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We study universal Casimir interactions in two configurations which appear as dual to
each other. The first involves spheres described by the Drude model and separated by

vacuum while the second involves dielectric spheres immersed in a salted solution at

distances larger than the Debye screening length. In both cases, the long-distance limit,
equivalently the high-temperature limit, is dominated by the effect of low-frequency
transverse magnetic thermal fluctuations. They are independent of the details of dielec-

tric functions of materials, due to the finite conductivity of metals in the former case
and of salted water in the latter one. They also show universality properties in their
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dependence on geometric dimensions in relation to an approximate conformal invariance
of the reduced free energy.

Keywords: Casimir interaction; screening in electrolytes; Drude conductivity.
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1. Introduction

We review recent progress in the understanding of Casimir interactions1–5 between

spheres of arbitrary radii and focus our attention on two physical configurations

which show analogous universality properties with interesting differences however.

The first configuration corresponds to two metallic spheres described by a

Drude conductivity model and separated by vacuum. This case has been shown to

lead to a universal expression in the high-temperature limit or, equivalently, the

large-distance limit, with the interaction not depending on the details of the electro-

magnetic response of the involved material.6,7 The universal thermal Casimir con-

tribution8 dominates the nonuniversal terms at distances larger than the thermal

wavelength λT = ~c/kBT , of the order of 8 µm at room temperature. The weakness

of the Casimir force in this regime makes its experimental detection challenging.9

The second configuration corresponds to two spherical dielectric particles

immersed in a conducting electrolyte solution, at the limit where electrostatic inter-

actions are efficiently screened.10 This case also leads to a universal expression in

the limit of high temperatures, with the free energy not depending on the detailed

dielectric function of the involved material.11 The universal thermal contribution

now dominates the nonuniversal terms at much smaller distances of the order of

0.1 µm (this point will be made more precise in the following). The existence and

magnitude of this universal Casimir interaction has recently been confirmed by mea-

surements12 involving a silica microsphere held by optical tweezers in the vicinity

of a larger sphere, both spheres being immersed in salted water.

The high-temperature Casimir interaction between spheres can be derived

exactly in the two configurations described above by using the scattering

approach.13,14 We present below the expressions obtained in this manner for the

two cases and discuss their analogies as well as their differences. We emphasize the

role played by an approximate conformal invariance which highlights the connec-

tions between the electromagnetic Casimir effect and the critical Casimir effect,15–18

another long-range force appearing when fluctuations are confined within walls.19,20

2. Scattering Formula for Casimir Interaction

We consider the Casimir free energy for a setup consisting of two spheres embedded

in a medium.21–24 The spheres are placed at a center-to-center distance

L = L+R1 +R2 (1)

along the z-axis from each other, where L is the smallest distance between the two

spheres and R1 and R2 their radii. In this section, we present the derivation of the
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high-temperature Casimir free energy, emphasizing the analogies between the two

studied configurations and writing the associated scattering matrix elements.

2.1. High-temperature limit

Within the scattering approach,25 the Casimir free energy at a temperature T is

given as a sum over the imaginary Matsubara frequencies26,27

F =
kBT

2

∞∑
n=−∞

tr log(1−M(|ξn|)), ξn =
2πnkBT

~
. (2)

The round-trip operator

M = R2T21R1T12 (3)

accounts for the scattering process between the two spheres where Rj denotes the

reflection operator for an electromagnetic wave at sphere j = 1, 2 and Tij represents

the translation from the center of sphere j to the center of sphere i.

For the case of Drude spheres in vacuum, the high-temperature limit corre-

sponds to distances L much larger than the thermal wavelength λT . For the case

of dielectric spheres in salted water, the discussion of this limit is more subtle as

it involves details of the dielectric functions to be discussed at a later stage in this

paper. In both cases, we will call high-temperature limit the case where the zero-

frequency term n = 0 is the dominant contribution to the Casimir free energy (2).

The nonzero Matsubara frequencies lead to exponentially small contributions at

the high-temperature limit, due to the propagation factor appearing in translation

operators Tij (more precise discussion below).

In this limit, the Casimir free energy

FT = −kBT f (4)

has a universal form linear in the temperature and independent of the Planck

constant. Here, the reduced free energy f only depends on the geometric parameters

and possibly on the electromagnetic response of the spheres and of the medium.

The Casimir entropy S = kBf is thus temperature independent, pointing towards

the entropic origin of the Casimir free energy FT = −TS.

After expanding the logarithm in Eq. (2) in a Mercator series, we find for the

reduced free energy f

f =

∞∑
r=1

f (r), f (r) =
trMr(0)

2r
, (5)

where the sum over r accounts for the contributions f (r) to the free energy corre-

sponding to r round-trips. As we restrict ourselves to the zero Matsubara frequency

ξ = 0 in the following, we will omit the corresponding argument of the round-trip

operator M from now on.
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For the evaluation of the trace in (5), we adopt the plane-wave basis.28,29 In view

of the geometry of our problem, we decompose the wave vector into a transverse

part k with modulus k and a z-component which after Wick rotation is written in

terms of κ = [εm(ξ/c)2 + k2]1/2. For ξ = 0, this relation simplifies to κ = k. As by

definition k is positive, we also need to specify the direction of propagation along

the positive (+) or negative (−) z-direction. Finally, the polarization p = TM,TE

is taken with respect to the Fresnel plane spanned by the z-axis and the incident

wave vector. For the TM modes, the electric field component lies within the Fresnel

plane. In both configurations studied in this paper, the Casimir free energy is due

to TM modes while the contribution of TE modes vanishes. For ξ → 0, the free

energy contribution of r round-trips (5) is then given by30

f (r) =
1

2r

∫
dk1 . . . dk2r

(2π)4r

r∏
j=1

e−k2jLe−k2j−1L

×〈k2j+1,TM,−|R2|k2j ,TM,+〉〈k2j ,TM,+|R1|k2j−1,TM,−〉. (6)

In order to properly reproduce the trace, the indices are cyclic with k2r+1 = k1.

