

Supplementary Material: Neurological Disorder Recognition from Voice

These are the supplementary Tables S1 and S2 for the article 'Voice Analysis for Neurological Disorder Recognition – a Systematic Review and Perspective on Emerging Trends', https://doi.org/10.3389/fdgth.2022.842301.

1 SUPPLEMENTARY TABLES

Table S1: Identified datasets with multiple speech tasks.
Tasks: SV = Sustained vowels, RS = Read speech, DD = Diadochokinesis, FS = Free speech
*: Tasks which performed better than the other tasks within the same study.
Clinical assessments: UPDRS = Unified Parkinson's Disease Rating Scale, HY = Hoehn and Yahr scale, Webster = Webster Rating Scale for Parkinson's Disease, PHQ-9 = 9-question

Patient Health Questionnaire, BDI = Beck's Depression Inventory, MINI = Mini-International Neuropsychiatric Interview, HAM-D = Hamilton Rating Scale for Depression.

Su		linical ssessment	Tasks	Notes		
Parkins	Parkinson's Disease (PD)					
201 (1) 20	()	linical	SV*, RS	"Vowels /e/, /i/ and /o/ are consistently the best along the classification experiments."		
(2) -		VPDRS uggested	SV, RS, DD			
25 (3) 0 0		linical: PDRS	SV, RS, DD, FS			
20 (4) 20	-	linical: arious	SV, RS			
98 (5) 51		linical: PDRS	RS, FS *	Poem recitation outperformed both reading tasks.		
13 (6) 23	-	linical: PDRS	SV, RS, FS			
50 (7) 50	D C U	Clinical: JPDRS, IY	SV, RS, DD, FS	"The results indicate that a selection of the speech features specific for a given speech task can in general increase prediction power of the regression model."		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Subjects	Clinical assessment	Tasks	Notes
42 DClinical UPDRSSV, FSeffects of running speech and thereby simplify the signal analysis."12 DClinical: HYSV, RS, FSTasks as different measures for the success of voice 		UPDRS,	SV*, RS	PD-discriminative information than the isolated
(10) 0 CHYSV, RS, FStherapy and not classification performance.13 DClinical: (11)13 CSV RS"The extent of intensity decay was unchanged by the level of speech intensity for both speech tasks."Depression $\mathbb{P}HQ9$ RS, FS*"The free speech task was better for predicting depression severity than the first task."12 DClinical: PHQ9RS, FS"The interview task has more diversity and gets higher accuracy than reading and picture description."92 DClinical: (11)2 CRS, FS*The interview task has more diversity and gets higher accuracy than reading and picture description."30 D (15) 30 CSelf and clinical: HAM-DSV, RS, FS*"[] recognition rate using spontaneous speech was higher than for read speech."StressStressSV, RS, FS0 D (16) 60 CRS, FSSV, RS25 D (16) 60 CSV, RSSV, RS11 D (18) 11 CSV, RSSV, RS21 DClinical: clinical: SV RSSV, RS21 DClinical: Clinical: SV RS FSSV, RS			SV, FS	effects of running speech and thereby simplify the
(11)13 C Webster SV RS level of speech intensity for both speech tasks." Depression (12)222 D Self: PHQ9 RS, FS* "The free speech task was better for predicting depression severity than the first task." (12) 222 D Clinical: BDI RS, FS* "The interview task has more diversity and gets higher accuracy than reading and picture description. (13)12 C BDI RS, FS* The interview task has more diversity and gets higher accuracy than reading and picture description. (14)92 C MINI RS, FS* The interview task has more diversity and gets higher accuracy than reading and picture description. (15) 30 C Self and clinical: HAM-D SV, RS, FS* "[] recognition rate using spontaneous speech was higher than for read speech." Stress Stress SV, RS, FS Stress Stress 0 D RS, FS SV, RS SV, RS 25 D Clinical: (17)0 C SV, RS SV, RS 11 D SV, RS SV, RS (18)11 C SV, RS SV, RS Aphasia, dysarthria and dysphonia SV, RS, FS			SV, RS, FS	
