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. Introduction 

Traffic congestion and pollution are growing problems in cities 

round the world. Home deliveries are contributing to this problem 

ue to the increasing volume of online orders ( Allen et al., 2018; 

shfaq, Defee, Gibson, & Raja, 2016; Wollenburg, Hübner, Trautrims, 

 Kuhn, 2018 ), in particular as many deliveries are still performed 

y diesel trucks. New concepts are needed to enable the projected 

rowth of delivery volumes and prevent urban traffic from collaps- 

ng ( Agatz, Fleischmann, & van Nunen, 2008; Hübner, Holzapfel, 

uhn, & Obermair, 2019; Orenstein, Raviv, & Sadan, 2019 ). While 

ttended home deliveries are convenient for customers, they ac- 

ount for a large share of logistics costs ( Hübner, Kuhn, & Wollen- 

urg, 2016; Kuhn & Sternbeck, 2013 ). The complexity of planning 

eliveries is growing with entry restrictions in inner cities (e.g., 

an of diesel engines) and the growing application of time win- 

ows to attended home deliveries. This increases customer service 

nd reduces the number of failed deliveries, i.e., deliveries that are 

ot accepted as customers are not at home. In addition, the COVID- 
∗ Corresponding author. 
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9 pandemic has not only increased the home deliveries, but also 

reated consumer preferences for deliveries without human inter- 

ction and challenged companies to protect their workforce. 

Delivery by truck and robots is a promising approach to address 

hese issues as well as to flexibly accommodate customers’ time 

indow preferences. Autonomous delivery robots (e.g., by Starship, 

019 and Marble, 2019 ) can transport a single parcel or grocery 

ag to customers for attended home delivery. They are designed 

o travel short distances at pedestrian speed. Due to their lower 

peed and limited range, delivery robots are combined with spe- 

ialized trucks to enable a fast and efficient delivery process. This 

eans that a truck transports the corresponding goods for delivery 

ogether with robots and releases the robots at dedicated drop-off

ocations for the actual home delivery. As there are many customer 

eliveries on a tour, the truck picks up robots from robot depots 

n the way. The robots return to the closest robot depot by them- 

elves. Daimler (2019) has tested such a concept and has shown 

hat it potentially decreases lead time and traffic. Baum, Assmann, 

 Strubelt (2019) predict that delivery robots will likely be intro- 

uced on a larger scale soon due to their low production costs and 

imited legal obstacles. Recent routing literature shows the suitabil- 

ty and cost efficiency of the combination of trucks and robots and 
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Fig. 1. Specialized truck with freight containers and delivery robots ( Mercedes-Benz 

Vans, 2016 ). 
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rovides methods for cost-optimal routing ( Boysen, Schwerdfeger, 

 Weidinger, 2018; Ostermeier, Heimfarth, & Hübner, 2021 ). 

Existing truck-and-robot (TnR) concepts with robot depots ex- 

lusively consider robots for final delivery to customers or make 

implifying assumptions that limit the benefit of robot use. In prac- 

ice, however, there are multiple reasons for deliveries requiring 

uman interaction and therefore final delivery by a person. First, 

ome customers may be unable or unwilling to interact with the 

obot and to retrieve the goods from it, such as elderly or disabled 

ersons. Second, the delivery of some goods would be forbidden 

r risky via a robot. This includes valuables, drugs and hazardous 

ubstances such as cleansing agents, paint, pesticides, etc. Third, 

ndividual orders may be too bulky to fit into the robot compart- 

ent. This can be the case with some electronics, household and 

o-it-yourself products, and even groceries being delivered in bulk. 

ccording to Forbes (2019) , 10–25% of Amazon deliveries could not 

e handled by aerial drones, whose size restrictions are similar to 

hose of delivery robots. Up to one in four orders must therefore 

e delivered without the use of robots and completed by conven- 

ional delivery by truck and human driver. Moreover, even when 

n order is suitable for robot delivery, the possibility of choosing 

etween truck or robot increases routing flexibility and may yield 

ost reductions. 

In the related routing approaches for attended home delivery, 

he prevailing literature deals either with a vehicle routing prob- 

em (VRP) for truck delivery (e.g., Laporte, 2009; Toth & Vigo, 2001 ) 

r a TnR routing problem with delivery by robots (see e.g., Bakach, 

ampbell, & Ehmke, 2021; Boysen et al., 2018; Ostermeier et al., 

021 ). In these concepts only truck or robot deliveries are consid- 

red, ignoring requirements and the potential benefits of combin- 

ng deliveries by robot and truck as described above. Existing pub- 

ications on a combined concept ( Chen, Demir, & Huang, 2021a; 

hen, Demir, Huang, & Qiu, 2021b ) are limited to sequential de- 

ivery actions by truck and robots (i.e., while the robots move, 

he truck is idle and vice versa). A new approach that provides 

he additional flexibility of parallel deliveries by truck and robots 

s therefore needed. We close this gap in literature by proposing 

he Mixed Truck and Robot (MTR) delivery concept, leading to the 

ixed Truck and Robot Routing Problem (MTR-RP). This is a gen- 

ralization of the TnR routing problem and determines which cus- 

omers are supplied via truck, which customers are approached 

ia robots, and how these deliveries are integrated into the de- 

ivery tour. In this application, the truck not only transports the 

obots to drop-off locations, but is also deployed for direct cus- 

omer deliveries. This additional option increases the complexity 

f routing. As such, we solve the MTR-RP with a variant of General 

ariable Neighborhood Search (GVNS) that incorporates problem- 

pecific insights into the operators. Furthermore, the MTR-RP is dif- 

erent from truck-and-drone concepts. First, only a small number 

f drones is used during a tour, whereas with MTR, the truck picks 

p multiple new robots along its way. Second, the drones return to 

he truck, whereas robots return to a depot. 

The delivery concept with robots is innovative and we therefore 

rst outline the detailed problem characteristics based on existing 

oncepts and technology in Section 2 . Section 3 discusses related 

iterature and highlights the differences versus other last-mile de- 

ivery concepts. Section 4 presents the formal model of the MTR- 

P. We detail our GVNS approach in Section 5 . Section 6 presents

umerical experiments to compare our approach to existing rout- 

ng frameworks and to analyze the impact of the additional deliv- 

ry mode by truck. Section 7 summarizes our findings. 

. Problem description 

This section outlines how truck and robots are combined for at- 

ended home deliveries with time windows. Section 2.1 introduces 
2 
he related technology on which the problem is based. We then 

escribe the MTR delivery concept in Section 2.2 . 

.1. Technical properties of robots and customized trucks 

Delivery robots navigate autonomously on sidewalks and bike 

anes but can be remote controlled in the event of problems. To 

o so, most models rely on several cameras, map data and GPS. In 

ddition, many robots use lidar, ultrasound and radar. For commu- 

ication, LTE and WiFi are widely-used, at times also touch dis- 

lays and speakers ( Baum et al., 2019 ). The sensors enable au- 

onomous driving and help prevent theft or vandalism. Recent 

tudies show that robot technology is ready for industry appli- 

ations. Starship (2019) reports successful tests in more than 80 

ities worldwide, and Jaller, Otero-Palencia, & Pahwa (2020) dis- 

uss robot models that are already in use in the US and Europe. 

aum et al. (2019) count 19 different models, of which the ma- 

ority have already been tested in the field. According to their 

verview, most robots operate at pedestrian speed, i.e., at 6 to 

 km/h. The maximum range lies between 6 and 77 km ( Jennings 

 Figliozzi, 2019 ). The payload varies from one parcel and 10 kg 

o 20 parcels and 70 kg. When a robot arrives at the delivery des- 

ination, customers are notified (e.g., via mobile phone) and can 

nlock the robot’s compartment with a code to retrieve the order 

 Marble, 2019; Starship, 2019 ). This means that a customer has to 

e present to retrieve the parcel from the robot, and thus moti- 

ates the use of robots for attended home delivery with time win- 

ows. We henceforth apply that a delivery cannot occur before its 

ime window and causes penalty costs if it occurs after the time 

indow. Furthermore, as there is only one compartment for cus- 

omer order retrieval, we also apply that each robot supplies only 

ne customer on the robot tour. 

Given the relatively low speed of robots, companies such as 

aimler (2019) have developed customized trucks to transport 

hem. Otherwise robots would have to drive the complete distance 

rom the warehouse to the customer and back. In large delivery 

reas, this would imply long travel times, issues with lead times 

nd meeting short-term time windows, and low robot utilization. 

he trucks transport robots to overcome larger distances (e.g., be- 

ween the warehouse and city center) and release them at dedi- 

ated drop-off locations. This enables the efficient use of delivery 

obots, especially in urban areas. Trucks typically provide space for 

round eight robots on their floor and enable autonomous pick-up 

nd drop-off via automatic doors and ramps. A shelf system above 

he floor can be used to carry goods for delivery and offers space 

or around 54 storage boxes (see, e.g., Mercedes-Benz Vans, 2016 ). 

t is only driving the truck and loading robots that remain manual 

asks. Figure 1 shows a typical truck setup. For robot deliveries, 

he truck driver enters the front part of the cargo bay, retrieves 
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Fig. 2. TnR tour (with all deliveries by robots). 
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he goods from the shelf system, loads them into robots, and these 

hen leave the truck via a ramp to the side. Direct deliveries by 

he driver (i.e., without a robot) can therefore easily be included in 

his system. These orders could be loaded to the rear of the shelf 

ystem, for instance, and when the driver arrives at the customer 

ocation, (s)he picks up the order from the back door and walks to 

he customer. 

.2. Concept of mixed truck and robot deliveries (MTR) 

Conventional Truck-and-Robot . In line with Boysen et al. 

2018) and Ostermeier et al. (2021) , TnR is a system in which 

he delivery robots are transported by truck and therefore the 

imes and locations of both vehicle types are coupled. The cen- 

ral element of this concept is that robots are carried by truck 

nd dropped off close to customers (see Fig. 2 ). The distribution 

rocess therefore consists of a truck tour, visiting different robot 

rop-off locations (i.e., a location where the truck can safely stop 

nd release robots onto the sidewalk, see solid arrows in Fig. 2 ), 

nd robot tours visiting a single customer each (dotted arrows in 

ig. 2 ). Some of these drop-off locations are so-called robot de- 

ots, where robots are stored and charged. Trucks can both pick 

p robots at robot depots for later drop-off or load and release 

obots directly for delivery without transporting them. The number 

f available robots per depot is limited. As we consider attended 

ome delivery, the robots need to supply the customers within an 

greed time window and after the delivery each robot returns to 

he closest robot depot (not displayed in Fig. 2 for sake of readabil- 

ty). At the depot (which consists only of an outdoor charging sta- 

ion and parking space), it is again charged and waits for the next 

elivery. Other drop-off points are spots where trucks can stop and 

elease robots for delivery, but no robots are stored. This concept 

educes the truck mileage and increases the driver’s productivity, 

hich makes it attractive from a cost and environmental perspec- 

ive ( Boysen et al., 2018; Ostermeier et al., 2021 ). 

