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1. Introduction

Even though Casimir’s original calculation of the force between two objects due

to the electromagnetic vacuum considered two parallel plates,1 most experiments

involve a sphere or a spherical lens, often placed close to a plate (see, e.g. Refs. 2–8

for reviews). The advantage of the sphere is that no special care needs to be taken to

avoid misalignment. Recently, experiments involving two spheres have been carried

out as well.9–11 However, the strength of the Casimir force is limited by the sphere

radius. For most practical purposes, the sphere radius therefore is chosen to be very

large compared to the distance to the other object. For the majority of experiments,

the aspect ratio between sphere radius and surface-to-surface distance lies between

100 and 5000.12 A notable exception is an experiment involving two spheres with

an aspect ratio smaller than 10 where optical tweezers are used in order to measure

a rather weak Casimir force.9,11

For large aspect ratios, the force between the two involved objects can be

obtained to a very good approximation by dividing the opposing surfaces into par-

allel surface elements and summing up the free energy for the respective distances.

This approximation was first introduced by Derjaguin13 and the term proximity

force was coined by B locki et al.14 leading to the often used term proximity-force

approximation (PFA). While the results of PFA are in many cases sufficient to ana-

lyze experimental data, the increasing experimental precision15–17 and the Drude-

plasma controversy18,19 motivate to go beyond PFA. In special cases, it is possible to

obtain analytical expressions for the leading-order corrections to PFA, for instance

by developing a derivative expansion of the interaction energy.20,21 However, in

general one needs to resort to numerical techniques, particularly when dealing with

moderate values for the aspect ratio or when a higher precision is required.

There exist a number of numerical approaches to the Casimir effect, some of

them capable to handle rather general geometries22,23 and others adapted to specific

shapes of the involved objects.24 Here, we will concentrate on setups containing

two spheres or a sphere and a plate. Using a spherical wave basis may appear

as quite natural and recently it became indeed possible to push the limits of this

method well into the experimentally relevant regime.12,25 It should be kept in mind

though that for a setup consisting of two spheres, two spherical wave bases are

actually needed, each of them centered at one of the spheres. As a consequence, it

is necessary to transform between these two bases. Bispherical coordinates might

appear as an alternative and they have in fact been used to derive exact expressions

for the Casimir force between two spheres of equal radii as well as between a plane

and a sphere in the high-temperature limit.26

More recently, it became clear that the use of a plane-wave basis can be advan-

tageous,27–29 in particular when the aspect ratio becomes large as is the case in

most experiments. In view of the PFA where a more general geometry is locally

approximated by a plane-plane geometry, the advantages of the plane-wave basis are

comprehensible. An analysis of experimental data by numerical techniques based
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on plane waves is presented in Ref. 30. The plane-wave approach has also been

employed to produce data for another article in this volume.31

The plane-wave basis is not only useful for numerical computations but also

in analytical calculations. The PFA for two spheres has been derived by means of

the scattering approach to the Casimir effect32–34 as an asymptotic result using

the plane-wave basis.35 Furthermore, extending this approach, corrections to PFA

have been obtained.36,37 In the high-temperature limit, using the plane-wave basis,

an exact expression for the Casimir free energy between two spheres of arbitrary

radii were found.38 Some of the results had been at least partially derived before

by other means for the plane-sphere geometry at zero temperature39–44 and in

the high-temperature limit45 as well as for the sphere–sphere geometry at zero

temperature46 and for high temperatures.26,47 On the other hand, particularly for

large aspect ratios, a calculation based on plane waves offers the opportunity for

physical insights in terms of the concepts of geometrical optics and its semiclassical

corrections.

In the following, we will discuss the Casimir interaction between spherical

objects in vacuum including the sphere-plane geometry as a limiting case from the

point of view of plane waves. While part of the paper will review previous work, we

will also present some new results. In particular, we will derive the PFA expression

in the plane-wave basis for polarization-mixing reflection at the spheres, thereby

generalizing previous work. Furthermore, we will point out the appearance of so far

unexpected corrections to the PFA result.

This paper is organized as follows. Section 2 introduces the scattering approach

to the Casimir free energy within the plane-wave basis. The asymptotic expansion

of the reflection coefficients for large radii is developed in Sec. 3. In Sec. 4, the

Casimir free energy is evaluated in the saddle-point approximation (SPA) to obtain

the PFA in the presence of polarization-mixing reflection. The leading-order cor-

rection to PFA is discussed in Sec. 5, where explicit results are given for perfect

electromagnetic conductors at zero temperature. Finally, Sec. 6 explores the origin

of the next-to-leading-order (NTLO) correction to PFA. Concluding remarks are

given in Sec. 7.

2. Scattering Approach in the Plane-Wave Basis

2.1. General expression for the Casimir free energy

When an object is placed into electromagnetic vacuum thereby acting as a scatterer,

it will give rise to a phase shift during the scattering process and, as a consequence,

to a change in the vacuum energy. If instead of a single object two objects are

considered, the Casimir energy is obtained by isolating the distance-dependent part

of the vacuum energy. The object describing the relevant part of the scattering

process in the latter case is the round-trip operator

M = R2T21R1T12 (1)
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containing reflections at the two objects described by the operators R1 and R2 and

translations between the two objects in terms of the operators T21 and T12.

The Casimir energy then reads

E =
~

2π

∫ ∞
0

dωIm log det(1−M(ω)). (2)

This expression is valid not only for the unitary case but also in the presence of

dissipative channels.48 In order to avoid resonances on the real frequency axis, it is

convenient to perform a Wick transformation and to express the Casimir energy in

terms of imaginary frequencies ξ = −iω. Then, (2) becomes

E =
~

2π

∫ ∞
0

dξF(ξ) (3)

with

F(ξ) = log det(1−M(ξ)). (4)

In the following, we will always make use of imaginary frequencies unless stated

otherwise. At finite temperatures, thermal fluctuations of the electromagnetic field

have to be accounted for as well. This can be done within the Matsubara formalism

where the Casimir free energy at temperature T is found as

F =
kBT

2

∞∑
n=−∞

F(|ξn|) (5)

with the Matsubara frequencies ξn = 2πnkBT/~. Making use of the mathematical

identity log det(1−M) = tr log(1−M) we can expand the logarithm and decompose

the free energy into contributions of r round-trips between the two scatterers as

F(ξ) = −
∞∑
r=1

trMr(ξ)

r
. (6)

The evaluation of the trace requires the choice of an appropriate basis. While spher-

ical waves are practical for distances large compared to the diameter of the objects,

plane waves turn out to be more suitable for short distances35 and will be chosen

in the following.

We characterize the plane waves in our basis by its wave vector and polarization.

