
requirement of generality, although they are still building inter-
pretable models.

In this paper we present a new LCS algorithm that is specifi-
cally designed to evolve both individual rules as well as the global
problem solution (rule set), with performance as well as explain-
ability considered during optimization. To facilitate this we sepa-
rate the optimization of rule conditions (find partitions of the fea-
ture space for which a submodel of the given type can be fit well)
from optimizing a problem solution using these rules (cf. Section 3).
We name our system the Supervised Rule-based Learning System
(SupRB), as it follows the same general goals as the Pittsburgh-style
SupRB-1 [9].

2 RELATEDWORK
Themost well known LCSs are XCS and its derivatives [20]. While
XCS was originally designed for reinforcement learning tasks, it
has (with some extensions) been applied in all of the three ma-
jor learning settings [20]. One of these extensions is the usage of
interval-based matching functions rather than binary ones to oper-
ate in real-valued environments [21]. To solve supervised function
approximation tasks, XCS’ constant predicted payoff was replaced
with a linear function forming the original XCSF [23]. The linear
model and the interval-based matching functions have later on
been substituted with various more complex options [3, 13]. These
are, however, sacrificing transparency for a stronger predictive per-
formance.

Two approaches to reach explainability and its related and rel-
evant concepts of interpretability and transparancy and thus, ulti-
mately, understandability (in this paper we refer to those concepts
under a broader umbrella of explainability in the spirit of explain-
able artificial intelligence as a whole), must be distinguished [2]:
By intentionally designing transparent models, the model structure
itself can be used for its comprehension and the interpretation of
the decisions made. For other models, post-hoc methods that op-
erate through visualisation, transformation of complex black-box
models into transparent models and other, often model-specific,
techniques, need to be utilised. Like other rule-based learning sys-
tems, LCSs can, in general, be seen as transparent/interpretable by
design. They also relate to human behaviour naturally [2]. There
are, however, some limitations that arise primarily through the en-
coding of variables, the size of the rule set and the complexity of
individual rules.

In LCSs these limitations are typically controlled by design. The
variables themselves are problem dependent, so overall influence
is limited, but using easy to understand matching functions that
allow to follow the implications for decision boundaries in the

feature space improves model transparency. However, if the vari-
able/feature itself is highly complex, human interpretation is al-
ways limited. Rule complexity is likewise chosen by using a fit-
ting submodel to balance users’ transparency requirements with
predictive power. Additionally, human understanding can be im-
proved post-hoc by employing a variety of different visualisation
techniques for classifiers [14, 16, 19].

In contrast to these generally applicable solutions, handling rule
set size is approached differently depending on the LCS(-style).
Pittsburgh-style LCSs can control set size directly via their fitness
function. For example, GAssist [1] can use the minimum descrip-
tion length in combination with accuracy to form a single objec-
tive fitness and additionally apply a penalty on individuals’ fit-
nesses when the rule set size falls below a predefined threshold.
In Michigan-style systems, where fitness refers to a rule rather
than a rule set and training benefits from larger than necessary
populations, similar mechanisms are not available. Instead, com-
paction mechanisms have been designed [6, 24]. After training is
completed, they remove redundant or incorrect rules from the pop-
ulation. Ideally, the rule set size decreases without a negative effect
on predictive power. This has first been demonstrated [22] on the
Wisconsin Breast Cancer dataset and further advanced until the
issue was considered solved by Tan et al. [17]. Recently, Liu et al.
[15] have proposed new compaction techniques and demonstrated
their improvements over existing methods on a variety of boolean
benchmarking and three real world problems.

There are some hybrid rule-based learning systems which com-
bine explicit Michigan- and Pittsburgh-style phases for improv-
ing explainability by reducing the number of rules [5, 7, 11, 12].
Most utilise the same evolutionary algorithm for both phases, of-
ten some multi-objective evolutionary algorithm to find a proper
balance between the number of rules and the accuracy. Further-
more, the two phases can be applied subsequently [5], nested [12]
or cyclic, where both phases are executed several times [7].