Mixed truck-and-robot concept . In the conventional TnR concept 

escribed above, the truck acts solely as a taxi for robots and does 

ot deliver parcels directly to customers. However, some deliveries 

re not suitable for robot delivery and must be made by a delivery 

erson. This is necessary for bulky goods that do not fit into the 

obot’s compartment, and goods that must be handed over person- 
3 
lly, such as valuables and drugs. A customer could also choose not 

o receive robot deliveries based on personal preferences or skills. 

n these cases, a direct truck delivery is indispensable. Please note 

hat truck deliveries also have to happen within an agreed time 

indow as they are part of the same service as robot deliveries 

attended home delivery). Truck deliveries can be done by a sepa- 

ate delivery tour (as in prevailing truck-only concepts) or by em- 

loying the truck used for robot drop-off to directly approach those 

ustomers (as shown in Fig. 3 ). Using one truck for both delivery 

odes has the potential to reduce the fleet needed and the costs 

nd emissions caused for serving a set of customers. Besides cus- 

omers requiring truck delivery, there are customers who can be 

isited by either truck or robot. Visiting those customers by truck 

an in some cases further decrease costs as it may lead to shorter 

ours or reduce robot use and delays. Note that when the truck 

tops at a customer, it can launch robots to other customers from 

here as well. Finally, there may be a third set of customers re- 

uesting robot deliveries as in the basic TnR concept. These cus- 

omers cannot be served by truck and no robots can be launched 

rom there. As a consequence, we extend the existing TnR con- 

ept to account for both delivery types. The stops for truck deliv- 

ry have to be integrated into the truck routes for dropping off

obots (see solid arrows in Fig. 3 ). This complicates the search for 

ptimal truck tours, since truck deliveries also have to take place 

ithin the designated time windows. Early arrivals at customer lo- 

ations cause waiting times for the truck and late arrivals cause 

elay costs in the form of reduced future revenues (due to lower 

ustomer satisfaction) or the granting of rebates. The admission of 

dditional truck deliveries therefore causes new dependencies and 

ncreases the problem complexity. 

Decision problem structure . MTR routing requires simultaneous 

ecisions on different routing problem aspects. To illustrate this, 

ig. 4 shows the different vehicles’ actions in a truck-and-robot 

our over time. For the truck, it includes driving between the 

oods warehouse, robot depots and drop-off points and customers, 

s well as potential waiting time at customers. For the robot, it 

omprises travel time between drop-off points, customers and de- 

ots, and potential waiting time. For the truck, there is a mileage- 

ased cost (mainly for fuel) and a time-based cost (for the driver’s 

alary). These have to be considered separately since the truck 

ight have to wait if it reaches a customer before the time 
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Fig. 3. MTR tour (incl. deliveries by truck). 
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indow (see diamond in the truck lane of Fig. 4 ). The robots start

rom a depot or drop-off point visited by the truck, drive to a cus- 

omer and must also wait for the time window in the event of 

arly arrival (see Robot 1 in Fig. 4 ). After the delivery, the robots

eturn empty to the closest depot, i.e., we do not consider pickup 

equests in our setting. A time-based robot fee applies during this 

ntire time. If an order arrives late (see Robot 3 in Fig. 4 ), a delay

ost is incurred, consisting of a rebate granted to the customer or 

ccounting for penalties for reduced customer satisfaction. A fea- 

ible solution must ensure all customers are served after the start 

f their respective time window by truck or robot, depending on 

he request. The decision problem at hand aims to minimize total 

elivery costs. To achieve this, it is necessary to define (i) which 

ustomers are served via truck, which via robot, (ii) which robot 

epot and drop-off locations are visited during the truck tour, (iii) 

n which sequence these locations are visited, and (iv) from which 

top on the tour each robot delivery is started. The truck starts and 

nds at the goods warehouse, whereas a robot starts from either a 

epot or a drop-off location and, after meeting the customer, re- 

urns to the closest depot. Besides required travel times and syn- 
4 
hronization of truck and robot actions, the decision is constrained 

y the number of robots available on the truck and in each robot 

epot. 

. Review of related literature 

This section provides an overview of related routing approaches 

or robot-based deliveries. We first highlight the similarities and 

ifferences of related concepts, namely truck-and-drone delivery 

nd delivery with covering options. These concepts share the idea 

f two vehicle types making deliveries together. Next, we provide a 

ummary of robot routing literature, separated into hub-and-robot 

oncepts and TnR concepts with and without depots. We conclude 

y highlighting the gap in related literature. 

(i) Truck-and-drone delivery . Truck delivery supported by drones 

as received a lot of attention in recent publications (e.g., Agatz, 

ouman, & Schmidt, 2018; Ulmer & Thomas, 2018; Sacramento, 

isinger, & Ropke, 2019 ). A truck visits customers to make de- 

iveries and a drone serves other customers not visited by the 
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ruck. Initially the truck transports the drone. While the truck 

tops to make a delivery, the drone can start with a parcel, serve 

ne customer and meet the truck again at a later customer on 

he truck route. This can be repeated several times. Since every 

rone delivery starts at a customer served by the truck, the high- 

st possible share of drone deliveries is 50% ( Agatz et al., 2018; 

e Freitas & Penna, 2020; Ha, Deville, Pham, & Hà, 2018; Mur- 

ay & Chu, 2015 ). Even for an extended scenario with up to four

rones on the truck, solved by Murray & Raj (2020) and Moshref- 

avadi, Hemmati, & Winkenbach (2020) , the share of truck deliv- 

ries must remain above 20%. Murray & Raj (2020) further note 

hat adding drones leads to diminishing marginal improvements, 

ince too many drones cause long take-off and landing queues 

t the truck. The major differences between drone concepts and 

he robot concept considered are therefore the lower number of 

utonomous vehicles (drones), and their return to the truck in- 

tead of dedicated depots. The MTR concept has a higher poten- 

ial to reduce truck mileage as a truck can launch multiple robots 

t each stop. Furthermore, the truck picks up additional robots 

uring the tour from robot depots, whereas the pertinent applica- 

ions in truck-and-drone routing rely on a given number of drones 

n the truck. A further difference is that there are many optional 

ruck stops in the MTR concept (i.e., robot depots and drop-off

oints), whereas on truck-and-drone tours, only customers are vis- 

ted. Routing approaches for truck-and-drone are as such not di- 

ectly applicable to MTR since they rely on the fact that many 

ustomers need to be visited by truck and the truck does not 

ave other (optional) locations to visit. Pertinent heuristics im- 

rove the solution of the traveling salesman problem (TSP) by re- 

ssigning customers to the drone ( Agatz et al., 2018; de Freitas & 

enna, 2020; Ha et al., 2018; Kitjacharoenchai et al., 2019; Mur- 

ay & Chu, 2015; Murray & Raj, 2020; Sacramento et al., 2019 ). A

etailed analysis of the differences between truck-and-drone and 

nR is performed by Ostermeier et al. (2021) . Alongside these dif- 

erences, practical advantages of robots are their high safety level, 

obustness in any weather conditions and fewer regulatory obsta- 

les due to slow driving instead of flying. These strengths could 

oon enable the large-scale practical application of delivery robots 

n cities ( Baum et al., 2019 ). Lemardelé, Estrada, Pagès, & Bachofner 

2021) compare truck-and-drone with delivery robots combined 

ith consolidation centers by applying continuous approximation. 

hey conclude that delivery robots are economically more attrac- 

ive in dense urban areas and generally create less externalities 

han drones. In summary, delivery robots and drones are used in 

ifferent setups (based on their strengths) and problem specifics. 

e refer to Otto, Agatz, Campbell, Golden, & Pesch (2018) , Macrina, 

i Puglia Pugliese, Guerriero, & Laporte (2020) and Li, Chen, Wang, 

 Bai (2021) for a detailed overview of the truck-and-drone con- 

ept and its challenges. 

(ii) Delivery with covering options . Enthoven, Jargalsaikhan, 

oodbergen, uit het Broek, & Schrotenboer (2020) introduce the 

wo-echelon vehicle routing problem with covering options (2E- 

RP-CO). In this last-mile delivery application, the truck on the 

rst echelon can either deliver a parcel to a satellite location, from 

here cargo bikes bring it to the customers, or to a covering lo- 

ation (i.e., a parcel locker) from which nearby customers can pick 

p the parcel. Similar to the MTR-RP, the truck only needs to visit 

 subset of given potential locations, and the delivery type which 

akes the last mile has to be defined. The proposed solution ap- 

roach relies on an Adaptive Large Neighborhood Search (ALNS) 

ith tailored operators. Several aspects of our MTR-RP are more 

omplex, however, despite the similarities. First, robots are applied 

or attended home delivery and thus have to meet time windows. 

econd, the robots are transported by truck and released at drop- 

ff locations as part of our decision problem. This is not the case 
5 
n a two-echelon setup. The MTR-RP is based on a high num- 

er of potential truck stops (in the same order of magnitude as 

he number of customers). In the two-echelon case, each poten- 

ial truck stop has a fixed number of bikes available and there are 

nly a few of these stops. Finally, both vehicle types of the MTR- 

P can visit customers, whereas in the 2E-VRP-CO this is only pos- 

ible for cargo bikes. These differences add dependencies to the 

ruck schedule, as robots can only launch from a location while 

he truck is present and the truck must meet the customer’s time 

indow. Similarly, other two-echelon models fall short of charac- 

eristics required in the MTR-RP ( Perboli, Rosano, Saint-Guillain, & 

izzo, 2018 ). 

(iii) Hub-and-robot . The first concepts developed involving 

obots can be described as hub-and-robot. Their principle is that 

obots move between a fixed hub and customers. They do so in- 

ependently of other means of transportation. Consequently, hubs 

ave the ability to store goods and load the robots, which re- 

uires a more sophisticated infrastructure compared to the robot 

epots (i.e., charging stations) in the TnR or MTR case. Bakach 

t al. (2021) propose a mixed integer program (MIP) to allocate 

ustomers to hubs and robots. Their objective is to minimize the 

umber of hubs and robot mileage required, while respecting the 

obots’ maximum range. Poeting, Schaudt, & Clausen (2019b) and 

oeting, Schaudt, & Clausen (2019a) optimally solve an MIP for 

ruck tours visiting hubs and customers and a schedule of pen- 

ulum robot tours from these hubs to customers. Sonneberg, Ley- 

rer, Kleinschmidt, Knigge, & Breitner (2019) minimize the costs of 

ours for robots with several compartments applying an MIP. Due 

o their nature, hub-and-robot systems do not consider mixed de- 

ivery but only robot deliveries paired with an existing hub infras- 

ructure. 

