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1. Introduction

Traffic congestion and pollution are growing problems in cities
around the world. Home deliveries are contributing to this problem
due to the increasing volume of online orders (Allen et al., 2018;
Ishfaq, Defee, Gibson, & Raja, 2016; Wollenburg, Hiibner, Trautrims,
& Kuhn, 2018), in particular as many deliveries are still performed
by diesel trucks. New concepts are needed to enable the projected
growth of delivery volumes and prevent urban traffic from collaps-
ing (Agatz, Fleischmann, & van Nunen, 2008; Hiibner, Holzapfel,
Kuhn, & Obermair, 2019; Orenstein, Raviv, & Sadan, 2019). While
attended home deliveries are convenient for customers, they ac-
count for a large share of logistics costs (Hiibner, Kuhn, & Wollen-
burg, 2016; Kuhn & Sternbeck, 2013). The complexity of planning
deliveries is growing with entry restrictions in inner cities (e.g.,
ban of diesel engines) and the growing application of time win-
dows to attended home deliveries. This increases customer service
and reduces the number of failed deliveries, i.e., deliveries that are
not accepted as customers are not at home. In addition, the COVID-
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19 pandemic has not only increased the home deliveries, but also
created consumer preferences for deliveries without human inter-
action and challenged companies to protect their workforce.
Delivery by truck and robots is a promising approach to address
these issues as well as to flexibly accommodate customers’ time
window preferences. Autonomous delivery robots (e.g., by Starship,
2019 and Marble, 2019) can transport a single parcel or grocery
bag to customers for attended home delivery. They are designed
to travel short distances at pedestrian speed. Due to their lower
speed and limited range, delivery robots are combined with spe-
cialized trucks to enable a fast and efficient delivery process. This
means that a truck transports the corresponding goods for delivery
together with robots and releases the robots at dedicated drop-off
locations for the actual home delivery. As there are many customer
deliveries on a tour, the truck picks up robots from robot depots
on the way. The robots return to the closest robot depot by them-
selves. Daimler (2019) has tested such a concept and has shown
that it potentially decreases lead time and traffic. Baum, Assmann,
& Strubelt (2019) predict that delivery robots will likely be intro-
duced on a larger scale soon due to their low production costs and
limited legal obstacles. Recent routing literature shows the suitabil-
ity and cost efficiency of the combination of trucks and robots and
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provides methods for cost-optimal routing (Boysen, Schwerdfeger,
& Weidinger, 2018; Ostermeier, Heimfarth, & Hiibner, 2021).

Existing truck-and-robot (TnR) concepts with robot depots ex-
clusively consider robots for final delivery to customers or make
simplifying assumptions that limit the benefit of robot use. In prac-
tice, however, there are multiple reasons for deliveries requiring
human interaction and therefore final delivery by a person. First,
some customers may be unable or unwilling to interact with the
robot and to retrieve the goods from it, such as elderly or disabled
persons. Second, the delivery of some goods would be forbidden
or risky via a robot. This includes valuables, drugs and hazardous
substances such as cleansing agents, paint, pesticides, etc. Third,
individual orders may be too bulky to fit into the robot compart-
ment. This can be the case with some electronics, household and
do-it-yourself products, and even groceries being delivered in bulk.
According to Forbes (2019), 10-25% of Amazon deliveries could not
be handled by aerial drones, whose size restrictions are similar to
those of delivery robots. Up to one in four orders must therefore
be delivered without the use of robots and completed by conven-
tional delivery by truck and human driver. Moreover, even when
an order is suitable for robot delivery, the possibility of choosing
between truck or robot increases routing flexibility and may yield
cost reductions.

In the related routing approaches for attended home delivery,
the prevailing literature deals either with a vehicle routing prob-
lem (VRP) for truck delivery (e.g., Laporte, 2009; Toth & Vigo, 2001)
or a TnR routing problem with delivery by robots (see e.g., Bakach,
Campbell, & Ehmke, 2021; Boysen et al., 2018; Ostermeier et al.,
2021). In these concepts only truck or robot deliveries are consid-
ered, ignoring requirements and the potential benefits of combin-
ing deliveries by robot and truck as described above. Existing pub-
lications on a combined concept (Chen, Demir, & Huang, 2021a;
Chen, Demir, Huang, & Qiu, 2021b) are limited to sequential de-
livery actions by truck and robots (i.e., while the robots move,
the truck is idle and vice versa). A new approach that provides
the additional flexibility of parallel deliveries by truck and robots
is therefore needed. We close this gap in literature by proposing
the Mixed Truck and Robot (MTR) delivery concept, leading to the
Mixed Truck and Robot Routing Problem (MTR-RP). This is a gen-
eralization of the TnR routing problem and determines which cus-
tomers are supplied via truck, which customers are approached
via robots, and how these deliveries are integrated into the de-
livery tour. In this application, the truck not only transports the
robots to drop-off locations, but is also deployed for direct cus-
tomer deliveries. This additional option increases the complexity
of routing. As such, we solve the MTR-RP with a variant of General
Variable Neighborhood Search (GVNS) that incorporates problem-
specific insights into the operators. Furthermore, the MTR-RP is dif-
ferent from truck-and-drone concepts. First, only a small number
of drones is used during a tour, whereas with MTR, the truck picks
up multiple new robots along its way. Second, the drones return to
the truck, whereas robots return to a depot.

The delivery concept with robots is innovative and we therefore
first outline the detailed problem characteristics based on existing
concepts and technology in Section 2. Section 3 discusses related
literature and highlights the differences versus other last-mile de-
livery concepts. Section 4 presents the formal model of the MTR-
RP. We detail our GVNS approach in Section 5. Section 6 presents
numerical experiments to compare our approach to existing rout-
ing frameworks and to analyze the impact of the additional deliv-
ery mode by truck. Section 7 summarizes our findings.

2. Problem description

This section outlines how truck and robots are combined for at-
tended home deliveries with time windows. Section 2.1 introduces

Fig. 1. Specialized truck with freight containers and delivery robots (Mercedes-Benz
Vans, 2016).

the related technology on which the problem is based. We then
describe the MTR delivery concept in Section 2.2.

2.1. Technical properties of robots and customized trucks

Delivery robots navigate autonomously on sidewalks and bike
lanes but can be remote controlled in the event of problems. To
do so, most models rely on several cameras, map data and GPS. In
addition, many robots use lidar, ultrasound and radar. For commu-
nication, LTE and WiFi are widely-used, at times also touch dis-
plays and speakers (Baum et al., 2019). The sensors enable au-
tonomous driving and help prevent theft or vandalism. Recent
studies show that robot technology is ready for industry appli-
cations. Starship (2019) reports successful tests in more than 80
cities worldwide, and Jaller, Otero-Palencia, & Pahwa (2020) dis-
cuss robot models that are already in use in the US and Europe.
Baum et al. (2019) count 19 different models, of which the ma-
jority have already been tested in the field. According to their
overview, most robots operate at pedestrian speed, i.e., at 6 to
8 km/h. The maximum range lies between 6 and 77 km (Jennings
& Figliozzi, 2019). The payload varies from one parcel and 10 kg
to 20 parcels and 70 kg. When a robot arrives at the delivery des-
tination, customers are notified (e.g., via mobile phone) and can
unlock the robot’s compartment with a code to retrieve the order
(Marble, 2019; Starship, 2019). This means that a customer has to
be present to retrieve the parcel from the robot, and thus moti-
vates the use of robots for attended home delivery with time win-
dows. We henceforth apply that a delivery cannot occur before its
time window and causes penalty costs if it occurs after the time
window. Furthermore, as there is only one compartment for cus-
tomer order retrieval, we also apply that each robot supplies only
one customer on the robot tour.

Given the relatively low speed of robots, companies such as
Daimler (2019) have developed customized trucks to transport
them. Otherwise robots would have to drive the complete distance
from the warehouse to the customer and back. In large delivery
areas, this would imply long travel times, issues with lead times
and meeting short-term time windows, and low robot utilization.
The trucks transport robots to overcome larger distances (e.g., be-
tween the warehouse and city center) and release them at dedi-
cated drop-off locations. This enables the efficient use of delivery
robots, especially in urban areas. Trucks typically provide space for
around eight robots on their floor and enable autonomous pick-up
and drop-off via automatic doors and ramps. A shelf system above
the floor can be used to carry goods for delivery and offers space
for around 54 storage boxes (see, e.g., Mercedes-Benz Vans, 2016).
It is only driving the truck and loading robots that remain manual
tasks. Figure 1 shows a typical truck setup. For robot deliveries,
the truck driver enters the front part of the cargo bay, retrieves
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Fig. 2. TnR tour (with all deliveries by robots).

the goods from the shelf system, loads them into robots, and these
then leave the truck via a ramp to the side. Direct deliveries by
the driver (i.e., without a robot) can therefore easily be included in
this system. These orders could be loaded to the rear of the shelf
system, for instance, and when the driver arrives at the customer
location, (s)he picks up the order from the back door and walks to
the customer.

