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SUMMARY

In this article, human semen samples from the Visem dataset are automatically as-
sessed with machine learning methods for their quality with respect to sperm
motility. Several regression models are trained to automatically predict the per-
centage (0–100) of progressive, non-progressive, and immotile spermatozoa. The
videos are adopted for unsupervised tracking and two different feature extrac-
tion methods—in particular custom movement statistics and displacement fea-
tures. We train multiple neural networks and support vector regression models
on the extracted features. Best results are achieved using a linear Support Vector
Regressor with an aggregated and quantized representation of individual
displacement features of each sperm cell. Compared to the best submission of
the Medico Multimedia for Medicine challenge, which used the same dataset
and splits, the mean absolute error (MAE) could be reduced from 8.83 to 7.31.
We provide the source code for our experiments on GitHub (Code available at:
https://github.com/EIHW/motilitAI).

INTRODUCTION

eHealth or ‘‘the use of information and communications technology in support of health and health-related

fields’’ (World Health Organization, 2017) has been a prioritized item on the agenda of the World Health

Organization (WHO) since 2005 (World Health Organization, 2005a). From then until 2016, the percentage

of WHO member states that have a national eHealth policy in place has risen to 58 % (World Health Orga-

nization, 2016). eHealth is further considered an important factor for improving both the quality and avail-

ability of affordable health care, moving countries closer toward achieving universal health coverage

(World Health Organization, 2005b).

One such issue can, for example, be found with fertility-related problems (Yee et al., 2013). Across the

globe, approximately 8%–12% of couples are affected by infertility (Stephen and Chandra, 1998; Kumar

and Singh, 2015) which is defined as the inability to achieve a clinical pregnancy after 12 or more months

of regular unprotected sexual intercourse (Zegers-Hochschild et al., 2009; Practice Committee of the Amer-

ican Society for Reproductive Medicine, 2008). The issue can be a result of both male and female factor

infertility (Kumar and Singh, 2015). In males, infertility is often related to deficiencies in sperm quality

measured by characteristics and reference values defined by the WHO (Cooper et al., 2010). The attributes

most strongly associated with fertility can be found in the concentration, motility, andmorphology of sperm

(Kumar and Singh, 2015). The analysis of these characteristics can serve as a valuable baseline for diagnosis

and treatment of patients but requires either specialized, expensive medical equipment or manual anno-

tation by trained medical staff (David et al., 1981; Mortimer et al., 2015). In this respect, machine learning

approaches that use video recordings of semen (the seminal fluid which contains the sperm) samples to

detect morphology and motility of the included spermatozoa could assist physicians in their work. To

work toward this goal, the Visem dataset (Haugen et al., 2019) collected and released by the Simula

Research Laboratory contains microscopic recordings of semen samples which are additionally annotated

with regards to the mentioned characteristics of spermatozoa quality. In our work, we make use of the Vi-

sem dataset. It is a freely available dataset on which a range of state-of-the-art machine learning methods

have been applied facilitating a better comparison of our framework’s efficacy with a wide variety of

methods.

For this paper, a novel combination of unsupervised tracking, feature extraction and quantizationmethods,

and machine learning models is investigated to perform automatic analysis of the motility of recorded
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spermatozoa cells. Motility means observing the speed and way of movement of sperm, i.e., if they travel

on a straight path or in a circle. Furthermore, before extracting features, the data from the Visem dataset

are preprocessed to minimize the negative impact that might come from blurred camera settings and

numerous cuts within each video. The effectiveness of the applied feature extraction methods andmachine

learning models are compared to the approaches provided by the data organizers and state-of-the-art

deep learning-basedmethodologies from various research groups. These contributions have been submit-

ted to the Medico: Multimedia for Medicine sub-challenge (Hicks et al., 2019b) that was part of the 2019

edition of the Medieval challenge.

The remainder of this paper is structured as follows. The proceeding section reviews the related work on

computer-aided sperm analysis (CASA), and more specifically on automated prediction of sperm motility.

In ‘‘sec:dataset’’, we describe the dataset. ‘‘sec:expset’’ follows with the illustration of our approach,

including preprocessing, particle tracking algorithms, feature extraction, and machine learning models.

All accomplished results are listed in ‘‘sec:results’’ and discussed in ‘‘sec:discussion’’. Finally, we give a

conclusion and suggestions for future work in ‘‘sec:conclusion’’.
Related work

Sperm motility characteristics have been defined in the official WHO lab manual (World Health Organiza-

tion, 1999). The motility of sperm cells can further be analyzed by classifying them according to multiple

categories (Björndahl et al., 2010). Spermatozoa can either be immotile or motile, where for motile sperm,

further categorization can be applied. A particular cell is motile if its tail is beating. The beating of the tail

alone, however, does not translate to effective movement. Therefore, motile sperm cells are additionally

grouped according to the progressivity of their movement. Non-progressive spermatozoa beat their tails

without any net gain in space, whereas progressive cells do gain space in the process (Björndahl et al.,

2010).

Traditionally, these characteristics had to be assessed manually by trained clinical staff (Mortimer et al.,

2015; David et al., 1981), but advancements in computational hardware led to the introductions of CASA

(Mortimer, 1990). CASA works well for many non-human species (Van der Horst et al., 2009; Lueders

et al., 2012), but has traditionally struggled with the accurate assessment of male fertility characteristics

frommicroscopic video recordings of human sperm cells (Björndahl et al., 2010). This discrepancy is caused

both by biological as well as technical limitations (Mortimer, 1994; Mortimer and Mortimer, 1998; Mortimer

et al., 1995). First of all, from a biological perspective, human sperm has many characteristics that are detri-

mental to automatic analysis, such as high amounts of debris particles, generally lower sperm motility and

concentration, and many dead spermatozoa which are often also clumped together (Mortimer et al., 2015).

As a consequence, while progressive movement can be detected quite accurately, non-progressive motile

sperm cells are very hard to automatically differentiate from drifting debris or dead spermatozoa (Mortimer

et al., 1995). Furthermore, the clumping of alive cells with debris or dead spermatozoa can negatively affect

the automatic tracking, leading to missing and interrupted tracks (Mortimer et al., 2015). Morphology is

especially hard to assess by commercial CASA systems, as accurate analysis is only possible for sperm

heads (Mortimer and Mortimer, 1998). Especially for motility, the CASA systems base their analysis on

computing various kinematic statistics about each sperm track and then using those for determining pro-

gressive and non-progressive motility based on agreed-upon rules and thresholds (Mortimer et al., 2015).

