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Several machine learning-based COVID-19 classifiers exploiting vocal biomarkers of

COVID-19 has been proposed recently as digital mass testing methods. Although

these classifiers have shown strong performances on the datasets on which they are

trained, their methodological adaptation to new datasets with different modalities has

not been explored. We report on cross-running the modified version of recent COVID-19

Identification ResNet (CIdeR) on the two Interspeech 2021 COVID-19 diagnosis from

cough and speech audio challenges: ComParE and DiCOVA. CIdeR is an end-to-end

deep learning neural network originally designed to classify whether an individual is

COVID-19-positive or COVID-19-negative based on coughing and breathing audio

recordings from a published crowdsourced dataset. In the current study, we demonstrate

the potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough

and Speech Sub-Challenges of INTERSPEECH 2021, ComParE and DiCOVA. CIdeR

achieves significant improvements over several baselines. We also present the results of

the cross dataset experiments with CIdeR that show the limitations of using the current

COVID-19 datasets jointly to build a collective COVID-19 classifier.

Keywords: COVID-19, computer audition, digital health, deep learning, audio

1. INTRODUCTION

The current coronavirus pandemic (COVID-19), caused by the
severe-acute-respiratory-syndrome-coronavirus 2 (SARS-CoV-2), has infected a confirmed
126 million people and resulted in 2,776,175 deaths (WHO)1. Mass testing schemes offer the
option to monitor and implement a selective isolation policy to control the pandemic without
the need for regional or national lockdown (1). However, physical mass testing methods, such
as the Lateral Flow Test (LFT) have come under criticism since the tests divert limited resources
from more critical services (2, 3) and due to suboptimal diagnostic accuracy. Sensitivities of
58% have been reported for self-administered LFTs (4), unacceptably low when used to detect
active virus, a context where high sensitivity is essential to prevent the reintegration into society

1As of 29th March 2021 https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
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of falsely reassured infected test recipients (5). In addition
to mass testing, radar remote life sensing technology offers
non-contact applications to combat COVID-19 including heart
rate tracking, identity authentication, indoor monitoring and
gesture recognition (6).

Investigating the potential for digital mass testing methods
is an alternative approach, based on findings that suggest
a biological basis for identifiable vocal biomarkers caused
by SARS-CoV-2’s effects on the lower respiratory track (7).
This has recently been backed up by empirical evidence
(8). Efforts have been made to collect and classify a range
of different modality audio recordings of COVID-19-positive
and COVID-19-negative individuals and several datasets have
been released that use applications to collect the breath
and cough of volunteer individuals. Examples include the
“COUGHVID” (9), “Breath for Science”2, “Coswara” (10),
COVID-19 sounds3, and ‘CoughAgainstCovid’ (11). In addition,
to focus the attention of the audio processing community onto
the task of binary classification of COVID-19 from audio,
two INTERSPEECH competitions: the INTERSPEECH 2021
Computational Paralinguists Challenge (ComParE)4 (12) with its
COVID-19 Cough and Speech Sub-Challenges, and Diagnosing
COVID-19 using acoustics (DiCOVA)5 (13) have been organized
with this focus as their challenge.

Several studies have been published that propose machine
learning-based COVID-19 classifiers exploiting distinctive sound
properties between positive and negative cases to classify these
datasets. Brown et al. (14) and Ritwik et al. (15) demonstrate
that simple machine learning models perform well in these
relatively small datasets. In addition, deep neural networks
are exploited in Laguarta et al. (16), Pinkas et al. (17),
Imran et al. (18), and Nessiem et al. (19) with proven
performance at the COVID-19 detection task. Although there
are works that try to combine different modalities computing
the representations separately, Coppock et al. (20) (CIdeR)
proposes an approach computing joint representation of a
number of modalities. The adaptability of this approach to
different types of datasets has not to our knowledge been explored
or reported.

To this end, we propose a modified version of COVID-19
Identification ResNet (CIdeR), a recently developed end-to-end
deep learning neural network optimized for binary COVID-
19 diagnosis from cough and breath audio (20), which is
applicable to common datasets with further modalities. We
present the competitive results of CIdeR to the two COVID-
19 cough and speech Challenges of INTERSPEECH 2021,
ComParE and DiCOVA. We also investigate the behavior
of a strong COVID-19 classifier across different datasets by
running cross dataset experiments with CIdeR. We describe
the limitations of current COVID-19 classifiers with these
experiments regarding the ultimate goal of proposing a universal
COVID-19 classifier.