2.2. Concept of mixed truck and robot deliveries (MTR)

Conventional Truck-and-Robot. In line with Boysen et al.
(2018) and Ostermeier et al. (2021), TnR is a system in which
the delivery robots are transported by truck and therefore the
times and locations of both vehicle types are coupled. The cen-
tral element of this concept is that robots are carried by truck
and dropped off close to customers (see Fig. 2). The distribution
process therefore consists of a truck tour, visiting different robot
drop-off locations (i.e., a location where the truck can safely stop
and release robots onto the sidewalk, see solid arrows in Fig. 2),
and robot tours visiting a single customer each (dotted arrows in
Fig. 2). Some of these drop-off locations are so-called robot de-
pots, where robots are stored and charged. Trucks can both pick
up robots at robot depots for later drop-off or load and release
robots directly for delivery without transporting them. The number
of available robots per depot is limited. As we consider attended
home delivery, the robots need to supply the customers within an
agreed time window and after the delivery each robot returns to
the closest robot depot (not displayed in Fig. 2 for sake of readabil-
ity). At the depot (which consists only of an outdoor charging sta-
tion and parking space), it is again charged and waits for the next
delivery. Other drop-off points are spots where trucks can stop and
release robots for delivery, but no robots are stored. This concept
reduces the truck mileage and increases the driver’s productivity,
which makes it attractive from a cost and environmental perspec-
tive (Boysen et al., 2018; Ostermeier et al., 2021).

Mixed truck-and-robot concept. In the conventional TnR concept
described above, the truck acts solely as a taxi for robots and does
not deliver parcels directly to customers. However, some deliveries
are not suitable for robot delivery and must be made by a delivery
person. This is necessary for bulky goods that do not fit into the
robot’s compartment, and goods that must be handed over person-

ally, such as valuables and drugs. A customer could also choose not
to receive robot deliveries based on personal preferences or skills.
In these cases, a direct truck delivery is indispensable. Please note
that truck deliveries also have to happen within an agreed time
window as they are part of the same service as robot deliveries
(attended home delivery). Truck deliveries can be done by a sepa-
rate delivery tour (as in prevailing truck-only concepts) or by em-
ploying the truck used for robot drop-off to directly approach those
customers (as shown in Fig. 3). Using one truck for both delivery
modes has the potential to reduce the fleet needed and the costs
and emissions caused for serving a set of customers. Besides cus-
tomers requiring truck delivery, there are customers who can be
visited by either truck or robot. Visiting those customers by truck
can in some cases further decrease costs as it may lead to shorter
tours or reduce robot use and delays. Note that when the truck
stops at a customer, it can launch robots to other customers from
there as well. Finally, there may be a third set of customers re-
questing robot deliveries as in the basic TnR concept. These cus-
tomers cannot be served by truck and no robots can be launched
from there. As a consequence, we extend the existing TnR con-
cept to account for both delivery types. The stops for truck deliv-
ery have to be integrated into the truck routes for dropping off
robots (see solid arrows in Fig. 3). This complicates the search for
optimal truck tours, since truck deliveries also have to take place
within the designated time windows. Early arrivals at customer lo-
cations cause waiting times for the truck and late arrivals cause
delay costs in the form of reduced future revenues (due to lower
customer satisfaction) or the granting of rebates. The admission of
additional truck deliveries therefore causes new dependencies and
increases the problem complexity.

Decision problem structure. MTR routing requires simultaneous
decisions on different routing problem aspects. To illustrate this,
Fig. 4 shows the different vehicles’ actions in a truck-and-robot
tour over time. For the truck, it includes driving between the
goods warehouse, robot depots and drop-off points and customers,
as well as potential waiting time at customers. For the robot, it
comprises travel time between drop-off points, customers and de-
pots, and potential waiting time. For the truck, there is a mileage-
based cost (mainly for fuel) and a time-based cost (for the driver’s
salary). These have to be considered separately since the truck
might have to wait if it reaches a customer before the time
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Fig. 4. Gantt chart of an MTR tour (example).

window (see diamond in the truck lane of Fig. 4). The robots start
from a depot or drop-off point visited by the truck, drive to a cus-
tomer and must also wait for the time window in the event of
early arrival (see Robot 1 in Fig. 4). After the delivery, the robots
return empty to the closest depot, i.e., we do not consider pickup
requests in our setting. A time-based robot fee applies during this
entire time. If an order arrives late (see Robot 3 in Fig. 4), a delay
cost is incurred, consisting of a rebate granted to the customer or
accounting for penalties for reduced customer satisfaction. A fea-
sible solution must ensure all customers are served after the start
of their respective time window by truck or robot, depending on
the request. The decision problem at hand aims to minimize total
delivery costs. To achieve this, it is necessary to define (i) which
customers are served via truck, which via robot, (ii) which robot
depot and drop-off locations are visited during the truck tour, (iii)
in which sequence these locations are visited, and (iv) from which
stop on the tour each robot delivery is started. The truck starts and
ends at the goods warehouse, whereas a robot starts from either a
depot or a drop-off location and, after meeting the customer, re-
turns to the closest depot. Besides required travel times and syn-

chronization of truck and robot actions, the decision is constrained
by the number of robots available on the truck and in each robot
depot.

3. Review of related literature

This section provides an overview of related routing approaches
for robot-based deliveries. We first highlight the similarities and
differences of related concepts, namely truck-and-drone delivery
and delivery with covering options. These concepts share the idea
of two vehicle types making deliveries together. Next, we provide a
summary of robot routing literature, separated into hub-and-robot
concepts and TnR concepts with and without depots. We conclude
by highlighting the gap in related literature.

(i) Truck-and-drone delivery. Truck delivery supported by drones
has received a lot of attention in recent publications (e.g., Agatz,
Bouman, & Schmidt, 2018; Ulmer & Thomas, 2018; Sacramento,
Pisinger, & Ropke, 2019). A truck visits customers to make de-
liveries and a drone serves other customers not visited by the



truck. Initially the truck transports the drone. While the truck
stops to make a delivery, the drone can start with a parcel, serve
one customer and meet the truck again at a later customer on
the truck route. This can be repeated several times. Since every
drone delivery starts at a customer served by the truck, the high-
est possible share of drone deliveries is 50% (Agatz et al., 2018;
de Freitas & Penna, 2020; Ha, Deville, Pham, & Ha, 2018; Mur-
ray & Chu, 2015). Even for an extended scenario with up to four
drones on the truck, solved by Murray & Raj (2020) and Moshref-
Javadi, Hemmati, & Winkenbach (2020), the share of truck deliv-
eries must remain above 20%. Murray & Raj (2020) further note
that adding drones leads to diminishing marginal improvements,
since too many drones cause long take-off and landing queues
at the truck. The major differences between drone concepts and
the robot concept considered are therefore the lower number of
autonomous vehicles (drones), and their return to the truck in-
stead of dedicated depots. The MTR concept has a higher poten-
tial to reduce truck mileage as a truck can launch multiple robots
at each stop. Furthermore, the truck picks up additional robots
during the tour from robot depots, whereas the pertinent applica-
tions in truck-and-drone routing rely on a given number of drones
on the truck. A further difference is that there are many optional
truck stops in the MTR concept (i.e., robot depots and drop-off
points), whereas on truck-and-drone tours, only customers are vis-
ited. Routing approaches for truck-and-drone are as such not di-
rectly applicable to MTR since they rely on the fact that many
customers need to be visited by truck and the truck does not
have other (optional) locations to visit. Pertinent heuristics im-
prove the solution of the traveling salesman problem (TSP) by re-
assigning customers to the drone (Agatz et al., 2018; de Freitas &
Penna, 2020; Ha et al,, 2018; Kitjacharoenchai et al., 2019; Mur-
ray & Chu, 2015; Murray & Raj, 2020; Sacramento et al., 2019). A
detailed analysis of the differences between truck-and-drone and
TnR is performed by Ostermeier et al. (2021). Alongside these dif-
ferences, practical advantages of robots are their high safety level,
robustness in any weather conditions and fewer regulatory obsta-
cles due to slow driving instead of flying. These strengths could
soon enable the large-scale practical application of delivery robots
in cities (Baum et al., 2019). Lemardelé, Estrada, Pages, & Bachofner
(2021) compare truck-and-drone with delivery robots combined
with consolidation centers by applying continuous approximation.
They conclude that delivery robots are economically more attrac-
tive in dense urban areas and generally create less externalities
than drones. In summary, delivery robots and drones are used in
different setups (based on their strengths) and problem specifics.
We refer to Otto, Agatz, Campbell, Golden, & Pesch (2018), Macrina,
Di Puglia Pugliese, Guerriero, & Laporte (2020) and Li, Chen, Wang,
& Bai (2021) for a detailed overview of the truck-and-drone con-
cept and its challenges.

(ii) Delivery with covering options. Enthoven, Jargalsaikhan,
Roodbergen, uit het Broek, & Schrotenboer (2020) introduce the
two-echelon vehicle routing problem with covering options (2E-
VRP-CO). In this last-mile delivery application, the truck on the
first echelon can either deliver a parcel to a satellite location, from
where cargo bikes bring it to the customers, or to a covering lo-
cation (i.e., a parcel locker) from which nearby customers can pick
up the parcel. Similar to the MTR-RP, the truck only needs to visit
a subset of given potential locations, and the delivery type which
makes the last mile has to be defined. The proposed solution ap-
proach relies on an Adaptive Large Neighborhood Search (ALNS)
with tailored operators. Several aspects of our MTR-RP are more
complex, however, despite the similarities. First, robots are applied
for attended home delivery and thus have to meet time windows.
Second, the robots are transported by truck and released at drop-
off locations as part of our decision problem. This is not the case

in a two-echelon setup. The MTR-RP is based on a high num-
ber of potential truck stops (in the same order of magnitude as
the number of customers). In the two-echelon case, each poten-
tial truck stop has a fixed number of bikes available and there are
only a few of these stops. Finally, both vehicle types of the MTR-
RP can visit customers, whereas in the 2E-VRP-CO this is only pos-
sible for cargo bikes. These differences add dependencies to the
truck schedule, as robots can only launch from a location while
the truck is present and the truck must meet the customer’s time
window. Similarly, other two-echelon models fall short of charac-
teristics required in the MTR-RP (Perboli, Rosano, Saint-Guillain, &
Rizzo, 2018).