Therefore, advancements made for these systems are mainly aimed at mitigating the problems and limita-

tions that arise from the general quality of human sperm, such as eliminating drift, recovering sperm tracks

through collision, or detecting cells that are clumped together (Mortimer et al., 2015). Urbano et al. (2016),

for example, implemented a robust multi-target sperm tracking algorithm that is able to effectively deal

with collisions based on the joint probabilistic data association filter (Bar-Shalom et al., 2009). Hidayatullah

et al. (2021) have proposed a machine learning framework for the prediction of bull sperm motility using a

Support Vector Machine (SVM) classifier combined with three CASA parameters: curvilinear velocity,

straight-line velocity, and linearity. The authors have demonstrated the efficacy of their approach and indi-

cated that their method could be utilized for examining human sperm (Hidayatullah et al., 2021). Apart from

the video-based CASA systems, signal processing-based machines, such as the SQA-V Gold Semen

Analyzer (SQA-Vision – The Ultimate Automated Semen Analysis Solution for Hospitals, Reproductive Cen-

ters, Free Standing Labs, and Cryobanks, available at http://mes-global.com/analyzers), exist that

provide more accurate results but are expensive, prohibiting their use in developing countries. Many

CASA systems used in research and medical applications are closed-source, proprietary software, or
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integrated hardware-software solutions. However, recently, developments toward the introduction of

open-source alternatives into the field have been made, e. g., with openCASA (Alquézar-Baeta et al.,

2019). Furthermore, applications that solve individual parts of the automatic sperm analysis task can be

found with particle tracking software, such as Trackpy (Allan et al., 2019), or motility analysis toolkits for

inference of cell state (Kimmel et al., 2018).

The advancements in the field of machine learning, especially deep learning (DL) for image analysis,

also made an impact on the field, leading to new possibilities for micro cinematographic approaches.

Recently, Valiu�skait _e et al. (2020) have applied region-based convolutional neural networks (RCNNs) to

evaluate sperm head motility in human semen videos. In particular, the authors first applied a Faster

R-CNN—with ImageNet (Huang et al., 2017; Deng et al., 2009) pre-trained convolutional neural net-

works (CNNs)—for sperm head segmentation and then used a heuristic algorithm for sperm motility

calculation. Compared to the above methods, the approach taken in our work does not focus on

achieving the best possible tracking accuracy. Rather, we show that through the use of unsupervised

feature learning and quantization, noisy or inaccurate sperm tracks can still perform well in downstream

motility prediction tasks. The tracking methods used in our experiments work off-the-shelf, i.e., they are

not adapted to the particularities of a specific dataset, as would be the case when using deep neural

networks (DNNs) that are trained on the database at hand. In 2019, the Medico Multimedia for Med-

icine challenge (Hicks et al., 2019b) presented researchers with the opportunity to develop automatic

analysis systems for the assessment of human semen quality. The challenge dataset, Visem, contains

85 video recordings of semen samples which are annotated with regard to morphology and motility

of the recorded sperm cells on a per-video basis. While there are only a handful of challenge submis-

sions (Hicks et al., 2019c; Thambawita et al., 2019a, b), they all used current deep learning approaches

and showed that video-based analysis can provide insight into important characteristics of spermatozoa

health. For the task of motility prediction, their CNN-based models could improve significantly over

both a ZeroR baseline as well as models based on traditional image features and regression algorithms

(Hicks et al., 2019c, a).

More related to themethodology applied in this paper, a feature representation of textual documents from

the field of Natural Language Processing, namely the Bag-of-Words model, has recently been applied to

other domains. One such example can be found in the study by (Amiriparian et al., 2018; Amiriparian, 2019),

where deep feature vectors are aggregated and quantized in an unsupervised fashion to form noise-robust

feature representations for a number of audio analysis tasks. Similarly, Amiriparian et al. (2017) applied

Bags-of-Deep-Features for the task of video sentiment analysis. In this work, a similar model is employed

to generate feature representations for entire sperm samples from individual per-track movement

statistics.
RESULTS

Dataset

The data used for the experiments come from the so-called Visem dataset (Haugen et al., 2019) collected

by the Simula Research Laboratory (Visem dataset available at: https://datasets.simula.no/visem/). This da-

taset consists of 85 videos of live spermatozoa frommen aged 18 years or older. Each video has a resolution

of 6403480 pixels, captured with 400x magnification using an Olympus C331 microscope and runs at 50

frames-per-second. The name of each video file is composed of the patient ID, the date of recording, a

short optional description, and the code of the assessing person (e. g. 1_09.09.02_SSW). Each sample is

annotated with both motility and morphology characteristics. For motility, the percentages (0–100) of pro-

gressive, non-progressive, and immotile particles are given. These values form the ground truth for the ex-

periments conducted in this paper.

Further, the dataset includes the results of a standard semen analysis and a set of sperm characteristics, i.e.,

the level of sex hormones measured in the blood of the participants, levels of fatty acids in spermatozoa or

of phospholipids (measured in the blood). Besides, general, anonymized study participant-related data

such as age, abstinence time, and body mass index (BMI) are given by the sixth csv-file. Additionally,

WHO analysis data, e.g., the ground truth for sperm quality assessment could be accessed.

The Medico Multimedia for Medicine challenge’s provided subject independent 3-fold cross-validation

setup (Hicks et al., 2019b) was adopted for our experiments.
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Figure 1. Our proposed framework for motility predictions consists of the following steps

First, preprocessing is applied to the videos after which the spermatozoa are tracked. From these tracks, features are

extracted in the form of custommovement statistics (CMS) andmean squared displacement (MSD). Finally, we aggregate

those features and use them to train different networks for motility prediction.
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Approach and experimental settings

The different aspects of the overall approach of this paper are depicted in Figure 1. The videos from the

dataset are preprocessed and subsequently tracking is applied to them to extract features. These features,

i.e., Mean Squared Displacement (MSD) and movement statistics, are aggregated using Bag-of-Words

(BoW) and, in the case of MSD, their mean values. We make use of all of the video material, collecting de-

tected tracks and displacement features along with the whole duration of every clip, before aggregating

them to video-level feature representations. Afterward, different models, i.e., a linear Support Vector Re-

gressor (SVR), Multilayer Perceptron (MLP) regressor, CNN, and long short-term memory (LSTM) network,

are trained on those features to predict motility. We systematically evaluate all combinations of feature

extraction and machine learning models, as far as applicable, i.e., the BoW features that form an aggre-

gated, sparse representation of entire video samples are not combined with recurrent neural networks

(RNNs) or CNNs.

Tracking

To achieve spermatozoa tracking, two different approaches are pursued. On the one hand, sparse optical

flow with the Lucas-Kanade algorithm is applied for this purpose, see ‘‘sparse optical flow with Lucas-Ka-

nade algorithm’’. On the other hand, the Crocker-Grier algorithm that is used in the so-called Trackpy

tool is a second method to track sperm, as can be seen, in ‘‘Crocker-Grier algorithm’’. It should be noted

that both of these algorithms are quite old and not tuned to the particularities of tracking spermatozoa.