It is convenient to decompose the wave vector into its projection k onto the plane

perpendicular to the axis connecting the two scattering objects. The wave vector

component κ along the axis is taken imaginary as we did with the frequency ξ so

that the dispersion relation becomes

κ =

(
ξ2

c2
+ k2

)1/2

(7)

with the modulus k of the transverse wave vector k. Since κ is positive, we denote

the sense of propagation by a sign φ = ±.
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Fig. 1. The Fresnel plane (F ) is spanned by the z-axis and the incident wave vector Kin while

the scattering plane (S) is spanned by the incident wave vector and the wave vector Kout of the
reflected wave. The scattering angle is denoted by Θ.

The polarization p of the plane wave is defined with respect to the Fresnel plane

(F ). As shown in Fig. 1, the Fresnel plane is spanned by the axis connecting the

two scattering objects, i.e. the z-axis in the figure, and the incident real wave vector

Kin. We distinguish between transverse magnetic (p = TM) and transverse electric

(p = TE) modes, where the electric field is parallel or perpendicular to the Fresnel

plane, respectively.

An incident plane wave of our basis is denoted in the angular spectral represen-

tation49 as |k, p, φ〉. Here, we omit the imaginary frequency ξ which is conserved

through the complete scattering process. As κ is defined through the dispersion

relation (7), we do not need to include it in our notation. The specification of the

plane wave is completed by the polarization p and the propagation direction indi-

cated by the sign φ = ±.

We are now in a position to explicitly express the trace appearing in the round-

trip expansion (6) of the free energy in terms of the plane-wave basis. The trace

over the rth power of the round-trip operator reads

trMr =
∑

p1,...,p2r

∫
dk1 . . . dk2r

(2π)4r

r∏
j=1

e−κ2jLe−κ2j−1L

×〈k2j+1, p2j+1,−|R2|k2j , p2j ,+〉〈k2j , p2j ,+|R1|k2j−1, p2j−1,−〉, (8)

where cyclic indices 2r+1 ≡ 1 were introduced to account for the trace. The product

in (8) contains exponential factors arising from the translation operators Tij in (1)

which in the plane-wave basis are diagonal and describe the translation over the

distance L between the two scattering objects. The reflection matrix elements will

in general be nondiagonal and depend on the details of the objects scattering the

electromagnetic waves. So far, expression (8) is general. In the following section, we

specialize in spherical objects which will allow us to obtain explicit expressions for

the reflection matrix elements.
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2.2. Reflection matrix elements

The scattering of electromagnetic waves at a sphere can be solved analytically50

and Mie scattering is discussed in various textbooks.51,52 We therefore concentrate

in this section only on aspects relevant for our purposes.

In the spherical-wave basis characterized by the angular momentum eigenvalues

` and m as well as the polarization P = E,M, which can be electric or magnetic,

respectively, the matrix elements of the reflection operator are given by

〈`′,m′, P ′, out|R|`,m, P, reg〉 = rP
′P

` (iξ̃)δ`,`′δm,m′ (9)

with the size parameter

ξ̃ =
ξR

c
. (10)

Here, R is the sphere radius and c denotes the speed of light. We use ‘reg’ to refer

to a spherical wave which is regular at the sphere center while ‘out’ refers to an

outgoing spherical wave.51

Due to the spherical geometry, ` and m are conserved during the scattering

process. While mostly isotropic materials are discussed in the literature, where also

the polarization is conserved, we will allow here for the more general case where

the polarization may change as a result of the scattering at the sphere. Such a

situation is encountered for spheres made of a bi-isotropic material characterized

by the constitutive relations53

D = εE + αH,

B = µH + βE,
(11)

relating the electric displacement D and the magnetic induction B to the electric

field E and the magnetic field H. Among the quantities characterizing the material,

ε and µ are assumed to be scalars while α and β are pseudoscalars. An important

class of materials described by such relations are chiral materials54 where α = −β.

Taking the prefactors to infinity, perfect electromagnetic conductors (PEMC)55

interpolating between perfect electric conductors (ε → ∞) and perfect magnetic

conductors (µ → ∞) are also covered by (11), if one takes α = β. PEMC have

recently been discussed in the context of the Casimir effect.56

As already pointed out above, we want to make use of the plane-wave basis.

The Mie scattering amplitudes Sp′p describe the scattering of a plane wave with

polarization p by the sphere into a plane wave with polarization p′. The scattering

geometry is defined by the in- and outgoing wave vectors spanning the scattering

plane indicated by S in Fig. 1. It is also with respect to this plane that the polar-

ization is defined. The two wave vectors define a scattering angle Θ also shown in

Fig. 1. For the imaginary frequency ξ and wave vector component κ introduced

earlier, the scattering angle is determined through

cos(Θ) = − c
2

ξ2
(kout · kin + κoutκin). (12)
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Explicit expressions for the Mie scattering amplitudes have been derived in Ref. 57.

With our notation for the reflection matrix elements (9), they are given by

STE,TE(Θ) = −
∞∑
`=1

2`+ 1

`(`+ 1)
(τ`r

MM
` + π`r

EE
` ), (13)

STM,TM(Θ) = −
∞∑
`=1

2`+ 1

`(`+ 1)
(τ`r

EE
` + π`r

MM
` ), (14)

STM,TE(Θ) = i

∞∑
`=1

2`+ 1

`(`+ 1)
(τ`r

EM
` + π`r

ME
` ), (15)

STE,TM(Θ) = −i
∞∑
`=1

2`+ 1

`(`+ 1)
(τ`r

ME
` + π`r

EM
` ). (16)

While in the usual case of isotropic spheres only the first two scattering amplitudes

are nonvanishing, we need to account for all four of them as we are dealing with

bi-isotropic spheres. The scattering amplitudes not only depend on the reflection

matrix elements (9) but also contain the scattering geometry through the angular

functions52

π` =
P 1
` (cos(Θ))

sin(Θ)
, (17)

τ` =
dP 1

` (cos(Θ))

dΘ
, (18)

where P 1
` are associated Legendre polynomials.58

So far, the scattering plane has been used in the calculations. However, for our

purposes in a two-sphere setup, the Fresnel plane is more convenient. In a last step,

we thus have to transform the results from the scattering plane to the Fresnel plane

indicated as S and F, respectively, in Fig. 1. The matrix elements needed for this

basis change can be found in Refs. 59 and 60. Finally, one arrives at the reflection

matrix element in the plane-wave basis

〈kj , pj |R|ki, pi〉

=
2πc

ξκj
[ASpjpi + (−1)pj+piBSp̄j p̄i − (−1)pjCSp̄jpi + (−1)piDSpj p̄i ], (19)

where the polarization of the in- and outgoing plane waves is defined with respect

to the Fresnel plane and the transverse wave vector is taken with respect to the

axis connecting the two spheres. In the exponents, p takes the values 1 and 2 for

polarizations TE and TM, respectively, and the bar over a polarization refers to the

other polarization, i.e. p̄ = TM if p = TE and vice versa. The coefficients A,B,C

and D are functions of the three-dimensional wave vectors, e.g. A = A(Kj ,Ki).

