
Efficient Evaluation and Estimation of Dynamic
Stochastic General Equilibrium Models

Kumulative Dissertation
der Wirtschaftswissenschaftlichen Fakultät

der Universität Augsburg
zur Erlangung des Grades eines

Doktors der Wirtschaftswissenschaften
(Dr. rer. pol.)

vorgelegt von

Johannes Maximilian Huber
(M. Sc. Economics and Public Policy)

Erstgutachter: Prof. Dr. Alfred Maußner

Zweitgutachter: Prof. Dr. Burkhard Heer

Vorsitzende der Disputation: Prof. Dr. Kerstin Roeder

Tag der mündlichen Prüfung: 05.07.2022

April 2022



Efficient Evaluation and Estimation of Dynamic
Stochastic General Equilibrium Models

– Johannes Maximilian Huber –



Contents

Contents i

List of Figures iv

List of Tables v

List of Algorithms vi

List of Acronyms vii

List of Publications and the Author’s Contribution viii

1 Introduction 1
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 AnAugmentedSteady-StateKalmanFilter toEvaluate theLikelihoodof Linear and
Time-Invariant State-Space Models— Johannes Huber — 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 State-space models and the Kalman-Filter . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 State-space representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 The Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 The steady-state Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 The augmented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Augmented steady-state Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Likelihood evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Requirements to apply the augmented steady-state Kalman filter . . . . 20

2.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Generic state-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Smets and Wouters model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.A Derivation of the Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.B Convergence properties of the Riccati difference equation . . . . . . . . . . . . . . 37

2.B.1 Results by de Souza et al. (1986) . . . . . . . . . . . . . . . . . . . . . . . . 38
2.B.2 Proof of Proposition 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.C Derivation of the steady-state Kalman filter . . . . . . . . . . . . . . . . . . . . . . 45
2.D Derivation of the augmented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . 46

2.D.1 The augmented Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 46



CONTENTS II

2.D.2 Initialization strategies for non-stationary state-space models . . . . . . 56
2.D.3 Incorporating the augmented Kalman filter into the Kalman recursion . 58

2.E Smets and Wouters model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.E.1 Stochastic process and residuals . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.E.2 Economy with sticky prices and wages . . . . . . . . . . . . . . . . . . . . 60
2.E.3 Economy with flexible prices and wages . . . . . . . . . . . . . . . . . . . . 61
2.E.4 Law of motion of lagged variables . . . . . . . . . . . . . . . . . . . . . . . . 61
2.E.5 Data and auxiliary variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.E.6 Policy function and BA-model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.E.7 State-space representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.E.8 Parameters and steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 BusinessCycleAccounting for theGermanFiscalStimulusProgramduringtheGreat
Recession— Daniel Fehrle and Johannes Huber — 66
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 The German case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 The fiscal stimuli packages I and II in detail . . . . . . . . . . . . . . . . . . 69
3.2.2 Monetary policy in the Great Recession . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Stylized facts for the German economy . . . . . . . . . . . . . . . . . . . . 70

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.1 The prototype economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.2 The business cycle accounting procedure . . . . . . . . . . . . . . . . . . . . 77

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 Growth accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.3 Business cycle accounting for the Great Recession and the German fiscal

stimulus program, 2008-Q1 – 2011-Q3 . . . . . . . . . . . . . . . . . . . . . 81
3.4.4 Robustness and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.A Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.B Chari et al. (2007) benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.B.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.B.2 Observables and data manipulation . . . . . . . . . . . . . . . . . . . . . . . 94
3.B.3 Calibration and estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.C Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 PolynomialChaosExpansion: E�icientEvaluationandEstimationofComputational
Models— Daniel Fehrle, Christopher Heiberger and Johannes Huber — 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Generalized polynomial chaos expansions . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Single uncertain parameter and germ (k=1) . . . . . . . . . . . . . . . . . . 104
4.3.2 Multiple uncertain input parameters (k ≥ 2) . . . . . . . . . . . . . . . . . . 109

4.4 Applications of generalized polynomial chaos expansions . . . . . . . . . . . . . . 111
4.5 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5.2 Convergence behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5.3 Computation of the polynomial chaos expansion coefficients . . . . . . . 118