However, our work on the problem focuses on harnessing unsupervised representation learning to extract

useful and performant features even from noise or imperfect sperm tracks.

Sparse optical flow with Lucas-Kanade algorithm

The Lucas-Kanade method falls into the latter category as a differential approach for estimating sparse op-

tical flow (Lucas and Kanade, 1981). A basic assumption made for computing optical flow is that the bright-

ness of the image is constant across all recorded frames, i.e., pixel intensities are merely translated accord-

ing to their respective velocities between consecutive video images (Fleet and Weiss, 2006). Although this

assumption rarely holds for real-world video sequences, it nevertheless works well in practice to estimate

optical flow (Fleet and Weiss, 2006). The Lucas-Kanade method introduces the additional constraint that

the optical flow is constant for any small subspace of the image. Together with Tomasi (Tomasi and Kanade,

1991), Kanade improved this tracking algorithm by detecting good image patches from the eigenvalues of

the gradient matrix based on certain thresholds. Shi and Tomasi finally also introduced amethod of filtering

out bad features, by comparing affine compensated tracked image patches between non-consecutive

frames, the assumption being that translation should be enough to account for dissimilarities in image

patches along a detected track (Shi and Tomasi, 1994).

Implementations of all the components used in this tracking algorithm are available in the open-source

computer vision library OpenCV (Lucas-Kanade Tracker: https://github.com/opencv/opencv/blob/

master/samples/python/lk_track.py) (Bradski, 2000). To achieve better results in detecting sperm particles

and their positions over time, different values for the feature detection hyperparameters maxCorners,

minDistance, and blockSize are optimized to smaller values of 100, 10, and 10, respectively. An example

of the sperm tracks detected by this method is visualized in ‘‘Microscopic recording of a sperm sample con-

tained in the Visem dataset (Figure 2A). Figure 2B depicts spermatozoa tracks as detected by the Lukas-

Kanade method—one of two unsupervised tracking algorithms utilized in this work.’’
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Figure 2. An example frame from the Visem dataset and the result of automated sperm cell tracking

(A) Microscopic recording of a sperm sample contained in the Visem dataset.

(B) depicts spermatozoa tracks as detected by the Lukas-Kanade method—one of two unsupervised tracking algorithms

utilized in this work.
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However, besides identifying suitable parameter values for tracking the sperm cells, it is necessary to

extract information about the sperm’s position over time to be able to compute different statistics, such

as a certain sperm’s speed over a specific time interval. For this purpose, different information on every

tracked sperm particle had to be computed and stored. These data include the number of the first and

the last frame of a sperm’s track, the position of the sperm in every frame of the track, and the distance

the sperm has moved in total. With the information stored about all sperm particles in a certain video, fea-

tures describing a particular spermatozoon’s movement can be extracted. The particularities of these fea-

tures will be discussed in ‘‘custom movement statistics’’.

Crocker-Grier algorithm

The second tracking method employed for tracking sperm particles in the videos of the Visem dataset

comes in the form of the Crocker-Grier algorithm for microscopic particle tracking and analysis in

colloidal studies (Crocker and Grier, 1996). Therefore, the target application of this approach is more

closely related to the task of spermatozoa tracking from video recordings. The algorithm can track

colloidal spheres—Gaussian-like blobs of a certain total brightness—across frames of microscopic video

recordings of particles, and consists of a number of distinct consecutive steps. First of all, geometric

distortion, non-uniform contrast, and noise are alleviated by spatial warping, background removal,

and filtering, respectively (Crocker and Grier, 1996; Jain, 1989; Pratt, 2013). After these preprocessing

steps, candidate particle centroids can be detected by finding local brightness maxima (Crocker and

Grier, 1996), e.g., computed by grayscale dilation (Jain, 1989). These maxima are further filtered by

considering only those in the upper 30th percentile of brightness (Crocker and Grier, 1996), and refined

according to the brightness-weighted centroids in their immediate vicinity. Afterward, particle positions

can be linked probabilistically considering the dynamics of Brownian particle diffusion (Crocker and

Grier, 1996), Pðdi =tÞ. At this stage, tracks can also be interrupted or terminated if, for example, particles

leave the video frame. However, past locations are kept in memory so that relinking is possible, should

the particle reappear.

The open-source python library Trackpy (Trackpy tool: https://github.com/soft-matter/trackpy) (Allan

et al., 2019) provides an implementation of this algorithm and additional tools to process and extract

features from particle tracks. Parameters regarding the location and linking of particles into trajectories

had to be adjusted in order to improve the tracking accuracy. To reduce the hyperparameter space of

our experimental pipeline, we chose to find these parameters manually by qualitative analysis of a few

samples of the Visem dataset. First, an estimate of 11 pixels for the size and a minimum mass of 900

spermatozoa heads is found to lead to accurate detection of sperm cells. For linking the locations, a

maximum travel distance of five pixels per frame resulted in consistent, uninterrupted tracking. Further-

more, a maximum of three frame-positions are kept in memory for cells that disappeared. Some of the

detected trajectories (< 25 frames) are too short for analysis and are therefore filtered out. As some

videos contain camera drift, Trackpy’s built-in drift subtraction is applied. The drift-subtracted and

filtered tracks for each video scene then served as basis for feature extraction, as will be explained in

‘‘feature extraction’’.
iScience 25, 104644, August 19, 2022 5
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Feature extraction

For the task of predicting motility statistics for input semen samples, features are extracted based on the

spermatozoa tracks obtained with the methods described in ‘‘Tracking’’. Three feature descriptors are

considered in the experiments. Custom movement statistics are computed from the tracks generated

with the basic Lucas-Kanade tracker, mean squared displacement vectors are extracted directly with

Trackpy, and finally, a range of more involved and computationally heavier particle motility statistics is

created.

Custom movement statistics

The first feature representation chosen for performing motility prediction on the dataset is constructed by

computing a set of statistics from the tracks detected with the adapted Lucas-K. tracker. Based on the na-

ture of the task at hand for which it is important to differentiate between progressive and non-progressive

movement of sperm cells, both the total amount of movement by spermatozoa in particular time frames as

well as the actual distances covered by them are of interest. The first aspect can be calculated for a specific

window by accumulating the number of pixels a particular cell moved between each consecutive video

frame while the second metric looks at the Euclidean distance between the positions of the cell at the start

and end of the time window. These calculations can then be carried out for sliding windows of different

sizes, and statistical functionals can be applied to their results. This leads to feature vectors of fixed length

for each sperm track found by the Lucas-Kanade tracking algorithm. Specifically, these window sizes are

used (measured in number of frames): 5, 10, 20, 50, 80, 100, 150, 200, 250, 300, 400, 500, 750, and 1000. After

computing both metrics as described above for the whole sample by sliding each of the windows over a

particular track with a hop size of one frame, mean, maximum, and minimum functionals are applied to

the resulting series of motility calculations. Two additional features are computed as the total distance

covered by a single sperm cell during the whole video sample and its average speed in pixels moved

per frame. In total, the approach leads to numerical feature vectors of size 14 3 2 3 3 + 2 = 86 for each

detected sperm track. Before being applicable to the task of motility analysis on a per-sample basis, these

vectors can be further processed and aggregated per video clip. Here, two possibilities are explored. First,

feature vectors of a single video sample are reduced by their feature-wise mean. Secondly, a BoW

approach is applied to the vectors that both quantizes and summarizes them in an unsupervised manner.