(iv) Truck-and-Robot without robot depots . The MTR-RP origi- 

ates from TnR systems. These concepts constitute a more com- 

lex routing problem than hub-and-robot due to the coupling of 

ruck and robot movements. Without depots, the truck has to wait 

or robots to return or meet robots later on the tour. This lim- 

ts the routing decisions, in particular the distance travelled by 

obots. Jennings & Figliozzi (2019) and similarly Figliozzi & Jen- 

ings (2020) , assess a TnR system based on continuous approx- 

mation and conclude that it has the potential to reduce truck 

ileage. They do not solve a specific routing problem, but estimate 

he system’s performance based on average distances and speeds. 

imoni, Kutanoglu, & Claudel (2020) propose a delivery mode sim- 

lar to truck-and-drone, in which a robot leaves the truck at a cus- 

omer location, makes one or two deliveries and meets the truck 

gain at a later customer on the truck route. Accordingly, their 

olution approach relies on finding good TSP tours within a lo- 

al search with adaptive perturbation and then optimally inserting 

obot tours with dynamic programming. Due to the limited speed 

f robots, a large share of customers is still served by truck and 

he reported savings potential of around 20% is lower than sav- 

ngs achieved by TnR with robot depots. Chen et al. (2021a) and 

hen et al. (2021b) propose a concept in which a truck visits a 

ustomer, launches several robots to serve customers nearby and 

aits for their return. The authors propose a cluster-first-route- 

econd approach ( Chen et al., 2021b ) and an ALNS framework for 

arallel clustering and routing ( Chen et al., 2021a ). Computation- 

lly, this concept is less complex than the MTR-RP, since it is nec- 

ssary to keep the robot travel short (therefore the authors cluster 

ustomers based on location), the number of robots on the truck 

oes not change and the number of potential stops is smaller. The 

isadvantage of this concept is that the truck has to wait for the 

low robots to return. This results in savings of 4 to 17% compared 

o normal truck deliveries reported by Chen et al. (2021b) , as op- 



                                                                                                  

                 
                                     

Table 1 

Overview on related delivery concepts. 

Synchronization No. of smaller Usual share of 

Concept Handover 1 Return 2 Mothership Storage vehicles 3 truck delivery 

Two-echelon - - (D) - � any 0% 

Hub-and-Robot - - (D) - � any 0% 

Truck-and-Drone � � (MS) � - 1–4 > 20% 

Truck-and-Robot 

- without depots � � (MS) � - 1–10 20–80% 

- with depots � - (D) � - 20–200 0–20% 

1 Handover to second transportation mode. 2 In brackets: return to mothership MS or depot D . 3 Such as 

drones, bikes, robots etc. � : part of the corresponding concept, -: not considered within the concept. 

p

a

m

a

t

t

d

n

4

t

s

d

a

d

b

a

(

a

t

c

i

c

d

l

i

b

c

t

t

(

v

n

s

l

r

c

n

l

a

a

B

l

e

c

c

d

a

n

s

i

a

r

i

4

M

c

m

C

b  

E

s  

t

c  

p

d

t

D

c  

l

a  

a  
osed to more than 50% reported by Ostermeier et al. (2021) for 

 concept based on robot depots. We therefore consider the use of 

ore robots and robot depots as a key enabler for an efficient TnR 

pplication. 

(v) Truck-and-Robot with robot depots . To date, three publica- 

ions explicitly deal with TnR routing involving robot depots. In 

he seminal paper, Boysen et al. (2018) introduce the idea of robot 

epots to eliminate truck waiting time and aim to minimize the 

umber of delayed deliveries. The system analyzed consists of 

0 customers and several depots and drop-off points. They solve 

he problem with a multi-start local search (LS) procedure and 

how that a TnR system with one truck can replace several tra- 

itional delivery vehicles while maintaining service quality. The 

uthors do not incorporate truck deliveries in their approach nor 

o they provide a quantification of financial and environmental 

enefits. Some simplifications are assumed (e.g., unlimited robot 

vailability at every depot). Alfandari, Ljubi ́c, & de Melo da Silva 

2021) build on this work by analyzing alternative delay measures 

nd proposing a Branch-and-Benders-cut scheme for faster compu- 

ation. Ostermeier et al. (2021) have extended the problem to ac- 

ount for limitations in robot availability at every depot and min- 

mize total logistics costs, including both truck- and robot-specific 

osts. Again, the problem is restricted to robot delivery only, while 

irect truck deliveries are not considered. The authors propose a 

ocal search to deal with the increased complexity. In their exper- 

ments the concept reduces costs by up to 68% and truck mileage 

y up to 82% compared to classical truck delivery. 

Research gap . Table 1 summarizes the key differences between 

oncepts involving trucks and smaller vehicles. It shows whether 

he vehicles are synchronized (i) when handing goods over to 

he smaller vehicles and/or (ii) when the smaller vehicles return, 

iii) whether the truck acts as a mothership (transporting smaller 

ehicles), and (iv) whether goods storage facilities exist in the 

etwork. The last two columns indicate the typical numbers of 

maller vehicles involved in a delivery tour and the share of de- 

iveries made by truck. 

In summary, the MTR concept leads to a routing problem that 

equires problem-tailored solution approaches. Approaches for the 
Table 2 

Summary of existing literature on TnR routing involving robot depots. 

Publication Objective Methodology 

Boysen et al. (2018) Number of late deliveries Local search 

Alfandari et al. (2021) 3 different delay measures Branch-and-Be

Ostermeier et al. (2021) Total costs Local search 

This paper Total costs GVNS 

� : considered, -: not considered. 

6 
oncepts mentioned in paragraphs (i) to (iv) do not yet include the 

ecessary specifics of the MTR-RP, in particular time windows, a 

arge fleet of smaller vehicles transported and dropped off by truck 

nd a selection of alternative delivery modes to the customer. For 

 more detailed review of last-mile delivery concepts we refer to 

oysen, Fedtke, & Schwerdfeger (2021) . There are only three pub- 

ications on TnR routing involving robot depots and none of them 

nables mixed truck and robot deliveries (see Table 2 ). All publi- 

ations dealing with this innovative last-mile delivery concept fo- 

us on robot deliveries, while the truck does not visit customers 

irectly, but only stops at given drop-off locations. However, in 

 practical application the combination of both delivery modes is 

eeded to ensure that all types of orders can be processed on the 

ame truck tour to reduce costs. We therefore extend the exist- 

ng literature by addressing the MTR-RP, in which truck deliveries 

re incorporated when required and a decision between truck and 

obot delivery is made if both modes are feasible. The correspond- 

ng decision model is presented in the next section. 

. Formulation of the MTR-RP 

This section introduces the mathematical formulation of the 

TR-RP. The notation used is summarized in Table 3 . 

The following sets form the basis of the MTR-RP. The set of 

ustomers C consists of three disjointed subsets: customers with 

andatory truck delivery C m , customers requiring robot delivery 

 

r , and customers for which the delivery mode is optional C o (i.e., 

oth truck and robot delivery are possible), with C = C m ∪ C r ∪ C o .

very customer k ∈ C r ∪ C o can (without loss of generality) be 

erved by one robot, every customer k ∈ C m ∪ C o by the truck. The

ruck-and-robot infrastructure consists of a set of robot drop-off lo- 

ations D , where the truck can start robots, and a set of robot de-

ots R , where the truck can pick up and start robots. We further 

uplicate drop-off and depot locations to allow multiple visits of 

he same depot or drop-off point. This results in the duplicate sets 
ˆ 
 and 

ˆ R . For clarity, we summarize all (duplicate) locations that 

an be visited by truck in 

ˆ L := C m ∪ C o ∪ 

ˆ D ∪ 

ˆ R . For every distinct

ocation a, a ∈ D ∪ R , we denote the set of its duplicates as I a , I a ⊂ ˆ L ,

nd the set of indices in I a that are less or equal to m, m ∈ I a ,

s I m 

a . The set I m 

a is required to keep track of the order in which
Aspects considered in modeling and optimization 

Delays Robot Costs Truck Truck/robot 

availab. delivery selection 

� - - - - 

nders-cut � - - - - 

� � � - - 

� � � � � 



                                                                                                  

                 
                                     

Table 3 

Notation of the MTR-RP. 

Index sets 

C Set of all customers k ∈ C
C m ( C r ) Subset of customers requiring truck (robot) delivery, with C m ∪ C r ⊆ C

C o Subset of customers indifferent regarding truck or robot delivery, with C o ⊆ C

D ( R ) Set of distinct robot drop-off points (robot depots) 
ˆ D ( ̂ R ) Set of robot drop-off points (robot depots) including duplicates 
ˆ L Set of all (duplicate) locations reachable by truck: ˆ L := C m ∪ C o ∪ ̂  D ∪ ̂  R

I a Set of duplicate indices i, i ∈ ˆ D ∪ ̂  R , of one distinct location a, a ∈ D ∪ R 
I m a Set of elements i ∈ I a with i ≤ m 

Problem parameters 

d k Deadline for customer k, k ∈ C
K Maximum robot capacity of a truck 

r a Initial amount of available robots in location a, a ∈ R 
γ ( ̄γ ) Start (end) position of the truck, with γ , ̄γ / ∈ ̂  L

δ Initial number of robots aboard the truck 

εk Length of time window of customer k 

λi, j Distance between locations i and j, i, j ∈ ̂  L

ϑ t 
i, j 

Truck travel time from location i to location j, i, j ∈ ̂  L

ϑ r 
i,k 

Robot travel time from location i, i ∈ ̂  L , to customer k, k ∈ C
ϑ b 

k 
Robot travel time from customer k back to the closest robot depot 

Cost parameters 

c l Cost of delay per time unit 

c d Cost of truck per distance unit 

c t ( c r ) Cost of truck (robot) per time unit 

Decision variables 

s i, j Binary: 1, if truck travels from location i to location j; 0 otherwise 

x i,k Binary: 1, if customer k is supplied by a robot from location i ; 0 otherwise 

Auxiliary variables 

t i Arrival time of truck at location i 

q i Number of robots aboard the truck after visiting location i 

e i Number of robots taken out of depot location i, i ∈ ˆ R

v k Delay of delivery for customer k 

w k Waiting time for robot at customer k 
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uplicates are visited and to enforce the constraint on available 

obots after every visit. 