2https://www.breatheforscience.com
3https://www.covid-19-sounds.org/en/
4http://www.compare.openaudio.eu/
5https://dicova2021.github.io/

2. METHODS

2.1. Model
CIdeR (20) is a 9 layer convolutional residual network. A
schematic detailing of the model can be seen in Figure 1. Each
layer or block consists of a stack of convolutional layers with
Rectified Linear Units (ReLUs). Batch normalization (21) also
features in the residual units, acting as a source of regularization
and supporting training stability. A fully connected layer with
sigmoid activation terminates the model yielding a single logit
output which can be interpreted as an estimation of the
probability of COVID-19. As detailed in Figure 1 the network is
modified to be compatible with a varying number of modalities,
for example, if a participant has provided cough, deep breathing,
and sustained vowel phonation audio recordings, they can be
stacked in a depth wise manner and passed through the network
as a single instance. We use PyTorch library in python to
implement CIdeR and baseline models.

2.2. Pre-processing
At training time, a window of s-seconds, which was fixed at 6 s for
these challenges, is sampled from the audio recording randomly.
If the audio recording is less than s-seconds long, the sample is
padded with repeated versions of itself. The sampled audio is then
converted into Mel-Frequency Cepstral Coefficients (MFCCs)
resulting in an image of width s * the sample rate and height
equal to the number of MFCCs. Three data augmentation steps
are then applied to the sample. First, the pitch of the recording
is randomly shifted, secondly, bands of the Mel spectrogram are
masked in the time and Mel coefficient axes and finally, Gaussian
noise is added. At test time, the sampled audio recording is
chunked into a set of s-second clips and processed in parallel. The
mean of the set of logits is then returned as the final prediction.

2.3. Baselines
The DiCOVA team ran baseline experiments for the track
1 (coughing) sub-challenge; only the best performing (MLP)
model’s score was reported. For the track 2 (deep breathing/vowel
phonation/counting) sub-challenge, however, baseline results
were not provided. Baseline results were provided for the
ComParE challenge but only Unweighted Average Recall
(UAR) was reported rather than Area Under Curve of the
Receiver Operating Characteristics curve (ROC-(AUC)). To
allow comparison across challenges, we created new baseline
results for the ComParE sub-challenges and the DiCOVA Track
2 sub-challenge, using the same baseline methods described
for the DiCOVA Track 1 sub-challenge. The three baseline
models applied to all four sub-challenge datasets were Logistic
Regression (LR), Multi-layer Perceptron (MLP), and Random
Forrest (RF), where the same hyperparameter configurations that
were specified in the DiCOVA baseline algorithm was used (13).

To provide a baseline comparison for the CIdeR track 2
results, we built a multimodal baseline model. We followed a
similar strategy with the provided DiCOVA baseline algorithm,
while extracting the features for each modality. Rather than
individual training for different models, we developed an
algorithm that concatenates input features from separate
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FIGURE 1 | A schematic of the COVID-19 Identification ResNet, (CIdeR). The figure shows a blow-up of a residual block, consisting of convolutional, batch

normalization, and Rectified Linear Unit (ReLU) layers.

TABLE 1 | ComParE sub-challenge dataset splits.

CCS CSS

# Train Val Test Train Val Test

COVID-19-postive 71 48 39 72 142 94

COVID-19-negative 215 183 169 243 153 189

Total 286 231 208 315 295 283

Values specify the number of audio recordings, not the number of participants.

modalities. Then, this combined feature set was fed to the
baseline models: LR, MLP, and RF.

We used 39 dimensional MFCCs as our feature type to
represent the input sounds. For LR, we used Least Square Error
(L2) as a penalty term. For MLP, we used a single hidden layer
of size 25 with a Tanh activation layer and L2 regularization.
The Adam optimiser and a learning rate of 0.0001 was used. For
RF, we built the model with 50 trees and split based on the gini
impurity criterion.