Displacement features

A common statistical measure that is employed to characterize the random movement of particles can be

found with the MSD (Frenkel and Smit, 2001). It can be used to describe the explorative behavior of parti-

cles in a system, i.e., if movement is restricted to diffusion or affected by some sort of force. The displace-

ment of a single particle j is defined as the distance it traveled in a particular time frame of duration l (lag-

time) ti to ti + lmeasured as the square of the Euclidean distance between its positions at the start (xj(ti)) and

end (xj(ti + l)) of the frame. For a set of N particles, the ensemble mean displacement for a specific time in-

terval can then be computed as:

MSD = Cjxðti + lÞ � xðtiÞj2D = 1

N

XN
j = 1

��xjðti + lÞ � xjðtiÞ
��2: (Equation 1)

When observing a longer period of time (T0 to T1), an average of MSD can further be computed from sliding

windows of particular lag times over the whole segment. This can be done for each individual particle

(mean squared displacement of each particle (imsd)) or again as an average for all of the particles

(ensemble mean squared displacement of all particles (emsd)). Finally, computing these displacement

values for a range of different lag times can capture more detailed information about particle movement.

For the application of automated spermmotility analysis, mean squared displacement of spermatozoa in a

given sample for different sized time windows could give insight into the amount of progressive and non-

progressive motility. Given enough time, a progressive sperm cell would travel across a larger distance,

whereas a sperm that is merely moving in place would display the same amount of displacement for

both short and long time frames. Trackpy provides interfaces to compute both imsd and emsd for a range

of increasing time frames. Specifically, it considers lag-times up to a user definable maximum that are

increased in framewise step sizes, i.e., in the case of the Visem dataset that is recorded at 50 fps, the consec-

utive window sizes grow by 20ms, each. When considering a maximum lag-time of 10 s for example, 500

mean squared displacement values are computed from the sperm tracks. As emsd is computed as an

aggregated measurement for all sperm cells of a given sample in a particular time frame, it can be directly
6 iScience 25, 104644, August 19, 2022
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used as input for the machine learning algorithms described in ‘‘regression models’’. Also, imsd feature

vectors, which are extracted on a per-track basis, can be further quantized and aggregated using the

Bag-of-Words framework described in ‘‘Bag-of-Words’’ to form a clip level representation. In this article,

three different combinations of window and hop sizes are considered for the extraction of emsd feature

vectors: a window size of 2 s with a 1 s hop and 10 s windows with either 1 s or 5 s hops. Based on the motility

prediction performance achieved using the different emsd feature configurations, hop and window sizes

for imsd prediction are chosen.
Bag-of-Words

The use of unsupervised tracking algorithms allows the extraction of useful features on a more granular,

per-spermatozoon basis. As the sperm cell count varies heavily between the different samples in the Visem

dataset and annotations are further only available on a per-sample level, a type of feature aggregation

mechanism has to be implemented to leverage per-cell information. In ‘‘Displacement Features’’,

regarding the mean displacement of all spermatozoa during a given time frame of a specific recording

has been introduced as a first, baseline method for this problem. However, simply averaging the displace-

ment of all cells might lead to the loss of more granular information. For this reason, a histogram represen-

tation based on the famous BoWmodel extended to be used with arbitrary numerical input features will be

employed. For the experiments, the input feature vectors belonging to individual sperm cell tracks are first

standardized to zero mean and unit variance before a random subset is chosen to form a codebook. After-

ward, a fixed number of the top nearest vectors from the codebook is computed for each input feature vec-

tor. Aggregated over all sperm tracks belonging to a given sample recording, the counts of these assigned

vectors form a histogram representation which is further processed by term frequencyinverse document

frequency (tf-idf). Furthermore, the number of codebook vectors N and assigned vectors a is optimized

by evaluating all combinations of N˛ ½2 500; 5 000; 10 000� and a˛ ½1; 10; 50; 100; 200; 500� on the given

data using different machine learning models.
Regression models

The features that are described in ‘‘feature extraction’’ are used as input for various machine learning ap-

proaches. The extraction methods described above lead to variable numbers of feature vectors for each

original video sample, e. g., displacement vectors are extracted for overlapping windows. To enable com-

parisons between all implemented approaches and the methods applied by the participants of the Medico

challenge, the predictions of each model are mean aggregated on a per-sample basis, i. e., each model

produces a single prediction for each of the 85 patients contained in the Visem dataset. The models are

outlined in the following. As metrics, we utilize both the MAE as well as the root-mean-square error

(RMSE) which is more sensitive to outliers. The metrics are computed as follows:

MAE =
1

n

Xn

i = 1

jyi � xij (Equation 2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

s

RMSE =

1

n

X
i = 1

ðyi � xiÞ2 (Equation 3)

We compute these metrics for each of the three challenge folds and present the mean of their values.

Linear support vector regressor

The first method to predict the motility of spermatozoa is a linear SVR. Here, different scaling options, i. e.,

StandardScaler, MinMaxScaler, and no scaler, are tested. Five distinct complexity values c equally distrib-

uted between 10� 1 and 103 are evaluated. The best value for this is found by the MAE obtained in an in-

ternal 5-fold cross-validation on each fold’s training data.

Multilayer perceptron

The architecture of the MLP model contains multiple fully connected layers with batch normalization

applied before the activation function. The model is trained with the Adam optimizer in order to minimize

themean squared error (MSE) and an additional L2 weight regularization term. Exponential linear unit (ELU)

and rectified linear unit (ReLU) are evaluated as choices for the activation functions of the layers. A random

search is performed over different parameters, including learning rate, number of layers and units per layer,
iScience 25, 104644, August 19, 2022 7



Table 1. All hyperparameters and their values that are optimized for the different machine learning models

hyper-parameter MLP RNN CNN

batch size 16, 32, 64 16, 32, 64 16, 32, 64

Dropout 0.2, 0.4 0.2, 0.4 0.2, 0.4

kernel regularizer 10�4, 10�3, 10�2 10�4, 10�3, 10�2 10�4, 10�3, 10�2

activation dense ELU, ReLU ELU, ReLU ELU, ReLU

number of layers 2, 4, 8 2, 4, 8 2, 4, 8

learning rate 10�4, 10�3, 10�2 10�4, 10�3, 10�2 10�4, 10�3, 10�2

no. of units/filters 256, 512, 1024 32, 64 64, 128, 256

cell type – – GRU, LSTM

recurrent dropout – – 0, 0.2, 0.4

bidirectional – – true, false
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batch size, and dropout that are listed in Table 1. The best parameters are determined by the MAE

achieved on the random 20% validation splits of each fold’s training data.