The truck starts in γ (e.g., a goods warehouse, γ / ∈ ̂

 L ) with δ
obots on board and has a maximum capacity of K robots ( δ ≤ K). 

t is already loaded with the goods to be delivered. In every robot 

epot a, a ∈ R , there is an initial number of robots r a available for

se by the truck but the depot capacity is not limited with respect 

o the return of robots. Every customer k, k ∈ C, has a delivery time

indow defined by a deadline d k and the time window length εk . 

he delivery comprises one customer order (possible consisting of 

ultiple items) and cannot take place before the customers’ time 

indow starts (i.e., not before d k − εk ). In this case truck or robot 

aiting time applies. If it occurs after the deadline, delay costs at 

he rate of c l are incurred. The distance between locations i and j

s denoted by λi, j , the resulting travel times by ϑ 

t 
i, j 

for the truck 

nd ϑ 

r 
i,k 

for the robots. We further denote the robot travel time 

rom customer k , back to the closest depot as ϑ 

b 
k 

. Note that the

osts of the robots’ return to the closest depot is a parameter for 

ach customer supplied by robot as the closest depot is known in 

dvance. Any processing time for loading and unloading is added 

o these times. We introduce the dummy end location γ̄ (typically 

qual to the starting location, γ̄ / ∈ ̂

 L ) to track total truck time. This 

s necessary since the truck may have to wait to meet a time win-

ow for delivery. The total truck time that is needed to assess truck 

sage costs is thus the arrival time at the end node γ̄ , indicated by 

 γ̄ . The time-based cost rate of the truck is denoted as c t and the

istance-based cost rate c d . A time-based machine rate c r is as- 

umed for the use of robots. It is incurred while loading the robot, 

ts travel to the customer, waiting for the beginning of the time 

indow (if necessary), unloading by the customer, and the return 

o the closest depot. 
7 
In the course of minimizing total costs, we further define 

he following decision variables. The binary variable s i, j indicates 

hether the truck travels from location i to location j or not. 

he binary variable x i,k defines whether customer k is supplied by 

obot from location i , i.e., whether a robot travels from i to k . To

rack feasibility and costs of a solution, the following auxiliary de- 

ision variables are needed. The variable t i defines the arrival time 

f the truck at location i, i ∈ 

ˆ L , and q i the quantity of robots aboard

he truck when leaving the location. The quantity of robots taken 

ut of depot i, i ∈ 

ˆ R (i.e., loaded on the truck or directly started 

owards a customer) is defined by e i . For every customer k , v k in-

icates the duration of delay (in the event of late arrival) and w k 

he robot waiting time (in the event of early arrival). We then for- 

ulate the MTR-RP as follows. 

in F (S, X, T , V, L, E, W ) = 

= c t t γ̄ + 

∑ 

i ∈ ̂ L ∪{ γ } 

∑

j∈ ̂ L ∪{ ̄γ } 
c d λi, j s i, j + 

∑ 

i ∈ ̂ L

∑

k ∈ C r ∪ C o 
c r (ϑ 

r 
i,k + ϑ 

b 
k ) x i,k 

+ 

∑

k ∈ C
(c l v k + c r w k ) (1) 

ubject to 
∑

i ∈ ̂ L
x i,k + 

∑

i ∈ ̂ L ∪{ γ } 
s i,k = 1 ∀ k ∈ C o ∪ C m (2) 

∑

i ∈ ̂ L
x i,k = 1 ∀ k ∈ C r (3) 

∑

k ∈ C
x j,k ≤ M 

∑

i ∈ ̂ L ∪{ γ } 
s i, j ∀ j ∈ 

ˆ L (4) 
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∑

j∈ ̂ L
s γ , j ≤ 1 (5) 

∑

i ∈ ̂ L ∪{ γ } 
s i, j = 

∑

i ∈ ̂ L ∪{ ̄γ } 
s j,i ∀ j ∈ 

ˆ L (6) 

 γ = 0 (7) 

 j ≥ t i + ϑ 

t 
i, j − M(1 − s i, j ) ∀ j ∈ 

ˆ L ∪ { ̄γ }; i ∈ 

ˆ L ∪ { γ } (8) 

 k ≥ d k − εk ∀ k ∈ C m (9) 

 k ≥ d k − εk − M(1 −
∑

i ∈ ̂ L ∪{ γ } 
s i,k ) ∀ k ∈ C o (10) 

 γ = δ (11) 

 j ≤ q i + e j −
∑

k ∈ C
x j,k + M(1 − s i, j ) ∀ i ∈ 

ˆ L ∪ { γ }; j ∈ 

ˆ R (12) 

 j ≤ q i −
∑

k ∈ C
x j,k + M(1 − s i, j ) ∀ i ∈ 

ˆ L ∪ { γ }; j ∈ 

ˆ D ∪ C m ∪ C o (13) 

 k ≥ t k − d k ∀ k ∈ C m ∪ C o (14) 

 k ≥ t j + ϑ 

r 
j,k − d k − M(1 − x j,k ) ∀ k ∈ C r ∪ C o , j ∈ 

ˆ L (15) 

 k ≥ (d k − εk ) − t j − ϑ 

r 
j,k − M(1 − x j,k ) ∀ k ∈ C r ∪ C o , j ∈ 

ˆ L (16) 

 i ≤ t j ∀ a ∈ R ; i, j ∈ I a : i ≤ j (17) 

∑

h ∈ ̂ L ∪{ γ } 
s h,i ≥

∑

h ∈ ̂ L ∪{ γ } 
s h, j ∀ a ∈ R ; i, j ∈ I a : i ≤ j (18) 

 a −
∑

i ∈ I ma 
e i ≥ 0 ∀ a ∈ R ; m ∈ I a (19) 

 i, j ∈ { 0 , 1 } ∀ i ∈ 

ˆ L ∪ { γ }; j ∈ 

ˆ L ∪ { ̄γ } : i 
 = j (20) 

 i,i = 0 ∀ i ∈ 

ˆ L (21) 

 i,k ∈ { 0 , 1 } ∀ i ∈ 

ˆ L ; k ∈ C r ∪ C o (22) 

 i,k = 0 ∀ i ∈ 

ˆ L ; k ∈ C m (23) 

 i ∈ Z ∀ i ∈ 

ˆ R (24) 

 i ≥ 0 ∀ i ∈ 

ˆ L ∪ { ̄γ } (25) 
S

8 
 i ∈ { 0 , . . . , K} ∀ i ∈ 

ˆ L (26) 

 k , w k ≥ 0 ∀ k ∈ C (27) 

The objective function (1) minimizes total costs. The first term 

onsiders the cost of truck time (at cost rate c t ). It comprises the 

otal truck time including travel time between locations and po- 

ential waiting time if customers are approached too early. The 

econd term covers the truck’s distance costs (at cost rate c d ). 

he third term comprises the robot costs dependent on associ- 

ted travel times to the customer and back to the closest depot (at 

ost rate c r ). The last term of the objective function sums up the 

ost of possible delayed deliveries (cost rate c l ) and robot waiting 

imes across all customers. Constraint (2) ensures exactly one visit 

y either truck or robot for every customer k ∈ C o ∪ C m . Similarly,

onstraint (3) ensures that each customer who requires a robot 

elivery is visited by exactly one robot. Constraint (4) states that 

obots can only be launched from stops that are actually visited by 

ruck. Constraint (5) defines that the truck only leaves once from 

he starting point, and (6) ensures that if the truck reaches a lo- 

ation, it must also leave it. Constraints (7) and (8) determine the 

ruck arrival time at every stop based on travel times. This also 

revents a second visit to the same (duplicate) stop. Constraint 

9) ensures that a required truck delivery is not made before the 

espective time window and (10) does so for optional truck deliv- 

ries in case they are made by truck (and not by robot). The fol- 

owing constraints (11), (12) and (13) handle the number of robots 

board the truck when leaving the starting point, a depot or any 

ther location, respectively. Constraint (14) defines the delay for 

ustomers receiving truck delivery. Constraints (15) and (16) define 

he delay and waiting time for customers receiving robot deliver- 

es. Constraints (17) and (18) ensure without loss of generality that 

uplicates of the same location are visited in ascending order of 

heir index. This fact is then used by constraint (19) to track the 

obot stock in every depot and to ensure that the stock is ≥ 0 . Fi-

ally, the variable domains are defined by constraints (20) to (27) . 

The MTR-RP extends the classical TnR problem, i.e., without 

ruck deliveries, in several ways: Some customers must be served 

y truck, others can be. This means that the total number of robots 

tarted (tracked by (11), (12) and (13) ) is not predetermined but 

art of the decision problem. Moreover, total truck time is no 

onger based merely on the legs s i, j traveled since the truck may 

ave to wait for the beginning of a time window ( (9) and (10) ).

e need to determine the usage time of a truck instead by us- 

ng the return time to the warehouse t γ̄ , and add the term t γ̄ c t 

o the objective function. Since the optimal t γ̄ is determined via 

he recursive constraints (8), (9) and (10) , this is computationally 

xpensive even for small instances. 

. Solution approach 

The MTR-RP generalizes the NP-hard TnR routing problem and 

herefore constitutes an NP-hard optimization problem by itself 

see Boysen et al., 2018 ). Since even small instances cannot be 

olved exactly, we propose a tailored solution approach, denoted 

s MTR heuristic , that is based on a GVNS framework (see Hansen 

 Mladenovi ́c, 2001; Mladenovi ́c & Hansen, 1997 ). GVNS conducts 

everal rounds of Variable Neighborhood Descent (VND) with a 

haking step between them. The general steps of a GVNS are 

hown in Algorithm 1 . 

Basic Variable Neighborhood Search (VNS) formulations (of 

hich VND is a special case) have been used successfully for many 

ariants of routing problems (e.g., de Freitas & Penna, 2020; Henke, 

peranza, & Wäscher, 2015; Kovacs, Golden, Hartl, & Parragh, 2014 ; 



                                                                                                  

                 
                                     

Initial truck tour 

generation

Based on either 

VRP for required 

truck deliveries or 

priority rule

Initialization 
Section 5.1

General Variable Neighborhood Search (GVNS)
Section 5.3

Shaking

Pick random tour from 

neighborhood

Neighborhood 

generation

Shaking 

neighborhoods

Termination check

Terminate if all 

shaking 

neighborhoods have 

been applied without 

improvements in 

subsequent VND

Variable Neighborhood Descent (VND)

Search multiple neighborhoods in deterministic 

order

Tour evaluation, 

robot scheduling

Based on an MIP

Iterate

Neighborhood 

generation

Improvement 

neighborhoods

Tour evaluation, 

robot scheduling

Based on an MIP

Tour evaluation
Section 5.2

Fig. 5. Structure of the MTR heuristic proposed. 

Algorithm 1 GVNS framework (adapted from Hansen & Mladen- 

ovi ́c (2018) ). 

Require: Starting solution πs 

πbest = πs ; // best solution found 

k s = 1 // shaking neighborhood 

while k s ≤ number of shaking neighborhoods do 

πcurrent = random(shakeneighborhood (πbest , k s ) ) // shake tour 

πV ND = V ND (πcurrent ) // perform VND to improve tour 

if Z(πV ND ) < Z(πbest ) then 

πbest = πV ND 

k s = 1 // restart GVNS with new best tour 

else 

k s = k s + 1 // continue with next shaking neighborhood 

end if 

end while 

return πbest 
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ia & Filippi, 2006 ) as they provide a high degree of flexibility and

an be tailored to the given problem specifics. The key benefit of 

VNS for this application (compared to local search approaches 

reviously used for TnR, see Boysen et al., 2018 and Ostermeier 

t al., 2021 ) is that complete neighborhoods are evaluated in a de- 

ned order. This is necessary for finding improvements as the ob- 

ective function is sensitive to small changes in the truck route. The 

obot scheduling depends on the available truck stops and there- 

ore changing a single stop may have a significant impact on over- 

ll costs. Evaluating all possibilities for a certain change operation 

onsequently ensures the best option is found. Furthermore, defin- 

ng an order of assessed neighborhoods enables us to incorporate 

roblem-specific knowledge, such as truck distance as a key cost 

river ( Ostermeier et al., 2021 ). An overview of our solution frame- 

ork is shown in Fig. 5 . 