3 THE SUPERVISED RULE-BASED LEARNING
SYSTEM

The main idea of SupRB is to optimize rule conditions indepen-
dently of other rules, discovering a diverse pool of well propor-
tioned rules and then use another optimization process to select a
good subset of all available rules to find good solutions to the learn-
ing problem. By separating these optimization processes both can
include multiple objectives to improve explainability of the LCS
model, while still targeting overall performance, e.g. rules should
encompass large feature spaces but be positioned to allow awell fit-
ted submodel and solutions should be composed of only few rules
while still minimizing prediction error. A Python implementation
of SupRB is available on GitHub1.

For unknown problems, it is hard to estimate how many rules
will likely need to be discovered before a good subset can be se-
lected. Therefore, we alternate between phases of discovering new
rules and combining rules from the pool of discovered and fitted
rules. The expectation is that we can find a good solution with
fewer submodel fittings thanwith conservative estimates of needed
rules, while still being able to find such a solution if the number of
1https://github.com/heidmic/suprb https://doi.org/10.5281/zenodo.6460701
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Discover
Rules𝑛 ← 0

Compose
Solution
from Pool

− / 𝑛 ← 𝑛 + 1

𝑛 = 𝑛𝑅𝐷 / put rules into pool,
𝑛 ← 0

𝑛 = 𝑛𝑆𝐶 / 𝑛 ← 0

− / 𝑛 ← 𝑛 + 1

termination criterion / −

Figure 1: Rule discovery and solution composition phases
in SupRB. 𝑛𝑆𝐶 denotes the number of steps the solution creat-
ing/composing optimizer should undertake, while 𝑛𝑅𝐷 references
the number of steps performed within rule discovery.

rules was underestimated. Note that rules added to the pool remain
unchanged and will not be removed throughout the training pro-
cess. Another advantage of alternating between phases is that we
can use information from the solution composition phase to steer
subsequent rule discoveries towards exploring regions where no or
ill-placed rules are found. The overall process is illustrated in the
form of a statemachine in Figure 1. The number of optimization
steps performed within each phase can be varied, which can im-
pact overall convergence time but does not affect solution strength.

As deriving insights into decisions (cf. Section 2) is a central as-
pect of SupRB, its model is deliberately kept as simple as possible:

(1) Rules’ conditions use an interval based matching: A rule 𝑘
applies for example 𝑥 iff 𝑥𝑖 ∈ [𝑙𝑘,𝑖 , 𝑢𝑘,𝑖 ]∀𝑖 with 𝑙 being the
lower and 𝑢 the upper bounds.

(2) Rules’ submodels 𝑓𝑘 (𝑥) are linear. They are fit using linear
least squares with a l2-norm regularization (Ridge Regres-
sion) on the subsample matched by the respective rule.

(3) When mixing multiple rules to make a prediction, a rule’s
experience (the number of examples matched during train-
ing and therefore included in fitting the submodel) and in-
sample error are used in a weighted sum.

3.1 Rule Discovery
To discover a new rule for the pool we use an evolution strategy
(ES). Note that, in contrast to the hybrid systems described at the
end of Section 2, this rule discovery approach can not be consid-
ered a Michigan-style phase, especially as new rules are evolved

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5

…

Rule n-2
Rule n-1
Rule n

Rule 2

Rule 4

Rule n-1
Rule n

Figure 2: Example global problem solution for a pool of
size n. Selected rules are highlighted. In binary notation (on
which the optimizer operates) this individual corresponds
to 01010 . . . 011.

one at a time. Its initial individual is placed around a randomly se-
lected training example, prioritizing examples that have a high in-
sample error in the current (intermediate) global solution.Thenwe
use a mutation operator without adaptation that samples a halfnor-
mal distribution twice and moves the upper and lower bound fur-
ther from the center, according to the respective values, to create
𝜆 children. From these, we replace the parent with the individual
that has the highest fitness based on its in-sample error and the
matched feature space volume. Specifically, the fitness is calculated
as

