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A B S T R A C T   

Study region: The São Francisco River Basin (SFRB) in Brazil 
Study focus: In semi-arid regions, interannual variability of seasonal rainfall and climate change is 
expected to stress water availability and increase the recurrence and intensity of extreme events 
such as droughts or floods. Local decision makers therefore need reliable long-term hydro- 
meteorological forecasts to support the seasonal management of water resources, reservoir op-
erations and agriculture. In this context, an Ensemble Kalman Filter framework is applied to 
predict sub-basin-scale runoff employing global freely available datasets of reanalysis precipita-
tion (ERA5-Land) as well as bias-corrected and spatially disaggregated seasonal forecasts (SEAS5- 
BCSD). Runoff is estimated using least squares predictions, exploiting the covariance structures 
between runoff and precipitation. The performance of the assimilation framework was assessed 
using different ensemble skill scores. 
New hydrological insights for the region: Our results show that the quality of runoff predictions are 
closely linked to the performance of the rainfall seasonal predictions and allows skillful pre-
dictions up to two months ahead in most sub-basins. The anthropogenic conditions such as in the 
Western Bahia state, however, must be taken under consideration, since non-stationary runoff 
time-series have poorer skill as such unnatural variations can not be captured by long-term co-
variances. In sub-basins which are dominated by little anthropogenic influence, the presented 
framework provides a promising and easily transferable approach for skillful operational seasonal 
runoff predictions on sub-basin scale.   
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1. Introduction 

The effect of global warming on climatic extreme events such as droughts combined with the growing water demand for cities and 
irrigation can result in intense water scarcity in certain regions of the world (Schewe et al., 2014; Stocker et al., 2014; Du et al., 2018). 
Mostly impacted are semi-arid regions due to limited water availability, accumulation and intensification of drought periods and 
increasing sedimentation of water reservoirs. Especially in those regions, observational data is sparse and the number of reliable and 
long-term operating measurement stations is decreasing (Lorenz and Kunstmann, 2012). This does not allow decision makers to rely on 
local statistics to anticipate those hardly predictable extreme events, and thus to plan for a proactive water allocation during droughts 
and to manage reservoir levels during floods. Climatic information on seasonal scales are therefore particularly important and 
fortunately, semi-arid climates near or at the tropics can offer reasonable predictability on seasonal timescales: In fact, the climate 
variability in these regions is mainly affected by large-scale forcing of thermal and dynamical atmosphere-ocean interaction from 
intraseasonal to multidecadal timescale (e.g., Madden Julian Oscillation, El Nião Southern Oscillation, Pacific Decadal Oscillation, 
Atlantic Multi-Decadal Oscillation, Quasi-Biennal Oscillation) (Kayano and Andreoli, 2004; De Souza and Ambrizzi, 2006; Taschetto 
and Ambrizzi, 2012; Taschetto and Wainer, 2008; He et al., 2017; Li et al., 2020); or long-term interactions like inertial memory, soil 
moisture, sea surface temperatures (Koster et al., 2000), that are well represented in state-of-the-art seasonal predictions systems 
(Johnson et al., 2019). Hence, an adjustment of policies to sustainable water-management and the development of tools to make global 
information usable for individual regions is required. In this context, seasonal sub-basin-scale runoff is proposed to be estimated 