222 DSelf: PHQ9RS, FS*"The free speech task was better for predicting depression severity than the first task."12 DClinical: BDIRS, FSThe interview task has more diversity and gets higher accuracy than reading and picture description.30 DSelf and clinical: HAM-DSV, RS, FS*"Ic] recognition rate using spontaneous speech was higher than for read speech."30 DSelf and clinical: HAM-DSV, RS, FS*"Ic] recognition rate using spontaneous speech was higher than for read speech."30 DClinical: clinical: HAM-DSV, RS, FS*"Ic] recognition rate using spontaneous speech was 			SV RS	
(12)PHQ9RS, FS*depression severity than the first task."12 DClinical: BDIRS, FS92 DClinical: Clinical: HAM-DRS, FS*The interview task has more diversity and gets higher accuracy than reading and picture description.30 D (15) 30 CSelf and clinical: HAM-DSV, RS, FS*"[] recognition rate using spontaneous speech was higher than for read speech."Stress0 D (16) 60 CRS, FS"[] recognition rate using spontaneous speech was higher than for read speech."0 D (16) 60 CRS, FSSV, RS, FS25 D (17)0 C (18) 11 CSV, RSSV, RS11 D (18) 11 CSV, RSSV, RSAphasia, dysarthria and dysphoniaSV, RS FS21 DClinical: SV, RS FSSV, RS FS	Depression			
(13)12 CBDIRS, FS92 DClinical: MINIRS, FS*The interview task has more diversity and gets higher accuracy than reading and picture description.30 D (15) 30 CSelf and clinical: HAM-DSV, RS, FS*"[] recognition rate using spontaneous speech was higher than for read speech."Stress	(12) ^{222 D}		RS, FS *	· · ·
(14)92 CMINIRS, FS*accuracy than reading and picture description.30 DSelf and clinical: HAM-DSV, RS, FS*"[] recognition rate using spontaneous speech was higher than for read speech."Stress0 DRS, FS0 DRS, FS(16)60 CRS, FSAmyotrophic Lateral Sclerosis (ALS)25 DClinical: doctor11 DSV, RS(18)11 CSV, RSAphasia, dysarthria and dysphonia21 DClinical: SV, RS			RS, FS	
30 D clinical: HAM-D SV, RS, FS* "[] recognition rate using spontaneous speech was higher than for read speech." Stress 0 D RS, FS 0 D RS, FS (16)60 C RS, FS Amyotrophic Lateral Sclerosis (ALS) 25 D Clinical: (17)0 C 11 D SV, RS (18)11 C SV, RS Aphasia, dysarthria and dysphonia 21 D Clinical: SV, RS			RS, FS *	
0 D (16) 60 CRS, FSAmyotrophic Lateral Sclerosis (ALS)25 DClinical: doctor(17) 0 Cdoctor11 D (18) 11 CSV, RSAphasia, dysarthria and dysphonia21 DClinical: SV, RS FS		clinical:	SV, RS, FS *	• • • •
(16) 60 C RS, FS Amyotrophic Lateral Sclerosis (ALS) 25 D Clinical: doctor (17) 0 C doctor 11 D SV, RS (18) 11 C SV, RS Aphasia, dysarthria and dysphonia 21 D Clinical: SV, RS	Stress			
25 D Clinical: doctor SV, RS 11 D SV, RS (18)11 C SV, RS Aphasia, dysarthria and dysphonia 21 D Clinical: SV RS			RS, FS	
(17)0 C doctor SV, RS 11 D SV, RS (18)11 C SV, RS Aphasia, dysarthria and dysphonia 21 D Clinical: SV RS	Amyotrophic	Lateral Scle	rosis (ALS)	
(18)11 C SV, RS Aphasia, dysarthria and dysphonia 21 D Clinical: SV RS			SV, RS	
21 D Clinical: SV RS FS			SV, RS	
SV RS FS	Aphasia, dysarthria and dysphonia			
			SV, RS, FS	

Table S1 continued from previous page.

Table S2: Identified datasets with a single speech task.