Without loss of generality, we moreover assumed that sphere 2 is above sphere 1

along the z -direction. The translation operator, which is diagonal in the plane-wave

basis, is thus defined as

〈kj ,TM,+|T21|ki,TM,+〉 = e−kiLδ(kj − ki). (7)

The matrix elements of T12 are the same.

The TM-TM matrix elements of the reflection operators can be expressed in

terms of the Mie scattering amplitudes.31 Following the reasoning explained in

detail in Appendix B of Ref. 30 and adapting it to our specific configurations, we

obtain their expressions in the limit ξ → 0

〈kj ,TM|R|ki,TM〉 =
2πR

kj

∞∑
`=1

A`
χ2`

(2`)!
, (8)

with

A` =
`
(
εs(0)− εm(0)

)
`εs(0) + (`+ 1)εm(0)

(9)

and

χ = 2R
√
kikj cos

(
ϕi − ϕj

2

)
. (10)

The dielectric functions εs and εm describe the nonmagnetic materials constituting

spheres and medium, respectively. χ depends on the sphere radius R, the moduli

of the ingoing and outgoing transverse wave vector ki and kj , as well as the angle

ϕi − ϕj between the two wave vectors. In (8), it is implicitly understood that the

direction of propagation changes its sign upon reflection on each sphere.
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For the two cases of interest here, the model parameter A` is independent of

the details of the material properties. Metals with a finite conductivity can be

described by the Drude model for which the dielectric function εs diverges for ξ → 0

(see Fig. 1, right panel). The parameter A` is thus independent of the details of

the response function for the medium as long as εm remains finite in that limit.

An important example is the case with two Drude spheres separated by vacuum

(DvD model). For dielectrics immersed in a conducting electrolyte (ded model),

the reverse situation occurs with the finite conductivity of the medium leading to

a divergence of εm for ξ → 0 (see Fig. 1, left panel). Again, A` is independent of

material properties of the spheres provided εs remains finite. The parameters for

the two models are summarized in Table 1. The different expressions for A` are

deduced from the ratios εs(0)/εm(0), which are infinite and null, respectively, for

the two models.

2.2. Free-energy contributions for r round-trips for the two models

We now consider the two models listed in Table 1 and depicted in Fig. 1, where

the Casimir interaction becomes universal, i.e. independent of the detailed material

Fig. 1. Schematic representation of the two models studied in this paper, each model considering
two spheres with the same properties immersed in a common medium. The figure on the left

depicts two dielectric spheres with a finite dielectric constant εs(0) in an electrolyte with finite
conductivity so that εm(0) → ∞. For the case shown on the right, two metallic spheres have a
finite conductivity and divergent dielectric function εs(0) → ∞ in the static limit. The medium
dielectric constant, which should be finite, is taken as that for vacuum εm(0) = 1.

Table 1. Parameter A` determining the reflection matrix element

(8) for TM modes for the two models studied in the paper.

Sphere–medium–sphere model A`
εs(0)

εm(0)

Drude–vacuum–Drude (DvD) 1 ∞
Dielectric–electrolyte–dielectric (ded) − `

`+1
0
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properties. General expressions for the round-trip expansion are derived for the two

cases in parallel. The evaluation of the integrals will then be carried out in Sec. 3

and a qualitative discussion of the results presented in Sec. 4.

For both models, only the reflection matrix elements for TM modes contribute

and the corresponding sum (8) can be evaluated analytically. For a Drude sphere

in vacuum, denoted by the superscript Dv, we find

〈kj ,TM|R(Dv)|ki,TM〉 =
2πR

kj
[cosh(χ)− 1], (11)

while for a dielectric sphere in an electrolyte (superscript de), the sum (8) yields

〈kj ,TM|R(de)|ki,TM〉 = −2πR

kj

[
cosh(χ) + 2

cosh(χ)− 1

χ2
− 2

sinh(χ)

χ

]
. (12)

For the evaluation of the integrals in (6), we found it more convenient to employ

the equivalent integral representation

〈kj ,TM|R(de)|ki,TM〉 = −2πR

kj

∫ 1

0

dt[cosh(χ)− 2t cosh(tχ)] (13)

instead of the expression (12) which contains inverse powers of χ. The coupling

of the angles ϕi and ϕj of incident and reflected waves, respectively, through the

cosine in (10) can be avoided by introducing Cartesian coordinates

xi = (kiL)1/2 cos(ϕi/2), yi = (kiL)1/2 sin(ϕi/2). (14)

For two Drude spheres in vacuum, the contribution (6) from r round-trips to

the dimensionless free energy f then becomes

f
(r)
DvD =

1

2r

(
R1R2

π2L2

)r ∫ ∞
−∞

dx

∫ ∞
−∞

dy

r∏
j=1

e−(x2
2j+y22j)e−(x2

2j−1+y22j−1)