Fig. 1. The São Francisco River Basin (SFRB) in Brazil. The blue solid lines indicate the tributaries and the black solid lines show the delineation of 
the sub-basins. The markers represent the location of each, i.e, the selected gauges (red triangle) and all the gauges (orange circle). The numbers 
(0−11) are used to identify the different sub-catchments. Sub-basin N∘0 is not analysed in the EnKF framework. 
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applying a hydro-meteorological EnKF framework, using the statistics of global freely available datasets and global model predictions. 
This approach is derived from a previous study (Lorenz et al., 2015), where EnKF-based basin-scale runoff estimations proved to 
provide promising results on monthly time scales. More specifically, we focus on the application of publicly available global hydro-
meteorological datasets and exploit the joint temporal and regional covariance structures to generate least square estimated pre-
dictions. The motivation is to develop a similar framework for seasonal runoff predictions, using seasonal precipitation predictions 
from the European Centre for Medium-Range Weather Forecasts (ECMWF) latest seasonal forecasting system SEAS5 as well as 
reanalysis-based reference precipitation from ERA5-Land, which is an offline re-run of the land-surface component from ECMWF’s 
latest atmospheric reanalysis ERA5. We further use runoff observation data from the Brazilian National Water Agency (ANA). In fact, 
different studies showed the potential of seasonal forecasts to predict extreme events like droughts and to support water management 
in semi-arid regions (Changnon and Vonnhame, 1986; Garbrecht et al., 2006; Portele et al., 2021). In this regard, various statistical 
rainfall-runoff models (Misumi et al., 2001; Garbrecht et al., 2006; Ajami et al., 2016; De Paiva et al., 2020) or process-based hy-
drological models (Yuan et al., 2016; Crochemore et al., 2016; Meißner et al., 2017; Foster et al., 2018; Sehgal and Sridhar, 2019; 
Wanders et al., 2019), which convert climate or seasonal precipitation forecasts into stream flows adapted for real-time basin 
monitoring, already exist. In comparison, our proposed framework uses high-resolution precipitation forecasts within a statistical 
rainfall-runoff EnKF framework to predict computationally efficient seasonal runoff at sub-catchment level. In this study, the São 
Francisco River Basin (SFRB) in Brazil is investigated. Being disposed to have increasing water-related problems in the future (Cunha 
et al., 2018), the SFRB requires sustainable mitigation strategies and therefore provides a suitable testbed for the EnKF-based seasonal 
hydrological forecasting system. 

2. Material 

2.1. Study area 

With a total surface area of 636, 851 km2, the SFRB (Fig. 1) is a very multifaceted region, both in terms of its climatic and physical 
characterization as well as its environmental diversity. With its 2860 km of length, the river originates in the Canastra mountain in the 
central part of the Southeast region and flows into the Atlantic Ocean in the Northeast part of the catchment. The main course of the 
river is supplied by the tributaries of several sub-basins with 75 % of the water flow generated in the upper reach of the state of Minas 
Gerais (Maneta et al., 2009; Traini et al., 2012; de Jong et al., 2018). The SFRB unites regions with two different climate regimes 
between the upper and lower basin. In the southern part of the basin (regions 3–11 in Fig. 1), the rainy season is during 
November-December-January (NDJ) and its variability is strongly influenced by the South Atlantic Convergence Zone (SACZ) 
(Kodama, 1992; Kodama, 1993; Carvalho et al., 2002),(Carvalho et al., 2004). The rainy season over the northern part (regions 0–2 in 
Fig. 1) is observed during January-Apr (JFMA) and is mainly linked to the high activity of the Intertropical Convergence Zone (ITCZ) 
and the emergence of easterly waves and squall lines derived by the sea breeze (ParedesTrejo et al., 2016; Sun et al., 2016). Because of 
its high population of approx. 17 million people, the region incorporates important economic activities, increasing the stress on the 
environment and the water resources (Ioris, 2001; Maneta et al., 2009). Apart from drinking water, freshwater resources are mainly 
used for electricity generation, urban and industrial services, intensive irrigation and mining activities. This involves a high con-
centration of dams and water abstractions all along the SFRB river (de Jong et al., 2018; do Vasco et al., 2019; dos Santos et al., 2020). 
The Western Bahia state (regions 5, 6, and 7 in Fig. 1) in particular, is a very active agricultural area which is subject to significant 
reduction in river discharge, rainfall and ground water level since the 1980s (Pousa et al., 2019; Santos et al., 2020). In addition to the 
significant environmental impact of these activities on biodiversity, soil erosion and land desertification (Cunha et al., 2015; Tomasella 
et al., 2018), the North East of the region was recently hit by an intense multi-year drought that caused a significant lack of water in the 
region and emptied most reservoirs (Marengo et al., 2018; Martins et al., 2018). 

2.2. Data 

The study is based on 11 sub-basins of the SFRB (Fig. 1) and monthly time series over a total period of 30 years between 1981 and 
2011. The 11 sub-basins were delineated and associated with runoff gauges given the spatial distribution of the gauges and the spatial 
resolution of the precipitation products. Information about the different data sets used for this study are summarized in Table 1. More 
detailed information about the runoff gauges and missing values can be found in Table 2. 

2.2.1. Runoff 
The gauges located at the sub-basins outlet were used to quantify the runoff of each sub-basin (red triangles in Fig. 1). The daily 

discharge data of the 11 selected gauges were obtained from the Brazilian National Water Agency (ANA) database, which contains all 

Table 1 
Summary of the datasets used in this study.  