SV = Sustained vowels, RS = Read speech, DD = Diadochokinesis, FS = Free speech

Clinical assessments: UPDRS = Unified Parkinson's Disease Rating Scale, HY = Hoehn and Yahr scale, PHQ-9 = 9-question Patient Health Questionnaire, STAI = State-Trait Anxiety Inventory, MMSE = Mini–Mental State Examination, Mesulam's criteria = Mesulam's criteria for primary progressive aphasia, HAM-D = Hamilton Rating Scale for Depression, ADS = Common Depression Scale, YRMS = Young Mania Rating Scale, MSS = Mania Self-Rating Scale.

	Subjects	Clinical assessment	Task
D 1'			
Parkin	ison's Dise		
(20),	188 D	Clinical:	SV
(21)	64 C	doctor	51
	1513	Self:	
(22)	D&C	UPDRS	SV
	Dat	(home)	
(00)	24 D	Clinical:	
(23)	24 C	doctor	RS
<i>(</i>) ()	40 D	Clinical:	SV
(24)	40 C	doctor	
(2.5)	84 D	Clinical:	
(25)	49 C	doctor	SV
	60 D	Clinical:	
(26)	20 C	UPDRS	RS
	38 D	Clinical:	
(27)	14 C	HY	RS
(20)	23 D	Clinical:	~~
(28)	8 C	doctor	SV
Depre	ssion		
$\langle 20 \rangle$	224 D	Self:	FC
(29)	397 C	i.a. PHQ-9	FS
C (

Stress

		Clinical	
	Subjects	assessment	Task
(30)	0 D 55 C	Self: STAI	RS
(31)	0 D 32 C	Raters	FS
(32)	0 D 60 C	Physiological signals	FS
(33)	0 D 60 C	Raters	
(34)	0 D 4 C	Experiment condition	FS

Table S2 continued from previous page.

Alzheimer's Disease (AD)

(35)	82 D 82 C	Clinical: MMSE, doctor	FS
(36)	71 D 268 C	Clinical: doctor	FS
(37)	214 D 184 C	Clinical: doctor	FS

Amyotrophic Lateral Sclerosis (ALS)

(20)	13 D	Clinical:	DC
(38)	13 C	doctor	RS

Aphasia, dysarthria and dysphonia

(39)	15 D 15 C	Clinical: Mesulam's criteria	FS
(40)	8 D 10 C	Clinical: Doctor	RS
(41)	8 D 8 C	Clinical: Intelligibility	RS

Bipolar disorder

	51 D	Clinical:	
(42)	9C	Assessment	FS
)0	calls	

Table S2 continued from previous page.ClinicalClinical:SubjectsassessmentTask(43)10 DADS, YRMS,
0 CFS0 CMSS
Self:
QuestionnairesFS

