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1 SUPPLEMENTARY TABLES

Table S1: Identified datasets with multiple speech tasks.
Tasks: SV = Sustained vowels, RS = Read speech,
DD = Diadochokinesis, FS = Free speech
*: Tasks which performed better than the other tasks within
the same study.
Clinical assessments: UPDRS = Unified Parkinson’s Disease
Rating Scale, HY = Hoehn and Yahr scale, Webster = Webster
Rating Scale for Parkinson’s Disease, PHQ-9 = 9-question
Patient Health Questionnaire, BDI = Beck’s Depression
Inventory, MINI = Mini-International Neuropsychiatric
Interview, HAM-D = Hamilton Rating Scale for Depression.

Subjects
Clinical
assessment

Tasks Notes

Parkinson’s Disease (PD)

(1)
20D
20 C

Clinical SV*, RS
“Vowels /e/, /i/ and /o/ are consistently the best along
the classification experiments.”

(2)
-

UPDRS
suggested

SV, RS, DD

(3)
25 D
0 C

Clinical:
UPDRS

SV, RS, DD,
FS

(4)
20 D
20 C

Clinical:
various

SV, RS

(5)
98 D
51 C

Clinical:
UPDRS

RS, FS* Poem recitation outperformed both reading tasks.

(6)
13 +
23 D

Clinical:
UPDRS

SV, RS, FS

(7)
50 D
50 C

Clinical:
UPDRS,
HY

SV, RS, DD,
FS

“The results indicate that a selection of the speech
features specific for a given speech task can in
general increase prediction power of the regression
model.”
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Table S1 continued from previous page.

Subjects
Clinical
assessment

Tasks Notes

(8)
20 D
20 C

Clinical:
UPDRS,
HY

SV*, RS
“[...] sustained vowels have been found to carry more
PD-discriminative information than the isolated
words and short sentences do.”

(9)
42 D
0 C

Clinical
UPDRS

SV, FS
“We used sustained vowels to avoid the confounding
effects of running speech and thereby simplify the
signal analysis.”

(10)
12 D
0 C

Clinical:
HY

SV, RS, FS
Tasks as different measures for the success of voice
therapy and not classification performance.

(11)
13 D
13 C

Clinical:
Webster

SV RS
“The extent of intensity decay was unchanged by the
level of speech intensity for both speech tasks.”

Depression

(12)
222 D

Self:
PHQ9

RS, FS* “The free speech task was better for predicting
depression severity than the first task.”

(13)
12 D
12 C

Clinical:
BDI

RS, FS

(14)
92 D
92 C

Clinical:
MINI

RS, FS* The interview task has more diversity and gets higher
accuracy than reading and picture description.

(15)
30 D
30 C

Self and
clinical:
HAM-D

SV, RS, FS* “[...] recognition rate using spontaneous speech was
higher than for read speech.”

Stress

(16)
0 D
60 C

RS, FS

Amyotrophic Lateral Sclerosis (ALS)

(17)
25 D
0 C

Clinical:
doctor

SV, RS

(18)
11 D
11 C

SV, RS

Aphasia, dysarthria and dysphonia

(19)
21 D
21 C

Clinical:
doctor

SV, RS, FS
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Table S2: Identified datasets with a single speech task.
SV = Sustained vowels, RS = Read speech,
DD = Diadochokinesis, FS = Free speech
Clinical assessments: UPDRS = Unified Parkinson’s
Disease Rating Scale, HY = Hoehn and Yahr scale,
PHQ-9 = 9-question Patient Health Questionnaire, STAI
= State-Trait Anxiety Inventory, MMSE = Mini–Mental
State Examination, Mesulam’s criteria = Mesulam’s criteria
for primary progressive aphasia, HAM-D = Hamilton
Rating Scale for Depression, ADS = Common Depression
Scale, YRMS = Young Mania Rating Scale, MSS = Mania
Self-Rating Scale.

Subjects
Clinical
assessment Task

Parkinson’s Disease (PD)

(20),
(21)

188 D
64 C

Clinical:
doctor

SV

(22)
1513
D&C

Self:
UPDRS
(home)

SV

(23)
24 D
24 C

Clinical:
doctor

RS

(24)
40 D
40 C

Clinical:
doctor

SV

(25)
84 D
49 C

Clinical:
doctor

SV

(26)
60 D
20 C

Clinical:
UPDRS

RS

(27)
38 D
14 C

Clinical:
HY

RS

(28)
23 D
8 C

Clinical:
doctor

SV

Depression

(29)
224 D
397 C

Self:
i.a. PHQ-9

FS

Stress

Frontiers 3



Supplementary Material: Neurological Disorder Recognition from Voice

Table S2 continued from previous page.

Subjects
Clinical
assessment Task

(30)
0 D
55 C

Self:
STAI

RS

(31)
0 D
32 C

Raters FS

(32)
0 D
60 C

Physiological
signals

FS

(33)
0 D
60 C

Raters

(34)
0 D
4 C

Experiment
condition

FS

Alzheimer’s Disease (AD)

(35)
82 D
82 C

Clinical:
MMSE,
doctor

FS

(36)
71 D
268 C

Clinical:
doctor

FS

(37)
214 D
184 C

Clinical:
doctor

FS

Amyotrophic Lateral Sclerosis (ALS)

(38)
13 D
13 C

Clinical:
doctor

RS

Aphasia, dysarthria and dysphonia

(39)
15 D
15 C

Clinical:
Mesulam’s
criteria

FS

(40)
8 D
10 C

Clinical:
Doctor

RS

(41)
8 D
8 C

Clinical:
Intelligibility

RS

Bipolar disorder

(42)
51 D
9 C

Clinical:
Assessment
calls

FS
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Table S2 continued from previous page.

Subjects
Clinical
assessment Task

(43)
10 D
0 C

Clinical:
HAM-D,
ADS, YRMS,
MSS
Self:
Questionnaires

FS
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[43]Maxhuni A, Muñoz-Meléndez A, Osmani V, Perez H, Mayora O, Morales EF. Classification of bipolar
disorder episodes based on analysis of voice and motor activity of patients. Pervasive and Mobile
Computing 31 (2016) 50–66.

8


	Supplementary Tables