3. DATASETS

3.1. ComParE
ComParE hosted two COVID-19 related sub-challenges, the
COVID-19 Cough Sub-Challenge (CCS) and the COVID-19
Speech Sub-Challenge (CSS). Both CCS and CSS are subsets of
the crowd sourced Cambridge COVID-19 sound database (14,
22). CCS consists of 926 cough recordings from 397 participants.
Participants provided 1–3 forced coughs resulting in a total of
1.63 h of recording. CSS is made up of 893 recordings from 366
participants totalling 3.24 h of recording. Participants were asked
to recite the phrase “I hope my data can help manage the virus
pandemic” in their native language 1–3 times. The train-test splits
for both sub-challenges are detailed in Table 1.

TABLE 2 | DiCOVA sub-challenge dataset splits.

Track-1 Track-2

# Train + Val Test Train + val Test

COVID-19-postive 75 blind 60 21

COVID-19-negative 965 blind 930 188

Total 1,040 234 990 209

The test set labels were withheld by the DiCOVA team, contestants had to submit

predictions for each test case, on which a final AUC was returned.

3.2. DiCOVA
Once again, DiCOVA hosted two COVID-19 audio diagnostic
sub-challenges. Both sub-challenge datasets were subsets of the
crowd sourced Coswara dataset (10). The first sub-challenge,
named Track-1, comprised of a set of 1,274 forced cough
audio recordings from 1,274 individuals totalling 1.66 h. The
second, Track-2, was a multi-modality challenge, where 1,199
individuals provided three separate audio recordings; deep
breathing, sustained vowel phonation, and counting from 1 to
20. This dataset represented a total of 14.9 h of recording. The
train-test splits are detailed in Table 2.

4. RESULTS AND DISCUSSION

The results from the array of experiments with CIdeR and the
3 baseline models are detailed in Table 3. CIdeR performed
strongly across all four sub-challenges, achieving AUCs of 0.799
and 0.787 in the DiCOVA Track 1 and 2 sub-challenges,
respectively, and 0.732 and 0.787 in the ComParE CCS and
CSS sub-challenges. In the DiCOVA cough sub-challenge, CIdeR
significantly outperformed all three baseline models based on
95% confidence intervals calculated following (23), and in the
DiCOVA breathing and speech sub-challenge it achieved a
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TABLE 3 | Results for CIdeR and a range of baseline models for 4 sub-challenges across the DiCOVA and ComParE challenges.

Sub-challenge* CIdeR Baseline

LR MLP RF

DiCOVA Track 1** 0.799 ± 0.058 - 0.699 ± 0.068 -

Track 2 0.786 ± 0.057 0.647 ± 0.014 0.684 ± 0.072 0.776 ± 0.063

ComParE CCS 0.732 ± 0.068 0.722 ± 0.069 0.765 ± 0.065 0.753 ± 0.066

CSS 0.787 ± 0.060 0.583 ± 0.072 0.656 ± 0.070 0.628 ± 0.070

Testing is performed on the held-out test fold once final model decisions have been made on the validation sets. The Area Under Curve of the Receiver Operating Characteristics curve

(AUC(-ROC)) is displayed. A 95% confidence interval is also shown following (23). CIdeR scores which are statistically higher than the best baseline results with a 95% confidence are

in bold. The three baseline models are Logistic Regression (LR), Multi-layer Perceptron (MLP), and Random Forrest (RF). All baseline models were trained on MFCC features.

*Track 1: coughing, Track 2: deep breathing+ vowel phonation+ counting, CCS: coughing, CSS: speech—“ hopemy data can help managethe virus pandemic”. ** As the demographics

were not provided for the Track 1 test set, when calculating the AUC confidence intervals, it was assumed that there was an equal number of COVID-19-positive and COVID-19-negative

recordings.

higher AUC although the improvement over the baselines was
not significant. Conversely, while CIdeR performed significantly
better than all three baseline models in the ComParE speech sub-
challenge based on 95% confidence intervals calculated following
(23), it performed no better than baseline in the ComParE cough
sub-challenge. One can speculate that this may have resulted
from the small dataset sizes favoring the more classical machine
learning approaches which do not need as much training data.