We generate an initial truck tour with one of two possible 

tart procedures, depending on the given problem instance (see 

ection 5.1 ). This truck tour is then evaluated and complemented 

o a full solution by finding the optimal robot schedule using an 

IP (see Section 5.2 ). Next, a GVNS is used to improve truck 

ours with respect to depots visited, drop-off locations and direct 

ruck deliveries (see Section 5.3 ). It consists of a shaking step and 

 subsequent Variable Neighborhood Descent (VND). Within the 

VNS, tours are again assessed by the robot scheduling MIP from 

ection 5.2 . 

.1. Initial truck tour generation 

There are start heuristics for classical VRPs (i.e., truck delivery 

nly) and TnR routing (i.e., robot delivery only) available in cur- 

ent literature. Our approach combines these two modes and thus 
9 
hooses between truck and robot delivery based on efficiency. We 

ound in our numerical experiments that above a certain number 

f mandatory truck deliveries, the order of these deliveries is cru- 

ial for solution quality. Below a certain number of truck deliveries, 

he robot deliveries have a greater impact on the solution and total 

osts. Leveraging these insights, we propose two alternative prin- 

iples for generating start solutions, depending on the number of 

ruck deliveries required. They differ in terms of which deliveries 

re considered and in which order. Deliveries which can be com- 

leted by both truck and robot are treated as robot deliveries in 

his step. 

Robot deliveries first, truck deliveries second . In the event of less 

han σ mandatory truck deliveries, we generate a tour that in- 

ludes both robot and truck deliveries in a two-step approach. 

irst, stops at drop-off and depot locations are sequentially ap- 

ended to the tour based on the priority rule (PR) “go to the lo- 

ation from which most robot deliveries can be started such that 

hey reach customers on time”. Truck delivery customers are ig- 

ored in the first step. As soon as robot customers are assigned 

o a stop, they are not considered for later stops. This rule results 

n a sequence of depot and drop-off points, which could be non- 

easible since robot availability is not yet considered. In the second 

tep, the truck deliveries required are inserted sequentially, each 

ustomer at the position of the tour where the smallest deviation 

s caused. We therefore obtain a complete tour consisting of drop- 

ff locations and stops at truck delivery customers. 

Only truck deliveries . In the event of at least σ truck deliver- 

es, we solve a VRP with time windows (see model provided in 

ppendix A ) for truck delivery customers, thus ignoring robot de- 

iveries completely. The corresponding VRP can be solved optimally 

or small problem sizes, while for larger problem sizes the best so- 

ution found within a given time limit τ is used. This results in a 

ruck tour that visits all customers requiring truck delivery, starting 

rom the start location. This route then serves as starting solution 

or the GVNS. Despite lacking the consideration of robot drop-off

ocations, this enables us to obtain an efficient basis for the truck 

outing as the direct truck deliveries are decisive for the final tour, 

ncluding drop-off and depot locations. 

.2. Tour evaluation and robot scheduling 

Feasibility of truck tours . All solutions obtained (including the 

tart solution) need to be assessed with respect to robot availabil- 

ty to prevent non-feasible tours. A truck tour is only feasible if 

he total number of available robots (initial number of robots on 

he truck δ plus all robots at depots visited on the tour r a , a ∈ R )

s equal to or larger than the number of customers not visited by 



                                                                                                  

                 
                                     

Table 4 

Additional parameters and variables for robot scheduling. 

Truck tour parameters 

U Index set of stops on the truck tour u ∈ { 1 , 2 , . . . }
Y Tuple of truck stops, where element y (u ) is the u th stop of the truck tour, y (u ) ∈ L 
˜ C Set of customers not visited by truck (i.e., not in Y) 

t u Arrival time at truck stop u, u ∈ U
c T 

u,k 
Cost of serving customer k, k ∈ ˜ C , from stop u, u ∈ U

Decision and auxiliary variables 

x u,k Binary: 1, if customer k, k ∈ ˜ C , is supplied from stop u, u ∈ U; 0 otherwise 

q u Number of robots aboard the truck at departure from stop u, u ∈ U
r a,u Number of available robots in location a, a ∈ L , after the u th truck stop 
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ruck (i.e., customers that are not on the truck route). We append 

he closest unvisited depot to the end of the tour as long as the 

umber of available robots is not sufficient. 

Robot scheduling for given truck route . Once feasibility is ensured, 

he corresponding robot movements for the truck route in question 

ust be defined, i.e., all remaining customers must be assigned to 

 truck stop, from which the corresponding robot will start. This 

ransforms the truck tour into a full solution. We apply an MIP 

roposed by Boysen et al. (2018) and enhanced by Ostermeier et al. 

2021) to assign customers to the truck stops on the route. This is 

ecessary to evaluate the quality of a route that has been found. 

n contrast to the MIP from Section 4 , which included the decision 

n truck movements, we do not need duplicates of robot drop-off

 D ) and depot locations ( R ). This leads to L := C m ∪ C o ∪ D ∪ R being

he set of all locations potentially reachable by truck. We assume 

he truck tour to be given as a tuple Y , where y (u ) is the location

f the u th stop, y (u ) ∈ L . Note that customers that are part of the

ruck route (i.e., served by truck) can be ignored in this step. We 

enote the set of remaining customers to be served by robot as 
˜ 
 , with 

˜ C ⊆ C o ∪ C r . Table 4 summarizes the notation of truck tour

arameters and decision variables. 

The actual arrival time at each truck stop t u , u ∈ U for a given

our Y can be calculated using Eqs. (28) –(30) . Equation (28) states 

hat the truck tour starts at time zero. For drop-off and depot loca- 

ions, only truck travel times determine the arrival time ( Eq. (29) ). 

or customer locations, the beginning of the respective time win- 

ow also has to be considered to prevent premature deliveries ( Eq. 

30) ). 

 1 = 0 (28) 

 u = t u −1 + ϑ 

t 
y (u ) ,y (u −1) ∀ u : y (u ) ∈ D ∪ R (29) 

 u = max (t u −1 + ϑ 

t 
y (u ) ,y (u −1) ; d y (u ) − εk ) ∀ u : y (u ) ∈ C (30) 

Based on arrival times, the total cost c T 
u,k 

of supplying a cus- 

omer k from stop u is denoted by Eq. (31) . It comprises the robot

sage cost (at rate c r ) for travel time, waiting time at the cus-

omer (in the event the robot arrives before the time window) and 

he time to return to the closest depot ϑ 

b 
k 

. Finally, delay costs are

dded. 

 

T 
u,k := c r (ϑ 

r 
y (u ) ,k + (d k − εk − t u − ϑ 

r 
y (u ) ,k ) 

+ + ϑ 

b 
k ) 

+ c l (t u + ϑ 

r 
y (u ) ,k − d k ) 

+ ∀ u ∈ U, k ∈ 

˜ C (31) 

The variables x u,k , r a,u and q u define where each customer’s 

obot is started, how many robots are available in each location 

nd on the truck after every stop. The robot scheduling MIP can 

hen be formulated as follows. 

in F (Q, X, R ) = 

∑

u ∈ U

∑

k ∈ ̃C 
x u,k · c T u,k (32) 
10 
ubject to 

∑

u ∈ U
x u,k = 1 ∀ k ∈ 

˜ C (33) 

 a,u = r a,u −1 ∀ a ∈ R, u ∈ U : a 
 = y (u ) (34) 

 a,u ≤ r a,u −1 + q u −1 − q u −
∑

k ∈ ̃C 
x u,k ∀ a ∈ L, u ∈ U : a = y (u ) (35) 

 0 = δ (36) 

 a, 0 = r a ∀ a ∈ R (37) 

 a,u = 0 ∀ a ∈ L \ R, u ∈ U (38) 

 u,k ∈ { 0 , 1 } ∀ u ∈ U, k ∈ 

˜ C (39) 

 a,u ≥ 0 ∀ a ∈ R, u ∈ U (40) 

 ≤ q u ≤ K ∀ u ∈ U (41) 

The objective function (32) minimizes total robot and delay 

osts. Constraint (33) ensures that exactly one robot is sent to each 

emaining customer. Constraint (34) states that if a depot is not 

isited, the number of available robots remains the same. Con- 

traint (35) keeps track of the number of robots in locations visited 

nd aboard the truck after every stop. Equations (36) and (37) de- 

ne the initial number of robots in the depots and on the truck. 

onstraint (38) ensures that robots cannot be stored at drop-off lo- 

ations or customers. Constraints (39) –(41) define the variable do- 

ains. 

.3. General variable neighborhood search 

For improving the truck tour, we apply a GVNS as described 

y Hansen & Mladenovi ́c (2018) , which tries to improve the initial 

outing solution by exploiting problem-specific knowledge. It con- 

ucts several cycles of shaking and subsequent local search using 

 VND procedure. Both the shaking and the VND rely on neigh- 

orhoods. These are defined by operators, such that every neigh- 

orhood contains all truck tours that can be generated by applying 

he respective operator to the incumbent truck tour. Algorithm 2 

ummarizes the GVNS applied. The inner while loop constitutes 

he VND (with its improvement neighborhood k i ), the outer one 

onducts the shaking (with shaking neighborhood k s ) and stores 



                                                                                                  

                 
                                     

Algorithm 2 Detailed GVNS procedure (adapted from Hansen & 

Mladenovi ́c (2018) ). 

Require: Starting solution πs 

πbest = πs ; // best solution found 

k s = 1 // shaking neighborhood 

while k s ≤ number of shaking neighborhoods do 

improvement = false 

// perform several VND runs with same shaking neighbor- 

hood: 

for j = 1 to α do 

k i = 1 

πcurrent = random(shakeneighborhood (πbest , k s ) ) // shaking 

neighborhood k s 
while k i ≤ number of VND neighborhoods do 

πk i 
= best(improveneighborhood (πcurrent , k i ) // improve- 

ment neighborhood k i 
if Z( πk i 

) < Z( πbest ) then 

πbest = πk i 
k i = 1 

improvement = true 

else 

k i = k i + 1 ; // next neighborhood 

end if 

end while 

if improvement = true then 

k s = 0 

break 

end if 

end for 

k s = k s + 1 

end while 

return πbest 
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he best known solution. The parameter α in the for loop deter- 

ines the number of VND iterations for every shaking neighbor- 

ood. To evaluate truck tours, the GVNS repeatedly uses the robot 

cheduling MIP. 

