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ABSTRACT
In the context of tasks that highly involve human interaction and
expert knowledge, i.e., operator guidance in manufacturing, the
possibility of decision verifications by the user is a key requirement
for inspiring confidence in a system and its predictions. Rule-based
Machine Learning offers one way to create such systems, with
Learning Classifier Systems being a family of algorithms whose
models are by design human-interpretable. Obtaining a rule base
as compact and accurate as possible is a mandatory prerequisite
to increasing comprehensibility, and metaheuristics such as Ge-
netic Algorithms or Particle Swarm Optimization are powerful ap-
proaches to reducing the size of large rule bases. In particular, this
paper will analyze five population-based metaheuristics and their
ability to compose solutions (rule subsets) as part of a newly devel-
oped rule-based learning system, the Supervised Rule-based Learn-
ing System (SupRB). The experiments suggest that all metaheuris-
tics can significantly reduce the complexity and filter out obstruc-
tive rules, increasing the prediction quality in the process.

CCS CONCEPTS
• Computing methodologies → Supervised learning by re-
gression; Rule learning; Genetic algorithms.

KEYWORDS
metaheuristics, genetic algorithms, rule-based learning, learning
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1 INTRODUCTION
Learning Classifier Systems (LCSs) are a popular choice for obtain-
ing a set of human-interpretable rules, but similar to other rule-
based approaches they can suffer from creating more rules than
are needed to model the problem sufficiently. This is especially the
case in complex problems, where the number of rules is already
high and understanding the (hypothetical) optimal rule set is non-
trivial. If additionally many similar (redundant) rules are part of
the rule set, e.g., because several independently operating tech-
niques to generate rules were combined, or expert knowledge is
incorporated into the training process, making even simple state-
ments about the accuracy and usefulness of individual rules is in-
creasingly difficult. Interpreting such rule sets in their entirety gets
confusing very quickly, especially if mixing models are involved.
Reducing the size of rule sets and removing unnecessary or even
sub-par rules is, therefore, a sensible choice and directly correlates
with an increase in interpretability and often accuracy.

Such approaches are known under the term Rule Compaction
in the context of Michigan-style LCSs and mostly performed as
post-processing [14]. The compaction itself is often performed de-
terministically based on estimated values or by applying heuristic
procedures. Some Pittsburgh-style LCSs such as [3] perform an in-
termediate rule pruning step, albeit being similarly heuristic. In
this paper, a new, more general perspective will be taken on this
task: selecting a minimal subset of rules while maintaining other
objectives like accuracy is a typical model selection [6], or model
pruning problem, and such problems can be solved efficiently us-
ing metaheuristics.

An obvious metaheuristic to apply here is a Genetic Algorithm
(GA), especially because the LCS is a system originally designed
to take advantage of the GA’s ability to evolve and enhance its in-
dividuals, or rules [10]. However, other metaheuristics like Parti-
cle Swarm Optimization (PSO) or Ant Colony Optimization (ACO)
are similarly able to handle hard optimization problems, which in-
cludes selection tasks. Therefore, this paper specifically compares
five different metaheuristics on composing solutions as part of the
Supervised Rule-based Learning System (SupRB), which in general
tries to generate a rule set (solution) as compact and accurate as
possible. The metaheuristics considered here include a GA, ACO,
PSO, GreyWolf Optimizer (GWO), and Artificial Bee Colony Algo-
rithm (ABC), which all have been demonstrated to be successful at
solving similar selection tasks [e.g. 8, 19, 23].
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2 MODEL SELECTION IN SUPRB
The fundamental concept of SupRB is to split the LCS’s usual pro-
cess of finding a maximally concise and accurate rule set into two
subtasks: Rule Discovery (RD) and Solution Composition (SC).

The RD generates rules, or classifiers, which fit a part of the
input space using some submodel, and inserts them into a global
population of rules: the (rule) pool. To keep interpretability high,
the rules simply consist of rectangular bounds and a linear sub-
model. By default, SupRB employs an Evolution Strategy (ES) to
discover locally optimal rules, preferring to generate rules in parts
of the input space where the in-sample error of the current global
solution is the highest. The process of how exactly rules are gen-
erated is not the focus of this paper, and details regarding the RD
and the exact structure of rules can be found in [9].The rules in the
pool are nevertheless assumed to have the following properties:

• Rules in the pool meet someminimum standard, i.e. they are
at least accurate enough so that knowledge about the part
of the input space they match can be extracted.

• Many similar rules are part of the pool.
• Rules may (greatly) overlap.
• They are not modified or removed from the pool.