4.1. Limitations
A key limitation with both the ComParE and DiCOVA COVID-
19 challenges is the size of the datasets. Both datasets contain very
few COVID-19-positive participants. Therefore, the certainty in
results is limited and this is reflected in the large 95% confidence
intervals detailed in Table 3. This issue is compounded by the
demographics of the datasets. As detailed in Brown et al. (14) and
Muguli et al. (13) for the ComParE datasets and the DiCOVA
datasets, respectively, not all demographics from society are
represented evenly—most notably, there is poor coverage of
age and ethnicity and both datasets are skewed toward the
male gender.

In addition, the crowd-sourced nature of the datasets
introduces some confounding variables. Audio is a tricky sense
to control. It contains a lot of information about the surrounding
environment. As both datasets were crowd-sourced, there could
have been correlations between ambient sounds and COVID-
19 status, for example, sounds characteristic of hospitals or
intensive care units being more often present for COVID-19-
positive recordings compared to COVID-19-negative recordings.
As the ground truth labels for both datasets were self reported,
presumably the participants knew at the time of recording
whether they had COVID-19 or not. One could postulate that
the individuals who knew they were COVID-19-positive might
have been more fearful than COVID-19-negative participants
at the time of recording, an audio characteristic known to be
identifiable by machine learning models (24). Therefore, the
audio features which have been identified by the model may not
be specific audio biomarkers for the disease.

We note that both the DiCOVA Track 1 and ComParE CCS
sub-challenges were cough recordings. Therefore, there was an
opportunity to utilize both training sets. Despite having access

TABLE 4 | The results for cross dataset experiments.

Test set

Train set DiCOVA ComParE COUGHVID

DiCOVA 0.799 0.554 0.464

ComParE 0.512 0.732 0.552

COUGHVID 0.395 0.518 0.566

All 0.673 0.717 0.531

to both the DiCOVA and ComParE datasets, training on the
two datasets together did not yield a better performance on
either of the challenges’ test sets. Additionally, a model which
performed well on one of the challenges test sets would see a
marked drop in performance on the other challenge’s test set. We
run cross dataset experiments to analyse this effect further. For
these experiments, we also included the COUGHVID dataset (9)
in which COVID-19 labels were assigned by experts and not as
a results of clinically validated test. The results in Table 4 show
that the trained models for each dataset do not generalize well
and perform poorly on excluded datasets. This is a worrying find,
as it suggests that audio markers which are useful in COVID-19
classification in one dataset are not useful or present in the other
dataset. This agrees with the concerns presented in Coppock et al.
(25) that current COVID-19 audio datasets are plagued with
bias, allowing for machine learning models to infer COVID-19
status, not by audio biomarkers uniquely produced by COVID-
19, but by other correlations in the dataset such as nationality,
comorbidity and background noise.

5. FUTURE WORK

One of the most important next steps is to collect and evaluate
machine learning COVID-19 classification on a larger dataset
that is more representative of the population. To achieve optimal
ground truth, audio recordings should be collected at the
time that the Polymerase Chain Reaction (PCR) test is taken,
before the result is known. This would ensure full blinding
of the participant to their COVID-19 status and exclude any
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environmental audio biasing in the dataset. The Cycle Threshold
(CT) of the PCR test should also be recorded, CT correlates
with viral load (26) and therefore would enable researchers to
determine the model’s classification performance to the disease
at varying viral loads. This relationship is critical in assessing
the usefulness of any model in the context of a mass testing
scheme, since the ideal model would detect a viral load lower than
the level that confers infectiousness6. Finally, studies similar to
Bartl-Pokorny et al. (8), directly comparing acoustic features of
COVID-19-positive and COVID-19-negative participants should
be conducted on all publicly available datasets.

6. CONCLUSION

Cross-running CIdeR on the two 2021 Interspeech COVID-
19 diagnosis from cough and speech audio challenges has
demonstrated themodel’s adaptability acrossmultiplemodalities.
With little modification, CIdeR achieves competitive results in
all challenges, advocating the use of end-2-end deep learning
models for audio processing thanks to their flexibility and
strong performance. Cross dataset experiments with CIdeR have
revealed the technical limitations of the datasets for joint usage
that prevent from creating a common COVID-19 classifier.

6Seventy-third SAGE meeting on COVID-19, 17th December 2020.
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