CONTENTS III

4.5.4 Monte Carlo experiments for empirical methods . . . . . . . . . . . . . . . 119
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.A Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.A.1 Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.A.2 Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.A.3 Jacobi polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.A.4 Generalized Laguerre polynomials . . . . . . . . . . . . . . . . . . . . . . . . 134

4.B Smolyak-Gauss-quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 Conclusion 137
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Figures

2.1 Speed comparison – Generic state-space model . . . . . . . . . . . . . . . . . . . 29
2.2 Data – Smets and Wouters model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Monetary policy and usage of the deposit facility . . . . . . . . . . . . . . . . . . 70
3.2 Cyclical behavior of Gross Domestic Product (GDP) . . . . . . . . . . . . . . . . 71
3.3 Cyclical behavior of different economic measures . . . . . . . . . . . . . . . . . 72
3.4 Maximum-likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5 Business cycle accounting (BCA) - Results . . . . . . . . . . . . . . . . . . . . . . 83
3.6 Adjustment costs specific wedge contribution . . . . . . . . . . . . . . . . . . . . 85
3.7 Inverse elasticity of intertemporal substitution specific wedge contribution . . 86
3.8 Robustness to the Chari et al. (2007) benchmark economy . . . . . . . . . . . . 86
3.9 The durables boom-bust cycles 2008-2010 and 2006-2007 in comparison . . 87

4.1 Example: Exact evaluation and polynomial chaos expansion (PCE) (numerical
integration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Distributions of uncertain parameters . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3 L2 convergence of PCE and computation time on an Intel® Core™i7-7700 CPU

@ 3.60GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 Distributions of uncertain parameters . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 L2 Convergence of PCE with approximated coefficients and computation time

on an Intel® Core™i7-7700 CPU @ 3.60GHz . . . . . . . . . . . . . . . . . . . . 120
4.6 L2 Convergence of PCE with approximated coefficients and computation time

on an Intel® Core™i7-7700 CPU @ 3.60GHz . . . . . . . . . . . . . . . . . . . . 121
4.7 Distributions of uncertain parameters . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Tables

2.1 Computational expanse of an additional observation . . . . . . . . . . . . . . . . . 21
2.2 Tailored randomized block Metropolis-Hastings (TaRBMH) and simulated an-

nealing settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Data generating parameters and prior density – Generic state-space model . . . . 27
2.4 Estimation results – Generic state-space model . . . . . . . . . . . . . . . . . . . . 28
2.5 Speed comparison – Generic state-space model . . . . . . . . . . . . . . . . . . . . . 29
2.6 Prior and estimation results – Smets and Wouters model . . . . . . . . . . . . . . . 31
2.7 Speed comparison – Smets and Wouters model . . . . . . . . . . . . . . . . . . . . . 31

3.1 Composition of the fiscal program in percent of GDP . . . . . . . . . . . . . . . . 70
3.2 Long-run ratios in percent of GDP (1991–2018) . . . . . . . . . . . . . . . . . . . . 71
3.3 Growth factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Calibration of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Growth accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Estimation of exogenous shock process . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7 Calibration and growth accounting for the Chari et al. (2007) economy . . . . . 94
3.8 Estimation of exogenous shock process of the Chari et al. (2007) economy . . . 95

4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Overview: Common distributions and corresponding germs and orthogonal poly-

nomials on L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Calibration I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4 Calibration II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.5 Monte Carlo results - Generalized method of moments (GMM) . . . . . . . . . . 123
4.6 Monte Carlo results - Simulated method of moments (SMM) . . . . . . . . . . . . 124
4.7 Monte Carlo results - Maximum-likelihood estimation . . . . . . . . . . . . . . . . 126
4.8 Monte Carlo results - Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . 127



List of Algorithms

3.1 Using the augmented steady-state Kalman filter (ASKF) to compute log
�

fYN

�

for
the state-space model (SSM) (2.2.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