Since we will not need the complete expression of these coefficients in the following,

we refer the reader interested in more details to Ref. 35 and in particular to App. A

of that paper for explicit expressions for the coefficients A,B,C and D.
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3. Scattering at Large Spheres

The PFA can be obtained as leading-order term in an asymptotic expansion for

large sphere radii R1 and R2 and corrections are given by higher-order terms. An

important ingredient is the reflection matrix elements for a sphere which we will

expand in this section for large radii R. For real frequencies, the leading-order

term of the reflection matrix elements corresponds to the geometrical optics limit

which was extensively discussed e.g. in Refs. 51 and 61–63. In order to evaluate

corrections to the PFA, we will also need to consider at least the leading correction

to the reflection matrix elements which gives rise to diffractive corrections. As

a consequence, while the PFA result can be obtained within geometrical optics,

corrections to PFA will contain contributions from geometrical optics as well as

from diffraction.

When expanding the reflection matrix elements, we will need to assume that

the radius R is large compared to other length scales of the problem, which in our

case is the wave number ξ/c. While for nonzero values of ξ it is sufficient to take the

limit of a large size parameter (10), we have to consider the case ξ = 0 separately.

3.1. Reflection coefficients for finite frequencies

In the expansion of the scattering amplitudes (13)–(16) appearing in (19) for large

sphere radius, the localization principle51 plays an important role. According to this

principle, the scattering of a ray with an impact parameter b is dominated by angu-

lar momenta of the order of ξb/c. Applying Debye’s expansion58 to the reflection

coefficients rP
′P

` defined through (9), the asymptotic expansion in the multipole

basis is already completed. The resulting expressions for the Mie coefficients in the

isotropic case have been used e.g. in Ref. 44 to obtain the leading correction to the

PFA in the plane-sphere geometry.

Within the plane-wave basis, we need to go one step further and evaluate the sum

over the angular momenta in (13)–(16). Since the procedure for real frequencies is

well known from textbooks and can be carried over to imaginary frequencies without

any difficulties, we will restrict ourselves to outlining the main ideas. In view of the

localization principle, we need to account for angular momenta λ = ` + 1/2 . ξ̃.

Since the size parameter ξ̃ defined in (10) for a fixed frequency ξ becomes large for

large radius R, we can approximate the sums in (13)–(16) by integrals over λ. In

addition, an asymptotic expansion of the angular functions (17) and (18) for large

orders ` is used. Then, the dominant contribution to the integral can be obtained

by means of the SPA with the saddle point given by

λsp = iξ̃ cos

(
Θ

2

)
. (20)

For real frequencies, the saddle point corresponds to a ray hitting the sphere with

an impact parameter b = λspc/iξ = R cos(Θ/2) as depicted in Fig. 2, where Θ is

the scattering angle.
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Fig. 2. Scattering geometry at a sphere of radius R for a scattering angle Θ (cf. Fig. 1). The

corresponding impact parameter b in ray optics is given by R cos(Θ/2).

After proceeding as for real frequencies,63 one finds for the scattering amplitudes

for imaginary frequencies

Sp′p(Θ) =
ξ̃

2
e2ξ̃ sin(Θ/2)r̃p′p(Θ) (21)

with

r̃p′p(Θ) = rp′p

(
π −Θ

2

)[
1 +

sp′p

ξ̃
+O

(
ξ̃−2
)]
. (22)

The exponential term in (21) accounts for the difference in path lengths between a

ray reflected at the sphere surface and a ray going to the sphere origin and being

deflected there by the scattering angle Θ as depicted in Fig. 2. The latter ray is

relevant for us because the origin of the sphere was chosen as origin of the reference

frame for the plane-wave basis.

In (22), rp′p are the reflection coefficients at a plane evaluated at an angle of

incidence (π−Θ)/2 corresponding to a scattering angle Θ as can be seen from Fig. 2.

The leading-order term for large radii then does not depend on the curvature of the

sphere. In the absence of polarization mixing, the reflection coefficients correspond

to the well-known Fresnel reflection coefficients.52 For bi-isotropic materials, the

reflection coefficients can be found in Ref. 64. The leading corrections are given by

sp′p and an explicit expression has been determined in Refs. 63 and 65 for isotropic

materials. However, the expressions given in the two references do not agree and are

also inconsistent with numerical results. Therefore, for reference, we give the explicit

expressions derived in Ref. 29 which were checked against the numerical results.

Introducing the abbreviations s ≡ sin(Θ/2) and c ≡ cos(Θ/2), the corrections for

a dielectric nonmagnetic material with index of refraction n = ε1/2 read

sTE,TE =
1− 2s2

2s3
+

1

s

1

c2 + s(n2 − c2)1/2
− 2n2 − c2

2(n2 − c2)3/2
, (23)

sTM,TM = − 1

2s3
+

1

s

1

c2 − s(n2 − c2)1/2
− c2

s3

2n4s2 − n2c2(1 + s2 − s4) + c6

(n2 − c2)(n2s2 − c2)2

+
n2

2(n2 − c2)3/2

2n4 − n2c2(1 + c2)− c4

(n2s2 − c2)2
. (24)
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For perfect reflectors, which we will always assume to be made of a perfectly electric

conductor, n → ∞ and all terms except for the first one in each case vanish and

the results agree with Refs. 63 and 65 in that limit.

As a definite example where polarization mixing occurs during a reflection,

we consider a sphere made of a perfect electromagnetic conductor (PEMC),66 a

model introduced above. PEMC are characterized by an angle θ (not to be confused

with the scattering angle Θ) which describes the transition from a perfect electric

conductor with θ = 0 to a perfect magnetic conductor with θ = π/2. The reflection

coefficients including the first correction in 1/ξ̃ are given by

r̃TE,TE = − cos(2θ)− 1

ξ̃

(
1− 2s2

2s3
cos(2θ) +

c2

s3
sin2(θ)

)
+O(ξ̃−2), (25)

r̃TM,TM = cos(2θ) +
1

ξ̃

(
1− 2s2

2s3
cos(2θ)− c2

s3
cos2(θ)

)
+O(ξ̃−2), (26)

r̃TE,TM = r̃TM,TE = − sin(2θ) +
1

ξ̃

1

2s
sin(2θ) +O(ξ̃−2), (27)

where the leading term corresponds to the reflection at a plane PEMC surface.56

With the expansion of the scattering amplitude for large radii (21), the reflection

matrix elements (19) appearing in the trace over the rth power of the round-trip

operator (8) are given by

〈kj , pj ,±|R|ki, pi,∓〉 =
πR

κj
e2ξ̃ sin(Θ/2)ρpjpi , (28)

where

ρpjpi = Ar̃pjpi + (−1)pj+piBr̃p̄j p̄i − (−1)pjCr̃p̄jpi + (−1)piDr̃pj p̄i . (29)

For the discussion in Sec. 4 it will be relevant that in view of the definition of

the size parameter (10), the factorization in the expression (28) for the reflection

matrix element separates an exponential dependence on the sphere radius from a

nonexponential dependence via the factors ρpjpi .