× [cosh(χ
(2)
2j )− 1][cosh(χ

(1)
2j−1)− 1], (15)

whereas for two dielectric spheres in an electrolyte, we get

f
(r)
ded =

1

2r

(
R1R2

π2L2

)r ∫ 1

0

dt

∫ ∞
−∞

dx

∫ ∞
−∞

dy

r∏
j=1

e−(x2
2j+y22j)e−(x2

2j−1+y22j−1)

× [cosh(χ
(2)
2j )− 2t2j cosh(t2jχ

(2)
2j )]

× [cosh(χ
(1)
2j−1)− 2t2j−1 cosh(t2j−1χ

(1)
2j−1)]. (16)

The argument (10) of the hyperbolic cosine in Cartesian coordinates is given by

χ
(n)
i =

2Rn
L

(xixi+1 + yiyi+1). (17)

The subscript i denotes the ith reflection during the r round-trips and the super-

script (n) refers to the sphere at which the reflection occurs. The integrals over x,y

and t are of dimension 2r each.
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Expanding the product in both expressions, we find that they have one term in

common which consists of products of all cosh(χ
(n)
j ) factors and given by

f (r)
sc =

1

2r

(
R1R2

π2L2

)r ∫ ∞
−∞

dx

∫ ∞
−∞

dy

r∏
j=1

e−(x2
2j+y22j)e−(x2

2j−1+y22j−1)

× cosh(χ
(2)
2j ) cosh(χ

(1)
2j−1). (18)

This term will be discussed below as the scalar result denoted by a subscript sc.

3. Universal Casimir Interaction and Conformal Invariance

In this section, we present results corresponding to the two studied configurations

and compare them to other known expressions.

3.1. Scalar field with Dirichlet boundary conditions

We begin with the model corresponding to spheres with Dirichlet boundary con-

ditions for a scalar field. The Casimir free energy for this formal model has been

calculated in many publications, for example in Refs. 32 and 33, where the configu-

ration of two exterior spheres was mapped to two concentric spheres by using con-

formal invariance (details given below). Bispherical coordinates were used in Ref. 7

while the spherical- and plane-wave basis were used in Refs. 34 and 29, respectively,

to derive the Casimir free energy in the scalar case.

This scalar model corresponds also to the expression (18), found as a part of

more complete expressions for our two electrodynamical calculations. After expan-

sion of the hyperbolic cosines into exponential functions, this expression is trans-

formed into a sum of Gaussian integrals where the bilinear form in the exponent

can be expressed in terms of symmetric circulant tridiagonal matrices. Such matri-

ces can be given an equivalent meaning in terms of a tight-binding model on a

ring with the diagonal matrix elements corresponding to the local potential on the

lattice sites and the nondiagonal matrix elements describing the hopping between

the sites. Their determinants can be expressed in terms of transfer matrices,35,36

leading to the analytical expression

f (r)
sc =

1

4r

cosh(r$)

sinh2(r$)
, $ = arcosh(y), (19)

where

y =
L2 −R2

1 −R2
2

2R1R2
= 1 +

L

Reff
+
u

2

(
L

Reff

)2

. (20)

Apart from the surface-to-surface distance L, the parameter y depends on the radii

through the effective radius

Reff =
R1R2

R1 +R2
(21)
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and the parameter u measuring the ratio of radii in a symmetric manner

u =
R1R2

(R1 +R2)2
⇔ 1

u
=
R1

R2
+
R2

R1
+ 2. (22)

The parameter u ranges from u = 0 for the plane–sphere geometry to u = 1/4 for

two spheres of equal radii.

The fact that the high-temperature Casimir free energy for a scalar field is a

function of the parameter y alone means that it obeys exact conformal invariance,

a property which makes this problem analogous to the critical Casimir effect.37

The conformal invariance of y which allows one to simplify calculations in a two-

sphere geometry has been known for a long time. Thomson used this property

to calculate the electrostatic capacitance between two spherical conductors.38,39

The dimensionless part of the mutual capacitance C12 is for example written as a

function of $ = arcosh(y) in § 173 of Maxwell’s Treatise40

C12 = −4πε0R1R2

L

∞∑
n=0

sinh($)

sinh((n+ 1)$)
. (23)

The mathematical meaning of this invariance has also been known for a long

time.41–43 The group of conformal transformations in 3D Euclidean space is gen-

erated by isometries and inversion with respect to an arbitrary center. Spheres are

transformed into spheres by this group if one includes planes as particular spheres

with center at infinity. The quantity generalizing the squared Euclidean distance

to this geometry of spheres is L2 − R2
1 − R2

2 with L the distance of their centers

and R1, R2 their radii. Under an arbitrary conformal transformation, this quantity

is simply multiplied by the product λ1λ2 of two conformal factors associated with

each sphere. As these factors can also be understood as the multiplicative factors

appearing in the transformation of the radius of each sphere, it follows that the

quantity y defined in (20) is preserved by the transformations. The case of spheres

intersecting at right angle corresponds to y = 0, which is preserved by an arbitrary

conformal transformation. More generally, y is a generalized angle of intersection

of the two spheres (equal to the imaginary number ı$ for exterior spheres).

For the cases studied in this paper, Drude spheres in vacuum and dielectric

spheres in a conducting electrolyte, the property of conformal invariance will be

met approximately but not exactly. Precisely the reduced free energy will be largely

determined by the invariant quantity y but also affected by the parameter u. For this

reason, it will be denoted fu(y), with the argument y and subscript u occasionally

dropped when their presence is not needed.