Variable Dataset Grid size Temporal resolution Time Period 

Runoff ANA gauges daily 1981–2011 
Precipitation ERA5-Land 9 km daily 1981–2011 
Seasonal forecast of precipitation SEAS5-BCSD 36 km daily 1981–2011  
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information collected by the National Hydrometeorological Network (RHN) in Brazil. The data are averaged monthly and the few 
missing values (see table 2) are filled using the climatology. Because of the high dam concentration in region 0 (Fig. 1) which denies the 
description of the natural relationship between precipitation and runoff through simple covariances or correlations, only the N∘1–11 
sub-basins are considered in this study. 

2.2.2. Precipitation 
Reference precipitation is taken from the ERA5-Land climate reanalysis (Muñoz-Sabater et al., 2021) dataset of the European 

Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). This dataset is derived from a re-run of the 
land component of the ECMWF ERA5 climate reanalysis (Hersbach, 2016) and contains gridded daily global land surface precipitation 
at 9 km resolution from 1950 onwards. ERA5-Land has the particular advantage of including a representation of the hydrological 
cycle, which improves the agreement between river discharge estimates and available observations. The hydro-meteorological con-
sistency and high spatial resolution of ERA5-Land makes it an ideal dataset for hydrological research purposes. The gridded data were 
monthly and spatially averaged over the different sub-basins to obtain basin scale rainfall estimates. 

2.2.3. Bias-corrected and spatially disaggregated seasonal forecasts (SEAS5-BCSD) 
Monthly seasonal forecasts for precipitation are obtained from ECMWFs latest seasonal forecasting system SEAS5, which are bias- 

corrected and spatially disaggregated towards ERA5-Land (Lorenz et al., 2021). The forecasts cover the whole (re-)forecast period from 
1981 to 2019 and include bias-corrected and spatially disaggregated daily and monthly ensemble forecasts for precipitation, average, 
minimum and maximum temperature as well as for shortwave radiation from the issue date to the next 215 days and have a spatial 
resolution of 0.1∘. They consist of an ensemble of 25 (until 2016) and 51 (from 2017) members, that are corrected towards ERA5-Land 
using a quantile-mapping approach for estimating a temporally consistent set of land-surface variables. The bias-correction of pre-
cipitation forecasts further includes a correction of precipitation intermittency to ensure the agreement of the wet- and dry-day fre-
quencies from ERA5-Land and SEAS5-BCSD. Compared to the raw SEAS5 forecasts, SEAS5-BCSD has a higher spatial resolution, lower 
biases with respect to ERA5-Land and substantially reduced model drifts with forecast lead time and are, hence, more suitable for 
regional applications. Because this study focuses on a time period prior 2016, the SEAS5-BCSD ensemble size has only 25 members. 

3. Methods 

3.1. Prediction model 

For this EnKF framework, the state of the system is represented as a multi-dimensional vector X of size 2 × Nreg with Nreg being the 
number of sub-basins, containing the runoff R and the precipitation P state vectors to be estimated at each time step t. 

Xt =
[
PT

t RT
t

]T (1) 

The prediction equation has been derived under the assumption that the time evolution of the precipitation and runoff anomalies 
can be written as a first order stochastic process 

rt = Art−1 + ϵ (2) 

with the monthly residual r at time step t 

rt = Xt − X̃m =

[
Pt − P̃m
Rt − R̃m

]

(3) 

and the long-term mean annual cycle for the state vector X̃ at month m over a total period of τ months 

Table 2 
Description of the gauging stations used for each sub-basin with information on mean annual discharge, runoff and percentage of missing values in the 
daily time series.  

Sub-basin N∘ Station name Area (km2) Discharge (m3∕s) Runoff (mm∕year) Missing values (%)  

1 P.Afonso 12,544  2567  135  0  
2 Itaparcia 194,336  2564  137  0  
3 Sobradinho 76,918  2457  156  0  
4 Morpara 139,289  2328  213  0  
5 Boqueirao 76,946  273  112  0.02  
6 Porto Novo 34,082  207  192  0  
7 Juvenilia 17,131  136  252  0  
8 Santo Inacio 25,165  223  286  0.04  
9 Porto Alegre 44,975  502  352  0.1  
10 Tres Marias 56,767  709  394  0  
11 Varzea Da Palma 27,860  297  337  0.01  
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X̃m =
1

τ∕12
∑τ∕12

i,m
Xi,m. (4) 