3.2. Reflection coefficients at zero frequency

The previous section assumed a size parameter ξ̃ � 1 which at room temperature

is fulfilled for all nonvanishing Matsubara frequencies provided that R � 1.2µm.

However, for the zero Matsubara frequency ξ0 this condition for the size parameter

cannot be fulfilled so that this case needs to be considered separately. In contrast to

the previous subsection, the reflections coefficients and the angular functions need

to be evaluated in the low-frequency limit.

Details of the zero-frequency case are given in App. B of Ref. 35, so that again

we only highlight a few important points. According to (12), the cosine of the scat-

tering angle Θ diverges like ξ−2 in the low-frequency limit. As a consequence, the

angular functions (17) and (18) diverge as well. One finds that τ`∼ξ−2` diverges
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more strongly than π` so that the latter angular function can be disregarded. On

the other hand, the reflection coefficients vanish for ξ → 0 with the explicit scaling

depending on the response functions of the sphere and the surrounding medium.

Reflection coefficients in the multipole basis are found to lead to a relevant con-

tribution if they scale like ξ2`+1 for angular momentum `. Then, the scattering

amplitudes are proportional to ξ for small frequencies as is the case in the finite-

frequency result (21).

For small frequencies, the scattering amplitudes can be expressed as

Sp′p = ξ̃

∞∑
`=1

Xp′p(`)
[−2ξ̃2 cos(Θ)]`

(2`)!
(30)

with Xp′p(`) depending on the materials considered. In Ref. 35 expressions for

dielectrics in vacuum as well as for perfect electric conductors are given. The zero-

frequency result for another situation involving two dielectric spheres in an elec-

trolyte is discussed in another article in the present volume.31

For the special case of a PEMC sphere, the model parameters Xp′p(`) are given

by

XTE,TE(`) = sin2(θ)APEC
` + cos2(θ)BPEC

` , (31)

XTM,TM(`) = cos2(θ)APEC
` + sin2(θ)BPEC

` , (32)

XTE,TM(`) = XTM,TE(`) = −1

2
sin(2θ)[APEC

` − BPEC
` ], (33)

where

APEC
` = 1, BPEC

` = − `

`+ 1
(34)

correspond to the model parameters of the TM and TE modes, respectively, for a

perfect electric conductor (PEC).

As mentioned above cos(Θ)∼ξ−2, so that the numerator in (30) is large for

large spheres and the main contribution again comes from large angular momenta

`. Replacing the factorial by Stirling’s approximation and applying the SPA one

finds a saddle point at

`sp = ξ̃ sin(Θ/2). (35)

At zero frequency, the transformation from the scattering plane to the Fresnel

plane does not lead to a polarization change so that the coefficients in (19) become

A = 1 and B = C = D = 0. Therefore, the reflection matrix elements at zero

frequency are given by (28) if we replace ρpjpi by Xpjpi(`sp).

For dielectrics and perfect electric conductors it was shown in Ref. 29 that

the leading order of Xpjpi(`sp) agrees with the reflection coefficients rpjpi in (22).

This equivalence can be generalized to bi-isotropic spheres provided the material

parameters given in (11) are finite67 and it can be seen to hold also for the special

case of PEMC spheres with the model parameters given by (31)–(33).
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While the leading order of the reflection matrix elements (19) for finite and

zero frequency coincide, this is not true for the leading corrections. Here, the full

expression of Xpjpi(`sp) needs to be taken into account. Thus, the PFA result

derived in Sec. 4 holds for arbitrary temperature. On the other hand, we limit our

discussion of the leading corrections to PFA in Secs. 5 and 6 to the case of zero

temperature while the treatment of finite temperatures is beyond the scope of this

paper.

4. Proximity-Force Approximation in the Presence

of Polarization Mixing

Based on the large-sphere approximation of the reflection matrix elements (28), the

trace (8) over a power of round-trip operators can be evaluated within the SPA.

As discussed in detail in Ref. 35 for dielectric spheres, the lowest order of the SPA

leads to the PFA of the Casimir interaction. Here, we will generalize this result by

allowing for polarization mixing during the reflection at both spheres. We review

the main steps of Ref. 35 and go into more detail where the effects of polarization

mixing become relevant. In Sec. 5, we will then address the leading corrections which

arise from higher-order terms of the SPA as well as the first correction appearing

in the reflection coefficients (22).

For the SPA, we need to factor the integrand in (8) into a term depending

exponentially on the sphere radii and a remaining term as

trMr ≈
(
R1R2

16π2

)r ∫
d2rkg(k1, . . . ,k2r)e

−f(k1,...,k2r). (36)

The function in the exponent is given by

f(k1, . . . ,k2r) =

r∑
j=1

(R1η2j +R2η2j−1), (37)

where R1 and R2 are the radii of the two spheres and

ηi = κi + κi+1 −
[
2

(
ξ2

c2
+ κiκi+1 + ki · ki+1

)]1/2

. (38)

The first two terms in ηi arise from the translation operators, specifically from

the parts of the translation within the spheres, while the last term arises from the

exponential term in the reflection matrix element (28) corresponding to the phase

acquired upon scattering at the sphere as discussed in connection with Fig. 2. The

function g collects the remaining terms and is given by

g(k1, . . . ,k2r) =
∑

p1,...,p2r

r∏
j=1

e−(κ2j+κ2j−1)L

κ2jκ2j−1
ρ(1)
p2j+1p2jρ

(2)
p2jp2j−1

. (39)

Here, the remaining part of the contribution of the translation operator accounts

for the closest surface-to-surface distance L which is assumed to be much smaller

than the sphere radii R1 and R2.
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We will first calculate the leading-order saddle-point approximation (LO-SPA)

of the integral (36) for the general case of bi-isotropic spheres. Explicit expressions

are given at the end of this subsection for PEMC spheres.

The gradient of the function f defined in (37) vanishes for

k1 = · · · = k2r ≡ ksp, (40)

thus leading to a two-dimensional manifold of saddle points (sp) over which one

needs to integrate over. The physical implications of these saddle points will be

discussed below.