(iii) Hub-and-robot. The first concepts developed involving
robots can be described as hub-and-robot. Their principle is that
robots move between a fixed hub and customers. They do so in-
dependently of other means of transportation. Consequently, hubs
have the ability to store goods and load the robots, which re-
quires a more sophisticated infrastructure compared to the robot
depots (i.e., charging stations) in the TnR or MTR case. Bakach
et al. (2021) propose a mixed integer program (MIP) to allocate
customers to hubs and robots. Their objective is to minimize the
number of hubs and robot mileage required, while respecting the
robots’ maximum range. Poeting, Schaudt, & Clausen (2019b) and
Poeting, Schaudt, & Clausen (2019a) optimally solve an MIP for
truck tours visiting hubs and customers and a schedule of pen-
dulum robot tours from these hubs to customers. Sonneberg, Ley-
erer, Kleinschmidt, Knigge, & Breitner (2019) minimize the costs of
tours for robots with several compartments applying an MIP. Due
to their nature, hub-and-robot systems do not consider mixed de-
livery but only robot deliveries paired with an existing hub infras-
tructure.

(iv) Truck-and-Robot without robot depots. The MTR-RP origi-
nates from TnR systems. These concepts constitute a more com-
plex routing problem than hub-and-robot due to the coupling of
truck and robot movements. Without depots, the truck has to wait
for robots to return or meet robots later on the tour. This lim-
its the routing decisions, in particular the distance travelled by
robots. Jennings & Figliozzi (2019) and similarly Figliozzi & Jen-
nings (2020), assess a TnR system based on continuous approx-
imation and conclude that it has the potential to reduce truck
mileage. They do not solve a specific routing problem, but estimate
the system’s performance based on average distances and speeds.
Simoni, Kutanoglu, & Claudel (2020) propose a delivery mode sim-
ilar to truck-and-drone, in which a robot leaves the truck at a cus-
tomer location, makes one or two deliveries and meets the truck
again at a later customer on the truck route. Accordingly, their
solution approach relies on finding good TSP tours within a lo-
cal search with adaptive perturbation and then optimally inserting
robot tours with dynamic programming. Due to the limited speed
of robots, a large share of customers is still served by truck and
the reported savings potential of around 20% is lower than sav-
ings achieved by TnR with robot depots. Chen et al. (2021a) and
Chen et al. (2021b) propose a concept in which a truck visits a
customer, launches several robots to serve customers nearby and
waits for their return. The authors propose a cluster-first-route-
second approach (Chen et al., 2021b) and an ALNS framework for
parallel clustering and routing (Chen et al.,, 2021a). Computation-
ally, this concept is less complex than the MTR-RP, since it is nec-
essary to keep the robot travel short (therefore the authors cluster
customers based on location), the number of robots on the truck
does not change and the number of potential stops is smaller. The
disadvantage of this concept is that the truck has to wait for the
slow robots to return. This results in savings of 4 to 17% compared
to normal truck deliveries reported by Chen et al. (2021b), as op-



Table 1
Overview on related delivery concepts.

Synchronization

No. of smaller  Usual share of

Concept Handover! Return? Mothership ~ Storage  vehicles? truck delivery
Two-echelon - - (D) - v any 0%
Hub-and-Robot - - (D) - v any 0%
Truck-and-Drone v v (MS) v - 1-4 >20%
Truck-and-Robot

- without depots v v (MS) v - 1-10 20-80%

- with depots v - (D) v - 20-200 0-20%

1 Handover to second transportation mode. 2 In brackets: return to mothership MS or depot D. 3 Such as
drones, bikes, robots etc. v': part of the corresponding concept, -: not considered within the concept.

posed to more than 50% reported by Ostermeier et al. (2021) for
a concept based on robot depots. We therefore consider the use of
more robots and robot depots as a key enabler for an efficient TnR
application.

(v) Truck-and-Robot with robot depots. To date, three publica-
tions explicitly deal with TnR routing involving robot depots. In
the seminal paper, Boysen et al. (2018) introduce the idea of robot
depots to eliminate truck waiting time and aim to minimize the
number of delayed deliveries. The system analyzed consists of
40 customers and several depots and drop-off points. They solve
the problem with a multi-start local search (LS) procedure and
show that a TnR system with one truck can replace several tra-
ditional delivery vehicles while maintaining service quality. The
authors do not incorporate truck deliveries in their approach nor
do they provide a quantification of financial and environmental
benefits. Some simplifications are assumed (e.g., unlimited robot
availability at every depot). Alfandari, Ljubi¢, & de Melo da Silva
(2021) build on this work by analyzing alternative delay measures
and proposing a Branch-and-Benders-cut scheme for faster compu-
tation. Ostermeier et al. (2021) have extended the problem to ac-
count for limitations in robot availability at every depot and min-
imize total logistics costs, including both truck- and robot-specific
costs. Again, the problem is restricted to robot delivery only, while
direct truck deliveries are not considered. The authors propose a
local search to deal with the increased complexity. In their exper-
iments the concept reduces costs by up to 68% and truck mileage
by up to 82% compared to classical truck delivery.

Research gap. Table 1 summarizes the key differences between
concepts involving trucks and smaller vehicles. It shows whether
the vehicles are synchronized (i) when handing goods over to
the smaller vehicles and/or (ii) when the smaller vehicles return,
(iii) whether the truck acts as a mothership (transporting smaller
vehicles), and (iv) whether goods storage facilities exist in the
network. The last two columns indicate the typical numbers of
smaller vehicles involved in a delivery tour and the share of de-
liveries made by truck.

In summary, the MTR concept leads to a routing problem that
requires problem-tailored solution approaches. Approaches for the

Table 2
Summary of existing literature on TnR routing involving robot depots.

concepts mentioned in paragraphs (i) to (iv) do not yet include the
necessary specifics of the MTR-RP, in particular time windows, a
large fleet of smaller vehicles transported and dropped off by truck
and a selection of alternative delivery modes to the customer. For
a more detailed review of last-mile delivery concepts we refer to
Boysen, Fedtke, & Schwerdfeger (2021). There are only three pub-
lications on TnR routing involving robot depots and none of them
enables mixed truck and robot deliveries (see Table 2). All publi-
cations dealing with this innovative last-mile delivery concept fo-
cus on robot deliveries, while the truck does not visit customers
directly, but only stops at given drop-off locations. However, in
a practical application the combination of both delivery modes is
needed to ensure that all types of orders can be processed on the
same truck tour to reduce costs. We therefore extend the exist-
ing literature by addressing the MTR-RP, in which truck deliveries
are incorporated when required and a decision between truck and
robot delivery is made if both modes are feasible. The correspond-
ing decision model is presented in the next section.

4. Formulation of the MTR-RP

This section introduces the mathematical formulation of the
MTR-RP. The notation used is summarized in Table 3.

The following sets form the basis of the MTR-RP. The set of
customers C consists of three disjointed subsets: customers with
mandatory truck delivery C™, customers requiring robot delivery
C*, and customers for which the delivery mode is optional C° (i.e.,
both truck and robot delivery are possible), with C = C™ uUC" U C°.
Every customer ke C'UC® can (without loss of generality) be
served by one robot, every customer k € C™ UC° by the truck. The
truck-and-robot infrastructure consists of a set of robot drop-off lo-
cations D, where the truck can start robots, and a set of robot de-
pots R, where the truck can pick up and start robots. We further
duplicate drop-off and depot locations to allow multiple visits of
the same depot or drop-off point. This results in the duplicate sets
D and R. For clarity, we summarize all (duplicate) locations that
can be visited by truck in L:=CMuC°UDUR. For every distinct
location a, a € D UR, we denote the set of its duplicates as Iy, I; C I,
and the set of indices in I, that are less or equal to m,m € I,
as I7'. The set I is required to keep track of the order in which

Aspects considered in modeling and optimization

Delays  Robot Costs  Truck Truck/robot
Publication Objective Methodology availab. delivery  selection
Boysen et al. (2018) Number of late deliveries Local search v - - - -
Alfandari et al. (2021) 3 different delay measures  Branch-and-Benders-cut v - - - -
Ostermeier et al. (2021)  Total costs Local search v - -
This paper Total costs GVNS v ' '

v': considered, -: not considered.



Table 3

Notation of the MTR-RP.

Index sets

C Set of all customers k € C

C™ (C')  Subset of customers requiring truck (robot) delivery, with C™ UC' < C

ce Subset of customers indifferent regarding truck or robot delivery, with C° € C
D (R) Set of distinct robot drop-off points (robot depots)

D (R) Set of robot drop-off points (robot depots) including duplicates

L Set of all (duplicate) locations reachable by truck: L:=Cmuc°uDUR

Iy Set of duplicate indices i,i e DUR, of one distinct location a,a e DUR

I Set of elements i e I, withi <m

Problem parameters

d Deadline for customer k, k € C

K Maximum robot capacity of a truck

Ta Initial amount of available robots in location a,a € R

y (7) Start (end) position of the truck, with y, 7 ¢ L

§ Initial number of robots aboard the truck

€ Length of time window of customer k

Aij Distance between locations i and j,i, j e L

z?ifj Truck travel time from location i to location j,i,j e L

e Robot travel time from location i,i e L, to customer k, k e C
b

Robot travel time from customer k back to the closest robot depot

Cost parameters

c
cd

ct (c")

Cost of delay per time unit
Cost of truck per distance unit
Cost of truck (robot) per time unit

Decision variables

Sij
Xik

Binary: 1, if truck travels from location i to location j; O otherwise
Binary: 1, if customer k is supplied by a robot from location i; O otherwise

Auxiliary variables

5

Arrival time of truck at location i

qi Number of robots aboard the truck after visiting location i
e; Number of robots taken out of depot location i,i € R

Vg Delay of delivery for customer k

wy Waiting time for robot at customer k

duplicates are visited and to enforce the constraint on available
robots after every visit.