The prediction is characterized by the matrix of the process dynamics A and is supposed to model the dynamics and statistical 
relationship of the temporal evolution of the two water cycle variables. The zero-mean normally distributed white prediction noise ϵ ∼

N (0,QP) represents errors coming from the model data, parameters and physics with QP being the prediction error covariance matrix. 
Because of the complexity and the lack of physical knowledge about the dynamics of the process model, A is considered as unknown. 
Nevertheless, an estimation Â can be obtained with least square prediction methods making use of the process stochastic information. 
For a complete and detailed derivation of the methodology, see (Moritz, 1980; Kurtenbach et al., 2012; Tourian, 2013; Lorenz et al., 
2015). We are looking for an approximation Â as a linear estimator of rt given rt−1 

r̂t = Ârt−1 (5) 

where ̂r is the predicted state. The estimated prediction matrix Â should minimize the prediction error e = rt − r̂t, i.e. minimize the 
trace of the error covariance matrix QP. The total error can be developed as follow 

QP = E{eeT} = E{(rt − r̂t)(rt − r̂t)
T
}

= Σ − ΣΔ Â
T
− ÂΣT

Δ + ÂΣÂ
T (6)  

and is thus minimized for 

Â = ΣΔΣ−1 (7) 

By inserting (7) into (6) we finally obtain the error covariance of the prediction matrix Â 

QP = Σ−ΣΔΣ−1ΣT . (8) 

where Σ = E{rtrT
t } and ΣΔ = E{rtrT

t−1} are the spatio-temporal auto- and cross-covariance matrices, respectively. These covariance 
matrices are approximated with the empirical sample covariance matrices Σ̂ and Σ̂Δ between anomalies of precipitation, and runoff 
over the total time period of τ months 

Σ ≈ Σ̂ =
1

τ − 1
∑τ

t=1
rtrT

t (9)  

ΣΔ ≈ Σ̂Δ =
1

τ − 2
∑τ

t=2
rtrT

t−1. (10)  

3.2. The Ensemble Kalman Filter framework 

According to the previous derived least square prediction estimate, the prediction equation can be developed by substituting (3) in 
(2) 

Xf
t,d = ÂXa

t−1,d + BUt−1 + ϵd (11) 

where B and U represent the control input terms 

B = [− Â I] and Ut = [X̃t−1 X̃t]
T (12)  

As a result, the predicted state vector Xf
t at time t can be estimated using the analysis state Xa

t−1 at time t-1, the prediction matrix Â, 
describing the variables spatio-temporal relationships and the control input U that represents the mean annual cycle. I stands for the 
identity matrix (I = ΣΣ−1) and the index d refers to the ensemble member from an ensemble of size Nens. The prediction and observation 
covariance matrices are estimated by the sample covariance matrix from the ensemble prediction of size Nens 

Σ̂
f
t =

1
Nens − 1

∑Nens

d=1

(
Xf

t,d −Xf
t

)(
Xf

t,d − Xf
t

)T
(13) 

with Xf
t , the ensemble mean. These covariance matrices describe the uncertainity in the predicted and corrected states. In the 

innovation step, the analysis state Xa
t,d and its associated covariance matrix Σa

X,t are obtained by updating the gain-weighted difference 

between the observed state Yt and the predicted state Xf
t,d. The correction step is formulated as follow 

Xa
t,d = Xf

t,d + Kt(Yt −HtXf
t,d + νd) (14) 

with the observation relation matrix Ht that maps the predicted state to the observed space and the zero-mean normally distributed 
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observation noise ν ∼ N
(
0,Qt,obs

)
. The Kalman gain matrix Kt represents the optimal weighting between the error covariance of the 

predicted state Σ−
X,t and the errors of the observed state Qt,obs. It is defined as 

Kt = Σf
X,tHT

t (HtΣf
X,tHT

t + Qt,obs)
−1 (15) 

The model is then integrated recursively forward in time from the innovation until the next update cycle. 