The Hessian matrix H governing the deviations from the saddle-point manifold

has block-diagonal form, if ordered according to the x- and y-component of the

transverse wave vector. The elements of each block, evaluated on the saddle-point

manifold, are given by blocks of 2r-dimensional circulant matrices

(Hα,α)ij =
∂2f

∂ki,α∂kj,α sp

=
1

2κsp
[(R1 +R2)δi,j −R2−(i+1) mod2δ̄i+1,j −R2−imod2δ̄i,j+1], (41)

with α = x, y and δ̄ denoting a Kronecker delta symbol where the equality of indices

is taken modulo 2r.

Carrying out the SPA, one finds

[trMr]LO-SPA = 2r

(
R1R2

4

)r ∫
dksp

2π

e−fsp√
pdet(H)

gsp, (42)

where fsp and gsp are given by (37) and (39), respectively, evaluated at the saddle

point (sp). In this result, an integration over the saddle-point manifold remains.

The integration over the remaining space of sequences of transversal wave vectors

was evaluated in Gaussian approximation. Instead of the usual determinant of the

Hessian matrix, we here obtain its pseudo-determinant pdet(H) which discards the

zero eigenvalues associated with the existence of a saddle-point manifold.

Before we continue with the evaluation of the leading SPA, we want to give

an interpretation of the saddle point in terms of geometrical optics. According to

(40), the transverse wave vector is conserved at the saddle point, which means that

the main contribution to the Casimir free energy comes from the reflection at a

plane perpendicular to the axis connecting the two sphere centers. Such planes are

tangential to the spheres at the points of closest distance between the spherical

surfaces. Moreover, with the transverse wave vector conserved, the scattering plane

and the Fresnel plane coincide. As a consequence, the coefficients in (19) reflecting

the change of the polarization basis simplify to A = 1, B = C = D = 0 at the

saddle-point manifold.

From (37), (38), and the conservation of the transverse wave vector (40), one

finds fsp = 0. Making use of the result for the pseudo-determinant derived in

2241009-13



Ref. 35, one finds for the LO-SPA (42)

[trMr]LO-SPA =
Reff

4πr

∫
dksp

κsp
κ2r

spgsp (43)

with the effective radius

Reff =
R1R2

R1 +R2
(44)

and

gsp =
e−2rκspL

κ2r
sp

∑
p1,...,p2r

r∏
j=1

r̃(1)
p2j+1p2j r̃

(2)
p2jp2j−1

. (45)

The function g at the saddle point can easily be calculated for dielectric spheres29

because the polarization is conserved. For bi-isotropic spheres, it is more convenient

to first sum over all round-trips r and then to evaluate the sum over the polarizations

as we will demonstrate now. This approach has already been used successfully to

determine the exact high-temperature limit of the Casimir free energy for two Drude

spheres of arbitrary size.38

To obtain the well-known PFA expression for the Casimir force, we need to take

the negative derivative of the Casimir free energy with respect to the surface-to-

surface distance L. With (6) and (43) the contribution to the Casimir force from

an imaginary frequency ξ reads

FLO-SPA(ξ) = −∂FLO-SPA(ξ)

∂L
= −2πReff

∫
dksp

(2π)2
P(ksp), (46)

where we introduced

P(ksp) =

∞∑
r=1

e−2rκspL

r

∑
p1,...,p2r

r∏
j=1

r̃(1)
p2j+1p2j r̃

(2)
p2jp2j−1

. (47)

While the polarizations at the beginning and the end of r round-trips coincide

because of the trace, P accounts for all possible sequences of polarizations in-

between. In order to account for all polarization sequences, it is convenient to intro-

duce a function hp
′p
r describing the contribution of r round-trips starting with a

mode of polarization p incident on sphere 2 and ending with a mode of polarization

p′ reflected from sphere 1. The sequence of round-trips is closed by a translation

from sphere 1 to sphere 2 where in the plane-wave basis no polarization change can

occur.

We then write (47) as

P =

∞∑
r=1

1

r
(hTM,TM
r + hTE,TE

r ). (48)

The function hp
′p
r can be expressed recursively by decomposing r round-trips into

a single round-trip where the polarization can either change or not, followed by the

remaining r − 1 round-trips

hp
′p
r = ap

′,TMhTM,p
r−1 + ap

′,TEhTE,p
r−1 (49)
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with

ap
′p = hp

′p
1 = (r̃

(1)
p′,TMr̃

(2)
TM,p + r̃

(1)
p′,TEr̃

(2)
TE,p)e

−2κspL. (50)

The sum over round-trips can be conveniently dealt with by introducing a gen-

erating function for hp
′p
r as

Hp′p(t) =

∞∑
r=1

trhp
′p
r , (51)

where the parameter t keeps track of the number of round-trips. From the recursion

relation (49), one can immediately derive a corresponding recursion relation for the

generating function

Hp′p(t) = tap
′p + t(ap

′,TMHTM,p + ap
′,TEHTE,p). (52)

Making use of the generating function, the factor 1/r in (48) can be written as a

definite integral and we obtain

P =

∫ 1

0

dt

t
[HTM,TM(t) +HTE,TE(t)]. (53)

The set of recursion relations (52) can be used to express the main part of the

integrand in terms of single round-trip contributions (49) as

HTM,TM(t) +HTE,TE(t)

= t
aTM,TM + aTE,TE − 2taTM,TMaTE,TE + 2taTM,TEaTE,TM

(1− taTM,TM)(1− taTE,TE)− t2aTM,TEaTE,TM
. (54)

Defining a matrix A through the matrix elements (50), the denominator is given by

the determinant of I − tA while the numerator is given by its negative derivative

with respect to t. Therefore, it is straightforward to carry out the integral in (53)

and we arrive at

P = −log det(I− A). (55)

As in this section, we are interested only in the leading term for large sphere

radii, it is sufficient to keep the leading-order terms of the reflection coefficients

(22). The matrix A0 with the index indicating the leading order then corresponds

to the round-trip matrix between two planes at a distance L

A0 = R1R2e
−2κspL (56)

with the reflection matrix at a planar surface

Ri =

r(i)
TM,TM r

(i)
TM,TE

r
(i)
TE,TM r

(i)
TE,TE

. (57)

Inserting (55) together with (56) into (46), we obtain the Lifshitz formula

F0(ξ) = 2πReff

∫
dksp

(2π)2
log det(I− R1R2e

−2κspL), (58)
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where the index 0 still indicates that only the leading terms of the scattering ampli-

tudes were taken into account.

By means of an integration over all frequencies or the evaluation of a sum over

Matsubara frequencies in analogy to the expressions (3) and (5) for the Casimir

free energy, we obtain the Casimir force at temperature T between two spheres at

closest surface-to-surface distance L within the PFA

FPFA(L, T ) = 2πReffFPP(L, T ), (59)

where FPP(L, T ) is the Casimir free energy per unit area between two planes at

distance L. As the reflection matrix (57) need not be diagonal, this result is valid

also for bi-isotropic media.