The truck starts in y (e.g., a goods warehouse, y ¢ L) with §
robots on board and has a maximum capacity of K robots (§ < K).
It is already loaded with the goods to be delivered. In every robot
depot a, a € R, there is an initial number of robots r, available for
use by the truck but the depot capacity is not limited with respect
to the return of robots. Every customer k, k € C, has a delivery time
window defined by a deadline d; and the time window length €.
The delivery comprises one customer order (possible consisting of
multiple items) and cannot take place before the customers’ time
window starts (i.e., not before d — €;). In this case truck or robot
waiting time applies. If it occurs after the deadline, delay costs at
the rate of ¢ are incurred. The distance between locations i and j
is denoted by A; ;, the resulting travel times by 19{ i for the truck
and z?{k for the robots. We further denote the robot travel time

from customer k, back to the closest depot as 19,5’. Note that the
costs of the robots’ return to the closest depot is a parameter for
each customer supplied by robot as the closest depot is known in
advance. Any processing time for loading and unloading is added
to these times. We introduce the dummy end location y (typically
equal to the starting location, y ¢ L) to track total truck time. This
is necessary since the truck may have to wait to meet a time win-
dow for delivery. The total truck time that is needed to assess truck
usage costs is thus the arrival time at the end node y, indicated by
ty. The time-based cost rate of the truck is denoted as ct and the
distance-based cost rate cd. A time-based machine rate c' is as-
sumed for the use of robots. It is incurred while loading the robot,
its travel to the customer, waiting for the beginning of the time
window (if necessary), unloading by the customer, and the return
to the closest depot.

In the course of minimizing total costs, we further define
the following decision variables. The binary variable s; ; indicates
whether the truck travels from location i to location j or not.
The binary variable x;, defines whether customer k is supplied by
robot from location i, i.e.,, whether a robot travels from i to k. To
track feasibility and costs of a solution, the following auxiliary de-
cision variables are needed. The variable t; defines the arrival time
of the truck at location i,i e [, and g; the quantity of robots aboard
the truck when leaving the location. The quantity of robots taken
out of depot i,ie R (i.e., loaded on the truck or directly started
towards a customer) is defined by e;. For every customer k, v, in-
dicates the duration of delay (in the event of late arrival) and w;
the robot waiting time (in the event of early arrival). We then for-
mulate the MTR-RP as follows.

minF(S, X, T,V,LLE,W) =

=cty+ Y Y sty D @O+ I

ielu{y} jelu{y} jel keCruce
+ Z(Clvk+Cer) (1)
keC

subject to
in,k-l- Z Sik=1 VkeCouC™m (2)
iel ielu{y}
D xie=1 Vk eC" (3)
iel
ij,ka Z Sij Vjel (4)
keC ielu{y}



Y osyi=1 (5)
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Z Sijj= Z Sji V] € i (6)
ielu{y} ielu{y}
t, =0 (7)

ti>t+ 0 ;- M1 -s;;) Vielu{pkielu{y} (8)

ty > dk — €y Yk eC™ (9)

ty de—Gk—M(] - Z Si_k) Vk e C° (10)
ieiu{y}

qy =4 (11)
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ti <t YacRi,jelp:i<j (17)
D shiz= Y Snj YacRijelg:i<j (18)

helu{y} helu{y}

Ta—» >0 YaecRmel, (19)

el

sije{0,1} Vielu{y)jelu{y}:i#j (20)

sii=0 Viel (21)

X € {0,1} VielikeC'ucC® (22)

Xix=0 VielkecC™ (23)

e e’z VieR (24)

ti>0 Vielu{y} (25)

gi € {0,....K} Viel (26)

Vg, W = 0 VkeC (27)

The objective function (1) minimizes total costs. The first term
considers the cost of truck time (at cost rate ct). It comprises the
total truck time including travel time between locations and po-
tential waiting time if customers are approached too early. The
second term covers the truck’s distance costs (at cost rate c9).
The third term comprises the robot costs dependent on associ-
ated travel times to the customer and back to the closest depot (at
cost rate c). The last term of the objective function sums up the
cost of possible delayed deliveries (cost rate c!) and robot waiting
times across all customers. Constraint (2) ensures exactly one visit
by either truck or robot for every customer k € C° UC™. Similarly,
constraint (3) ensures that each customer who requires a robot
delivery is visited by exactly one robot. Constraint (4) states that
robots can only be launched from stops that are actually visited by
truck. Constraint (5) defines that the truck only leaves once from
the starting point, and (6) ensures that if the truck reaches a lo-
cation, it must also leave it. Constraints (7) and (8) determine the
truck arrival time at every stop based on travel times. This also
prevents a second visit to the same (duplicate) stop. Constraint
(9) ensures that a required truck delivery is not made before the
respective time window and (10) does so for optional truck deliv-
eries in case they are made by truck (and not by robot). The fol-
lowing constraints (11), (12) and (13) handle the number of robots
aboard the truck when leaving the starting point, a depot or any
other location, respectively. Constraint (14) defines the delay for
customers receiving truck delivery. Constraints (15) and (16) define
the delay and waiting time for customers receiving robot deliver-
ies. Constraints (17) and (18) ensure without loss of generality that
duplicates of the same location are visited in ascending order of
their index. This fact is then used by constraint (19) to track the
robot stock in every depot and to ensure that the stock is > 0. Fi-
nally, the variable domains are defined by constraints (20) to (27).

The MTR-RP extends the classical TnR problem, i.e., without
truck deliveries, in several ways: Some customers must be served
by truck, others can be. This means that the total number of robots
started (tracked by (11), (12) and (13)) is not predetermined but
part of the decision problem. Moreover, total truck time is no
longer based merely on the legs s; ; traveled since the truck may
have to wait for the beginning of a time window ((9) and (10)).
We need to determine the usage time of a truck instead by us-
ing the return time to the warehouse t;, and add the term t;c*
to the objective function. Since the optimal t; is determined via
the recursive constraints (8), (9) and (10), this is computationally
expensive even for small instances.

5. Solution approach

The MTR-RP generalizes the NP-hard TnR routing problem and
therefore constitutes an NP-hard optimization problem by itself
(see Boysen et al., 2018). Since even small instances cannot be
solved exactly, we propose a tailored solution approach, denoted
as MTR heuristic, that is based on a GVNS framework (see Hansen
& Mladenovic, 2001; Mladenovi¢ & Hansen, 1997). GVNS conducts
several rounds of Variable Neighborhood Descent (VND) with a
shaking step between them. The general steps of a GVNS are
shown in Algorithm 1.

Basic Variable Neighborhood Search (VNS) formulations (of
which VND is a special case) have been used successfully for many
variants of routing problems (e.g., de Freitas & Penna, 2020; Henke,
Speranza, & Wascher, 2015; Kovacs, Golden, Hartl, & Parragh, 2014;
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Fig. 5. Structure of the MTR heuristic proposed.

Algorithm 1 GVNS framework (adapted from Hansen & Mladen-
ovic¢ (2018)).
Require: Starting solution g
Thest = Ts; [/ best solution found
ks =1 /| shaking neighborhood
while k; < number of shaking neighborhoods do
Treurrens = random(shakeneighborhood (7, ks)) [/ shake tour
7ynp = VND (T cyrrent) |/ perform VND to improve tour
if Z(”VND) < Z(nbest) then
Thest = TTVND
ks =1 |/ restart GVNS with new best tour
else
ks = ks + 1 [/ continue with next shaking neighborhood
end if
end while
return 7Ty,

Pia & Filippi, 2006) as they provide a high degree of flexibility and
can be tailored to the given problem specifics. The key benefit of
GVNS for this application (compared to local search approaches
previously used for TnR, see Boysen et al., 2018 and Ostermeier
et al., 2021) is that complete neighborhoods are evaluated in a de-
fined order. This is necessary for finding improvements as the ob-
jective function is sensitive to small changes in the truck route. The
robot scheduling depends on the available truck stops and there-
fore changing a single stop may have a significant impact on over-
all costs. Evaluating all possibilities for a certain change operation
consequently ensures the best option is found. Furthermore, defin-
ing an order of assessed neighborhoods enables us to incorporate
problem-specific knowledge, such as truck distance as a key cost
driver (Ostermeier et al., 2021). An overview of our solution frame-
work is shown in Fig. 5.

We generate an initial truck tour with one of two possible
start procedures, depending on the given problem instance (see
Section 5.1). This truck tour is then evaluated and complemented
to a full solution by finding the optimal robot schedule using an
MIP (see Section 5.2). Next, a GVNS is used to improve truck
tours with respect to depots visited, drop-off locations and direct
truck deliveries (see Section 5.3). It consists of a shaking step and
a subsequent Variable Neighborhood Descent (VND). Within the
GVNS, tours are again assessed by the robot scheduling MIP from
Section 5.2.