3.3. Observation update 

Generally, the observation vector Yt and associated observation error covariance matrix Qt,obs are given by 

Yt =

[
Pt,obs
Rt,obs

]

(16)  

Qt,obs =

⎡

⎣
ΣP,t
0 ΣR,t

⎤

⎦ (17) 

where Pt,obs and Rt,obs are the observation vectors of precipitation and runoff at time t with ΣP,t and ΣR,t their corresponding error 
covariance matrices. For the forecast initialization, the observation vector Yt of size 2 × Nreg includes the historical precipitation 
(ERA5-LAND) and runoff (ANA) vectors at time t. Since we assume perfect observations during the initialization, the corresponding 
error covariance is set to zero. During the forecast, the predicted state is updated at each time step t using the SEAS5-BCSD precipi-
tation forecasts at the corresponding forecast lead time. Since runoff observations are not assimilated, the observation vector reduces 
to 

Yt = Pt,obs (18) 

where Pt,obs represents the precipitation observation vector at time t including all SEAS5-BCSD ensemble members. This gives Yt a 
total size of Nreg × NBCSD, with NBCSD the SEAS5-BCSD ensemble size. Indeed, the whole ensemble is assimilated in order to benefit from 
all the information contained in the forecasts. Each element of the observation vector has an associated observation error covariance 
contained in Qt,obs = ΣP,t, which is estimated from the squared ensemble spread of the SEAS5-BCSD precipitation ensemble forecasts for 
the given region and forecast horizon. 

3.4. Further assumptions 

No spin-up is applied to the model states as this reduces the prediction performance. Possible reasons could be that the observation 
covariance matrices generated by a probabilistic climatology are not well conditioned or that the convergence to the optimal error 
level is too slow and would require more data. 

Various ensemble sensitivity tests, not shown here, suggest that an ensemble size of Nens = 200 members is a robust choice for the 
EnKF runs. 

3.5. Evaluation framework 

Four different skill scores, namely the Inter-Quantile Range Skill Score (IQRSS) between the 95th and 5th percentiles, the Mean 
Absolute Error Skill Score (MAESS), the Continuous Ranked Probability Skill Score (CRPSS) and the Brier Skill Score (BSS) for above 
and below normal conditions were computed. A detailed description of the used score metrics can be found in Appendix A. 

The reference ensemble forecast for runoff and precipitation are leave-one-year-out climatology-based ensemble forecasts 
generated from the ANA runoff and the ERA5-Land precipitation data, respectively. For a given year, this established method consists 
of combining the observations of all other years to create an ensemble forecast, so that the validation is done with independent data. 

The performance scores are then derived for both runoff and SEAS5-BCSD precipitation predictions and are computed for each 
region, time step and lead time over the evaluation period. In this study, we focus only on the first four lead times, with lead 0 referring 
to the current month’s forecast and lead 3 to the fourth month’s forecast. 

An overview of the size of the different parameters used in the EnKF framework can be found in table 3. 

Table 3 
Description and value of the different EnKF parameters.  

Name Acronym value 

Number of sub-basins Nreg  11 
SEAS5-BCSD ensemble size NBCSD  25 
EnKF ensemble size Nens  200  
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4. Results and discussion 

4.1. Annual cycle 

Fig. 2 shows the rainy season of the whole SFRB and its 12 sub-basins. The two maxima visible in December (regions 3–11) and 
March (regions 0–2) shows the entanglement of the two different climate regimes between the upper and lower basin. The main rainy 
season in the lower basin is observed during January-April (JFMA) and in the upper portion of the basin it is during November-January 
(NDJ). In this study, we consider the period from November to March as a good compromise between the two climate zones to describe 
the wet season of the entire SFRB. Folland et al. (2001), Misra (2006) and Kulikova et al. (2014) presented evidence of a relationship 
between Pacific and tropical Atlantic SST anomaly patterns and seasonal precipitation in northeast Brazil, contributing to the 
long-term predictability over the SFRB. This is confirmed by the good level of agreement between the first lead times of SEAS5-BCSD 
precipitation forecasts and ERA5-Land precipitation in Fig. 2. Similarities in the spatio-temporal relationship between runoff and 
rainfall can also be observed. However, regions 5, 6, and 7 do not seem to follow the typical rainy season cycle, it is expected therefore 
that predicting runoff in those regions may be more difficult. 