List of Acronyms

AKF augmented Kalman filter

ASKF augmented steady-state Kalman filter

BCA business cycle accounting

BE Bayesian estimation

CR Chandrasekhar recursion

DARE discrete algebraic Riccati equation

DSGE dynamic stochastic general equilibrium

ECB European Central Bank

GDP Gross Domestic Product

GMM generalized method of moments

KF Kalman filter

MLE maximum-likelihood estimation

MSE mean squared error

PCE polynomial chaos expansion

QoI quantity of interest

RBC real business cycle

RDE Riccati difference equation

RWMH random walk Metropolis-Hasting

SKF steady-state Kalman filter

SMM simulated method of moments

SSM state-space model

TaRBMH tailored randomized block Metropolis-Hastings

UKF univariate treatment of multivariate observation vectors

VAR vector autoregression

VAT value-added tax



List of Publications and the Author’s Contribution

The thesis includes the following three essays:

FEHRLE, D., C. HEIBERGER, AND J. HUBER (2022): “Polynomial Chaos Expansion: Efficient
Evaluation and Estimation of Computational Models”.

FEHRLE, D. AND J. HUBER (2022): “Business Cycle Accounting for the German Fiscal Stimulus
Program during the Great Recession”.

HUBER, J. (2022): “An Augmented Steady-State Kalman Filter to Evaluate the Likelihood of
Linear and Time-Invariant State-Space models”.

Contributions:

• Huber (2022) is single authored.

• Fehrle and Huber (2022) is joint work with Dr. Daniel Fehrle (Augsburg University), where
both contributed about 50 percent.

• Fehrle, Heiberger, and Huber (2022) is joint work with Dr. Daniel Fehrle (Augsburg
University) and Dr. Christopher Heiberger (Augsburg University), where all authors
contributed about 33.3̄ percent.

Conference participations:

• Preceding versions of Huber (2022) significantly benefit from comments during presenta-
tions at:

the 32nd BGPE Research Workshop in Passau and the Seminar in Economics at the
University of Augsburg.

• Preceding versions of Fehrle and Huber (2022) significantly benefit from comments during
presentations at:

the 34th Annual Congress of the European Economic Association in Manchester, the
Doctoral Seminar in Economics at Leipzig University, the 24th Spring Meeting of Young
Economists in Brussels, 23rd Theories and Methods in Macroeconomics in Nuremberg,
19th IWH-CIREQ-GW Macroeconometric Workshop at IWH Halle, and the Seminar in
Economics at the University of Augsburg.



Chapter 1

Introduction*

The outcome of any important macroeconomic pol-
icy change is the net effect of forces operating on
different parts of the economy. A central challenge
facing policymakers is how to assess the relative
strength of those forces.[...] Dynamic stochastic
general equilibrium (DSGE) models are the lead-
ing tool for making such assessments in an open
and transparent manner.

Christiano et al. (2018, pp. 113)

Going back to the seminal work of Kydland and Prescott (1982) and Long and Plosser (1983),
over the past four decades, the class of dynamic stochastic general equilibrium (DSGE) models
has become one of the dominant analytic frameworks in modern macroeconomics. For instance,
Glandon et al. (2022) find that about 42 percent of the “theory-centered” articles published
in five leading macroeconomic field journals – the Journal of Monetary Economics, the Journal
of Money, Credit and Banking, the American Economic Journal: Macroeconomics, the Journal of
Economic Dynamics and Control, and the Review of Economic Dynamics – from 2016 to 2018,
employ DSGE models.1 Part of the reason for the growing interest in DSGE models is that they
provide a consistent framework for analyzing the impact of macroeconomic policy changes.
Thereby, as Fernández-Villaverde and Guerrón-Quintana (2021) emphasize, “[t]he class of
DSGE economies is not defined by a particular set of assumptions, but rather by an approach
to the construction of macroeconomic models.” Within this approach, the researcher is forced
to formulate the assumptions underlying his analysis in a clear and transparent manner. On
the one hand, this transparency marks DSGE models as a frequent target for critics (see, e.g.,
Stiglitz, 2018). On the other hand, this transparency also prepares the ground to address their
shortcomings by adding new features to the DSGE framework.2 Another reason for the growing
interest in DSGE models is the progress in developing new algorithms to evaluate and estimate
these models. Most notable here is the tremendous evolution of Bayesian estimation methods in
the wake of the seminal articles by Smets and Wouters (2003, 2007), which established DSGE
models as an essential part of the monetary policy analysis in central banks around the world.3

*I use the pronoun “we” in order to refer to author(s) and reader in this thesis.
1Glandon et al. (2022) distinguish the 786 articles in the above journals from 2016 to 2018 into three categories:

Those that use “theory-centered” methods, those that employ “econometrics-based” methods, or those that use
both. Of the 529 articles that apply theory-centered methods, 42 percent employ DSGE models. Hence, more
than one-fourth of all articles in these journals apply DSGE models.