5

REFERENCES

- [1]Karan B, Sahu SS, Orozco-Arroyave JR, Mahto K. Hilbert spectrum analysis for automatic detection and evaluation of parkinson's speech. *Biomedical Signal Processing and Control* **61** (2020) 102050.
- [2]Chmielińska J, Białek K, Potulska-Chromik A, Jakubowski J, Majda-Zdancewicz E, Nojszewska M, et al. Multimodal data acquisition set for objective assessment of parkinson's disease. *Radioelectronic Systems Conference 2019* (International Society for Optics and Photonics) (2020), vol. 11442, 114420F.
- [3]Das B, Daoudi K, Klempir J, Rusz J. Towards disease-specific speech markers for differential diagnosis in parkinsonism. *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (IEEE) (2019), 5846–5850.
- [4]Barnish MS, Horton SM, Butterfint ZR, Clark AB, Atkinson RA, Deane KH. Speech and communication in parkinson's disease: a cross-sectional exploratory study in the uk. *BMJ open* 7 (2017) e014642.
- [5]Galaz Z, Mekyska J, Mzourek Z, Smekal Z, Rektorova I, Eliasova I, et al. Prosodic analysis of neutral, stress-modified and rhymed speech in patients with parkinson's disease. *Computer Methods and Programs in Biomedicine* **127** (2016) 301–317.
- [6]Sale P, Castiglioni D, De Pandis M, Torti M, Dall'armi V, Radicati F, et al. The lee silverman voice treatment (lsvt®) speech therapy in progressive supranuclear palsy. *European Journal of Physical and Rehabilitation Medicine* **51** (2015) 569–74.
- [7]Orozco-Arroyave JR, Arias-Londoño JD, Vargas-Bonilla JF, Gonzalez-Rátiva MC, Nöth E. New spanish speech corpus database for the analysis of people suffering from parkinson's disease. *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)* (2014), 342–347.
- [8]Sakar BE, Isenkul ME, Sakar CO, Sertbas A, Gurgen F, Delil S, et al. Collection and analysis of a parkinson speech dataset with multiple types of sound recordings. *IEEE Journal of Biomedical and Health Informatics* **17** (2013) 828–834.
- [9]Tsanas A, Little M, McSharry P, Ramig L. Accurate telemonitoring of parkinson's disease progression by non-invasive speech tests. *Nature Precedings* (2009) 1–1.
- [10]Spielman J, Ramig LO, Mahler L, Halpern A, Gavin WJ. Effects of an extended version of the lee silverman voice treatment on voice and speech in parkinson's disease. *American Journal of Speech-Language Pathology* 16 (2007) 95–107.
- [11]Ho AK, Iansek R, Bradshaw JL. Motor instability in parkinsonian speech intensity. *Cognitive and Behavioral Neurology* **14** (2001) 109–116.
- [12]Zhang L, Duvvuri R, Chandra KK, Nguyen T, Ghomi RH. Automated voice biomarkers for depression symptoms using an online cross-sectional data collection initiative. *Depression and Anxiety* **37** (2020) 657–669.
- [13]Mendiratta A, Scibelli F, Esposito AM, Capuano V, Likforman-Sulem L, Maldonato MN, et al. Automatic detection of depressive states from speech. *Multidisciplinary Approaches to Neural Computing* (Springer) (2018), 301–314.
- [14]Liu Z, Li C, Gao X, Wang G, Yang J. Ensemble-based depression detection in speech. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE) (2017), 975–980.
- [15]Alghowinem S, Goecke R, Wagner M, Epps J, Breakspear M, Parker G. Detecting depression: a comparison between spontaneous and read speech. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE) (2013), 7547–7551.
- [16]Ikeno A, Varadarajan V, Patil S, Hansen JH. Ut-scope: Speech under lombard effect and cognitive stress. 2007 IEEE Aerospace Conference (IEEE) (2007), 1–7.