SC is the second component, which selects a minimal and maxi-
mally accurate subset of rules from the pool, mixes them according
to some mixing model, and thus creates a valid model of the whole
space. This model is also referred to as a (global) solution, or in the
context of population-based metaheuristics, as an individual. The
component performs a special kind of model selection, where not
explicitly enumerated models are considered, but all possible sub-
sets of rules 2𝑃 from the pool 𝑃 . Encoding these subsets can easily
be achieved by using a binary string, or genome, 𝐺 , where a 1 at
index 𝑖 encodes that the rule at index 𝑖 is part of the subset, and
0 encodes that it is not. The following string thus represents the
subset of choosing the first, third and last rule in the pool:

𝐺 = 101000 . . . 001 (1)

As rules are only appended to the pool and existing rules are not
modified, a solution vector stays valid by padding it with zeros.

A central problem in SC is that the exact number of rules re-
quired for an adequate solution is unknown, so there is no way to
know when the global optimum is found. The overall goal of SC
is therefore finding a good subset of rules, while simultaneously
keeping the computational cost reasonable. This also motivated
the alternating nature of RD and SC, which makes feedback on
the quality of individual rules and the global solution immediate
and simplifies the design process. As SC is not only performed at
the end but also during the training process, knowledge about the
global solution can then again be incorporated into the RD process,
for example in the form of choosing regions of the input space that
are not yet predicted sufficiently.

3 SELECTING SUBSETS OF THE POOL
Theeffective goal of SC is tominimize both theMean Squared Error
(MSE) and complexity 𝐶 of an individual, i.e. the number of rules
in the subset. The fitness function used in this paper was taken
from [22] and combines two objectives 𝑜1, 𝑜2 in its base form, with

𝛼 weighting the importance of 𝑜1 against 𝑜2 :

𝐹 (𝑜1, 𝑜2) =
(1 + 𝛼2) · 𝑜1 · 𝑜2
𝛼2 · 𝑜1 + 𝑜2

. (2)

The first objective is the so-called Pseudo-Accuracy (PACC), which
squashes the (possibly unbounded)MSE into the (0, 1] domainwith
1 corresponding to an MSE of 0:

𝑜1 = PACC = exp(−MSE · 𝛽) , (3)

where 𝛽 = 1 acts as control over the slope of the curve. The nor-
malized complexity 𝐶𝑛𝑜𝑟𝑚 given by

𝑜2 = 𝐶norm =
𝑁max −𝐶

𝑁max
(4)

is used as second objective, where 𝐶 is the complexity and 𝑁max
is the number of rules the pool will contain at the end of training.
Both objectives are by definition within the interval [0, 1] andmax-
imizing the presented fitness functionwill minimize theMSE along
with the complexity. The choice of 𝛼 = 0.3 was adopted from [22]
and observed to allow selecting few rules for easy and many for
harder problems, all while maintaining a sensible error. However,
the influence of 𝛼 is something that should be investigated in more
detail in future research.

Only the GA [15] operates on a binary space by default, so the
other metaheuristics are binary adaptations of either graph-based
(ACO [21, 23]) or real-valued representations (GWO [8], PSO [13],
ABC [11, 19]). Each metaheuristic contains some interchangeable
components, or operators, which are chosen as part of the hyperpa-
rameter tuning on a dataset basis. They are additionally equipped
with an external single elitist storage, which does not influence
the population and only saves the individual with the highest fit-
ness. This elitist is padded using zeros, while the individuals in the
population are extended using uniformly random bits to increase
diversity.

4 EXPERIMENTAL SETUP
SupRB and the five metaheuristics are implemented in Python 3.9,
adhering to scikit-learn1 [18] conventions2.The evaluation is per-
formed on four datasets part of the UCI Machine Learning Repos-
itory [7], namely the Combined Cycle Power Plant (CCPP) [12]
dataset, Airfoil Self-Noise (ASN) [4], Concrete Strength (CS) [24],
and Energy Efficiency Cooling (EEC) [20]. The input features are
transformed into the range [−1, 1], while the target is standardized.