The Casimir free energy can be obtained by integrating the Casimir force with

respect to the distance from L to infinity. This integral can be carried out if the

round-trip matrix (56) is represented in its eigenbasis. We thus find

FPFA(ξ) = −Reff

4π

∫
dksp

κsp
[Li2(λ1) + Li2(λ2)], (60)

where λ1,2 are the eigenvalues of (56) and Lin(λ) is the polylogarithm of order n.58

Here, we consider the special case of two PEMC spheres. Making use of the

leading terms in the reflections coefficients (25)–(27), the eigenvalues of A0 are

given by

λ1/2 = exp(±2iδ) exp(−2κspL), (61)

where we adopted the notation used in Ref. 56 with

δ = θ(2) − θ(1) (62)

taking values between 0 and π/2. The lower bound corresponds to a setup consisting

of two identical spheres while for the upper bound one sphere is perfectly conducting

whereas the other sphere has infinite permeability. More explicit results for PEMC

spheres will be given in Subsec. 5.3 where the case of zero temperature is addressed.

5. Beyond PFA: Leading-Order Corrections

In the previous section, we have made use of two approximations to derive PFA. We

restricted ourselves to the leading term in the reflection coefficients and in addition

evaluated only the leading term of the SPA as is usually done. As a consequence,

corrections arise from two sources and can be attributed different physical meanings.

Taking the first subleading term of the reflection coefficients into account

amounts to going beyond geometrical optics and to allow for diffraction. This con-

tribution will be discussed in Subsec. 5.1.

For the second contribution, we remain within geometrical optics, i.e. we only

keep the leading-order terms of the reflection coefficients, but go one order further in

the SPA as explained in Subsec. 5.2. Then, the tangential plane at which reflection

takes place need no longer be perpendicular to the axis connecting the two spheres.

2241009-16



As discussed at the end of Subsec. 3.2, the reflection matrix elements at zero

frequency can be obtained from the finite-frequency expressions in the limit of very

large spheres. The PFA result given in the previous section thus holds for arbitrary

temperatures. However, this is no longer the case for the leading corrections. Here,

the contribution of the zero-frequency term has to be calculated separately as was

shown in detail in Ref. 37 for a perfectly reflecting sphere and plate. In the following,

we will focus on the correction to the PFA result in the zero-temperature limit

based on the expression (28) for the reflection matrix elements at nonzero imaginary

frequencies.

While the results for the two correction terms derived in Subsecs. 5.1 and 5.2

are rather general, restricting ourselves to PEMC materials and zero temperature

in Subsec. 5.3 will allow us to give explicit results for the leading correction to the

Casimir energy and to discuss its dependence on a material parameter.

5.1. Diffractive corrections to PFA

The corrections from the leading SPA can be obtained by replacing the matrix A

in (55) with

A = A0 +
c

ξ
A1, (63)

where A0 is given by (56) and the matrix A1 takes the leading corrections of the

scattering amplitudes due to diffraction into account. According to (22), the matrix

elements of A1 are given by

ap
′p

1 =
∑

q=TM,TE

r
(1)
p′qr

(2)
qp

s
(1)
p′q

R1
+
s

(2)
qp

R2

)
e−2κspL. (64)

Expanding the logarithm in (55) one finds up to the leading correction

P = − log det(I− A0) +
c

ξ
tr[(I− A0)−1A1]. (65)

With the eigenvalues λ1,2 of the round-trip matrix A0, the trace can be expressed as

tr[(I− A0)−1A1] =
α0 + α1

(1− λ1)(1− λ2)
, (66)

where the expansion coefficients α0,1 are given by

α0 = trA1 = aTM,TM
1 + aTE,TE

1 ,

α1 = −aTM,TM
0 aTE,TE

1 − aTE,TE
0 aTM,TM

1 + aTM,TE
0 aTE,TM

1 + aTE,TM
0 aTM,TE

1 .

(67)

Now, we can obtain the Casimir force including the leading-order correction by

inserting (65) into the expression on the right-hand side of (46). Here, we are inter-

ested in the Casimir free energy and integrate over the surface-to-surface distance
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from L to infinity. The contribution arising from the LO-SPA including the leading

diffractive correction

FLO-SPA(ξ) = FPFA(ξ) + Fdiff(ξ) (68)

then contains the PFA expression (60) as well as the leading diffractive correction

Fdiff(ξ) = −cReff

2πξ

∫
dksp

∫ ∞
L

dl
(α0 + α1e

−2κsp(l−L))e−2κsp(l−L)

(1− λ1e−2κsp(l−L))(1− λ2e−2κsp(l−L))
, (69)

where the exponential factors arise from the length dependence in (56) and (64).

Evaluating the integral over l, one finally arrives at

Fdiff(ξ) =
cReff

4πξ

∫
dksp

κsp

×

{
1

λ1 − λ2

[(
α0 +

α1

λ1

)
log(1− λ1)−

(
α0 +

α1

λ2

)
log(1− λ2)

]}
. (70)

This expression for the Casimir free energy simplifies considerably for PEMC

spheres. Making use of the expressions (25)–(27) for the reflection coefficients, the

expansion coefficients (67) yield α0 = − cos(2δ)α1 with α1 = ξ/cReffκsp and the

diffractive correction (70) is thus given by

Fdiff(ξ) = −1

4

∫
dksp

2πκ2
sp

[log(1− λ1) + log(1− λ2)]. (71)

5.2. Geometrical corrections to PFA

We now turn to the second source of leading corrections where the reflection matrix

elements are still given by the leading term implying the use of geometrical optics

but where we consider the next-to-leading order in the saddle-point approximation

(NTLO-SPA). For the trace over the rth power of the round-trip matrix in the

notation employed in (36) one finds

[trMr]NTLO-SPA =
Reff

4r

∫
dksp

2πκsp
κ2r

sp

[
gijH

ij − fijkglHijHkl −
1

4
gspfijklH

ijHkl

+
1

12
gspfijkflmn(3HijHklHmn + 2HilHjmHkn)

]
. (72)

For more details on the derivation, we refer the reader to App. B of Ref. 37. A lower

index i represents a derivative with respect to ki,α with α = x, y evaluated at the

saddle point. Upper indices specify matrix elements of the inverse Hessian matrix

after the direction of the saddle-point manifold associated with a zero eigenvalue

has been removed (cf. discussion related to (42)). It is implicitly understood that a

sum is taken over equal lower and upper indices.

As diffractive corrections are irrelevant here, only the leading-order term of g

has to be taken into account. It was shown in Ref. 29 that the fourth term in

(72) vanishes due to the symmetry of the function f in (37) with respect to its
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arguments. Furthermore, the second term is found to vanish for dielectric spheres29

and for PEMC spheres.