5.1. Initial truck tour generation
There are start heuristics for classical VRPs (i.e., truck delivery

only) and TnR routing (i.e., robot delivery only) available in cur-
rent literature. Our approach combines these two modes and thus

chooses between truck and robot delivery based on efficiency. We
found in our numerical experiments that above a certain number
of mandatory truck deliveries, the order of these deliveries is cru-
cial for solution quality. Below a certain number of truck deliveries,
the robot deliveries have a greater impact on the solution and total
costs. Leveraging these insights, we propose two alternative prin-
ciples for generating start solutions, depending on the number of
truck deliveries required. They differ in terms of which deliveries
are considered and in which order. Deliveries which can be com-
pleted by both truck and robot are treated as robot deliveries in
this step.

Robot deliveries first, truck deliveries second. In the event of less
than o mandatory truck deliveries, we generate a tour that in-
cludes both robot and truck deliveries in a two-step approach.
First, stops at drop-off and depot locations are sequentially ap-
pended to the tour based on the priority rule (PR) “go to the lo-
cation from which most robot deliveries can be started such that
they reach customers on time”. Truck delivery customers are ig-
nored in the first step. As soon as robot customers are assigned
to a stop, they are not considered for later stops. This rule results
in a sequence of depot and drop-off points, which could be non-
feasible since robot availability is not yet considered. In the second
step, the truck deliveries required are inserted sequentially, each
customer at the position of the tour where the smallest deviation
is caused. We therefore obtain a complete tour consisting of drop-
off locations and stops at truck delivery customers.

Only truck deliveries. In the event of at least o truck deliver-
ies, we solve a VRP with time windows (see model provided in
Appendix A) for truck delivery customers, thus ignoring robot de-
liveries completely. The corresponding VRP can be solved optimally
for small problem sizes, while for larger problem sizes the best so-
lution found within a given time limit T is used. This results in a
truck tour that visits all customers requiring truck delivery, starting
from the start location. This route then serves as starting solution
for the GVNS. Despite lacking the consideration of robot drop-off
locations, this enables us to obtain an efficient basis for the truck
routing as the direct truck deliveries are decisive for the final tour,
including drop-off and depot locations.

5.2. Tour evaluation and robot scheduling

Feasibility of truck tours. All solutions obtained (including the
start solution) need to be assessed with respect to robot availabil-
ity to prevent non-feasible tours. A truck tour is only feasible if
the total number of available robots (initial number of robots on
the truck § plus all robots at depots visited on the tour rg,a € R)
is equal to or larger than the number of customers not visited by



Table 4

Additional parameters and variables for robot scheduling.

Truck tour parameters

U Index set of stops on the truck tour u e {1,2,...}

Y Tuple of truck stops, where element y(u) is the uth stop of the truck tour, y(u) e L
¢ Set of customers not visited by truck (i.e., not in Y)

ty Arrival time at truck stop u,u e U

ch Cost of serving customer k, k e C, from stop u,u e U

Decision and auxiliary variables

Xuk
qQu

Tau

Binary: 1, if customer k, k € C, is supplied from stop u, u € U; 0 otherwise
Number of robots aboard the truck at departure from stop u,u € U
Number of available robots in location a, a € L, after the uth truck stop

truck (i.e., customers that are not on the truck route). We append
the closest unvisited depot to the end of the tour as long as the
number of available robots is not sufficient.

Robot scheduling for given truck route. Once feasibility is ensured,
the corresponding robot movements for the truck route in question
must be defined, i.e., all remaining customers must be assigned to
a truck stop, from which the corresponding robot will start. This
transforms the truck tour into a full solution. We apply an MIP
proposed by Boysen et al. (2018) and enhanced by Ostermeier et al.
(2021) to assign customers to the truck stops on the route. This is
necessary to evaluate the quality of a route that has been found.
In contrast to the MIP from Section 4, which included the decision
on truck movements, we do not need duplicates of robot drop-off
(D) and depot locations (R). This leads to L := C™ UC°® U D UR being
the set of all locations potentially reachable by truck. We assume
the truck tour to be given as a tuple Y, where y(u) is the location
of the uth stop, y(u) € L. Note that customers that are part of the
truck route (i.e., served by truck) can be ignored in this step. We
denote the set of remaining customers to be served by robot as
C, with € € C°U(C". Table 4 summarizes the notation of truck tour
parameters and decision variables.

The actual arrival time at each truck stop t,,u € U for a given
tour Y can be calculated using Eqs. (28)-(30). Equation (28) states
that the truck tour starts at time zero. For drop-off and depot loca-
tions, only truck travel times determine the arrival time (Eq. (29)).
For customer locations, the beginning of the respective time win-
dow also has to be considered to prevent premature deliveries (Eq.

(30)).

t1=0 (28)
tu=tu 1+ P50y Yu:y(u) e DUR (29)
ty = max(ty_q + ﬂ;(u)yy(uq); dyawy — €k) Yu:yu)eC (30)

Based on arrival times, the total cost czk of supplying a cus-
tomer k from stop u is denoted by Eq. (31). It comprises the robot
usage cost (at rate c') for travel time, waiting time at the cus-
tomer (in the event the robot arrives before the time window) and
the time to return to the closest depot 19,'{’. Finally, delay costs are
added.

i = C DOy p+ (i — € —tu = Dy )T +00)
VueUkeC (31)

The variables x,;, rqu and qy define where each customer’s
robot is started, how many robots are available in each location
and on the truck after every stop. The robot scheduling MIP can
then be formulated as follows.

min F(Q.X.R) =33 x4l

uel kel

+ (b + Dyayr — D)™

(32)
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subject to

D Xy =1 VkeC (33)
uel

Tau = Tau_1 VYaeRueU:a#y(u) (34)
Taw <Tau-1+qua —Gu— Y Xk YaelLueU:a=y() (35)

keC

qo=124 (36)
Tao=Ta Ya eR (37)
Taqu=0 VYaeL\RueU (38)
X € {0,1} YueUkeC (39)
Tqu >0 YacR uelU (40)
0<qu=<K YueU (41)

The objective function (32) minimizes total robot and delay
costs. Constraint (33) ensures that exactly one robot is sent to each
remaining customer. Constraint (34) states that if a depot is not
visited, the number of available robots remains the same. Con-
straint (35) keeps track of the number of robots in locations visited
and aboard the truck after every stop. Equations (36) and (37) de-
fine the initial number of robots in the depots and on the truck.
Constraint (38) ensures that robots cannot be stored at drop-off lo-
cations or customers. Constraints (39)-(41) define the variable do-
mains.

5.3. General variable neighborhood search

For improving the truck tour, we apply a GVNS as described
by Hansen & Mladenovic¢ (2018), which tries to improve the initial
routing solution by exploiting problem-specific knowledge. It con-
ducts several cycles of shaking and subsequent local search using
a VND procedure. Both the shaking and the VND rely on neigh-
borhoods. These are defined by operators, such that every neigh-
borhood contains all truck tours that can be generated by applying
the respective operator to the incumbent truck tour. Algorithm 2
summarizes the GVNS applied. The inner while loop constitutes
the VND (with its improvement neighborhood k;), the outer one
conducts the shaking (with shaking neighborhood ks) and stores



Algorithm 2 Detailed GVNS procedure (adapted from Hansen &
Mladenovic (2018)).

Require: Starting solution 7
Tpest = Ts; [[ best solution found
ks = 1 || shaking neighborhood
while k; < number of shaking neighborhoods do
improvement = false
|| perform several VND runs with same shaking neighbor-
hood:
for j=1to« do
ki =1
Teurrent = random(shakeneighborhood (7pe, ks)) [/ shaking
neighborhood ks
while k; < number of VND neighborhoods do
Ty, = best(improveneighborhood (7w cyrrent, k;) [/ improve-
ment neighborhood k;
if Z(my ) <Z(7pes) then
Thest = TTk;
ki =1
improvement = true
else
k; = k; + 1; [/ next neighborhood
end if
end while
if improvement = true then
ks =0
break
end if
end for
ks = ks +1
end while
return 7Ty,

the best known solution. The parameter « in the for loop deter-
mines the number of VND iterations for every shaking neighbor-
hood. To evaluate truck tours, the GVNS repeatedly uses the robot
scheduling MIP.

Shaking. The shaking phase of the GVNS is used to diversify the
search. Neighborhoods are obtained by varying the truck tour of
a previously generated solution and reoptimizing the robot move-
ments. The neighborhoods are applied in the given order, one in
each shaking phase, and used to generate o new solutions. For
each of these solutions we apply a separate VND in the next step.
When a shaking step has led to an improvement, the process
restarts from the first neighborhood. The search is complete after
all shaking neighborhoods have been used without improvements.

« Depot insertion. This operator inserts a new robot depot into
the tour. Since robot availability is crucial for finding an effi-
cient robot schedule, selecting different depots can enable tour
improvements.

o Detour insertion. This operator inserts a drop-off point or a

customer with optional truck delivery into the truck tour that

leads to a detour of half the delivery area’s side length or above.

It is used to diversify the search by causing a large change in

the current truck tour.

Swap stop. This operator swaps two random stops (of which

each can be a drop-off point, robot depot or customer) of

a truck tour. This may again lead to large detours and thus

widens the search space.