Shaking . The shaking phase of the GVNS is used to diversify the 

earch. Neighborhoods are obtained by varying the truck tour of 

 previously generated solution and reoptimizing the robot move- 

ents. The neighborhoods are applied in the given order, one in 

ach shaking phase, and used to generate α new solutions. For 

ach of these solutions we apply a separate VND in the next step. 

hen a shaking step has led to an improvement, the process 

estarts from the first neighborhood. The search is complete after 

ll shaking neighborhoods have been used without improvements. 

• Depot insertion. This operator inserts a new robot depot into 

the tour. Since robot availability is crucial for finding an effi- 

cient robot schedule, selecting different depots can enable tour 

improvements. 
• Detour insertion. This operator inserts a drop-off point or a 

customer with optional truck delivery into the truck tour that 

leads to a detour of half the delivery area’s side length or above. 

It is used to diversify the search by causing a large change in 

the current truck tour. 
• Swap stop. This operator swaps two random stops (of which 

each can be a drop-off point, robot depot or customer) of 

a truck tour. This may again lead to large detours and thus 

widens the search space. 
• Stop relocation. This operator shifts a stop to a later or earlier 

point on the tour. 
• Customer reshuffling. This operator instigates the most exten- 

sive tour change. The rationale for this operator is that a truck 
11 
delivery with a high delay can lead to a strong cost increase 

and therefore should be avoided. An example is presented in 

Fig. 6 . The original tour is reduced to only the required truck 

deliveries by removing any other stops (step 1 in Fig. 6 ). For 

the remaining steps, we consider the original arrival times at 

the customers. For every customer with a late delivery (cus- 

tomers 3 and 4 in the example), we generate tour candidates 

by inserting this stop at earlier points of the tour such that 

customers are reached before their deadline. Customer 3 with 

a deadline at time 11 can only be inserted before customer 1, 

as customer 1 was originally reached at time 12. Customer 4 

with the deadline at time 30 can be inserted before and after 

customer 1 (as 12 < 30), but not after customer 2 (as arrival 

time at customer 2 is 32 > 30). In total, this results in one tour

candidate for customer 3 and two tour candidates for customer 

4 plus the reduced tour (step 1). All tours derived in steps 1 

to 3 form the ‘customer reshuffling’ shaking neighborhood (i.e., 

four tours in our example). If this neighborhood contains more 

than n shuffle tours, we reduce it by considering only the shortest 

tour of each step (resulting in three tours in our example). The 

following VND will then construct a new solution around the 

reshuffled truck deliveries by inserting robot depots and drop- 

off points, which potentially leads to extensive changes com- 

pared to the original tour. 

VND . The VND is used to improve the truck tour. It relies 

n multiple neighborhoods of the incumbent solution that are 

earched sequentially. The VND restarts from the first neighbor- 

ood when a better solution is found. This continues until all 

eighborhoods of the incumbent solution have been searched and 

o improvement has been found. Each neighborhood contains all 

ours that can result from applying its operator to the incumbent 

our. 

• Remove a non-depot. Removes a drop-off point or a customer 

with optional truck delivery from the current truck tour. Since 

truck distance is a main cost driver, this often leads to im- 

provements. Required truck deliveries cannot be removed in 

this step. 
• Remove a depot. Removes a depot from the current truck tour. 

The removal of a depot may lead to non-feasible solutions. In 

this case additional depots will be appended within the feasi- 

bility check. 
• Add depot. Adds a new depot to the existing truck tour. Addi- 

tional depots can increase robot availability on parts of the tour 

and lead to better robot schedules at reduced costs. 
• Add a non-depot. Adds a drop-off point to the existing truck 

tour. This may reduce robot travel times by bringing the truck 

closer to nearby customers. 
• Swap two stops. By changing the order of stops, truck distance 

can be reduced or delays at the later stop can be avoided. 
• Relocate a stop. This operator primarily aims at improving ar- 

rival times at customers. In particular when the truck arrives at 

a customer too early and is forced to wait for the time window, 

shifting this customer to a later point of the tour can reduce to- 

tal time and delays. 

The order of improvement neighborhoods ensures that tours 

re kept short, and that we start with the smallest neighborhoods. 

his reduces the computational effort by limiting the number and 

omplexity of the robot scheduling MIP ( Eqs. (32) –(41) ) that has 

o be solved to evaluate the tours. Since in neighborhoods ‘add 

epot’ and ‘add non-depot’, several hundreds of combinations of 

nserted location and insertion position of the tour exist, neighbor- 

oods are limited to the n max shortest tours. This again reduces 

omputational effort based on known problem characteristics. 



                                                                                                  

                 
                                     

1 2 3 4
Original tour

Original arrival times 0 12 25 32 36 41 47 50 59 72

Reduced tour
1 2 3 4

Tour candidates from 

shifting customer 3

Delivery deadlines 11 30

Tour candidates from 

shifting customer 4

1 2 34

1 23 4

1 2 34

x Customer with required truck delivery Robot depot/ drop-off point/ other customer xx Arrival time after time window

Legend:

VND output:

Step 1:

Step 2:

Step 3:

Fig. 6. Customer reshuffling procedure (example). 
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. Numerical examples 

This section analyzes the performance of our MTR heuristic. 

irst, we describe the instances and parameters used in our exper- 

ments ( Section 6.1 ). Next, we compare our approach to a bench- 

ark ( Section 6.2 ) to assess the performance of our algorithm. 

urther experiments assess the impact of both required and op- 

ional truck deliveries. We compare different fulfillment concepts 

or home delivery depending on the share of truck deliveries re- 

uired ( Section 6.3 ) and analyze the impact of time windows on 

he routing ( Section 6.4 ). Further, the influence of handling times is 

nalyzed ( Section 6.5 ). Finally, we discuss the impact of customer 

istribution ( Section 6.6 ), and cost rates for the truck and delays 

 Section 6.7 ). Our approach was implemented in Python (using Py- 

harm 2018.3.5 Professional Edition) with Gurobi (version 8.0.1) 

s MIP solver and executed on a 64-bit PC with an Intel Core i7-

650U CPU (4 × 1.9 GHz), 16 GB RAM, and Windows 10 Enterprise. 

.1. Instance and parameter setting 

In our numerical experiments we aim at analyzing the per- 

ormance of our MTR heuristic in comparison to related ap- 

roaches. To enable a fair comparison and to evaluate the im- 

act of direct deliveries we leverage the test data provided by 

stermeier et al. (2021) ( http://www.vrp-rep.org/datasets/item/ 

020-0 0 05.html ). The data set comprises instances for TnR rout- 

ng and resembles the general setting of our problem but ignores 

he possibility of direct truck deliveries. The data setting is as fol- 

ows. Customer locations are picked randomly from all buildings in 

 4 km 

2 area in northern Munich (Germany), using OpenStreetMap 

 OpenStreetMap Foundation, 2019 ) to create instances with | C| = 

0 customers. To account for direct truck deliveries, we assume 

hat the first 12% of customers (which the instances list in ran- 

om order) require truck delivery ( | C m | / | C| = 0.12). The remaining

ustomers require robot delivery ( C r = C/C m ). This means there are 

o optional truck deliveries in the default case ( C o = ∅ ). The impact

f optional truck deliveries will be analyzed separately. Note that 

ur assumption for | C m | / | C| is in line with the estimate reported

y Forbes (2019), that technically 75 to 90% of Amazon deliveries 

ould be made by autonomous vehicles, and will be subject to a 

ensitivity analysis in the following. There are | R | = 25 evenly dis- 
12 
ributed robot depots, and | D | = 48 uniform-randomly distributed 

rop-off points in the area. All delivery time windows have the 

ame length ε = 10 min. The end of a customer’s time window 

s generated based on the direct travel time of the truck from its 

andom starting position to the customer. This travel time is mul- 

iplied by a uniform-randomly distributed factor from the inter- 

al [ ρmin , ρmax ] = [5 , 8] . This procedure simulates an assignment of

ustomers to vehicles such that reasonable tours are made possi- 

le. The initial number of robots is r a = 10 for every depot a, a ∈ R .

he capacity of the truck is K = 8 robots and it is fully loaded at

he start ( δ = 8 ). The average speed of the truck is 30 km/h and

he average speed of the robots 5 km/h. A handling time per truck 

top of μ = 40 s is assumed in addition to travel times. Note that 

e assume the same travel distances for the truck and robots. In 

ractice, robots would often be able to take shortcuts, which adds 

o their advantages. There are 20 instances generated with 25, 50, 

5 and 100 customers respectively, resulting in a total of 80 in- 

tances used in our experiments. All results presented show the 

verage of the corresponding 20 solutions. We further apply the 

ost rates empirically quantified by Ostermeier et al. (2021) . These 

re c d = 0 . 20 €/km and c t = 30 €/h for the truck, c r = 0 . 50 €/h
or robot use and c l = 5 €/h for delivery delays. For a more de-

ailed discussion of costs in last-mile delivery we further refer to 

rotcorne, Perboli, Rosano, & Wei (2019) . 

Lastly, we allow α = 4 VND iterations per shaking neighborhood 

executed in parallel), a maximum of n shuffle = 4 for the customer 

eshuffling shaking neighborhood and a maximum VND neighbor- 

ood size of n max = 90 tours. The threshold for the selection of the 

tart heuristic is set at σ = 2 and its time limit τ at 3 min. 

.2. Performance comparison 

There are no existing solution approaches to MTR and only 

 couple of publications on TnR (see literature analysis). To the 

est of our knowledge, Boysen et al. (2018) and Ostermeier et al. 

2021) provide the currently most developed approaches in this re- 

earch area. As we provide a generalization of the problem, we 

ill use a special case of our problem that is equivalent to the 

roblems in the benchmark. We compare our MTR heuristic to the 

S approach by Ostermeier et al. (2021) , as the authors study the 

nR concept with a total cost objective, i.e., without the possibil- 

http://www.vrp-rep.org/datasets/item/2020-0005.html


                                                                                                  

                 
                                     

Fig. 7. Comparison of our MTR approach to the benchmark (i.e., LS approach by 

Ostermeier et al., 2021 ) for a share of 0% and 12% of truck deliveries. 
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ty of truck deliveries. Their numerical studies show that their LS 

pproach outperforms the approach by Boysen et al. (2018) in find- 

ng cost-optimal tours. However, due to its structure, the LS is not 

uitable for incorporating truck deliveries and all customers must 

e visited by robot. We consequently apply our MTR heuristic to 

olve both instances without truck deliveries and additionally in- 

tances with the restriction of 12% truck deliveries required. In the 

pecial case of our setting without truck deliveries, the problem is 

dentical to the one solved by Ostermeier et al. (2021) . The MTR 

euristic reaches a solution quality differing only 0.3 to 2.0% from 

he LS in these cases. The computation times for different problem 

izes are shown in Fig. 7 . The scenario with 12% truck deliveries 

s labeled ‘MTR 0.12’ and the one without truck deliveries ‘MTR 

.0’. We see that the MTR approach outperforms the LS when only 

obot deliveries are required, reducing the computation time by 37 

o 94% (for 100 and 25 customers respectively). This shows that 

espite the focus of our MTR approach on a mixed delivery struc- 

ure, it works efficiently and effectively for a related problem with- 

ut direct truck deliveries. When truck deliveries are required, the 

omputation effort increases, but remains at a level acceptable for 

n application in practice. The reason for the increase is the strong 

mpact of truck deliveries on costs and the resulting longer search 

or better alternatives. A premature truck delivery on the route 

orces the truck to wait until the delivery time window starts. This 

auses additional costs and potential delays at later stops. A late 

ruck delivery, on the other hand, causes delay costs at the respec- 

ive customer. Robot deliveries are more flexible as they can be 

tarted at different stops of a truck tour such that small changes 

o a given tour often show a minor impact on robot schedule and 

elay costs. 