- [17]Garcia-Gancedo L, Kelly ML, Lavrov A, Parr J, Hart R, Marsden R, et al. Objectively monitoring amyotrophic lateral sclerosis patient symptoms during clinical trials with sensors: observational study. *JMIR mHealth and uHealth* 7 (2019) e13433.
- [18]Wang J, Kothalkar PV, Cao B, Heitzman D. Towards automatic detection of amyotrophic lateral sclerosis from speech acoustic and articulatory samples. *Proceedings of Interspeech 2016* (2016), 1195–1199.
- [19]Rodríguez-Parra M, Adrián J, Casado J. Voice therapy used to test a basic protocol for multidimensional assessment of dysphonia. *Journal of Voice* **23** (2009) 304–318.
- [20]Altay EV, Alatas B. Association analysis of parkinson disease with vocal change characteristics using multi-objective metaheuristic optimization. *Medical Hypotheses* **141** (2020) 109722.
- [21]Tuncer T, Dogan S, Acharya UR. Automated detection of parkinson's disease using minimum average maximum tree and singular value decomposition method with vowels. *Biocybernetics and Biomedical Engineering* 40 (2020) 211–220.
- [22]Prince J, Andreotti F, De Vos M. Multi-source ensemble learning for the remote prediction of parkinson's disease in the presence of source-wise missing data. *IEEE Transactions on Biomedical Engineering* 66 (2018) 1402–1411.
- [23]Kim Y, Choi Y. A cross-language study of acoustic predictors of speech intelligibility in individuals with parkinson's disease. *Journal of Speech, Language, and Hearing Research* **60** (2017) 2506–2518.
- [24]Naranjo L, Perez CJ, Campos-Roca Y, Martin J. Addressing voice recording replications for parkinson's disease detection. *Expert Systems with Applications* 46 (2016) 286–292.
- [25]Smekal Z, Mekyska J, Galaz Z, Mzourek Z, Rektorova I, Faundez-Zanuy M. Analysis of phonation in patients with parkinson's disease using empirical mode decomposition. 2015 International Symposium on Signals, Circuits and Systems (ISSCS) (IEEE) (2015), 1–4.
- [26]Khan T, Westin J, Dougherty M. Classification of speech intelligibility in parkinson's disease. Biocybernetics and Biomedical Engineering 34 (2014) 35–45.
- [27]Sapir S, Ramig LO, Spielman JL, Fox C. Formant centralization ratio: A proposal for a new acoustic measure of dysarthric speech. *Journal of Speech, Language, and Hearing Research* 53 (2010) 114–125.
- [28]Little M, McSharry P, Hunter E, Spielman J, Ramig L. Suitability of dysphonia measurements for telemonitoring of parkinson's disease. *Nature Precedings* (2008) 1–1.
- [29]Gratch J, Artstein R, Lucas G, Stratou G, Scherer S, Nazarian A, et al. The distress analysis interview corpus of human and computer interviews. *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)* (2014), 3123–3128.
- [30]Baird A, Amiriparian S, Berschneider M, Schmitt M, Schuller B. Predicting biological signals from speech: Introducing a novel multimodal dataset and results. 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP) (IEEE) (2019), 1–5.
- [31]Palacios-Alonso D, Lázaro-Carrascosa C, López-Arribas A, Meléndez-Morales G, Gómez-Rodellar A, Loro-Álavez A, et al. Assessing an application of spontaneous stressed speech-emotions portal. *International Work-Conference on the Interplay Between Natural and Artificial Computation* (Springer) (2019), 149–160.
- [32]Jati A, Williams PG, Baucom B, Georgiou P. Towards predicting physiology from speech during stressful conversations: Heart rate and respiratory sinus arrhythmia. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE) (2018), 4944–4948.
- [33]Lefter I, Burghouts GJ, Rothkrantz LJ. An audio-visual dataset of human-human interactions in stressful situations. *Journal on Multimodal User Interfaces* **8** (2014) 29–41.

- [34]Fernandez R, Picard RW. Modeling drivers' speech under stress. *Speech Communication* **40** (2003) 145–159.
- [35]Haider F, De La Fuente S, Luz S. An assessment of paralinguistic acoustic features for detection of alzheimer's dementia in spontaneous speech. *IEEE Journal of Selected Topics in Signal Processing* 14 (2019) 272–281.
- [36]Weiner J, Angrick M, Umesh S, Schultz T. Investigating the effect of audio duration on dementia detection using acoustic features. *Proceedings of Interspeech 2018* (2018), 2324–2328.
- [37]Luz S. Longitudinal monitoring and detection of alzheimer's type dementia from spontaneous speech data. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS) (IEEE) (2017), 45–46.
- [38]An K, Kim MJ, Teplansky K, Green JR, Campbell TF, Yunusova Y, et al. Automatic early detection of amyotrophic lateral sclerosis from intelligible speech using convolutional neural networks. *Proceedings* of Interspeech 2018 (2018), 1913–1917.
- [39]Knibb JA, Woollams AM, Hodges JR, Patterson K. Making sense of progressive non-fluent aphasia: an analysis of conversational speech. *Brain* **132** (2009) 2734–2746.
- [40]Bose A, van Lieshout P, Square PA. Word frequency and bigram frequency effects on linguistic processing and speech motor performance in individuals with aphasia and normal speakers. *Journal of Neurolinguistics* 20 (2007) 65–88.
- [41]Patel R. Acoustic characteristics of the question-statement contrast in severe dysarthria due to cerebral palsy. *Journal of Speech, Language, and Hearing Research* **46** (2003) 1401–1415.
- [42]Khorram S, Jaiswal M, Gideon J, McInnis M, Provost EM. The priori emotion dataset: Linking mood to emotion detected in-the-wild. *arXiv preprint arXiv:1806.10658* (2018).
- [43]Maxhuni A, Muñoz-Meléndez A, Osmani V, Perez H, Mayora O, Morales EF. Classification of bipolar disorder episodes based on analysis of voice and motor activity of patients. *Pervasive and Mobile Computing* **31** (2016) 50–66.