Convolutional neural network

Another method used for the prediction of motility of spermatozoa is a 1-dimensional CNN. Its model ar-

chitecture is constructed by multiple convolutional blocks which are stacked on top of each other. Each

convolutional block consists of the following parts. First, a 1-dimensional convolutional layer with a kernel

size of three and stride of one extracts features from the input. Batch normalization is then applied before

the non-linear activation function. Afterward, the output is max-pooled and neurons are randomly dropped

out to prevent overfitting. Furthermore, the number of filters in the convolutional layer is doubled for each

consecutive block. After the last block, a fully connected layer with linear activation predicts the three

target values for the regression problems. Figure 3 depicts an example of such a CNN with 32 filters in

the first layer and three convolutional blocks. The model is trained with the Adam optimizer to minimize

the MSE and an additional L2 weight regularization term. In order to optimize both model architecture

and training settings, a random parameter search is performed. Here, the learning rate of the Adam opti-

mizer, different functions for the activation, the number of layers, filters and batch size, dropout, and kernel

regularizer are adjusted, as can be seen in ‘‘All hyperparameters and their values that are optimized for the

different machine learning models.’’. 50 different combinations of those parameters are tested and the

best one is chosen according to validation MAE. The network is trained for an indefinite number of epochs,

stopping early if the validation MAE has not increased for 100 epochs.

Recurrent neural network

The model architecture of the considered recurrent neural network (RNN) consists of multiple recurrent

layers. Each of those layers contains either a gated recurrent unit (GRU) or LSTM cell. Bidirectional variants

where the input is processed both in the forward and backward direction are also tested. Dropout is

applied both within (between time steps) and after each recurrent layer. Both GRUs and LSTMs use hyper-

bolic tangent activation (hyperbolic tangent (tanh)) for their recurrent layers and sigmoid as their gate acti-

vation functions. In order tominimize theMSE and an additional L2 weight regularization term, themodel is

trained with the RMSProp optimizer. Parameters such as learning rate, number of layers and recurrent units,

and batch size are optimized, as listed in Table 1.
EVALUATION

Motility of spermatozoa is predicted by a linear SVR (‘‘Linear Support Vector Regressor’’), an MLP (‘‘Multi-

layer Perceptron’’), a CNN (‘‘Convolutional Neural Network’’), and an LSTM (‘‘Long Short-term Memory

network’’), where all models are trained on emsd features extracted with Trackpy. Moreover, motility pre-

diction is achieved by BoW with a linear SVR (‘‘Bag-of-Words with Support Vector Regressor’’) and with an

MLP regressor (‘‘Bag-of-Words with Multilayer Perceptron’’), both trained on imsd features extracted with

the help of Trackpy, and on features created by computations on a set of statistics from tracks detected with

the customized Lucas-Kanade tracker. We did not train any CNN or RNN models on the BoWs, as they are

sparse quantizations of entire video samples, thus containing neither structural nor temporal information
8 iScience 25, 104644, August 19, 2022



Figure 3. This figure shows the architecture of the model used for the CNN

Three similar blocks of layers with an increasing number of output filters are stacked consecutively. Finally, the output of

the last block is fed into a fully connected layer with output neurons for each of the predicted motility characteristics

percentage of immotile sperm, percentage of progressive motility, and percentage of non-progressive motility.
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that could be exploited by those types of neural networks. Since BoWs are sparse quantizations of entire

video samples, they contain neither structural nor temporal information. For this reason, we refrained to

train CNN or RNN models on BoW features.

MAE and RMSE results for both validation and evaluation are outlined in Tables 2 and 3. However, for pur-

poses of readability, in the text, we mainly remark on MAE results achieved on evaluation using the same

parameters found for the best results on validation. As described in ‘‘sec:dataset’’, we used the 3-fold cross-

validation setup of the Medico Multimedia for Medicine challenge. Therefore, the reported MAEs and

RMSEs are mean values computed over 3-folds.
Linear support vector regressor

The first set of results comes from training a linear SVR on the emsd feature vectors extracted with

Trackpy. As described in ‘‘displacement features’’, three different combinations of window and hop

size are evaluated for feature extraction. Training and optimization of the regressor is further done as

outlined in ‘‘Linear Support Vector Regressor’’. Table 2 shows both MAEs and RMSEs achieved during

validation and evaluation using 3-fold cross-validation. It is apparent from both the validation and eval-

uation results that choosing only a small window size of 2 s for computing the displacement statistics

leads to feature representations that lack useful information for predicting motility characteristics of

the sperm cells for each sample. For the configurations, using a larger window size of 10 s and a larger

hop size of 5 s leads to slightly better results during validation but decreased evaluation performance.

Considering the best validation result, a minimum MAE of 8.60 is obtained on evaluation with the SVR

trained on emsd features. Measured against the state of the art, this result shows a relative improvement

of 2.6% (Thambawita et al., 2019b).
Multilayer perceptron

Secondly, an MLP is trained on the emsd feature vectors that have been extracted with Trackpy. Again,

following the procedure described in ‘‘Displacement features’’, features are extracted by three combina-

tions of window and hop size. In ‘‘Multilayer Perceptron’’, it is shown how the network is trained and opti-

mized. Best results are achieved with a learning rate of 10� 2, a batch size of 16, and a dropout of 0.2. For a

window size of 2 s and 1 s hop, best results are obtained with the ReLU activation function, eight layers, a

factor of 10� 4 for the L2 weight regularization, and 1 024 units on each layer. The model trained on features

extracted with a window size of 10 s and 1 and 5 s hop is performing best for choosing ELU as activation

function, four layers, 10� 3 as factor for the L2 weight regularization, and 512 units on each layer. In Table 2,

an overview of MAE and RMSE results coming from validation and evaluation with 3-fold cross-validation is

given. Same as with the SVR (see ‘‘linear support vector regressor’’), choosing a window size of 2 s for the

computation of displacement statistics performs the worst. For choosing a larger window size of 10 s, vali-

dation performance is somewhat better for applying a hop size of 1 s than 5 s. However, the larger hop size

of 5 s is performing slightly better on evaluation. The minimum MAE value of 8.83 is achieved by the MLP
iScience 25, 104644, August 19, 2022 9