2See, e.g., Christiano et al. (2018), who discuss the progress in DSGE modeling in the aftermath of the financial
crisis and the Great Recession.

3For a collection of prominent DSGE models used in central banks, see Sergi (2020, Tables 1 and 2).
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However, since DSGE models typically cannot be assessed analytically, these models’ accurate
evaluation and estimation can become a time-consuming computational task. This thesis
addresses how to estimate and evaluate DSGE models efficiently. Therefore, we first need to
define what we understand by an efficient evaluation and estimation of DSGE models.

At an abstract level, we can think of a DSGE model as a mapping from a set of parameters to
some quantity of interest (QoI), e.g., the model’s policy function, its impulse response function,
its unconditional first and second moments, or its likelihood function for a given set of data.
Throughout this thesis, we denote the process of determining the QoI associated with a set of
parameters as evaluation of the model. Regarding this evaluation process, the term efficient has
two dimensions: The first dimension of efficiency refers to the time and resources required to
evaluate the QoI of the model. The second dimension, in contrast, refers to the accuracy to
which we can determine this QoI.

For instance, consider a scenario where we wish to examine how the agents in our model
economy respond to a change in macroeconomic policy. Since the so-called policy function
represents the agents’ responses to changes in the current state of the economy, this function
reflects the natural QoI in such analyses. However, evaluating the model’s policy function
typically requires numerical methods to solve the model’s underlying first-order system of
(potentially non-linear) expectational difference equations.4 Following DeJong and Dave (2011),
we can categorize these methods into linear and non-linear techniques. The first category draws
mainly on contributions by Blanchard and Kahn (1980), Klein (2000), Uhlig (2001), and Sims
(2002), while we can separate the latter into local (e.g., higher-order perturbation methods) and
global solution techniques (e.g., value functions iteration or projection methods). Compared to
non-linear and especially compared to global techniques, linear methods typically involve less
computational effort. Hence, if we focus exclusively on minimizing the computational burden,
we might consider linear solution techniques more efficient. However, an essential feature
of linear solution techniques is that the (approximated) policy function they imply is itself
linear, which is why they may become inaccurate if the model’s “true” policy function includes
non-linear components. Consequently, non-linear techniques are often more efficient in terms
of accuracy for these models. Thus, we consider efficiency as the trade-off between accuracy
and computational burden. Further, we consider an evaluation procedure more efficient than its
competitors i) if it provides higher accuracy and requires the same or a lower computational
effort or ii) if it provides the same or a higher accuracy but has a lower computational burden.

Along with their evaluation, this thesis focuses primarily on estimating DSGE models. We
define estimation as the utilization of formal sampling theory to infer plausible parameter
values (or plausible parameter distributions) for which the model can replicate specific patterns
observed in the data. In doing so, we follow Christiano et al. (2018) and distinguish estimation
from calibration – another strategy to obtain a model’s parameters that may involve matching
unconditional model and data moments – because the latter does not lean on a formal sampling
theory for the solved model. Regarding the estimation of DSGE models, we again define
efficiency as the trade-off between the computational burden and the accuracy to which we can
estimate the parameters (or their distribution) conditional on some set of observed data.

It is noteworthy that efficient estimation of DSGE models likewise requires efficient evaluation
methods. Suppose we want to estimate a model using likelihood-based methods. Both Bayesian
and frequentist estimation techniques will require the repeated evaluation of the model’s
likelihood function. Consequently, an efficient estimation depends not only on the estimation
procedure itself – e.g., Bayesian sampling techniques or numerical routines to maximize the
likelihood function – but also on the efficiency by which we can evaluate the model’s QoI,
which in this case, is its likelihood function. An inaccurate evaluation of the likelihood function
may lead to inaccuracies in the estimation. In contrast, an accurate but computationally more

4Note that throughout this thesis, we focus exclusively on DSGE models expressed in discrete time.
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intensive evaluation of the likelihood function can cause the estimation to become infeasible.
The same is true for limited-information methods, e.g., the generalized method of moments or
the matching of impulse responses.