3.2. Drude spheres in vacuum and dielectric spheres in electrolyte

In contrast to the scalar case discussed before, we do not have general expressions

for the reduced free energy (15) and (16) for an arbitrary number of round-trips.

In the case of two Drude spheres however, an exact expression is known for the

sum over the contributions of all round-trips.29 The difference with respect to the
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scalar case consists in the absence of the monopolar term associated with ` = 0

in the reflection matrix element (8) giving rise to the extra term −1 in (11). The

bilinear form appearing in the Gaussian integrals in (15) is then no longer given by

a circulant matrix but by block-diagonal matrices. The evaluation of the Gaussian

integrals can be mapped onto a combinatorial problem of finding bicolored integer

partitions as discussed in detail in Ref. 29. In the end, it turns out that the partitions

are related to the elements of the dimensionless capacitance matrix of two spherical

conductors. The free energy for the transverse magnetic modes is then expressed in

terms of the determinant of a dimensionless capacitance matrix44

fDvD = fsc −
1

2
log(det c), (24)

with the latter related to the full capacitance matrix through

C = 4πε0

√
R1R2 c, c =

(
c11 c12

c12 c22

)
. (25)

The dimensionless capacitance matrix coefficients are39,40,45,46

c11 =

∞∑
n=0

√
R1R2 sinh($)

R1 sinh(n$) +R2 sinh((n+ 1)$)
,

c22 =

∞∑
n=0

√
R1R2 sinh($)

R2 sinh(n$) +R1 sinh((n+ 1)$)
,

c12 = −
∞∑
n=0

√
R1R2 sinh($)

L sinh((n+ 1)$)
.

(26)

Reference 29 derives the full expression of the free energy for two Drude spheres of

arbitrary radii within the plane-wave basis, while Ref. 44 obtains a general expres-

sion for the difference between the full free energy of the electromagnetic field and

the scalar field for arbitrary conductors by means of a path-integral approach to

the free energy. Results of Ref. 29 agree with those presented for the plane–sphere

geometry in Ref. 7 and also with those for equally-sized spheres in Ref. 44.

Next, we analyze the reduced free energy for two dielectric spheres in salted

water (16), which can also be written as

f
(r)
ded =

1

2r

(
4R1R2

π2L2

)r ∫ 1

0

dt

2r∏
i=1

ti[δ(ti − 1)− 1]

×
∫ ∞
−∞

dx

∫ ∞
−∞

dy

r∏
j=1

e−(x2
2j+y22j)e−(x2

2j−1+y22j−1)

× cosh(t2jχ
(2)
2j ) cosh(t2j−1χ

(1)
2j−1), (27)

where the terms without a ti-dependence are accounted for by introducing delta

functions. The Gaussian integral can be evaluated as in the cases discussed
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above

f
(r)
ded =

1

4r

(
4R1R2

L2

)r ∑
σ=±1

∫ 1

0

dt

∏2r
i=1 ti[δ(ti − 1)− 1]

det Mσ
r (t)

, (28)

where the 2r-dimensional periodic tridiagonal matrix Mσ
r is given by

Mσ
r (t) =



1 t1R1/L 0 . . . 0 σt2rR2/L
t1R1/L 1 t2R2/L 0

0 t2R2/L 1
. . .

...

...
. . .

. . . 0

0 t2r−1R1/L
σt2rR2/L 0 . . . 0 t2r−1R1/L 1


. (29)

As mentioned earlier, this matrix can be related to a tight-binding model on a ring.

While for the scalar case, the hopping matrix element between adjacent sites varied

periodically between two values, here the hopping matrix elements generically are

nonperiodic. This difference illustrates the difficulty of finding closed analytical

expressions for the reduced free energy fded for a given number of round-trips or

even the sum over all round-trips. In the following section, we will present analytical

results for a single round-trip (cf. Eq. (40)) but resort to numerical results otherwise.

We close this section by showing in Fig. 2 the reduced free energy fu as func-

tion of y− 1 for the DvD and ded models (colored curves) and comparing it to the

reduced free energy for the scalar model (black curve). The latter result is confor-

mally invariant, as it depends on y − 1 but not on u. For the DvD model (upper

Fig. 2. (Color online) Reduced free energy fu as function of the invariant geometric parameter
y − 1, at fixed u. The transition from the plane–sphere geometry to two spheres with equal radii
is shown by u = 0 (red), 0.016 (violet), 0.04 (blue), 0.1 (yellow) and 0.25 (green). The upper

curves correspond to Drude spheres in vacuum (DvD) and the lower ones to dielectric spheres in
an electrolyte (ded). The two cases are compared to the scalar case (sc), where the reduced free
energy is independent of u (black).
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Fig. 3. (Color online) Ratio fu/f1/4 versus y − 1 at fixed u, with the same conventions as in

Fig. 2. The variations of the DvD curves (ratio below 1) and ded curves (ratio above 1) show
opposite behavior. The red curves (u = 0) have asymptotic values at 2/3 and 4/3, respectively.

set of curves) and the ded model (lower set of curves), fu is mainly determined by

y − 1 while it also depends on the value of u. This variation is shown by the col-

ors from the plane–sphere geometry, u = 0 shown as red curve, to 0.016 (violet),

0.04 (blue), 0.1 (yellow) and finally u = 0.25 (green). This variation remains in a

rather thin band between the red and the green curve, indicating that while the

DvD and ded models are not exactly conformally invariant, the dependence on u is

weak and visible mainly when the distance between spheres becomes large, i.e. for

large values of y.