4.2. Prediction performance 

The runoff of the 11 SFRB sub-basins is reforecasted on a monthly basis over the evaluation period 1981–2011. Fig. 3 shows the 
reforecasts of lead time 0 (blue) and corresponding runoff gauge observations (red). In most cases, the forecasts can reproduce the 
observed stream flow. In particular, the upper-basin (region 8–11) and lower basin (region 1–4) show the best agreement, with a good 
concordance between the predicted and observed runoff peaks. However, predictions for the Western Bahia state regions 5–7 have a 
lower quality compared to observations, with a noisy behavior and a general underestimation of the baseflow during the first 15 years. 
Correspondingly, the reduction of the river streamflow described in Section 2.1 is visible in these regions over the same period. Since 
the control input term U (eq. 12) carries information on the mean annual cycle, an abnormal structure of the annual cycle of those 
regions can explain the observed underestimation of the runoff predictions. While most events in the catchment are well predicted, a 
few seem to be more difficult to predict. (e.g.. Fig. 3 region 11 in 1991 or region 8 in 1982). It is therefore important to determine the 
origin of the performance, whether it derives from the algorithm, the quality of the driving data or the quality of the SEAS5 BCSD 
rainfall predictions. Therefore, a deeper analysis was initiated where the different performance metrics described in the methods 
section were calculated. 

. Figs. 4 and 5 show the monthly and seasonally averaged skill scores, respectively, of the EnKF runoff reforecasts and corre-
sponding SEAS5-BCSD precipitation predictions during the main rainy season (November - March) for the first four lead months in all 
regions. The skill of the predictions is shown in colors from blue (better skill than the reference forecast) to orange (worse skill than the 

Fig. 2. Monthly (top) and annual (bottom) mean values from ERA5 land (left) and SEAS5-BCSD lead 0 (middle) precipitation and ANA (right) 
runoff over the different sub-basins of the SFRB. 
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reference forecast). In both figures, an overall good agreement of the three skill scores for the runoff predictions and the SEAS5-BCSD 
precipitation predictions can be seen, with similar patterns over months, lead times and regions, and a general trend of decreasing skill 
with lead time. Additionally, for both the SEAS5-BCSD precipitation forecasts and the runoff forecasts, an improved skill during the 
first months of the rainy season (Nov, Dec, Jan) is evident compared to the last months of the rainy season (Feb, March). This monthly 
trend is more pronounced for the runoff forecasts, especially at higher lead times (lead 2 and 3). The forecast sharpness, accuracy and 
overall performance of both the runoff and SEAS5 BCSD forecasts decrease similarly for the first two lead times. The good IQRSS and 

Fig. 3. Runoff reforecasts for lead 0 (blue scatter) and corresponding observations (solid red line) over the evaluation period 1981–2010 for 
all regions. 
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MAESS and CRPSS values for these lead times imply that the predictions are very accurate, only slightly deviate from the reference and 
have a more representative distribution with respect to climatology. 

However, for higher lead times, the SEAS5-BCSD predictions performance remains more uniform compared to the runoff pre-
dictions which decrease more linearly. In Fig. 4, where all three skill scores of the runoff forecasts are positive for most of the upper and 
lower basin, regions 5, 6 and 7 show poorer performance affecting all different lead times and months. This can also be seen in Fig. 5, 
where the MAESS and IQRSS of the runoff forecasts over the rainy season are negative for all lead times in region 5 and negative for 
regions 6–7 from lead time 2 on. This trend which isn’t visible in the SEAS5-BCSD precipitation predictions skill scores is concordant 
with the previously mentioned erratic behavior in the runoff time series in those regions (Fig. 3). Interestingly, the lead 2 forecasts in 
February have a lower skill compared to the lead 3 forecast. This is also associated with a lower skill in the SEAS5-BCSD precipitation 
forecasts. This finding is counter-intuitive since a monotonically decreasing performance with lead time was expected. It has however 
been shown by several studies that central eastern Brazil can show low predictability on a seasonal scale during the austral summer as 
rainfall variability is related to complex land-atmosphere interactions that are not well captured by models (Marengo et al., 2003; 
Grimm et al., 2007). 

To assess the ability of the EnKF framework to forecast events above or below the seasonal average, the BSS was calculated. To 
investigate which part of the skill is directly engendered by the SEAS5-BCSD precipitation forecast and which part is inherent to the 
EnKF framework, the BSS was also computed for SEAS5-BCSD precipitation forecast against the ERA5-Land product. Fig. 6 shows the 
BSS for both mentioned cases for lead 0 over the different regions and months of the rainy season. For both cases of “Above Normal" 
and “Below Normal", we can see positive BSS above 0.3, for most months and regions, even for the regions of the Western Bahia state. 
In addition, Fig. 7 shows the BSS for each month averaged over the whole rainy season and for the first four lead times. In both cases, 
the upper and lower tercile show better skill for lead 0 compared to higher lead times, with scores close to zero. Furthermore, lead 0 has 
higher skill scores in the lower basin compared to the upper basin. The features visible here show that the precipitation events in the 
above and below normal categories of the SEAS5-BCSD precipitation forecast match that of the predicted runoff, with higher scores in 
lead 0 compared to higher leads. 