SupRB performs 32 RD-SC cycles in total, generating four rules
in each cycle for a total of 128 rules. The population size and num-
ber of iterations were similarly set to 32, respectively, as all three
parameters were observed to have negligible influence after a suffi-
cient size. The parameters of the RD-ES are tuned on every dataset
beforehand, and the hyperparameters of the metaheuristics are
similarly tuned on every dataset2. The hyperparameter tuning is
done using a Tree-structured Parzen Estimator implemented in the
Optuna framework3 [1], calling the objective function consisting
of 4-fold cross validation 128 times per tuning process.
1 https://scikit-learn.org 2 The implementation of SupRB can be found at
https://doi.org/10.5281/zenodo.6460701 and https://github.com/heidmic/suprb
while more details on the experimental setup are featured at
https://github.com/heidmic/suprb-experimentation/tree/GECCO2022_experiments.
3 https://optuna.readthedocs.io/
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Figure 1: Distribution of the elitist fitness, standardized over
all datasets. A 99% significance Wilcoxon signed-rank test has
rejected the null hypothesis of equivalent fitness distributions of
the random search and each metaheuristic, respectively.

The evaluation uses 8-split cross-validation with a random split
of 25 % of the samples reserved as a validation set. Note that the tun-
ing data is included here, as the metaheuristics optimize the train-
ing MSE and an overly optimistic validation error does not influ-
ence their evaluation. Each metaheuristic is evaluated eight times
using different seeds for each 8-split cross-validation, resulting in
a total of 64 runs. Although identical seeds are used throughout
the experiments, incorporating the feedback of the SC in the pro-
cess of RD means that different rules are generated in each run. In
addition to the five optimizers, a Random Search (RS) is performed,
finding rule subsets using an identical experimental setup.

5 RESULTS AND DISCUSSION
The experiments show that all five metaheuristics are able to com-
pose good solutions and are very similar in their performance. The
metrics considered for evaluation are the training error (MSE), com-
plexity, and the fitness of the elitist solution. The mean and stan-
dard deviation of the MSE and complexity for each optimizer and
problem are listed in Table 1. Note that themetaheuristics optimize
only the fitness and decrease PACC and 𝐶norm, i.e., training error
and complexity, indirectly. A higher MSE or lower complexity for
elitists with lower fitness is therefore caused by the influence of
the other objective, respectively.

Figure 1 presents the distribution of elitist fitness values, stan-
dardized over all datasets. It can be observed that all metaheuristics
outperform the RS and this is equally confirmed by a 99% signif-
icance Wilcoxon signed-rank test comparing the fitness distribu-
tion of the RS and each metaheuristic, respectively. On all prob-
lems and metaheuristics, the null hypothesis of identical distribu-
tions was rejected. A similar test with the GA as a baseline has in-
dicated no significance for either hypothesis, which is consistent
with the visual intuition gained from the distribution plots. The
specific performances vary from dataset to dataset, but no general
trend can be attributed. The ABC algorithm repeatedly shows the
lowest complexity independent of fitness value, which might indi-
cate a slight bias towards selecting fewer rules. This phenomenon
should be investigated in more experiments.

The advantages of metaheuristics over simple stochastic meth-
ods are especially apparent on the more difficult problems, while

they only show a slightly better performance on CCPP and EEC,
both in terms of MSE and complexity. On ASN and CS on the other
hand, all optimizers were able to significantly reduce the number
of rules, but only the metaheuristics were able to select ∼1–6 fewer
rules and achieve a difference in average MSE of up to 0.07, which
corresponds to an increase of about 0.07 𝑅2 on the validation set
(0.752 for RS vs. 0.821 for PSO, on average.). This difference is only
expected to increase for larger problems. It is also a sign that eval-
uating a total of 32 · 32 · 32 = 32, 768 individuals over the whole
training process is more than sufficient for the lower-dimensional
datasets considered here, which can be interpreted as a guideline
for future experiments.

The experiments have shown that there is no significant differ-
ence in choosing another metaheuristic over the GA in terms of
performance, at least for these small datasets. Vice versa, the GA
is not inherently superior to the other metaheuristics on the task of
SC.This means that other properties can be considered in the meta-
heuristic selection process, such as computational effort needed or
sensibility of parameters on different datasets.

A negative example in this regard is the ACO, as constructing
a solution using intermediate information such as heuristic val-
ues of rules already selected is much more computationally ex-
pensive than, e.g., selecting, combining, and mutating individuals.
This heuristic approach may only be profitable for larger problems,
but the runtime complexity is also expected to scale exponentially
with problem size, making this an even bigger issue. One possibil-
ity to bypass this is to scale down the number of individuals evalu-
ated per RD-SC cycle, which is something the experiments suggest
should still be sufficient. Regarding sensitivity of parameters, espe-
cially GWO has established itself to be very robust, achieving com-
petitive performance using almost identical configurations on all
datasets. Also, while overall some metaheuristic components seem
to dominate others4, the choice of parameters is not always as sim-
ple. Especially ACO and PSO define many real-valued parameters
that highly influence solution quality, so GA, GWO and ABC are
a better choice if no parameter tuning can be performed, as all of
them show a trend towards robust parameters across datasets.