We note that while the reduced free energy exhibits the same power law at

y → 1 for all models, this is no longer the case for large y, where the reduced free

energy drops much faster for the electromagnetic cases than for the scalar case.

Furthermore, the DvD and ded models have different variations, as is highlighted

by drawing in Fig. 3 the ratio fu/f1/4 versus y − 1 at fixed u. For the DvD and

ded models, respectively, this ratio is always below and above unity. It tends to

unity at both limits of low or high values of y− 1, except for the (red) curve u = 0

corresponding to the plane–sphere configuration at large distances. These results

will be given a simple qualitative interpretation in the following sections.

4. Limiting Cases and Approximate Result for Arbitrary Distances

In this section, we present new analytical and numerical results which allow one to

better understand the analogies and the differences of the two configurations.

4.1. Single round-trip contribution

While no explicit expression is known for an arbitrary fixed number r of round-

trips, we have been able to obtain analytical expressions (15) and (16) for the DvD

and ded cases, respectively, for the case of a single round-trip r = 1. These results
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will be useful in the large-distance limit where this contribution is dominant but

they will also lead to a good approximation at arbitrary distances between the

spheres.

As already mentioned previously, the free energies for the DvD and ded models

contain a contribution corresponding to a scalar field satisfying Dirichlet boundary

conditions. From (19), we obtain for the scalar contribution of a single round-trip

f (1)
sc =

y

4(y2 − 1)
. (30)

This result is significant insofar as it represents the diverging contribution to the

free energies of the DvD and ded models in the small-distance limit y → 1. For later

purposes, it is useful to note that for the scalar case, the contributions of arbitrary

round-trips diverge for small distances. From (19), one finds f
(r)
sc = f

(1)
sc /r3 for y

close to 1 or, equivalently, $ close to 0.

We can then express the single round-trip contribution to the reduced free energy

of two Drude spheres in vacuum as

f
(1)
DvD = f (1)

sc +
R1R2

2π2L2

∫ ∞
−∞

dx

∫ ∞
−∞

dye−(x2
2+y22)e−(x2

1+y21)

× [1− cosh(χ
(1)
1 )− cosh(χ

(2)
2 )], (31)

with χ
(n)
i defined in (17). As in the scalar case, an expansion of the hyperbolic

cosines in (31) into exponentials leads to Gaussian-type integrals which can easily be

evaluated. The Gaussian integrals yield expressions depending on the dimensionless

radii R/L. In view of our discussion of conformal invariance however, it is more

convenient to express the results in terms of the parameter y in Eq. (20). We thus

introduce new notations representing the ratios of the two radii

α1,2 =
R1,2

R2,1
=

1− 2u±
√

1− 4u

2u
, α1α2 = 1, (32)

with α1 corresponding to the sign + in (32) if R1 > R2, and to the sign − otherwise.

These relations may also be expressed in terms of the geometric parameter u defined

in (22) and

z = 2y + α1 + α2 = 2(y − 1) +
1

u
=
L2

R1R2
. (33)

We then find for the single round-trip contribution to the reduced free energy

within the DvD model

f
(1)
DvD = f (1)

sc +
1

2z
− 1

2

∑
n=1,2

1

2y + αn
. (34)

This expression is simplified for two equal-sized spheres (u = 0.25)

f
(1)
DvD,u=0.25 =

3

4(2y + 1)(y2 − 1)
, (35)
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and for the plane–sphere geometry u = 0

f
(1)
DvD,u=0 =

1

4y(y2 − 1)
. (36)

We then consider the single round-trip expression for two dielectric spheres in

an electrolyte. For r = 1, the matrix (29) takes the simple form

Mσ
1 (t) =

 1
1

L
(t1R1 + σt2R2)

1

L
(t1R1 + σt2R2) 1

, (37)

and its determinant is obtained in terms of the quantities defined in (32) and (33)

det Mσ
1 (t) = 1− 1

z
(
√
α1t1 + σ

√
α2t2)2. (38)

The reduced free energy (16) for a single round-trip can thus be expressed as

f
(1)
ded = f (1)

sc +
∑
σ=±1

∫ 1

0

dt
t1t2

z −
(√
α1t1 + σ

√
α2t2

)2 [1− δ(t1 − 1)− δ(t2 − 1)],

(39)

where we again isolated the result (30) for a scalar field. Evaluation of the integrals

over t1 and t2 finally yields

f
(1)
ded = f (1)

sc +
z

12
log

[
z2(y2 − 1)

(yz + 1/2)2

]

+
1

12
√
z

∑
n=1,2

1

α
3/2
n

log

[
2y2 + αny − 1 +

√
αnz

2y2 + αny − 1−√αnz

]
. (40)

This expression is read for two spheres with the same radius (u = 0, 25)

f
(1)
ded,u=0.25 =

y

4(y2 − 1)
+
y + 1

6
log

[
(y2 − 1)(y + 1)2

(y + 1/2)4

]

+
1

6
√

2(y + 1)
log

[
2y − 1 +

√
2/
√
y + 1

2y − 1−
√

2/
√
y + 1

]
, (41)

while it gets a simpler form for the special plane–sphere geometry (u = 0)

f
(1)
ded,u=0 =

y

4

[
1

y2 − 1
+ log

(
y2 − 1

y2

)]
. (42)

Figure 4 displays the dependence of the single round-trip contribution to the

reduced free energy, as a function of y − 1 for different values of u. The upper

and lower curves represent the results for the DvD and ded models, respectively.