Table 2. Mean absolute error (MAE) and root-mean-square error (RMSE) results of proposed experiments using

four machine learning models on emsd features

metric hop window

SVR MLP CNN RNN

val eval val eval val eval val eval

MAE 1s 2s 11.13 10.91 6.49 11.56 6.29 10.48 6.55 12.97

1s 10s 10.16 8.36 5.19 8.83 5.03 8.44 6.59 8.49

5s 10s 10.12 8.60 5.26 8.13 7.21 8.74 6.45 8.13

RMSE 1s 2s 14.02 14.30 8.04 15.13 8.21 14.17 10.27 16.17

1s 10s 12.87 11.06 6.84 11.48 6.55 10.82 9.18 11.41

5s 10s 12.85 11.56 6.95 10.56 7.21 11.31 9.49 10.79

Three different hop and window size combinations are evaluated for the extraction of the emsd feature vectors. hop size:

refers to the difference between two adjacent window centers. For example, for a hop size of 1 s and a window size of

10 s two adjacent widows are for 90% overlapped. val: results on the (val)idation set of the data. eval: results on the unseen

(eval)uation set of the data. Best results for each metric are highlighted in gray shading.
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trained on displacement features, which is as good as the findings of state of the art (SOTA) (Thambawita

et al., 2019b).

Convolutional neural network

Features extracted with the help of the Trackpy tool are used for a third set of experiments, this time

applying a CNN. Here, features are extracted by three combinations of window and hop size, as can be

read in ‘‘Displacement Features’’. How the network is trained and optimized is explained in ‘‘Convolutional

Neural Network’’. Best results are achieved with a learning rate of 10� 2, ELU as activation function, and a

factor of 10� 2 for the L2 weight regularization. Training the network on features extracted with a window

size of 2 s and 1 s hop performed best with four layers, starting with 32 filters for the first layer, a batch

size of 64, and a dropout of 10� 2. Best results with a window size of 10 s and hop size of 1 and 5 s are

for a number of eight layers, starting with 32 filters for the first layer, a batch size of 32, and a dropout of

0.4. As can be observed in Table 2, using the emsd features obtained with 1 s overlapping 2 s segments

of one video is not quite keeping pace with the best results of previous papers on this kind of experiment.

emsd features with overlapping 10 s parts of the videos with a hop size of 1 and 5 s are more promising.

Experiments with 1 s hop are achieving best results for MAE and RMSE values on validation and evaluation.

Going by the best validation result, the minimumMAE is at 8.44 for training a CNN on emsd features. These

results show a relative improvement of 4.4% against state-of-the-art results by Thambawita et al. (2019b).

Moreover, the CNN performs slightly better than the previous models—SVR achieving 8.60 MAE, see

‘‘linear support vector regressor’’, and MLP resulting in 8.83 MAE, see ‘‘Multilayer perceptron’’. As the im-

provements are only marginal at best, it is questionable if structural dependencies which could be ex-

ploited by the CNN can be found in the emsd feature vectors.

Recurrent neural network

A fourth set of experiments is done with training an RNN on the features extracted with the Trackpy tool. As

described in ‘‘displacement features’’, three different combinations of window and hop size are assessed

for feature extraction. Now, contrary to the other experiments, the feature sequences are formed from the

vectors extracted from consecutive overlapping windows and the RNN uses all of the information in the

sequence to make a prediction. The network is trained and optimized according to ‘‘Recurrent Neural

Network’’. Best results are obtained with bidirectional LSTM cells with a number of 256 recurrent units

on each layer. Further, applying dropout to the activations in the recurrent layers decreases performance

in all cases. For training this network on features of 2 and 10 s windows and 1 s hop, the best hyperpara-

meters are a learning rate of 10� 3, a number of two layers, a batch size of 16, a dropout of 0.4, and a factor

of 10� 2 for the L2 weight regularization. With a window size of 10 s and 5 s hop, best performance is

achieved with a learning rate of 10� 4, a number of four layers, a batch size of 64, a dropout of 0.2, and a

factor of 10� 4 for the L2 weight regularization. Validation and evaluation with 3-fold cross-validation scored

the MAE and RMSE values displayed in Table 2. Choosing a window size of 10 s and a hop size of 5 s

achieves evaluation results that are slightly better than state-of-the-art results. The minimum MAE is at

8.13 MAE for evaluation, a relative improvement of 7.8% against state-of-the-art results by Thambawita
10 iScience 25, 104644, August 19, 2022



Table 3. Mean absolute error (MAE) results of proposed experiments using a BoW with SVR and MLP on custom

movement statistics (CMS) and mean squared displacement (MSD) features

codebook size assigned vectors

SVR + CMS SVR + msd MLP + CMS MLP + msd

val eval val eval val eval val eval

2 500 1 8.34 8.00 7.71 7.55 7.63 8.11 6.70 8.01

10 8.31 7.91 7.85 7.73 7.37 8.37 6.19 8.74

50 8.33 8.03 8.10 8.01 7.52 8.50 6.29 7.95

100 8.28 8.00 8.18 8.06 7.18 8.64 6.47 8.35

200 8.23 8.05 8.26 8.09 7.15 8.39 6.41 8.16

500 8.26 8.31 8.27 8.03 6.75 8.11 5.91 7.85

5 000 1 8.42 8.26 7.87 7.81 7.99 8.29 6.70 8.04

10 8.22 7.93 7.69 7.43 7.12 8.73 6.65 8.54

50 8.38 8.07 8.05 7.99 7.50 8.42 6.30 8.18

100 8.34 8.03 8.11 8.03 7.39 8.40 6.14 8.54

200 8.29 8.00 8.19 8.07 7.31 8.40 6.35 8.68

500 8.22 8.08 8.28 8.10 7.05 7.54 6.23 8.40

10 000 1 8.56 8.73 8.08 8.18 7.85 7.92 7.03 8.11

10 8.19 7.86 7.56 7.31 7.41 8.17 6.47 8.27

50 8.40 7.98 7.92 7.86 7.41 8.17 6.27 8.07

100 8.38 8.07 8.05 7.99 7.42 7.95 6.12 8.04

200 8.34 8.03 8.11 8.03 7.26 8.26 6.28 8.19

500 8.27 8.03 8.23 8.09 7.13 7.67 6.34 7.91

18 different codebook sizes and number of assigned vectors combinations, all with a window size of 5 s are evaluated. Best

results for each codebook size are highlighted in gray shading.
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et al. (2019b), as well as 3.6% against previous experiments, for example those using a CNN on the same

emsd features, cf. ‘‘Convolutional Neural Network’’. Considering the temporal dependencies within se-

quences of emsd vectors therefore seems to improve on regression performance if ever so slightly. Further-

more, the RNN experiments enforce the notion that emsd features computed over longer time intervals

contain more information regarding the motility of sperm cells, as even when taking a sequence of shorter

frames into account as a whole, results are better with the greater window size.
Bag-of-Words with support vector regressor

A possible drawback of the initial experiments with emsd features might be that they aggregate informa-

tion about the movement across all spermatozoa in a given sample in a very primitive fashion with mean

values. Therefore, the experiments with unsupervised feature quantization and aggregation via BoW of sin-

gle-spermatozoon-based features investigate a more sophisticated approach of analyzing a variable num-

ber of sperm cells.