The skill score analysis illustrates how this framework is able to exploit the simple “rainfall-runoff" relationship, which in com-
bination with the quality of the SEAS5-BCSD, provides skillful runoff predictions up to two months ahead. In most cases, the SEAS5- 
BCSD precipitation forecasts outperform or are close to the runoff forecasts, but in some cases the SEAS5-BCSD precipitation forecasts 
also outperform the runoff forecasts. 

Greuell et al. (2019), Crochemore et al. (2016) and Yossef et al. (2013) have shown that in European catchments, most frameworks 
using process-based hydrological models and post-processed seasonal forecasts (ECMWF seasonal forecast Systems 3 (SEAS3) and 4 
(SEAS4)) as input, hardly show skill beyond one lead month. Yossef et al. (2013) showed that in the tropical catchments of South 
America, the accuracy of runoff forecasts from the FEWS-World global seasonal runoff forecasting system, driven by SEAS3 

Fig. 4. Overview of the 3 skill scores (IQRSS, MAESS, CRPSS) of the runoff reforecasts (squares) and SEAS5-BCSD precipitation predictions (circles) 
for each region, month and lead time during the main rainy season (November - March). Blue and red colors describe negative and positive skill 
scores, respectively. Since scores aren’t linear for negative values, all scores below the threshold of − 0.1 aren’t shown. 
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precipitation forecasts, is limited to 1–2 months lead time during most of the year. The presented EnKF framework shows similar 
performance with skillful runoff predictions of 1–2 months ahead during the rainy season in most of the SF sub-basins. Consequently, 
the severe recurrent droughts in northeastern Brazil in 2011–2016 (Cunha et al., 2019; Marengo et al., 2017; Erfanian et al., 2017) 
could have been anticipated 1–2 months in advance, corresponding to sub-basins 1, 2 and 3. However, a direct comparison is 
inherently delicate as the forecast performance can depend on many factors, e.g., the hydrological model employed, the seasonal 
forecasts product, the post-processing techniques applied, the different geographical locations or the different regional and seasonal 
weather regimes affecting the study area (ENSO, MJO, North Atlantic Oscillation (NAO). 

Finally, this framework does not require prior knowledge of local hydrological initial conditions generally necessary to run a model 
(soil moisture, snowpack, groundwater storage, regulation of lakes and dams), which makes this approach very suitable for regions 
where hydrological information is lacking. Furthermore, it is a transferable approach that can complement other types of statistical or 
more physically based models to easily monitor a single catchment at sub-basin level. The number of input variables such as 
evapotranspiration or temperature is also expandable, allowing for more robust correlations between all variables and thus improving 
prediction quality. As shown in Lorenz et al. (2015), this approach for global sub-basin forecasts can be extended to other regions, as 
SEAS5-BCSD forecasts for other regions already exist (Lorenz et al., 2021). 

5. Summary and conclusion 

In this study, a hydro-meteorological Ensemble Kalman Filter (EnKF) based data-assimilation framework is developed, with which 
sub-basin-scale runoff time-series are predicted. A least-squares prediction method has been applied for the prediction scheme in order 
to exploit the spatio-temporal relationship between precipitation and runoff. Besides reference runoff (ANA) and precipitation (ERA5- 

Fig. 5. Skill scores of runoff reforecasts (Run.) and SEAS5 BCSD precipitation predictions (Prec.) averaged during the main rainy season for the first 
four lead times over the 11 SFRB sub-catchments. Since scores aren’t linear for negative values, all scores below the threshold of − 0.1 aren’t shown. 
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Land), bias-corrected and spatially disaggregated seasonal precipitation forecasts (SEAS5-BCSD) are used in order to predict runoff 
several months ahead. The performance of the framework was assessed for 11 sub-basins of the Rio São Francisco basin by comparing 
predicted against a reference leave-one-year-out climatology-based ensemble forecast. Overall, the EnKF runoff predictions have a 
good performance over most months with a general decrease of the skill with lead time. The positive performance in the runoff 
predictions for all skill scores demonstrated the ability of the assimilation framework to capture the concurrent precipitation-runoff 
relationship on sub-basin scale and to provide skillful estimates of runoff up to 2 months ahead. 