Additionally, we found that the MIP for the entire MTR-RP ( (1) –

27) ) could not be solved exactly within three hours for six cus- 

omers, even if stops are not duplicated, branching is supported by 

 relaxed MIP version and a feasible start solution is provided to 

he solver. An average MIP gap of 52% remained. 

.3. Comparison of delivery concepts 

This section compares the delivery concepts given in Table 5 for 

 varying share of truck deliveries required. 

Figure 8 shows the total costs, computation times, average delay 

nd total truck distance for the concepts analyzed. We henceforth 

ighlight the default setting described in Section 6.1 with a bold 

-label. Note that TD was solved without consideration of the ear- 

iest delivery time, i.e., delivery can occur before the time window 

o reduce computational complexity. This leads to an advantage for 
13 
D and an underestimation of the improvements due to MTR. De- 

pite this simplification, optimality could not be proved within the 

omputation time limit of three hours. We therefore report prop- 

rties of the best solutions found and the lower bound of the ob- 

ective value (‘TD LB’). Further, MTR and STR are identical for 0% of 

ruck deliveries. 

Computation time . Runtime increases significantly for a mixed 

lanning (i.e., MTR and MTR OT) as soon as truck deliveries are re- 

uired. The actual locations of individual customers are the main 

river of computation times. Single customers can significantly in- 

rease the problem complexity and the respective runtimes if they 

equire truck delivery and cause a large detour for the truck. For 

xample, for MTR, the standard deviation across the 20 instances 

elative to the average objective value increases by 25% when the 

hare of truck deliveries increases from 0 to 12%. In line with this, 

untimes for MTR OT are higher due to the potential additional 

ruck stops. STR on the other hand reveals a decrease in runtime 

s more truck deliveries are outsourced to a separate routing prob- 

em. 

Cost impact of MTR . All robot concepts outperform a solution 

ith truck deliveries only (TD). This is in line with current litera- 

ure (see Ostermeier et al., 2021 ). MTR OT is the option with the 

owest total costs in all examples. Total costs increase significantly 

or all concepts involving robots as soon as truck deliveries are re- 

uired (i.e., comparing 0 and 4% truck deliveries required). In the 

TR case, this is due to the truck delivery tour needed in addition 

o the robot delivery tour. In the MTR and MTR OT cases, it can be

ttributed to reduced flexibility given the stops required for truck 

elivery. 

A further increase in the share of truck deliveries leads to a 

oderate increase in total costs. Comparing a combined truck and 

obot delivery to a separate delivery (i.e., MTR vs. STR) of more 

han 4% truck deliveries results in cost savings of between 20 and 

4% in favor of a mixed delivery. This highlights the advantage 

f our MTR heuristic’s ability to combine truck and robot deliv- 

ries into one tour. Compared to TD, MTR reduces costs by 43% in 

he default case with 12% truck deliveries. This highlights the at- 

ractiveness of delivery by truck and robots even for situations in 

hich not all deliveries can be made by robot. 

MTR OT vs. MTR . MTR OT chooses the delivery mode for all 

ustomers that can be supplied by truck or robot. An increasing 

hare of these customers is served by truck as the share of re- 

uired truck deliveries increases. When no truck deliveries are re- 

uired, only 1% of the customers are served by truck. When truck 

eliveries are required, the truck delivery share among the ‘op- 

ional’ customers C o steadily increases from 18% (in the case with 

% required truck deliveries) to 35% (in the case with 20% re- 

uired truck deliveries). The reason for this increase is that addi- 

ional truck deliveries are only efficient when they are close to the 

our. As the share of required truck deliveries increases, the tour 

ets longer and thus more of the ‘optional’ customers are suit- 

ble for truck delivery with a small deviation. However, the cost 

dvantage of additional optional truck deliveries (i.e., MTR OT vs. 

TR) is low with up to 2% savings. Due to this small cost ad- 

antage of MTR OT compared to MTR, we restrict most of our 

emaining analyses to the comparison of MTR vs. STR for better 

eadability. 

Delay and truck distance . The logistical performance with re- 

pect to delays is comparable for all robot concepts. This shows 

hat all deliveries can be made by a single tour without compro- 

ising on delivery performance. MTR and MTR OT show a mini- 

um delay when 8% of truck deliveries are considered. The rea- 



                                                                                                  

                 
                                     

Table 5 

Overview of delivery concepts. 

Concept Description Rationale Solution approach 

TD : Truck-only delivery Only deliveries by truck to all customers Benchmark to assess MTR benefits MIP from Appendix A 

MTR : Mixed truck and robot 

delivery 

Tour with mandatory truck deliveries and 

all other deliveries by robot ( C r = C \ C m ) 
Approach of this paper MTR heuristic 

MTR OT : MTR with optional truck 

deliveries 

MTR extended by optional truck 

deliveries, i.e., in addition to mandatory 

truck deliveries, all other deliveries can be 

made by truck ( C o = C \ C m ) 

Approach of this paper and 

assessing optional truck delivery 

MTR heuristic 

STR : Separate truck and robot 

tours 

Separate planning of one TD tour for truck 

deliveries and one TnR tour for robot 

deliveries (i.e., two simultaneous tours) 

Serves as benchmark to assess 

benefits of MTR heuristic vs. 

existing TnR heuristics 

TD tour by MIP from Appendix A ; 

TnR tour by MTR heuristic 

Fig. 8. Comparison of different delivery modes for a varying share of required truck deliveries. 
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on for this is that including additional stops at truck delivery cus- 

omers (and thus forcing the truck to make a longer tour) can im- 

rove punctuality as less distance needs to be covered by robots. A 

urther increase in truck deliveries then leads to additional delays 

aused by longer truck tours and a later launch of robots at the 

ast drop-off points. The latter effect also leads to a decreasing ad- 

antage of MTR OT when more than 8% of deliveries are required 

y truck. The truck is already overwhelmed serving the customers 

ho require truck deliveries such that optional truck deliveries are 

ardly made in addition. The development of covered truck dis- 

ance is similar across the three concepts using robots. It shows 

 flattening increase for an increasing number of truck deliveries. 

n the default case, MTR reduces truck mileage by 45% compared 

o TD, showing that it is able to reduce pollution and traffic even 

hen truck deliveries are necessary. The steady increase in mileage 

an be reasoned by the tight time windows considered. The truck 

n the MTR scenario must go on a criss-cross route to satisfy all the 

ime windows at customer stops. We therefore analyze a changing 

ime window structure in the following. 
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.4. Analysis of the time window structure 

Time windows limit the degree of freedom for the routing. This 

ection analyzes the impact of the time window length for both 

ruck and robot deliveries. We analyze both customer groups sepa- 

ately since the impact of a customer’s time window on the overall 

olution is higher when the truck needs to visit the customer and 

eet the time window. This can lead to detours or waiting time 

ffecting all other deliveries as well, while a robot delivery has lit- 

le effect on other deliveries. 

Time window length for truck deliveries . Figure 9 shows the per- 

ormance of MTR vs. STR depending on the change in time window 

ength for truck deliveries. Every time window change is made 

ymmetrically, i.e., in the case of a 10 min change, start and end 

f the time windows are shifted by 5 min each. 0 corresponds to 

he default case. 

Cost and computation time are reduced if time windows be- 

ome wider due to increased flexibility. The cost decrease runs 



                                                                                                  

                 
                                     

Fig. 9. Comparison of MTR vs. STR for varying length of truck delivery time windows. 
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n parallel for MTR and STR such that MTR’s cost advantage is 

table at 21 to 23%. The driver of the cost decrease is reduced 

ruck usage both for MTR and STR. STR achieves only a moder- 

te truck distance reduction, but at the same time reduces de- 

ays and keeps robot use stable since the separate robot delivery 

our is not affected. MTR achieves a larger distance reduction at 

he cost of increasing delays and robot use. This means that al- 

hough the time windows become wider, MTR uses this opportu- 

ity to further reduce truck distance and allow longer robot travel, 

esulting in a very small increase in delays. Additionally, we con- 

idered a scenario without time windows for truck deliveries. Even 

n this scenario, a cost saving of 19% is achieved by MTR com- 

ared to STR. This is possible as truck deliveries can be added 

reely at beneficial points of the route such that deviations are 

inimized. 

Time window length for robot deliveries . We further analyze the 

mpact of robot delivery time windows. Since these time windows 

ould have an impact on the delivery mode chosen by MTR OT, 

e include it into this analysis. The results for the corresponding 

hanges are shown in Fig. 10 . 

As could be expected, costs of the MTR are hardly affected 

y these changes since truck tours are dominated by truck de- 

iveries. The only effect of wider time windows is reduction in 

elays. For STR, the TnR route changes slightly. The distance be- 

omes longer, while robot cost and delays decrease. This leads to 

 minor cost reduction as robot deliveries only account for 38% 

f total costs and truck deliveries are not affected. MTR OT con- 

inues to find opportunities for slight improvements by chang- 

ng the delivery mode from robot to truck delivery for some cus- 

omers. The number of these customers (around 6 customers) and 

he cost advantage created (1 to 2% compared to MTR) remain 

onstant with changing time window length. This shows that the 
15 
ustomers’ location mainly defines whether customers are suit- 

ble for truck delivery or not. The results highlight that both MTR 

nd STR can fulfill tight time windows for robot deliveries at lit- 

le additional cost. The MTR approach outperforms the STR con- 

ept with separate planning of truck and robot deliveries across all 

cenarios. 

.5. Impact of handling times 

The handling time for a truck delivery can vary depending on 

ow far the driver walks to the customer’s door and how quickly 

he customer responds. We therefore analyze the impact of consid- 

rably longer handling times for deliveries by truck within a sen- 

itivity analysis in Fig. 11 . As the handling time increases, so do 

otal costs for both approaches. For MTR this leads to additional 

elays (on a low absolute level) that further contribute to the cost 

ncrease. STR benefits from a second truck and therefore keeps de- 

ays low. MTR responds to this by further reducing the truck dis- 

ance and the number of stops at robot depots and drop-off points. 

he number of customer stops cannot be reduced, since only cus- 

omers requiring truck delivery are served by truck. However, these 

ustomers are partly shifted to the end of the truck tour, such that 

heir handling times do not cause delays for subsequent robot de- 

iveries. Despite the route adaptions by MTR, its cost advantage 

ompared to STR diminishes to 14% (at 160 s handling time) and 

% (at 280 s handling time). In practice this means that (i) han- 

ling times should be kept short, e.g., by allowing the driver to 

eave a parcel at the door instead of waiting for the customer, (ii) 

ime windows offered to the customers must take handling times 

nto account (as in our example, time windows are too tight for 

ncreased handling times), and (iii) even with very high handling 

imes MTR remains cost-competitive. 