𝐹 (𝑜1, 𝑜2) =
(1 + 𝛼2) · 𝑜1 · 𝑜2
𝛼2 · 𝑜1 + 𝑜2

, (1)

with

𝑜1 = PACC = exp(−MSE · 𝛽) , (2)

and

𝑜2 = 𝑉 =
∏
𝑖

𝑢𝑖 − 𝑙𝑖
min𝑥∈X 𝑥𝑖 −max𝑥∈X 𝑥𝑖

. (3)

Its base form (cf. eq. (1)) was adapted from [25], where it was used
in a feature selection context, similarly combining two objectives.
The Pseudo-Accuracy (PACC) squashes the Mean Squared Error
(MSE) of a rule’s prediction into a (0, 1] range, while the volume
share 𝑉 ∈ [0, 1] of its bounds is used as a generality measure. The
parameter 𝛽 = 2 controls the slope of the PACC and 𝛼 weighs the
importance of 𝑜1 against 𝑜2. Maximizing both objectives hence cor-
responds to generating rules that have minimal error and are max-
imally general. A special form of plus-selection is used in the ES,
which simultaneously controls the number of iterations: for every
iteration, the best of 𝜆 children is saved as an elitist and compared
with all elitists from previous iterations. If the elitist from 𝛿 itera-
tions before is better than all subsequent elitists, the optimization
process is stopped and this specific elitist is added to the pool. This
procedure to discover a new rule for the pool is performedmultiple
times before this phase ends. As this optimizer is not meant to find
a globally optimal rule but rather fill a multitude of niches with
optimally placed rules, independent evolution is advantageous.

   



                                                        

3.2 Solution Creation
After new rules have been discovered, a genetic algorithm (GA)
selects rules from the pool to form a new solution candidate (a
set of rules). Solution candidates are represented as bit strings, sig-
nalling whether a rule from the pool is part of the candidate (cf.
Figure 2). The GA is configured to use tournament selection and
combine two candidate solutions using 𝑛-point crossover with a
crossover probability. Afterwards, each individual bit of the chil-
dren is flipped with a probability given by the mutation rate. The
candidate fitness is similarly based on eq. (1), using the candidate’s
in-sample MSE and complexity, i.e. the number of rules selected, as
first and second objective, respectively. A certain number of elit-
ist solutions from the previous population is additionally copied
to the new population without modification. Note that individu-
als in the GA always form a subset of the pool. Rules that are not
part of the pool can not be part of a solution candidate and rules
remain unchanged by the GA’s operations, in contrast to typical
Pittsburgh-style systems.

4 CONCLUSION
We presented a new Learning Classifier System (LCS) that sepa-
rates the process of rule discovery from the composition of rules
to form problem solutions.This system performs supervised batch-
learning and is therefore called the Supervised Rule-based Learn-
ing System (SupRB). It utilizes a population-based optimizer (ge-
netic algorithm) whose individuals transcribe which rules from
the pool of discovered and locally optimized rules are part of a
solution. In contrast to many Pittsburgh-style approaches, which
also evolve populations of rule sets, the rules from the pool are al-
ways and automatically available to all individuals. Optimization
of individuals combines a fitness pressure for low errors and low
complexities (number of rules). To fill the pool with rules, we uti-
lized a simplistic ES (𝜇 = 1) that optimizes towards low in-sample
errors and high volumes of matched feature space. Note that in
contrast to other similar systems, the rule discovery is not done in
a Michigan-style phase. Rules are added sequentially in separated
evolutionary processes and fitnesses are independent from each
other.

The primary motivation for our new approach at creating LCS
models was to achieve a greater and more direct control over rule
set sizes and matching functions, and thus the overall model struc-
ture. Finding a goodmodel structure is also known as the model se-
lection problem. Ultimately, this leads to more interpretable mod-
els that make providing explanations for both the model itself, as
well as its predictions, easier.
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