In each case, the red, violet, blue, yellow and green curves correspond to u =

0, 0.016, 0.04, 0.1 and 0.25. The scalar result, not depending on u, is shown as the

black curve. One sees that all curves tend to be the same in the small-distance limit
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Fig. 4. Single round-trip contribution f
(1)
u to the reduced free energy versus y−1, with the same

conventions as in Fig. 2. The upper curves correspond to Drude spheres in vacuum (Eq. (34)) and
the lower ones to dielectric spheres in an electrolyte (Eq. (40)). The two cases are compared to

the scalar case (Eq. (30)), where the result is independent of u (black).

y → 1, which means that they have the same divergence there. At large distances in

contrast, the curves show different behaviors which will be discussed below by using

the results of a multipolar expansion. We may also note at this point that the single

round-trip contributions dominate the full expressions in the large-distance limit,

so that the curves thus tend to be the same asymptotic values on Figs. 2 and 4.

4.2. Large- and small-distance limits

We now discuss the limits of large and small distances, which will allow us to better

understand the origin of breaking of conformal invariance in DvD and ded models.

At large distances, it is sufficient to consider the dipolar contribution (` = 1)

to the reflection matrix elements (8). The free energy (15) and (16) calculated

for r round-trips thus scales like f (r) ∼ (R1R2/L2)3r which means that the full

expression is dominated by the single round-trip expression r = 1. For two Drude

spheres in vacuum, we obtain from the asymptotic expansion of (34)

fDvD,u 6=0 ∼
3

8y3
(43)

while we get from (36) for the special case of the plane–sphere geometry

fDvD,u=0 ∼
1

4y3
. (44)

This leads to a ratio 2/3 between the two asymptotic expressions at this limit. Note

that in view of the definition (20) of y, the reduced free energy decays with L−6 for

two spheres but only with L−3 for the plane–sphere setup.

For two dielectric spheres in an electrolyte, we get from (40)

fded,u 6=0 ∼
3

32y3
(45)
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and from (42) for the plane–sphere geometry u = 0

fded,u=0 ∼
1

8y3
, (46)

with a ratio 4/3 between the two results. We also note that the Drude free energy is

larger by a factor 2 than that for dielectrics in the plane–sphere geometry (u = 0),

whereas the ratio goes up to 4 for the sphere–sphere geometry (u 6= 0), with these

results to be expected from the discussions devoted to the dipole limit in Ref. 47.

In the short-distance limit, the reduced free energy f (1) does no longer depend

on u while the DvD and ded models tend to the same curve as the scalar model.

In this limit however, we need to take multiple round-trips into account, which will

be discussed in the following subsection.

The variations with u of the curves corresponding to one round-trip are better

analyzed by showing in Fig. 5 the ratio f
(1)
u /f

(1)
1/4 of the contribution calculated at

u by that at u = 0.25. As previously, the red, violet, blue, yellow and green curves

correspond to u = 0, 0.016, 0.04, 0.1 and 0.25. The ratios larger than 1 correspond

to the ded model, and those smaller than 1 to the DvD model. For both models,

the dependence on u disappears at small distances y → 1. At large distances, the

DvD and ded curves reach asymptotically the values 2/3 and 4/3 obtained in the

dipolar limit if u = 0. All curves show variations very similar to those on Fig. 3,

and this will be explained by results obtained below.

4.3. Ratio of the full expression to single round-trip contributions

We go on in a quantitative understanding of the variation of the curves by looking

now at the ratio of the full expression for fu to the one round-trip contribution f
(1)
u

φu =
fu

f
(1)
u

. (47)

Fig. 5. Ratio f
(1)
u /f

(1)
1/4

for fixed values of u, with the same conventions as in Fig. 2. All curves

show variations very similar to those on Fig. 3.
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This ratio goes to 1 at large distances as we know that the single round-trip expres-

sion dominates the full expression there.

In the short-distance limit, we know that all curves tend to the same constant

determined by the divergent part for y → 1 of the scalar case. This divergence is

related to a zero eigenvalue of the matrix Mσ
r representing the bilinear form in the

Gaussian integrands. As mentioned above, we can give this matrix an interpretation

in terms of a tight-binding model. For the scalar case, Mσ
r describes a ring with

periodic hopping matrix elements between neighboring sites where a zero eigenvalue

may appear. The contributions for the DvD and ded models appearing in addition

to the scalar contribution yield matrices corresponding either to a system with open

boundary conditions or to generically disordered hopping matrix elements and thus

cannot give rise to a zero eigenvalue. As a consequence their contribution cannot

diverge for y → 1. We can thus deduce the divergent part of the reduced free energy

from (30) and (19). Carrying out the sum over all round-trips according to (5), we

obtain for the divergent part in the short-distance limit of the reduced free energy

f ∼ ζ(3)

8(y − 1)
, (48)

where ζ(3) =
∑

1/r3 = 1.202 . . . is Apéry’s constant. This result coincides with

the proximity-force approximation, which gives the same expression for all models

under study here.

The functions φu defined in (47) are depicted in Fig. 6 for the Drude spheres

in vacuum and the dielectric spheres in an electrolyte. In both cases, the ratio is a

monotonically decreasing function of y − 1, at fixed u, which goes from the known

value ζ(3) ' 1.202 at small distances to 1 at large distances.