This framework, however, also suffers from a number of limitations: (1) The skill of the SEAS5-BCSD predictions is the primary 
constraining factor for the performance of runoff forecasts, as these are used as input to the model. (2) The simplicity of the least- 
squares prediction method is limited by the insufficient knowledge of the model physics, the catchment characteristics and the 
local hydroclimatic conditions. For example, our current model cannot describe regions where runoff is disturbed by anthropogenic 
activities such as in the western state of Bahia (regions 5, 6 and 7). On the other hand, the framework is very suitable for regions where 
the key parameters for hydrological modeling as well as the initial and boundary conditions are missing. (3) The set of input variables, 
which can be extended to further variables in the SEAS5-BCSD dataset, such as evapotranspiration or temperature, could provide 
additional correlation statistics that have the potential to further improve the skill of the runoff predictions. Future work could include 
comparisons and implementation of this methodology to process-based hydrological models with more input variables and a wider 
range of regions. 

Finally, this approach, which relies on global, freely available information for regional runoff forecasting, has great potential for 
regional decision support as well as seasonal water resource management and can complement other existing operational hydrological 
models. This includes the development of institutional systems and national strategies for drought preparedness plans, long-term flood 
awareness and sustainable reservoir management with a computationally cost-effective and easily transferable approach. 
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Appendix A. Score metrics 

The forecasts are evaluated by comparing the performance of a given forecast against a reference forecast. In general, the skill score 
of a given region, month and lead time is expressed as 

Skillscore = 1−
Skillf

Skillr (A.1) 

Skill scores are obtained by the median of the individual scores and range from − ∞ to + 1 with scores larger (smaller) than zero 
indicating that the forecast system is more (less) skillful than the reference forecast. 

Fig. 7. Brier Skill Score (BSS) for runoff reforecasts against runoff observations (Run.) and SEAS5 BCSD precipitation predictions against ERA5-Land 
(Prec.). The BSS was computed for the upper and lower terciles for the first four lead times, for each month and averaged over the full rainy season. 
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A.1. Inter-quantile range (IQR) 

Sharpness is an intrinsic property of the forecast and indicates the spread of the ensemble forecast. When the ensemble spread is too 
large, it indicates uncertain predictions. When the ensemble spread is small, the ensemble members are consistent and the forecast is 
more confident. In this study, sharpness is evaluated as the difference between the 95th and 5th percentiles of the forecast distribution 
defined as the Inter-Quantile Range (IQR). 

A.2. Mean absolute error (MAE) 

The accuracy of the forecasts is assessed with the mean absolute error (MAE). The MAE computes the absolute difference between 
the forecast ensemble mean and the observed value and is expressed as 

MAE =
1
D

∑D

d=1

⃒
⃒
⃒
⃒
⃒
xf ,d − xo

⃒
⃒
⃒
⃒
⃒

(A.2)  

where xf is the ensemble forecast of size D and xo denotes the associated observation. Smaller MAE values correspond to more accurate 
forecasts. 

A.3. Brier score (BS) 

The Brier Score (BS) is generally used for scoring binary forecasts and is defined as the mean squared error of the forecast prob-
ability and a observed category: 

BS =
1
T

∑T

t=1
(xf ,t − xo,t)

2 (A.3)  

where xo,t is the actual observed category at instance t, and xf,t is the categorical forecast probability of that same event. The BS in-
dicates how a forecast can estimate the occurrence of an observed category. In our study, we evaluated the skill of tercile forecasts, i.e., 
of forecasts for above and below normal conditions that were defined from the ensemble mean being above the 0.66 and below the 0.33 
reference percentile, respectively. 

A.4. Continuous ranked probability score (CRPS) 

The overall performance of the forecast is evaluated using the continuous ranked probability score (CRPS) (Hersbach, 2000). The 
CRPS measures the difference between the predicted and the observed cumulative distributions functions (CDF) of a given variable of 
interest x. The CDF of the observation H(x) is represented by a delta function at the observed value xo and is defined as the Heaviside 
function. 

CRPS =

∫ +∞

−∞
[F(x) − H(x − xo)]

2dx (A.4)  

The CRPS is a probabilistic generalization of the MAE, since it incorporates the uncertainty of the forecasts. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ejrh.2022.101146. 
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