Here, the prediction of the motility of spermatozoa is accomplished by generating BoWs from the features

described in ‘‘feature extraction’’ that serve as input for training an SVR.

Custom movement statistics features

In the first set of experiments for predicting motility using a BoW, the BoW is generated from movement

statistics coming from the adapted Lucas-Kanade tracker, as discussed in ‘‘Custom Movement Statistics’’.

As shown in ‘‘Bag-of-Words’’, for training and optimization of the model, codebook sizes of 2500, 5000, and

10000, assigning 1, 10, 50, 100, 200, and 500 vectors, and complexity values between 10� 1 and 103 are

considered. Best results are detected with a complexity of 10. Validation and evaluation achieved MAE re-

sults are shown in Table 3. Choosing any of the investigated combinations of codebook size and the num-

ber of assigned vectors leads to evaluation results that are slightly better than state-of-the-art results by

Thambawita et al. (2019b). The best result on the validation, achieved with a codebook size of 10 000
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and 10 assigned vectors is 7.86MAE on evaluation, a relative improvement of 10.9% against state-of-the-art

results, and 6.8% against the best result of previous experiments with a CNN cf. ‘‘Convolutional Neural

Network’’. These results suggest the superiority of the BoW approach to simple mean aggregation. Tuning

the BoW hyperparameters shows that choosing a smaller number of codebook vectors to assign to each

input sample leads to improved results. Furthermore, a marginal performance gain can be achieved

with larger codebooks.

Displacement features

The same model as in the preceding part, the BoW with a linear SVR, is now trained on imsd features ex-

tracted with Trackpy, described in ‘‘displacement features’’. As outlined in ‘‘Bag-of-Words’’, codebook

sizes of 2500, 5000, and 10000, assigning 1, 10, 50, 100, 200, and 500 vectors and complexity values between

10� 1 and 103 are tested to extract features in order to train and optimize the model. A complexity of 103

showed the best results. In Table 3, the validation and evaluation for MAE values are reported. Evaluation

results for any tested combination of codebook size and number of assigned vectors are better than or at

least equally good as all previous experiments in this article and state-of-the-art results. A codebook size of

10000 and 10 assigned vectors achieves the overall minimum evaluation MAE of 7.31. This is a relative

improvement of over 17.2% compared to the best submission (Thambawita et al., 2019b) and is outper-

forming the results provided in ‘‘Custom movement statistics features’’.

The imsd features extracted with Trackpy therefore serve as a more powerful basis for feature creation than

the custom statistics generated from movement tracks. The observations about codebook sizes and num-

ber of assigned vectors also hold for this set of experiments, with larger codebooks and fewer vector as-

signments leading to the best results.
Bag-of-Words with multilayer perceptron

Motility prediction of spermatozoa is additionally achieved by training a BoW with an MLP on features

created with both Trackpy and calculations coming from the adapted Lucas-Kanade tracker.

Custom movement statistics features

Experiments for this model are started by training the BoW with an MLP regressor on custom movement

statistics features created with the help of the tailored Lucas-Kanade tracker that has been explained in

‘‘Custom Movement Statistics’’. Codebook sizes of 2500, 5000, and 10000 and 1, 10, 50, 100, 200, and

500 assigned vectors are tested for feature extraction, so that the model can be optimized, see ‘‘Bag-of-

Words’’. For further optimization, various values for different hyperparameters are assessed as shown in

‘‘multilayer perceptron’’. Best results are accomplished with a learning rate of 10� 2, a batch size of 64, a

dropout of 0.4, two layers, and 1 024 units per layer. ReLU is the best performing activation function and

a factor of 10� 2 proved best for the L2 weight regularization. MAE results for validation and evaluation

are listed in Table 3. The best MAE results for evaluation of 8.11 MAE are achieved for a codebook size

of 2500 and 500 assigned vectors.

Displacement features

The same model of a BoW with an MLP regressor as in the preceding part in this section is additionally

trained on displacement features extracted with Trackpy, as shown in ‘‘displacement features’’. As

described in ‘‘Bag-of-Words’’, codebook sizes of 2500, 5000, and 10000 and 1, 10, 50, 100, 200, and 500 as-

signed vectors are evaluated for feature extraction. This model is further trained and optimized according

to ‘‘Multilayer perceptron’’, obtaining best results with a learning rate of 10� 2, a batch size of 16, a dropout

of 0.2, four layers, and 256 units in each of those layers. Here, ELU activation function and a factor of 10� 2 for

the L2 weight regularization performed best. Table 3 illustrates MAE results for the validation and evalua-

tion. A codebook size of 2500 and assigning 500 vectors achieves 7.85 MAE on evaluation.
DISCUSSION

The large number of experiments conducted and evaluated in this article (summarised in Table 4) addition-

ally requires a high-level overview which discusses individual strengths and weaknesses. For predicting

motility, almost every experiment in this article improved upon the state of the art (Thambawita et al.,

2019b) (The MAE provided by Thambawita et al. (2019b) was at the time of writing this manuscript the

best available MAE result. However, it should be noted that we did not find a peer-reviewed publication
12 iScience 25, 104644, August 19, 2022



Table 4. Mean absolute error (MAE) and root-mean-square error (RMSE) results of proposed experiments using

eight different machine learning models with SVR, MLP, CNN, and RNN on emsd, imsd, and custom movement

statistics (CMS) features

emsd CMS imsd

SOTASVR MLP CNN RNN SVR MLP SVR MLP

MAE val 10.12 5.19 5.03 6.45 8.19 6.75 7.56 5.91 –

eval 8.60 8.83 8.44 8.13 7.86 8.11 7.31 7.85 8.83

RMSE val 12.85 6.84 6.55 9.18 10.16 9.04 9.39 8.74 –

eval 11.56 11.48 10.82 11.41 10.38 10.81 9.56 10.49 12.05

The best overall result is highlighted in bold.
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of this paper. The best (peer-reviewed) publishedMAE value for the task of spermmotility prediction based

on the Visem dataset is provided byHicks et al. (2019d).) which is already better than the ZeroR baseline. The

best results of every investigated combination of feature representation andmachine learning algorithmare

displayed in Figure 4. Using emsd feature vectors extracted from overlapping windows of the input videos

already leads to better results with almost every machine learning model. Comparing the different algo-

rithms for this feature type shows that more involved neural network architectures, i. e., CNNs and RNNs,

are able to extract additional information from the features, by either considering structural dependencies

within a single vector (CNN) or exploiting long(er) term temporal dependencies between consecutive emsd

measurements (RNN)—with the latter leading to the best results with these kinds of features. However, an

MLP trained on emsd vectors is inferior to the more robust SVR. The remaining three types of features all

aggregate sperm-level information into subject-level sparse feature representations via BoW. Therefore,

they are no longer suitable candidates for the CNN and RNN models. Overall, the BoW methodology still

leads to stronger results considering the simpler machine learning strategies applied in those experiments.