Stop relocation. This operator shifts a stop to a later or earlier

point on the tour.

o Customer reshuffling. This operator instigates the most exten-
sive tour change. The rationale for this operator is that a truck

1

delivery with a high delay can lead to a strong cost increase
and therefore should be avoided. An example is presented in
Fig. 6. The original tour is reduced to only the required truck
deliveries by removing any other stops (step 1 in Fig. 6). For
the remaining steps, we consider the original arrival times at
the customers. For every customer with a late delivery (cus-
tomers 3 and 4 in the example), we generate tour candidates
by inserting this stop at earlier points of the tour such that
customers are reached before their deadline. Customer 3 with
a deadline at time 11 can only be inserted before customer 1,
as customer 1 was originally reached at time 12. Customer 4
with the deadline at time 30 can be inserted before and after
customer 1 (as 12 < 30), but not after customer 2 (as arrival
time at customer 2 is 32 > 30). In total, this results in one tour
candidate for customer 3 and two tour candidates for customer
4 plus the reduced tour (step 1). All tours derived in steps 1
to 3 form the ‘customer reshuffling’ shaking neighborhood (i.e.,
four tours in our example). If this neighborhood contains more
than nshuffle tours, we reduce it by considering only the shortest
tour of each step (resulting in three tours in our example). The
following VND will then construct a new solution around the
reshuffled truck deliveries by inserting robot depots and drop-
off points, which potentially leads to extensive changes com-
pared to the original tour.

VND. The VND is used to improve the truck tour. It relies
on multiple neighborhoods of the incumbent solution that are
searched sequentially. The VND restarts from the first neighbor-
hood when a better solution is found. This continues until all
neighborhoods of the incumbent solution have been searched and
no improvement has been found. Each neighborhood contains all
tours that can result from applying its operator to the incumbent
tour.

* Remove a non-depot. Removes a drop-off point or a customer
with optional truck delivery from the current truck tour. Since
truck distance is a main cost driver, this often leads to im-
provements. Required truck deliveries cannot be removed in
this step.

Remove a depot. Removes a depot from the current truck tour.
The removal of a depot may lead to non-feasible solutions. In
this case additional depots will be appended within the feasi-
bility check.

Add depot. Adds a new depot to the existing truck tour. Addi-
tional depots can increase robot availability on parts of the tour
and lead to better robot schedules at reduced costs.

Add a non-depot. Adds a drop-off point to the existing truck
tour. This may reduce robot travel times by bringing the truck
closer to nearby customers.

Swap two stops. By changing the order of stops, truck distance
can be reduced or delays at the later stop can be avoided.
Relocate a stop. This operator primarily aims at improving ar-
rival times at customers. In particular when the truck arrives at
a customer too early and is forced to wait for the time window,
shifting this customer to a later point of the tour can reduce to-
tal time and delays.

The order of improvement neighborhoods ensures that tours
are kept short, and that we start with the smallest neighborhoods.
This reduces the computational effort by limiting the number and
complexity of the robot scheduling MIP (Egs. (32)-(41)) that has
to be solved to evaluate the tours. Since in neighborhoods ‘add
depot’ and ‘add non-depot’, several hundreds of combinations of
inserted location and insertion position of the tour exist, neighbor-
hoods are limited to the n™a shortest tours. This again reduces
computational effort based on known problem characteristics.
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Fig. 6. Customer reshuffling procedure (example).

6. Numerical examples

This section analyzes the performance of our MTR heuristic.
First, we describe the instances and parameters used in our exper-
iments (Section 6.1). Next, we compare our approach to a bench-
mark (Section 6.2) to assess the performance of our algorithm.
Further experiments assess the impact of both required and op-
tional truck deliveries. We compare different fulfillment concepts
for home delivery depending on the share of truck deliveries re-
quired (Section 6.3) and analyze the impact of time windows on
the routing (Section 6.4). Further, the influence of handling times is
analyzed (Section 6.5). Finally, we discuss the impact of customer
distribution (Section 6.6), and cost rates for the truck and delays
(Section 6.7). Our approach was implemented in Python (using Py-
Charm 2018.3.5 Professional Edition) with Gurobi (version 8.0.1)
as MIP solver and executed on a 64-bit PC with an Intel Core i7-
8650U CPU (4 x 1.9GHz), 16 GB RAM, and Windows 10 Enterprise.

6.1. Instance and parameter setting

In our numerical experiments we aim at analyzing the per-
formance of our MTR heuristic in comparison to related ap-
proaches. To enable a fair comparison and to evaluate the im-
pact of direct deliveries we leverage the test data provided by
Ostermeier et al. (2021) (http://www.vrp-rep.org/datasets/item/
2020-0005.html). The data set comprises instances for TnR rout-
ing and resembles the general setting of our problem but ignores
the possibility of direct truck deliveries. The data setting is as fol-
lows. Customer locations are picked randomly from all buildings in
a 4 km? area in northern Munich (Germany), using OpenStreetMap
(OpenStreetMap Foundation, 2019) to create instances with |C| =
50 customers. To account for direct truck deliveries, we assume
that the first 12% of customers (which the instances list in ran-
dom order) require truck delivery (|C™|/|C|=0.12). The remaining
customers require robot delivery (C" = C/C™). This means there are
no optional truck deliveries in the default case (C° = ¢). The impact
of optional truck deliveries will be analyzed separately. Note that
our assumption for |C™|/|C| is in line with the estimate reported
by Forbes (2019), that technically 75 to 90% of Amazon deliveries
could be made by autonomous vehicles, and will be subject to a
sensitivity analysis in the following. There are |R| = 25 evenly dis-
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tributed robot depots, and |D| = 48 uniform-randomly distributed
drop-off points in the area. All delivery time windows have the
same length € = 10 min. The end of a customer’s time window
is generated based on the direct travel time of the truck from its
random starting position to the customer. This travel time is mul-
tiplied by a uniform-randomly distributed factor from the inter-
val [ Pmins Pmax] = [5, 8]. This procedure simulates an assignment of
customers to vehicles such that reasonable tours are made possi-
ble. The initial number of robots is rq = 10 for every depot a,a € R.
The capacity of the truck is K = 8 robots and it is fully loaded at
the start (§ = 8). The average speed of the truck is 30km/h and
the average speed of the robots 5km/h. A handling time per truck
stop of i = 40 s is assumed in addition to travel times. Note that
we assume the same travel distances for the truck and robots. In
practice, robots would often be able to take shortcuts, which adds
to their advantages. There are 20 instances generated with 25, 50,
75 and 100 customers respectively, resulting in a total of 80 in-
stances used in our experiments. All results presented show the
average of the corresponding 20 solutions. We further apply the
cost rates empirically quantified by Ostermeier et al. (2021). These
are ¢4 =0.20 €/km and c' =30 €/h for the truck, ¢ =0.50 €/h
for robot use and c! =5 €/h for delivery delays. For a more de-
tailed discussion of costs in last-mile delivery we further refer to
Brotcorne, Perboli, Rosano, & Wei (2019).

Lastly, we allow « = 4 VND iterations per shaking neighborhood
(executed in parallel), a maximum of nshufle — 4 for the customer
reshuffling shaking neighborhood and a maximum VND neighbor-
hood size of n™3 = 90 tours. The threshold for the selection of the
start heuristic is set at o =2 and its time limit T at 3 min.

6.2. Performance comparison

There are no existing solution approaches to MTR and only
a couple of publications on TnR (see literature analysis). To the
best of our knowledge, Boysen et al. (2018) and Ostermeier et al.
(2021) provide the currently most developed approaches in this re-
search area. As we provide a generalization of the problem, we
will use a special case of our problem that is equivalent to the
problems in the benchmark. We compare our MTR heuristic to the
LS approach by Ostermeier et al. (2021), as the authors study the
TnR concept with a total cost objective, i.e., without the possibil-
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Fig. 7. Comparison of our MTR approach to the benchmark (i.e., LS approach by
Ostermeier et al., 2021) for a share of 0% and 12% of truck deliveries.

ity of truck deliveries. Their numerical studies show that their LS
approach outperforms the approach by Boysen et al. (2018) in find-
ing cost-optimal tours. However, due to its structure, the LS is not
suitable for incorporating truck deliveries and all customers must
be visited by robot. We consequently apply our MTR heuristic to
solve both instances without truck deliveries and additionally in-
stances with the restriction of 12% truck deliveries required. In the
special case of our setting without truck deliveries, the problem is
identical to the one solved by Ostermeier et al. (2021). The MTR
heuristic reaches a solution quality differing only 0.3 to 2.0% from
the LS in these cases. The computation times for different problem
sizes are shown in Fig. 7. The scenario with 12% truck deliveries
is labeled ‘MTR 0.12’ and the one without truck deliveries ‘MTR
0.0’. We see that the MTR approach outperforms the LS when only
robot deliveries are required, reducing the computation time by 37
to 94% (for 100 and 25 customers respectively). This shows that
despite the focus of our MTR approach on a mixed delivery struc-
ture, it works efficiently and effectively for a related problem with-
out direct truck deliveries. When truck deliveries are required, the
computation effort increases, but remains at a level acceptable for
an application in practice. The reason for the increase is the strong
impact of truck deliveries on costs and the resulting longer search
for better alternatives. A premature truck delivery on the route
forces the truck to wait until the delivery time window starts. This
causes additional costs and potential delays at later stops. A late
truck delivery, on the other hand, causes delay costs at the respec-
tive customer. Robot deliveries are more flexible as they can be
started at different stops of a truck tour such that small changes
to a given tour often show a minor impact on robot schedule and
delay costs.

Additionally, we found that the MIP for the entire MTR-RP ((1)-
(27)) could not be solved exactly within three hours for six cus-
tomers, even if stops are not duplicated, branching is supported by
a relaxed MIP version and a feasible start solution is provided to
the solver. An average MIP gap of 52% remained.

6.3. Comparison of delivery concepts

This section compares the delivery concepts given in Table 5 for
a varying share of truck deliveries required.