                                                                                                  

                 
                                     

Fig. 10. Comparison of MTR and MTR OT vs. STR for varying length of robot delivery time windows. 

Fig. 11. Comparison of MTR vs. STR for varying handling times of truck delivery. 
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Fig. 12. Cost comparison of MTR vs. STR for varying customer and depot distributions. 

Fig. 13. Comparison of MTR vs. STR for varying hourly truck cost rates. 
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.6. Impact of delivery area setting 

The spatial distribution of customers and depots can have a 

trong impact on a concept’s performance. We therefore analyze 

otal costs of MTR vs. STR for different distribution types. The uni- 

orm distribution of our default setting is compared to two al- 

ernatives: a concentrated distribution, where customers and the 

quidistant depots are located centrally in a 2 × 2 km 

2 square area, 

nd a clustered distribution, where two customer clusters are con- 

idered, one in the lower left and one in the upper right quad- 

ant of the original 4 × 4 km 

2 square area. The depot distribu- 

ion in the clustered distribution remains equidistant in the whole 

quare area (as in the ”uniform” case). The number of customers 

s varied from 25 to 100 (where our default case corresponds 

o the uniform distribution of 50 customers). The MIP used to 

olve the truck delivery tour part of STR could not be solved to 

roven optimality within three hours in the 100-customer case. 

he best-known solutions are reported. The results are summa- 

ized in Fig. 12 . We further illustrate the results of the different 

ettings using exemplary routing solutions in the appendix (see 

ppendix B ). 
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Total costs show a near linear increase for both alternative con- 

epts. The MTR approach is able to sustain or even expand its cost 

dvantage for an increasing number of customers. In the concen- 

rated setting, for instance, cost savings increase from 17% (25 cus- 

omers) to 29% (100 customers). Concentrated customers are ben- 

ficial for both MTR and STR, as total travel distances decrease. 

owever, the MTR is able to better exploit the advantages of a con- 

entrated or clustered distribution as all customers are served by 

 single tour, while travel distances are further reduced and time 

indows are met. Our MTR approach robustly leads to significant 

avings in all settings presented. 

.7. Impact of costs 

Impact of truck costs . The hourly cost rate of the truck is mostly 

riven by the driver’s salary. We therefore provide a sensitivity 

nalysis on the truck cost rate c t , which corresponds to a Western 

uropean salary level in our default case. Figure 13 displays our 

ndings. Total costs increase proportionally for both approaches, 

eading to stable cost savings of 22 to 24% through MTR. STR is 

ore sensitive to changing costs. The higher the truck costs, the 



                                                                                                  

                 
                                     

Fig. 14. Comparison of MTR vs. STR for varying delay cost rates. 
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igher the delays. The increase in delays goes along with a de- 

rease in truck distance. The MTR solution on the other hand is 

ot sensitive to changing costs with respect to delays and truck 

istance. In the 10 €/h scenario, the MTR approach therefore re- 

ults in 10% less mileage at a cost of a 50% higher average delay

ompared to STR. 

Impact of delay costs . We have shown that increasing truck costs 

ay lead to increasing delays within the MTR approach. In our 

nal test we therefore assess how MTR performs for varying de- 

ay costs c l . The results are summarized in Fig. 14 . The cost curves

how that MTR savings slightly decrease as the importance of de- 

ays increases. However, MTR achieves cost savings of 15% even for 

 100 €/h delay cost rate. Since the applied instances are chosen to 

e challenging with respect to delivery times, neither of the two 

pproaches can eliminate delays completely. STR is able to reduce 

elays more as it uses two vehicles instead of one. The price of 

his is an increasing truck distance, while MTR’s truck distance is 

table. In summary, the STR concept minimizes delays compared 

o our MTR approach, but at the cost of longer truck tours. From a 

otal cost perspective, MTR enables significant cost savings even if 

he costs of delays are high. 

. Conclusion 

Our work shows that the MTR concept is a valuable extension 

f the existing TnR concept to enable further applications in the 

etail industry. It combines autonomous robot deliveries with clas- 

ical truck deliveries (e.g., for bulky orders). We present a com- 

rehensive model formulation for this home delivery concept and 

olve it using a tailored GVNS solution framework. The GVNS is 

ompetitive compared to existing TnR routing algorithms as it 

utperforms the prevailing LS approach in terms of runtime and 

quals its solution quality for a robot-only delivery. The extension 
18 
resented enables practitioners to assess and operate an MTR sys- 

em that can completely replace classical truck tours. 

Our analyses show that the MTR concept reduces costs and 

ruck mileage by more than 40% compared to classical truck deliv- 

ry, even when a share of customers has to be supplied by truck. 

o give some further detail, the experiments show that (i) direct 

ruck deliveries have a large impact on costs and solution struc- 

ure (e.g., 46% higher costs and 119% higher mileage due to 4% of 

ruck deliveries with MTR), (ii) by including direct truck deliveries 

n the tour, our approach leads to savings of up to 24% compared 

o a separation of truck and robot deliveries, and (iii) adapting the 

ime windows for truck deliveries can help to further reduce costs 

nd travel distance. Additional analyses highlight the benefits of a 

ixed delivery concept and show that the MTR results are robust 

cross different settings. Applied to settings without truck deliver- 

es, our approach is 37 to 94% faster than an existing state-of-the 

rt approach. 

While we address an important extension for TnR delivery, 

here are several other aspects that can be assessed in future re- 

earch. Our model could test technical additions and infrastructure 

pecifics such as faster robot travel on bike lanes. Robot move- 

ents between depots may further help to increase robot avail- 

bility in depots visited by truck. The exchange of robots between 

epots might therefore be a next step. In line with this, our model 

ould be extended to include the pickup of robots at drop-off

oints on the tour. This means that robots could be sent to lo- 

ations other than robot depots. Stochastic travel times and pick- 

ps from customers could be considered to generalize the problem. 

ther innovative last-mile delivery concepts could be compared to 

TR to derive guidance on which concept and fleet mix to im- 

lement in which setting. To date, the TnR and MTR routing ap- 

roaches have focused on a single truck tour. The use of multiple 

ours and the corresponding allocation of customers to different 

ours is required in settings with higher order volumes. Ultimately, 
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Fig. B.15. MTR routing result for the uniform customer distribution. 

Fig. B.16. MTR routing result for the concentrated customer distribution. 
he problem presented demonstrates situations of high complexity 

nd unique structure for which alternative solution approaches can 

e tested. Those could assist in accelerating computation, dealing 

ith larger problem sizes or evidencing optimality. We show that 

he MTR can significantly reduce total mileage and transportation 

osts. A detailed analysis of the impact on noise and CO 2 emissions 

f the different transportation modes constitutes a future area of 

esearch. 

cknowledgment 

We would like to thank the editor and three reviewers for their 

aluable advice on improving this work. 

ppendix A. A MIP model for the VRP with time windows 

For solving the VRP with time windows, we introduce the 

ollowing MIP model, which we adapted from Ostermeier et al. 

2021) to incorporate time windows instead of only deadlines. It 

inimizes the cost of traditional truck delivery assuming the same 

ost factors as in the MTR case. We further assume the same pro- 

essing time of 40 sec. for every customer k (included in ϑ 

t 
ik 

). We

ntroduce the set of available vehicles F , which contains only one 

ehicle in our case. The binary decision variable s f i j is 1 if vehi- 

le f travels from location i to location j and 0 otherwise. Finally, 

uxiliary decision variable t k denotes the arrival time at customer 

 and t T 
f 

the total tour time of vehicle f . This leads to the objective

unction (A.1) , which incorporates the cost of truck distance, truck 

ime and delays. Constraint (A.2) ensures every customer is visited 

xactly once. (A.3) and (A.4) keep track of the earliest possible ar- 

ival times at customers. Constraint (A.5) ensures no customer is 

erved before his/ her time window and Constraint (A.6) derives 

he delays from the arrival times. (A.7) defines the total operating 

ime of each truck. (A.8) and (A.9) establish flow constraints for the 

rucks at every stop. Constraints (A.10) to (A.12) define the solution 

pace. 

in 

∑

f∈ F 

∑

i ∈ C∪{ γ } 

∑

j∈ C∪{ γ } 
c d λi j s f i j + 

∑ 

f∈ F 
c t t T f + 

∑

k ∈ C
c l v k (A.1) 

ubject to 
∑

i ∈ C∪{ γ } 

∑

f∈ F 
s f ik = 1 ∀ k ∈ C (A.2) 

 k ≥ ϑ 

t 
γ k − M · (1 − s fγ k ) ∀ k ∈ C, f ∈ F (A.3) 

 j ≥ t i + ϑ 

t 
i j − M · (1 − s f i j ) ∀ i, j ∈ C, f ∈ F (A.4) 

 k ≥ d k − ε ∀ k ∈ C (A.5) 

 k ≥ t k − d k ∀ k ∈ C (A.6) 

 

T 
f ≥ t k + ϑ 

t 
kγ − M · (1 − s f kγ ) ∀ k ∈ C, f ∈ F (A.7) 

∑

i ∈ C∪{ γ } 
s f ik = 

∑

i ∈ C∪{ γ } 
s f ki ∀ k ∈ C, f ∈ F (A.8) 

∑

k ∈ C
s fγ k ≤ 1 ∀ f ∈ F (A.9) 

 f i j ∈ { 0 , 1 } ∀ i, j ∈ C, f ∈ F (A.10) 
19 
 k ≥ 0 ; v k ≥ 0 ∀ k ∈ C (A.11) 

 

T 
f ≥ 0 ∀ f ∈ F (A.12) 

ppendix B. Exemplary tours for the different delivery area 

ettings 

Figures B.15 , B.16 and B.17 show exemplary routing solutions 

or the uniform, concentrated and clustered scenarios defined in 

ection 6.6 . Please note the different scales of the figures for the 

ifferent settings. The solid blue arrows represent the truck legs, 

he dotted blue lines the robot legs. In the concentrated setting, 

he truck distance can be reduced compared to the uniform set- 

ing as the customers are closer to each other (2km vs. 4km de- 

ivery area). The distance is also reduced in the clustered setting, 

ven though the time windows are still assigned randomly (not 

eparated by cluster, see Section 6.1 ). Since the robots can arrive 

arly and wait for the desired time window, it is often most effi- 

ient for the truck to serve the clusters sequentially and therefore 

educe the distance traveled. The longest distance that needs to be 

overed in the clustered setting is the way between the two clus- 

ers. 



                                                                                                  

                 
                                     

Fig. B.17. MTR routing result for the clustered customer distribution. 
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