Furthermore, the strongest feature representations can be extracted by constructing BoWs from imsd vec-

tors with the overall best MAE of 7.31. This result is further significantly better than state-of-the-art results at

p< :01measured by a one-tailed T-Test than byHicks et al. (2019c) atp< :05. For these experiments, the SVR

outperformed the MLP and therefore, the latter is not applied in the very last experiment. This observation

can be explained by the small size of the training dataset in the BoW experiments where features are aggre-

gated per patient. As deep learning models generally require larger amounts of data to perform well, this

circumstance might have prevented the MLP from achieving better results.

For our best model, an SVR trained on quantized, BoW representations learn from per-sperm displacement

measurements, we further perform an analysis on the individual dimensions of motility—progressive and
Figure 4. Best results for motility prediction and state of the art (Thambawita et al., 2019b)

The lower the mean absolute error (MAE) the better, showing that SVR models achieve better results than the other

models for every type of features. BoWs outperform models trained on emsd features.
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Figure 5. Visualization of our best model’s predictions for the three dimensions of sperm-motility—percentage

of progressively motile (A), non-progressively motile (B), and immotile spermatozoa (C)

The green line represents a linear regression fitted to relate the model’s predictions to the manually annotated ground-

truth motility labels. The shaded margin around the regression line visualizes a 95% confidence interval obtained by

bootstrapping. A red identity line is further added to the plot for easier assessment of the overall performance. Finally,

coefficients of determination (R2 scores) are given for each result. For a detailed account about the error analysis please

refer to ‘‘Discussion’’.
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non-progressivemotility aswell aspercentageof immotile spermcells. Figure 5plots themodel’s predictions for

eachmotilitymetric against its true value. It is clear that progressivemotility of spermcells ismost easily detected

by our framework, achieving a coefficient of determination of 74%. For the other two dimensions, our model did

not perform aswell. Detection of non-progressivemotility is closer to amean predictionbaseline than the actual

distribution, achieving anR2 scoreofmerely 26%.However, this is thedimensionexhibiting the lowest amountof

variance in the dataset, making it harder for themodels to learn important discriminating features about the un-

derlying data distribution. Lastly, for most patients, the amount of immotile sperm cells in their samples was

below 40%, leading to a condensed data distribution. Nonetheless, immotile sperm cells were still quite reliably

detected by our framework, yielding an R2 score of 66%.
LIMITATIONS OF THE STUDY

When looking at the computational effort required to run our motility prediction pipeline, real-time analysis (at

least 30 fps) is not yet possible. The main bottleneck can be found with the extraction of the sperm tracks which

wasperformed for theentiretyof eachvideo.Here, especially theCrocker-Grier algorithm isquite slow, requiring

a runtime longer than each video’s duration for tracking the spermatozoa. For example, extracting tracks and

displacement features for a 20 s video clip with a sliding window of 10 s with 5 s hop, takes around 22 s on a

desktop Intel i9processor (8 cores, 16 threads). The rest of thepipelinecanafterwardbe run inunder 2 s.An inves-

tigation into more efficient tracking algorithms is required for improving the pipeline’s performance.
CONCLUSION AND FUTURE WORK

In this article, the task of automatic spermquality assessment frommicroscopic video recordings is addressedby

applying a framework of unsupervised tracking, feature quantization, and machine learning. The publicly avail-

able Visem dataset served as the basis for predicting the motility of spermatozoa. Two different tracking algo-

rithms are utilized in order to enable extraction of features on a per-spermcell basis. The features are thenquan-

tized and aggregatedwith a BoWapproach and used as input formachine learningmodels. All methods herein

achieved improvements formotilitypredictionover the submissions to theMedicoMultimedia forMedicinechal-

lenge. The overall best results are achieved by unsupervised tracking of sperm cells with the Crocker-Grier

(Crocker andGrier, 1996) algorithm, extracting imsd features for each detected track andaggregating those fea-

tures into a histogram representation using BoW. With this feature representation, a linear SVR improved the

mean (3-fold) MAE from 8.83 to 7.31, a decrease of over 17 %. The results further show that the unsupervised

feature quantization helps to achieve more consistent and robust results, regardless of which feature represen-

tation is chosen as input. For futurework, the presented framework can beextended and improveduponbypur-

suing a number of additional research directions. First of all, other methods of feature extraction from sperm

tracks can be explored. During the experiments in this article, a more involved and computationally heavy set

of features in the form of sperm motility parameters, such as curve linear velocities and coefficients obtained

from regression analysis, are evaluated. Combined with the BoW feature quantization, however, these are less

successful than the simpler imsd vectors. More interesting could be to integrate unsupervised representation

learning into the process. A direct approach, for example, could train an autoencoder directly on the video con-

tent. Considering the noisy nature of the sperm sample recordings which contain lots of debris and background
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contrast variation, and furthermore exhibit very sparse motion characteristics, this seems hardly feasible with

state-of-the-art deep learning methods. Instead, convolutional and recurrent autoencoders could be applied

to suitable transformations of the detected tracks, as has already been done for single tracks of myogenic cells

(Kimmelet al., 2019).Here, all tracks couldbeconsidered togetheror individually inanunsupervised trainingpro-

cedure.UsingMOTILITAI, our low-resourceAI-basedmethod for automatic spermmotility recognition,wehope for

its integration in digital microscopes and making our solution reachable for everyone at low cost.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

VISEM https://zenodo.org/record/2640506 https://doi.org/10.5281/zenodo.2640506

Software and algorithms

motiliAI https://github.com/EIHW/motilitAI
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Shahin Amiriparian.
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data: This paper analyzes existing, publicly available data. These accession numbers for the datasets are

listed in the key resources table.

d Code: All original code is available in this paper’s supplemental information.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

The whole machine learning pipeline reported in this article can be found at https://github.com/EIHW/

motilitAI. A snapshot of the code is further included as supplemental material Data S1.
QUANTIFICATION AND STATISTICAL ANALYSIS

� Samples of 85 participants have been used for machine learning methods

� Statistical significance over baseline results was determined via three-fold cross-validation and Stu-

dent’s t test.
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