Figure 8 shows the total costs, computation times, average delay
and total truck distance for the concepts analyzed. We henceforth
highlight the default setting described in Section 6.1 with a bold
x-label. Note that TD was solved without consideration of the ear-
liest delivery time, i.e., delivery can occur before the time window
to reduce computational complexity. This leads to an advantage for
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TD and an underestimation of the improvements due to MTR. De-
spite this simplification, optimality could not be proved within the
computation time limit of three hours. We therefore report prop-
erties of the best solutions found and the lower bound of the ob-
jective value (‘TD LB’). Further, MTR and STR are identical for 0% of
truck deliveries.

Computation time. Runtime increases significantly for a mixed
planning (i.e., MTR and MTR OT) as soon as truck deliveries are re-
quired. The actual locations of individual customers are the main
driver of computation times. Single customers can significantly in-
crease the problem complexity and the respective runtimes if they
require truck delivery and cause a large detour for the truck. For
example, for MTR, the standard deviation across the 20 instances
relative to the average objective value increases by 25% when the
share of truck deliveries increases from 0 to 12%. In line with this,
runtimes for MTR OT are higher due to the potential additional
truck stops. STR on the other hand reveals a decrease in runtime
as more truck deliveries are outsourced to a separate routing prob-
lem.

Cost impact of MTR. All robot concepts outperform a solution
with truck deliveries only (TD). This is in line with current litera-
ture (see Ostermeier et al.,, 2021). MTR OT is the option with the
lowest total costs in all examples. Total costs increase significantly
for all concepts involving robots as soon as truck deliveries are re-
quired (i.e., comparing 0 and 4% truck deliveries required). In the
STR case, this is due to the truck delivery tour needed in addition
to the robot delivery tour. In the MTR and MTR OT cases, it can be
attributed to reduced flexibility given the stops required for truck
delivery.

A further increase in the share of truck deliveries leads to a
moderate increase in total costs. Comparing a combined truck and
robot delivery to a separate delivery (i.e., MTR vs. STR) of more
than 4% truck deliveries results in cost savings of between 20 and
24% in favor of a mixed delivery. This highlights the advantage
of our MTR heuristic’s ability to combine truck and robot deliv-
eries into one tour. Compared to TD, MTR reduces costs by 43% in
the default case with 12% truck deliveries. This highlights the at-
tractiveness of delivery by truck and robots even for situations in
which not all deliveries can be made by robot.

MTR OT vs. MTR. MTR OT chooses the delivery mode for all
customers that can be supplied by truck or robot. An increasing
share of these customers is served by truck as the share of re-
quired truck deliveries increases. When no truck deliveries are re-
quired, only 1% of the customers are served by truck. When truck
deliveries are required, the truck delivery share among the ‘op-
tional’ customers C° steadily increases from 18% (in the case with
4% required truck deliveries) to 35% (in the case with 20% re-
quired truck deliveries). The reason for this increase is that addi-
tional truck deliveries are only efficient when they are close to the
tour. As the share of required truck deliveries increases, the tour
gets longer and thus more of the ‘optional’ customers are suit-
able for truck delivery with a small deviation. However, the cost
advantage of additional optional truck deliveries (i.e., MTR OT vs.
MTR) is low with up to 2% savings. Due to this small cost ad-
vantage of MTR OT compared to MTR, we restrict most of our
remaining analyses to the comparison of MTR vs. STR for better
readability.

Delay and truck distance. The logistical performance with re-
spect to delays is comparable for all robot concepts. This shows
that all deliveries can be made by a single tour without compro-
mising on delivery performance. MTR and MTR OT show a mini-
mum delay when 8% of truck deliveries are considered. The rea-



Table 5
Overview of delivery concepts.

Concept Description

Rationale Solution approach

TD: Truck-only delivery

Only deliveries by truck to all customers

Benchmark to assess MTR benefits MIP from Appendix A

MTR: Mixed truck and robot
delivery

Tour with mandatory truck deliveries and
all other deliveries by robot (C" = C\ C™)

Approach of this paper MTR heuristic

MTR OT: MTR with optional truck
deliveries

MTR extended by optional truck

made by truck (C° =C\C™)

deliveries, i.e., in addition to mandatory
truck deliveries, all other deliveries can be

Approach of this paper and MTR heuristic

assessing optional truck delivery

STR: Separate truck and robot
tours deliveries and one TnR tour for robot

deliveries (i.e., two simultaneous tours)

Separate planning of one TD tour for truck

Serves as benchmark to assess
benefits of MTR heuristic vs.
existing TnR heuristics

TD tour by MIP from Appendix A;
TnR tour by MTR heuristic
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Fig. 8. Comparison of different delivery modes for a varying share of required truck deliveries.

son for this is that including additional stops at truck delivery cus-
tomers (and thus forcing the truck to make a longer tour) can im-
prove punctuality as less distance needs to be covered by robots. A
further increase in truck deliveries then leads to additional delays
caused by longer truck tours and a later launch of robots at the
last drop-off points. The latter effect also leads to a decreasing ad-
vantage of MTR OT when more than 8% of deliveries are required
by truck. The truck is already overwhelmed serving the customers
who require truck deliveries such that optional truck deliveries are
hardly made in addition. The development of covered truck dis-
tance is similar across the three concepts using robots. It shows
a flattening increase for an increasing number of truck deliveries.
In the default case, MTR reduces truck mileage by 45% compared
to TD, showing that it is able to reduce pollution and traffic even
when truck deliveries are necessary. The steady increase in mileage
can be reasoned by the tight time windows considered. The truck
in the MTR scenario must go on a criss-cross route to satisfy all the
time windows at customer stops. We therefore analyze a changing
time window structure in the following.
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6.4. Analysis of the time window structure

Time windows limit the degree of freedom for the routing. This
section analyzes the impact of the time window length for both
truck and robot deliveries. We analyze both customer groups sepa-
rately since the impact of a customer’s time window on the overall
solution is higher when the truck needs to visit the customer and
meet the time window. This can lead to detours or waiting time
affecting all other deliveries as well, while a robot delivery has lit-
tle effect on other deliveries.

Time window length for truck deliveries. Figure 9 shows the per-
formance of MTR vs. STR depending on the change in time window
length for truck deliveries. Every time window change is made
symmetrically, i.e., in the case of a 10 min change, start and end
of the time windows are shifted by 5 min each. 0 corresponds to
the default case.

Cost and computation time are reduced if time windows be-
come wider due to increased flexibility. The cost decrease runs
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in parallel for MTR and STR such that MTR’s cost advantage is
stable at 21 to 23%. The driver of the cost decrease is reduced
truck usage both for MTR and STR. STR achieves only a moder-
ate truck distance reduction, but at the same time reduces de-
lays and keeps robot use stable since the separate robot delivery
tour is not affected. MTR achieves a larger distance reduction at
the cost of increasing delays and robot use. This means that al-
though the time windows become wider, MTR uses this opportu-
nity to further reduce truck distance and allow longer robot travel,
resulting in a very small increase in delays. Additionally, we con-
sidered a scenario without time windows for truck deliveries. Even
in this scenario, a cost saving of 19% is achieved by MTR com-
pared to STR. This is possible as truck deliveries can be added
freely at beneficial points of the route such that deviations are
minimized.

Time window length for robot deliveries. We further analyze the
impact of robot delivery time windows. Since these time windows
could have an impact on the delivery mode chosen by MTR OT,
we include it into this analysis. The results for the corresponding
changes are shown in Fig. 10.

As could be expected, costs of the MTR are hardly affected
by these changes since truck tours are dominated by truck de-
liveries. The only effect of wider time windows is reduction in
delays. For STR, the TnR route changes slightly. The distance be-
comes longer, while robot cost and delays decrease. This leads to
a minor cost reduction as robot deliveries only account for 38%
of total costs and truck deliveries are not affected. MTR OT con-
tinues to find opportunities for slight improvements by chang-
ing the delivery mode from robot to truck delivery for some cus-
tomers. The number of these customers (around 6 customers) and
the cost advantage created (1 to 2% compared to MTR) remain
constant with changing time window length. This shows that the
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customers’ location mainly defines whether customers are suit-
able for truck delivery or not. The results highlight that both MTR
and STR can fulfill tight time windows for robot deliveries at lit-
tle additional cost. The MTR approach outperforms the STR con-
cept with separate planning of truck and robot deliveries across all
scenarios.