For dielectric spheres in an electrolyte, it is remarkable that the ratio φu depends

very weakly on the parameter u with the curves drawn for different values of u

Fig. 6. Ratio φu = fu/f
(1)
u drawn as functions of y − 1 for fixed values of u with the same

conventions as on Fig. 2. The upper set of colored curves corresponds to the Drude case, the lower
one to dielectric spheres in salted water. In both sets, the curves depend weakly on the parameter

u but they are not identical to each other. The black curve corresponds to the u-independent
scalar case and is shown for comparison.
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nearly indistinguishable. The difference between the curves drawn for different u is

more noticeable for Drude spheres in vacuum, but it remains small. The curve for

the scalar case, u-independent, is also shown for comparison (black curve). It has the

same limits as the two electromagnetic models, but is not varying monotonically,

and it has quite different values from those met for the previous cases. Again the u-

independence for the scalar model corresponds to exact conformal invariance while

the weak dependence for electromagnetic models corresponds to a weak breaking

of conformal invariance.

The reason for this weak dependence property can be understood qualitatively.

The contributions of multiple round-trips are important when the single round-trip

ones are themselves large, that is at short distances where all contributions tend to

become the same. A noticeable u-dependence might appear at large distances but

φu is anyway close to unity there since fu and f
(1)
u tend to become identical.

The variation with u of the φ-curves for Drude and dielectric models can be

assessed by plotting the ratio φu/φ1/4 which is shown on Fig. 7. Curves with ratio

below 1 correspond to the DvD model, while those with ratio above 1 correspond to

the ded model. The green curve stays at a ratio 1 as it represents the case u = 0.25

as well as the result for the scalar case which is u-independent. Again, the small

deviations of the ratio from 1 show a weak breaking of conformal invariance, in

opposite directions for the DvD and ded models.

The φ-curves for Drude and dielectric models can be given a good approximation

by a rational function φrm of the argument ey−1

φu(y)

φrm(y)
− 1

∣∣∣∣ < ε. (49)

The rational model function φrm is defined as in Ref. 11

φrm =

n∏
k=1

ey−1 + νk − 1

ey−1 + µk − 1
. (50)

Fig. 7. (Color online) Ratio φu/φ1/4 drawn as functions of y − 1 for fixed values of u with the
same conventions as on Fig. 2. The lower set of curves corresponds to the DvD case, the upper
one to the ded model. The green curve corresponds to u = 1/4 and also to the scalar case.
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Table 2. Model parameters (n = 2) to be used with (50) for
the DvD model (with εDvD = 5.9 × 10−3) and the ded model

(with εded = 1.2× 10−3).

DvD model ded model

k = 1 k = 2 k = 1 k = 2

νk 0.011495 0.19868 0.004618 0.09639

µk 0.011359 0.16728 0.004415 0.08397

The best model parameters νk, µk have been determined for n = 2 by finding the

best fit φrm on the whole domain of parameters (using a routine from SciPy48 for

fitting the ratio φu(y)). We determined the rational model for fixed u = uref and

then calculated the maximal deviation ε as defined in Eq. (49). The corresponding

model parameters calculated for uref = 0.1 and 0.15, respectively, are given in

Table 2. They lead to the very low value εded = 1.2× 10−3 for the ded model and

the low value εDvD = 5.9× 10−3 for the DvD model.

We are left in the end of this reasoning with a good approximation of the full

function fu(y)

fu(y) = f (1)
u (y)φrm(y). (51)

The first factor is the analytical one round-trip expression given in (34) and (40)

for the two models and depending on y and u. Meanwhile the second factor φrm

is the rational model (50) with the associated parameters given in Table 2 for the

two models. These approximations correspond to an accuracy ε which should be

sufficient for most applications. Should a better accuracy be needed, a lower ε could

be obtained with a higher order n in the model (50).

5. Experimental Evidence of the Universal Thermal Interaction

in the Dielectric–Electrolyte–Dielectric Configuration

As mentioned in Sec. 1, the universal thermal Casimir interaction corresponds to

a more easily accessible domain of parameters in the ded configuration than in the

previously known DvD one. Distances of the order of or larger than λT∼8 µm are

indeed required in the latter case, which lead to extremely weak signals. In contrast,

the universal contribution is already dominant at much shorter distances, of the

order of the characteristic length `T∼0.1 µm, when considering typical dielectric

materials interacting across electrolyte solutions.

The value of `T can be calculated more precisely, for example in the case of

silica spheres, for which `T ≈ 0.07 µm is estimated from the results shown in Fig. 8.

We consider the interaction between two silica spheres in salted water and plot

the ratio (F − FT )/FT here as a function of shortest distance L measured in µm,

with a value of the smaller radius R1 = 2.35 µm and values of the larger one R2

deduced from geometrical parameter u = 0 (red), 0.14 (yellow) and 0.25 (green).
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Fig. 8. (Color online) Ratio (F −FT )/FT with the full free energy F given in (2) and the high-
temperature result FT (4) as function of the surface-to-surface distance L. The free energies were

calculated for the setup of two silica spheres in water at T = 296 K as discussed in Ref. 12 with

R1 = 2.35 µm and u = 0.14 (bright yellow). The dielectric functions of silica and water were
modeled according to Ref. 50. The ratio was also calculated for u = 0 (red) and u = 0.25 (green)

with the same R1.