Restricting ourselves to PEMC materials, the remaining terms yield29

gijH
ij − 1

4
gspfijklH

ijHkl +
1

6
gspfijkflmnH

ilHjmHkn

= −gsp

rLκsp(c2κ2
sp + ξ2) + ξ2

3rc2κ3
spReff

(r2 + 3u− 1), (73)

where gsp depends on the material parameter δ introduced in (62). The parameter

u =
R1R2

(R1 +R2)2
(74)

characterizes the relative sphere radii with values between 0 corresponding to the

plane-sphere geometry and 1/4 corresponding to equal radii.

Inserting (73) into (72) and evaluating the sum of round-trips in (6) as well as

over the polarizations in gsp as explained in Sec. 4 one finds for the geometrical

correction to the contribution of the Casimir free energy at a given imaginary

frequency

Fgeo(ξ) =
1

12

∑
i=1,2

∫
dksp

2πκ2
sp

{
Lκsp

(
1 +

ξ2

c2κ2
sp

)[
λi

1− λi
+ (3u− 1)Li2(λi)

]

+
ξ2

c2κ2
sp

[− log(1− λi) + (3u− 1)Li3(λi)]

}
. (75)

For PEMC spheres, we can now add (60), (71) and (75) to obtain

F(ξ) = FPFA(ξ) + Fdiff(ξ) + Fgeo(ξ). (76)

This result will be the basis for an explicit evaluation of the Casimir energy at zero

temperature for PEMC spheres in the following section.

5.3. PEMC spheres at zero temperature

The Casimir energy is obtained by integrating F(ξ) according to (3). Taking leading

corrections into account, the Casimir energy is usually expressed as

E = EPFA[1 + β1x+ o(x)], (77)

where

x =
L

Reff
(78)

characterizes the dimensionless distance between the spheres and o(x) denotes a

contribution going faster to zero than x. The coefficient

β1 = βdiff + βgeo (79)

accounts for the two contributions discussed in Subsecs. 5.1 and 5.2, respectively.
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The PFA result for two PEMC spheres is obtained by carrying out the integral

in (60) and over the imaginary frequency. The result can be simplified by means of

the Jonquière inversion formula for the sum of the polylogarithms68

Lin[e2πiz] + (−1)nLin[e−2πiz] = − (2πi)n

n!
Bn(z), (80)

where Bn(z) are Bernoulli polynomials. One finally obtains

EPFA = − ~cReff

720πL2
[π4 − 30δ2(π − δ)2], (81)

which is consistent with the Casimir energy for parallel PEMC plates obtained in

Ref. 56.

After evaluation of the integrals in (3), (71) and (75) one obtains with the help

of (80) for the two contributions to the coefficient (79)

βdiff = −15
π2 − 6δ(π − δ)

π4 − 30δ2(π − δ)2
, βgeo =

1

3
− u+

βdiff

3
. (82)

The leading correction for the Casimir energy, i.e. the term in (77) depending on

β1, thus becomes

E1 =
~c

720πL

[
20(π2 − 6δ(π − δ))−

(
1

3
− u
)

(π4 − 30δ2(π − δ)2)

]
. (83)

For δ = 0, we reproduce the known results for two perfect electric conductors

EPEC
PFA = −~cπ3Reff

720L2
, βPEC

1 =
1

3
− 20

π2
− u. (84)

On the other hand, δ = π/2 corresponds to the Boyer setup69 with a perfectly

conducting sphere and one with infinite permeability, for which we obtain

EBoyer
PFA =

7~cπ3Reff

5760L2
, βBoyer

1 =
1

3
− 80

7π2
− u. (85)

These limiting cases for two PEMC spheres are known in Refs. 43 and 46 where

it has been noticed that the first two leading terms can be obtained as sum of the

corresponding terms for two scalar fields. The Casimir energy for two perfect mirrors

equals the sum of the energies for two Dirichlet spheres and for two Neumann

spheres. For the Boyer setup, on the other hand, the Casimir energy is equivalent

to the case where one sphere obeys Dirichlet boundary conditions while the other

one obeys Neumann boundary conditions. In fact, it has been stated in Ref. 43 that

the former case holds for any perfect conductors as long as the interacting objects

are smooth.

Comparing (84) and (85), one notices that the Casimir energy within PFA

changes sign and thus becomes zero at a certain value of δcrit. This behavior has

been discussed in Ref. 56 for parallel PEMC plates and is already known for plates

with pseudo-periodic boundary conditions.70 For a sphere–sphere setup, the Casimir

energy (81) within PFA then will also vanish for δcrit. In contrast, in the first
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Fig. 3. (Color online) Lowest-order correction E1 of the Casimir energy for PEMC spheres char-
acterized by the material parameters θ(1) and θ(2) as function of δ = θ(2) − θ(1). The corrections
are plotted for the sphere–sphere geometry with ratios R1/R2 = 1 (blue), 4 (green) and 10 (yel-

low) as well as for the limiting case of the plane-sphere geometry where R1/R2 = ∞ (red). The

direction of increasing ratios is marked by two arrows. The PFA result vanishes for δcrit, making
the correction E1 the leading-order term of the Casimir energy.

correction (83) only the second term in the square brackets vanishes at δcrit while

the first term yields a nonvanishing result.

The dependence of the leading correction E1 to the Casimir energy is displayed

in Fig. 3 as a function of δ and for various values of R1/R2 including the case of

the plane-sphere geometry. At δcrit, the leading-order correction becomes actually

the leading contribution and around this critical value, it can dominate the Casimir

energy even for rather small distances between the spheres. Figure 3 also shows a

relatively weak dependence on the ratio of sphere radii. This dependence vanishes

at δcrit because the first term in (83) does not depend on u.

6. Next-to-Leading-Order Corrections for Perfectly Reflecting

Spheres at Zero Temperature

Finally, we will explore corrections beyond the leading ones discussed in the two

previous sections. For simplicity, we will restrict ourselves to two perfectly reflect-

ing spheres, i.e. spheres consisting of perfect electric conductors, at zero tempera-

ture. Anticipating the numerical results shown in Fig. 4, we write the asymptotic

expansion of the Casimir energy as

E = EPFA[1 + β1x+ β3/2x
3/2 + · · · ] (86)

with the aspect ratio defined in (78) and the PFA result for perfect electric con-

ductors given in (84). As was found for βgeo in (82), the coefficient β3/2 may in

general depend on the ratio of the sphere radii through the dimensionless quantity

u defined in (74).
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Fig. 4. Numerical results for the correction to the Casimir energy beyond the linear term are
shown for perfectly reflecting spheres of equal radii (open squares) and a plane-sphere setup (filled
circles) at separation L in vacuum at zero temperature. The solid line, representing 2.65x3/2,

corresponds to a numerical fit on the plane-sphere results obtained in Ref. 71.