6 RELATEDWORK
The task of what is labeled “Solution Composition” in this paper is
not a new problem and can be found under various names through-
out the field of LCSs and ML in general. The previously mentioned
Rule Compaction is, similarly to SC, meant to remove redundant or
incorrect rules from a greater rule set, typically the population of
a Michigan-style LCS. A key difference to the approach proposed
in this paper is that these strategies employ heuristics specific to
the particular LCS architecture they were developed for and focus
much more on maintaining an identical level of performance. A
comparison of such algorithms can, for example, be found in [14].

The metaheuristic approach of composing a solution out of a
large rule base is conceptually very similar to selection or pruning
tasks, e.g., selecting subsets of input features or pruning ensem-
bles using metaheuristics. They all share the goal of minimizing
the number of rules/features/learners while maintaining or even

4 More details on these circumstances can be found in the experiment setup at
https://github.com/heidmic/suprb-experimentation/tree/GECCO2022_experiments.
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Table 1: Overview of the experimental results. Every optimizer is evaluated on 64 runs per dataset, with the training MSE calculated
on the standardized target. The results are rounded to three decimals and the best values are highlighted in bold.

CCPP ASN CS EEC
MSE Complexity MSE Complexity MSE Complexity MSE Complexity

RS 0.064 ± 0.001 2.891 ± 0.799 0.204 ± 0.019 30.188 ± 7.546 0.122 ± 0.011 27.016 ± 5.954 0.030 ± 0.004 14.766 ± 3.745
GA 0.063 ± 0.001 2.656 ± 0.623 0.140 ± 0.014 26.422 ± 2.487 0.093 ± 0.011 22.312 ± 2.624 0.020 ± 0.003 12.812 ± 1.726
ACO 0.063 ± 0.001 2.609 ± 0.581 0.139 ± 0.012 26.547 ± 2.468 0.094 ± 0.011 22.453 ± 2.189 0.018 ± 0.003 13.016 ± 2.020
GWO 0.063 ± 0.001 2.656 ± 0.623 0.136 ± 0.011 29.781 ± 3.856 0.092 ± 0.011 24.609 ± 3.063 0.019 ± 0.003 13.391 ± 2.628
PSO 0.063 ± 0.001 2.594 ± 0.555 0.139 ± 0.010 27.094 ± 2.736 0.094 ± 0.010 22.969 ± 2.330 0.020 ± 0.003 12.594 ± 2.083
ABC 0.063 ± 0.001 2.578 ± 0.558 0.136 ± 0.009 26.125 ± 2.728 0.096 ± 0.010 21.359 ± 2.081 0.020 ± 0.003 11.562 ± 1.670

increasing accuracy. Diao and Shen [5] evaluate several nature-
inspired metaheuristics such as a GA and ACO on feature selection
and find that all are capable of finding good quality solutions. SC
is also naturally an instance of model selection [6].

Several rule-based learning systems exist that employ metaheu-
ristics other than a GA to evolve their rule sets, one of the most
commonly known ones being the AntMiner [17]. It uses ACO to
find optimal and simultaneously minimal rules and can loosely be
interpreted as a Michigan-style LCS. Furthermore, several hybrid
rule-based learning systems utilizing Michigan- and Pittsburgh-
style phases with different metaheuristics in each phase can be
found in the literature [e.g. 2, 16].

7 CONCLUSION
This paper has investigated the applicability of different metaheuri-
stics for constructing solutions, i.e., rule subsets, as a central com-
ponent in the newly developed Supervised Rule-based Learning
System (SupRB). Specifically, five metaheuristics, namely a GA,
ACO, GWO, PSO, and ABC were adapted to the task of Solution
Composition (SC). They were evaluated in four experiments, us-
ing real-world datasets from the UCI ML Repository. The results
have shown that all metaheuristics are capable of filtering redun-
dant and unsuitable rules, significantly reducing the overall solu-
tion complexity and boosting prediction quality. This enables the
use of other criteria than performance to guide the metaheuristic
selection process, and a brief intuitionwas given in this regard.The
methods introduced in this paper are specifically not only appli-
cable to LCS, but any interval-based rule set regardless of origin,
which opens up the possibility of implementation in other rule-
based systems.
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