We define `T as the distance at which the nonuniversal relative correction is 10%

of the universal thermal energy (dashed horizontal line on Fig. 8).

The universal thermal Casimir interaction between two silica microspheres in

salted water was recently probed12 by employing single-beam optical tweezers49 in

the distance range from 0.2 to 0.5 µm. A silica microsphere of radius R1 = 2.35 µm

was optically trapped while a second larger silica microsphere was attached to

the glass coverslip at the bottom of the sample. The larger sphere had a radius

R2 = 11.74 µm which corresponds to the geometric parameter u ≈ 0.14. The

distance between the larger microsphere and the trapping laser beam was controlled

by a piezoelectric nano-positioning stage.

Optical tweezers were previously employed to probe colloidal interactions51–56

and to assess the nonadditivity of the critical Casimir force.57 They are ide-

ally suited for probing the universal Casimir interaction in the dielectric/

electrolyte/dielectric configuration. Trapping conditions indeed favor dielectric

materials such that the radiation pressure, associated to the reflection of the trap-

ping laser beam, is dominated by the gradient force arising from refraction.58 Thus,

optical tweezing is possible when the refractive indices of the dielectric material and

of the electrolyte solution nearly match at the trapping laser wavelength, typically

in the infrared. In the context of the Casimir effect, the index matching reduces

the contribution of nonzero Matsubara frequencies,59 leading to rather low values

of `T and favoring the universal thermal contribution in comparison with nonuni-

versal ones. In other words, single-beam trapping of particles is possible precisely

when they are made of a dielectric material such that `T is conveniently small for

probing the universal Casimir interaction.
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In order to mimic typical conditions of biological interest, a NaI concentration

of 0.22 M was employed in Ref. 12, corresponding to a Debye screening length

λD = 0.64 nm. As a consequence, electrostatic interactions are completely sup-

pressed60,61 at the distance range probed experimentally. In addition, the inter-

action resulting from thermal fluctuations of the electrostatic potential19,62–64 is

also screened across the distance λD and thus negligible. Such effect can be inter-

preted as the contribution of longitudinal modes to the Casimir effect in a nonlocal

medium,10 and can be calculated exactly for the geometry of two spheres in salted

water.65

The experimental results for the variation of the interaction energy with dis-

tance are shown in Fig. 9 as points with error bars. They are compared with two

different theoretical curves. The red line represents the Casimir free energy calcu-

lated by excluding the universal thermal contribution. Clearly, this result fails to

adequately describe the experimental data. Agreement is found only when includ-

ing this contribution as represented by the theoretical black curve. Since the dis-

tances probed experimentally are such that L > `T , the Casimir interaction is

completely dominated by the universal thermal effect. Indeed, the red curve shows

that the contribution of nonzero Matsubara frequencies is negligible in the probed

range, as already discussed in connection with Fig. 8. In short, the data shown in

Fig. 9 are direct evidence of the universal Casimir interaction mediated by low-

frequency unscreened TM thermal fluctuations coupled to electric multipoles of

each sphere. Such universal thermal effect, discussed in detail in this paper, corre-

sponds to the long-distance asymptotic behavior of the total Casimir interaction.

For typical dielectric materials interacting across salted water at room tempera-

ture, the universal contribution is already dominant at distances of the order of

`T∼0.1 µm.

Fig. 9. (Color online) Interaction free energy (in units of kBT ) between two silica microspheres as
function of the surface-to-surface distance L: experimental points with errors bars, and theoretical

Casimir energy including (black) or not (red) the universal thermal contribution. Adapted from
Ref. 12 by Pires et al., used under CC BY.
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Note that a Casimir attraction stronger than the theoretical prediction excluding

the universal contribution is also reported under similar experimental conditions in

Ref. 52, though it was not associated to a theoretical calculation.

6. Conclusion

In this paper, we have discussed analogous universality properties obtained for the

high-temperature Casimir free energy between two spheres in two different physical

situations. One corresponds to metallic spheres described by the Drude model in

vacuum and the other to dielectric spheres in a conducting electrolyte. In both

cases, universality comes from the fact that the static dielectric function of one of

the two media is infinite while that of the other remains finite. In this sense, the two

problems are dual of each other, with the Drude sphere and salted water exhibiting

a finite static conductivity and thus an infinite dielectric constant. This explains in

both cases why the results are independent of the details of the optical response of

the involved materials.

The difference between the two cases implies that the minimal distance over

which the universal contribution dominates is not at all the same. In the case of

vacuum, this distance is essentially the thermal wavelength '8 µm while a much

smaller distance `T∼100 nm is found in the case of salted water. The universality

property thus covers a much broader distance range in the latter case and this has

made possible an experimental demonstration of the nonscreened Casimir interac-

tion between dielectric spheres in salted water with strong screening.12

This interaction should have important consequences for the physics of biological

interfaces and of colloidal solutions. For these consequences to play an important

role, the interaction has to represent a significant fraction of the thermal energy kBT

as the immersion in a liquid medium imposes a Brownian motion to the spheres.

We see on Fig. 2 that this condition is met when the distance L is of the order or

smaller than one tenth of the effective radius. In the associated domain y−1 . 0.1,

the interaction is mainly determined by the conformally invariant parameter y

associated with the two-sphere geometry, with the dependence on u remaining weak

(see Fig. 5). In spite of these observations, the interaction cannot be deduced from

any of the known limiting cases. A simple estimation can however be deduced from

Eq. (51) without having to carry out the full numerical calculation.
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