6.5. Impact of handling times

The handling time for a truck delivery can vary depending on
how far the driver walks to the customer’s door and how quickly
the customer responds. We therefore analyze the impact of consid-
erably longer handling times for deliveries by truck within a sen-
sitivity analysis in Fig. 11. As the handling time increases, so do
total costs for both approaches. For MTR this leads to additional
delays (on a low absolute level) that further contribute to the cost
increase. STR benefits from a second truck and therefore keeps de-
lays low. MTR responds to this by further reducing the truck dis-
tance and the number of stops at robot depots and drop-off points.
The number of customer stops cannot be reduced, since only cus-
tomers requiring truck delivery are served by truck. However, these
customers are partly shifted to the end of the truck tour, such that
their handling times do not cause delays for subsequent robot de-
liveries. Despite the route adaptions by MTR, its cost advantage
compared to STR diminishes to 14% (at 160 s handling time) and
9% (at 280 s handling time). In practice this means that (i) han-
dling times should be kept short, e.g., by allowing the driver to
leave a parcel at the door instead of waiting for the customer, (ii)
time windows offered to the customers must take handling times
into account (as in our example, time windows are too tight for
increased handling times), and (iii) even with very high handling
times MTR remains cost-competitive.
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6.6. Impact of delivery area setting

The spatial distribution of customers and depots can have a
strong impact on a concept’s performance. We therefore analyze
total costs of MTR vs. STR for different distribution types. The uni-
form distribution of our default setting is compared to two al-
ternatives: a concentrated distribution, where customers and the
equidistant depots are located centrally in a 2 x 2km? square area,
and a clustered distribution, where two customer clusters are con-
sidered, one in the lower left and one in the upper right quad-
rant of the original 4 x 4km? square area. The depot distribu-
tion in the clustered distribution remains equidistant in the whole
square area (as in the "uniform” case). The number of customers
is varied from 25 to 100 (where our default case corresponds
to the uniform distribution of 50 customers). The MIP used to
solve the truck delivery tour part of STR could not be solved to
proven optimality within three hours in the 100-customer case.
The best-known solutions are reported. The results are summa-
rized in Fig. 12. We further illustrate the results of the different
settings using exemplary routing solutions in the appendix (see
Appendix B).
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Total costs show a near linear increase for both alternative con-
cepts. The MTR approach is able to sustain or even expand its cost
advantage for an increasing number of customers. In the concen-
trated setting, for instance, cost savings increase from 17% (25 cus-
tomers) to 29% (100 customers). Concentrated customers are ben-
eficial for both MTR and STR, as total travel distances decrease.
However, the MTR is able to better exploit the advantages of a con-
centrated or clustered distribution as all customers are served by
a single tour, while travel distances are further reduced and time
windows are met. Our MTR approach robustly leads to significant
savings in all settings presented.

6.7. Impact of costs

Impact of truck costs. The hourly cost rate of the truck is mostly
driven by the driver’s salary. We therefore provide a sensitivity
analysis on the truck cost rate ct, which corresponds to a Western
European salary level in our default case. Figure 13 displays our
findings. Total costs increase proportionally for both approaches,
leading to stable cost savings of 22 to 24% through MTR. STR is
more sensitive to changing costs. The higher the truck costs, the



Total costs [EUR]

42 -
-=- MTR ST
404 -=- STR S
38 e
36 .
34 e
32 e
30 e
28 ' r ¥ v
5 20 40 100
Cost rate of delays [EUR/ h]
Average delay per customer [s]
8
\ -=—- MTR
A
N --- STR
7 N
\\ \\
VN
\ Ay
N
6 Yol
\ S~<
\ e
5 \\ ~~~~~~~~~~~~~~
b\ ~=—.
4
\N“—~‘
3 e
5 20 40 100

Cost rate of delays [EUR/ h]

Computation time [min]

301 /,)- ~~~~~~
251 T .
20
-+~ MTR
15 -—- STR
101
5_
5 20 40 100
Cost rate of delays [EUR/ h]
Total truck distance [km]
16.5{ ~~° MIR s
-=- STR
16.0 ] v
15.5 1
A
15.0{ °
R -
/’——‘
1454 .7
v
5 20 40 100

Cost rate of delays [EUR/ h]

Fig. 14. Comparison of MTR vs. STR for varying delay cost rates.

higher the delays. The increase in delays goes along with a de-
crease in truck distance. The MTR solution on the other hand is
not sensitive to changing costs with respect to delays and truck
distance. In the 10 €/h scenario, the MTR approach therefore re-
sults in 10% less mileage at a cost of a 50% higher average delay
compared to STR.

Impact of delay costs. We have shown that increasing truck costs
may lead to increasing delays within the MTR approach. In our
final test we therefore assess how MTR performs for varying de-
lay costs cl. The results are summarized in Fig. 14. The cost curves
show that MTR savings slightly decrease as the importance of de-
lays increases. However, MTR achieves cost savings of 15% even for
a 100 €/h delay cost rate. Since the applied instances are chosen to
be challenging with respect to delivery times, neither of the two
approaches can eliminate delays completely. STR is able to reduce
delays more as it uses two vehicles instead of one. The price of
this is an increasing truck distance, while MTR’s truck distance is
stable. In summary, the STR concept minimizes delays compared
to our MTR approach, but at the cost of longer truck tours. From a
total cost perspective, MTR enables significant cost savings even if
the costs of delays are high.

7. Conclusion

Our work shows that the MTR concept is a valuable extension
of the existing TnR concept to enable further applications in the
retail industry. It combines autonomous robot deliveries with clas-
sical truck deliveries (e.g., for bulky orders). We present a com-
prehensive model formulation for this home delivery concept and
solve it using a tailored GVNS solution framework. The GVNS is
competitive compared to existing TnR routing algorithms as it
outperforms the prevailing LS approach in terms of runtime and
equals its solution quality for a robot-only delivery. The extension
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presented enables practitioners to assess and operate an MTR sys-
tem that can completely replace classical truck tours.

Our analyses show that the MTR concept reduces costs and
truck mileage by more than 40% compared to classical truck deliv-
ery, even when a share of customers has to be supplied by truck.
To give some further detail, the experiments show that (i) direct
truck deliveries have a large impact on costs and solution struc-
ture (e.g., 46% higher costs and 119% higher mileage due to 4% of
truck deliveries with MTR), (ii) by including direct truck deliveries
in the tour, our approach leads to savings of up to 24% compared
to a separation of truck and robot deliveries, and (iii) adapting the
time windows for truck deliveries can help to further reduce costs
and travel distance. Additional analyses highlight the benefits of a
mixed delivery concept and show that the MTR results are robust
across different settings. Applied to settings without truck deliver-
ies, our approach is 37 to 94% faster than an existing state-of-the
art approach.

While we address an important extension for TnR delivery,
there are several other aspects that can be assessed in future re-
search. Our model could test technical additions and infrastructure
specifics such as faster robot travel on bike lanes. Robot move-
ments between depots may further help to increase robot avail-
ability in depots visited by truck. The exchange of robots between
depots might therefore be a next step. In line with this, our model
could be extended to include the pickup of robots at drop-off
points on the tour. This means that robots could be sent to lo-
cations other than robot depots. Stochastic travel times and pick-
ups from customers could be considered to generalize the problem.
Other innovative last-mile delivery concepts could be compared to
MTR to derive guidance on which concept and fleet mix to im-
plement in which setting. To date, the TnR and MTR routing ap-
proaches have focused on a single truck tour. The use of multiple
tours and the corresponding allocation of customers to different
tours is required in settings with higher order volumes. Ultimately,



the problem presented demonstrates situations of high complexity
and unique structure for which alternative solution approaches can
be tested. Those could assist in accelerating computation, dealing
with larger problem sizes or evidencing optimality. We show that
the MTR can significantly reduce total mileage and transportation
costs. A detailed analysis of the impact on noise and CO, emissions
of the different transportation modes constitutes a future area of
research.
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Appendix A. A MIP model for the VRP with time windows

For solving the VRP with time windows, we introduce the
following MIP model, which we adapted from Ostermeier et al.
(2021) to incorporate time windows instead of only deadlines. It
minimizes the cost of traditional truck delivery assuming the same
cost factors as in the MTR case. We further assume the same pro-
cessing time of 40sec. for every customer k (included in z?l?k). We
introduce the set of available vehicles F, which contains only one
vehicle in our case. The binary decision variable s;; is 1 if vehi-
cle f travels from location i to location j and O otherwise. Finally,
auxiliary decision variable t, denotes the arrival time at customer
k and tlf the total tour time of vehicle f. This leads to the objective
function (A.1), which incorporates the cost of truck distance, truck
time and delays. Constraint (A.2) ensures every customer is visited
exactly once. (A.3) and (A.4) keep track of the earliest possible ar-
rival times at customers. Constraint (A.5) ensures no customer is
served before his/ her time window and Constraint (A.6) derives
the delays from the arrival times. (A.7) defines the total operating
time of each truck. (A.8) and (A.9) establish flow constraints for the
trucks at every stop. Constraints (A.10) to (A.12) define the solution

space.
min Y 3" Y s+ Y ctf+ Y cy (A1)
feF ieCu{y} jeCu{y} feF keC
subject to
> ) s=1 VkeC (A2)
ieCu{y} feF
tkzﬁ)t/k_M'(l_sfyk) VkeC,feF (A3)
tjzti"’_ﬁitj_M'(l_sfij) Vi,jEC,fGF (A4)
ty de—E Vk eC (A5)
Vg >ty — dk VkeC (AG)
t}zt,(+19,€y—M4(1—sfky) VkeC feF (A7)
Z Sfik = Z S fki Vk e C,f eF (AS)
ieCu{y} ieCu{y}
Zsfykfl VfEF (Ag)
keC
spij € 10,1} Vi jeC feF (A10)
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t>0; 1, >0 VkeC (A11)

tf =0 VfeF (A12)
Appendix B. Exemplary tours for the different delivery area

settings

Figures B.15, B.16 and B.17 show exemplary routing solutions
for the uniform, concentrated and clustered scenarios defined in
Section 6.6. Please note the different scales of the figures for the
different settings. The solid blue arrows represent the truck legs,
the dotted blue lines the robot legs. In the concentrated setting,
the truck distance can be reduced compared to the uniform set-
ting as the customers are closer to each other (2km vs. 4km de-
livery area). The distance is also reduced in the clustered setting,
even though the time windows are still assigned randomly (not
separated by cluster, see Section 6.1). Since the robots can arrive
early and wait for the desired time window, it is often most effi-
cient for the truck to serve the clusters sequentially and therefore
reduce the distance traveled. The longest distance that needs to be
covered in the clustered setting is the way between the two clus-
ters.
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Fig. B.15. MTR routing result for the uniform customer distribution.
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Fig. B.16. MTR routing result for the concentrated customer distribution.
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Fig. B.17. MTR routing result for the clustered customer distribution.
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