In Fig. 4, numerical results for the correction beyond the linear term are shown

for two spheres of equal radii (open squares) and a plane-sphere setup (filled circles).

Results for spheres with different radii have been found to lie between these two

data sets. The solid line represents the function 2.65x3/2 obtained by a numerical fit

to the plane-sphere results at x ≤ 10−3.71 The data for the sphere–sphere geometry

appear to approach the same asymptotic behavior for the NTLO correction. With

increasing aspect ratio x, the data tend to deviate from the fit because of higher-

order corrections.

On the basis of our considerations in previous sections, one might have expected

that already the NTLO correction should be proportional to x2. The NTLO cor-

rection to the SPA would give rise to such a term as would the NTLO correction of

the Mie scattering amplitudes STE,TE and STM,TM for perfect reflectors (cf. Fig. 7.5

on p. 99 in Ref. 29). However, this expectation is clearly refuted by the numerical

results. Our aim in the remainder of this section is thus to understand the origin

of a correction proportional to x3/2. We will refrain from trying to obtain the pref-

actor analytically which would require the push the evaluation of the SPA even

one order further than we did in Subsec. 5.2. Instead, we will show that already an

appropriate evaluation of diffractive corrections will yield the observed power law.

Proceeding as in Sec. 4, one would encounter a logarithmic divergence in the

round-trip sum. Instead we follow a strategy similar to the one employed in Ref. 37

where the corrections to PFA were calculated in an intermediate temperature

regime. For perfectly reflecting spheres, only the polarization preserving scattering

amplitudes (21) are nonvanishing and the diffractive correction spp is given by the

first term in (23) and (24) for p = TE,TM, respectively. The key ingredient for the

calculation of the NTLO correction consists now in replacing 1+spp/ξ̃ by exp(spp/ξ̃)

in (22) which is correct up to order ξ̃−1. Note that the leading corrections spp of the
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scattering amplitudes take on negative values, thus ensuring later the convergence

of the round-trip sum.

This exponential replacement implies that diffractive corrections are taken into

account for an arbitrary number of reflections during the round-trips. In contrast, in

Subsec. 5.1 a diffractive correction was taken into account only at one of the reflec-

tions during the series of round-trips. Mathematically, the exponential replacement

amounts to a resummation of higher-order diffractive corrections.

Applying the exponential replacement in (43), we can express the LO-SPA as

[trMr]LO-SPA =
Reff

2r

∑
p

∫ ∞
0

dksp
ksp

κsp
exp

[
−r
(

2κspL−
c

ξReff
spp

)]
, (87)

where it is implicitly understood that the functions spp have been evaluated on the

saddle-point manifold (40).

An expression for the Casimir energy can now be obtained from (87) together

with (3) and (6). It is convenient to introduce a new integration variable t = ξ/cκsp

to obtain

ELO-SPA = −~cReff

4π

∑
p

∫ 1

0

dt

∞∑
r=1

1

r2

×
∫ ∞

0

dκsp κsp exp

[
−2r

(
κspL+

1

κspReff
σp

)]
, (88)

where

σTE ≡ −
cκ

2ξ
sTE,TE

sp

=
2− t2

4
,

σTM ≡ −
cκ

2ξ
sTM,TM

sp

=
t2

4

(89)

are positive in the range of integration. The integration over κsp can now be carried

out yielding essentially a modified Bessel function of the second kind K2(4r
√
σpx).72

We now need to find an asymptotic expansion for x� 1. Indeed an asymptotic

expansion of the sum over round-trips containing the modified Bessel function can

be worked out using a method from Ref. 73. We find

∞∑
r=1

K2(4r
√
z)

r2
∼ π4

720z
− π2

12
+

2π
√
z

3
+O(z log(z)) (90)

for z � 1. Evaluating finally the integral over t, the Casimir energy in lowest order

of the SPA, but including diffractive corrections yields

ELO-SPA = −~cπ3Reff

720L2

[
1− 15

π2
x+

15(10 + 3π)

4π3
x3/2 + · · ·

]
. (91)

As expected, this result reproduces the PFA result (84) and the leading-order cor-

rection due to diffraction as given by βdiff in (82) for δ = 0. The NTLO correction
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is indeed found to go with the power 3/2 of the aspect ratio x but the prefac-

tor accounts only for about 89% of the numerical result. This discrepancy can be

explained by the fact that the NTLO-SPA and NNTLO-SPA contributions have

been neglected in the calculation. Since the diffractive correction is independent

of u, only a small contribution from other corrections can depend on u, thus

explaining the weak dependence of β3/2 on u found in the numerical results. More-

over, analyzing the contributions of the individual polarizations, one finds that

the main contribution comes from TE polarization with about 90% of the full

correction.

Finally, we note that our calculation can be straightforwardly extended to real

dielectric materials, implying that the appearance of the x3/2 term in the asymptotic

expansion should not be restricted to perfectly reflecting spheres. Numerical results

for the plane-sphere geometry indeed show that within the Drude or the plasma

model describing the metallic objects, a x3/2-term does occur.71

7. Conclusions

Plane waves can constitute a basis well suited for the study of the Casimir effect as

we have shown here by reviewing recent work in this direction. They turn out to

be useful for numerical as well as analytical work, in particular when the distance

between the involved objects is small as is the case in most experiments. As we

demonstrated, plane waves lend themselves particularly well for an interpretation

in terms of geometrical optics and diffractive corrections.

For a setup consisting of two spheres with an arbitrary ratio of radii in vacuum,

we have demonstrated that the PFA can be obtained as the leading term in an

asymptotic expansion for large radii. A previous calculation based on the SPA of

the trace over a given number of round-trips of electromagnetic waves between the

spheres was extended to spheres made of bi-isotropic material where one needs

to account for polarization mixing during the reflection processes. The result was

shown to be naturally explained in terms of geometrical optics.

The framework provided by the SPA allowed us to derive leading-order cor-

rections, both of geometrical and diffractive origin. Explicit results were given for

the first time for PEMC spheres at zero temperature. It turned out that for a

suitable choice of material parameters, the contribution of the PFA vanishes and

the leading-order correction actually becomes the dominant term in the Casimir

energy.

Finally, numerical results for two perfectly reflecting spheres at small values of

x = L/Reff motivated us to go one order further. We found that the NTLO correc-

tion to PFA goes as x3/2 rather than x2. We discussed its origin as a resummation

of higher-order diffractive corrections. The x3/2 term implies that the estimation

of the total correction to PFA based on the linear order alone is of limited inter-

est for practical purposes, particularly in situations where beyond-PFA results are

required.
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It can be expected that the usefulness of the plane-wave basis is not limited

to spherical objects but that this basis has potential for a study of the Casimir

interaction between a much wider class of systems.
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