As outlined above, the challenging aspect of an efficient evaluation and estimation of DSGE
models is the trade-off between ensuring that the model’s evaluation and estimation are suffi-
ciently accurate, on the one hand, and that it is computationally feasible, on the other. However,
the details of this trade-off depend on the research question at hand. The three essays in
this thesis consider different approaches and procedures for a more efficient evaluation and
estimation of DSGE models. Thereby, the essays cover linear and non-linear solution techniques,
as well as likelihood-based and limited-information estimation methods. Chapters 2 and 3 focus
on the likelihood-based estimation of DSGE models, employing linear solution techniques to
determine the model’s policy function. In Chapter 2, we address how to efficiently evaluate
the likelihood of those models in terms of computational time required. Chapter 3 proposes
a fast and reliable procedure for the maximum-likelihood estimation (MLE) in the context of
a business cycle accounting (BCA) application in the spirit of Chari et al. (2007). Chapter 4
discusses a method known as the generalized polynomial chaos expansion (PCE) to obtain
a (point-wise) approximation of a model’s QoI in terms of a series expansion of the model’s
parameters. Analyzing the suitability of the PCE for DSGE models, we extend our analysis to
non-linear solution techniques for the model’s policy function and limited-information methods
to estimate its parameters.

In detail, the first essay (Chapter 2), “An Augmented Steady-State Kalman Filter to Evaluate
the Likelihood of Linear and Time-Invariant State-Space Models”, which is the current version
of the working paper by Huber (2022), reviews the celebrated Kalman filter (KF), going back to
the seminal work of Kalman (1960), as the standard tool to evaluate the likelihood of linear
state-space models. Further, we propose a modified version of this recursive algorithm and
show that this augmented steady-state Kalman filter, as we call it, can lower the computational
burden associated with the likelihood evaluation of (log-) linearized DSGE models.

Focusing on models solved by linear solution techniques allows us to interpret their (approxi-
mated) policy function as linear state-space models (SSMs), which link the behavior of several –
except for a potential measurement error – observable variables to the dynamic evolution of a
set of state variables. We can infer these (potentially unobservable) states, conditional on the
model’s parameters and the variables observed up to a certain point in time. In fact, for linear
SSMs with Gaussian disturbances, we can use the KF to determine the conditional distribution of
the states given the data we have observed so far. Consequently, if initialized at the unconditional
mean vector and variance matrix of the model’s states, the KF provides the means to evaluate
the exact likelihood function of linear and stationary SSMs. However, this recursive algorithm
quickly becomes computationally demanding as the model’s complexity increases. To reduce the
computational burden of the KF, we may exploit the fact that for time-invariant and stationary
SSMs, the uncertainty about the model’s states converges towards equilibrium as the number of
observations increases (see Hamilton, 1994, Chapter 13.5). Hence, initialized at this long-run
equilibrium, updating the states’ variance matrix becomes redundant, and we can replace the
regular KF with a stationary recursion, which we refer to as a steady-state Kalman filter (SKF).
Unfortunately, the speed advantage of the SKF comes at the cost of determining a conditional
likelihood rather than the exact and unconditional likelihood.

The main contribution of Huber (2022) is to augment the SKF in the manner of de Jong (1988,
1991) so that we may exploit its speed advantage but obtain the model’s exact and unconditional
likelihood. We find that this augmented steady-state Kalman filter (ASKF) can significantly
reduce the computational burden to evaluate the likelihood of medium- to large-scale SSMs,
making it particularly useful to estimate DSGE models. At the example of a medium-scale
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DSGE model, namely the model introduced by Smets and Wouters (2007), we compare the
performance of the ASKF in terms of an efficient likelihood evaluation to three other variants
of the KF: A textbook version of the KF (see, e.g., Harvey, 1990; Hamilton, 1994; DeJong and
Dave, 2011; Durbin and Koopman, 2012), the Chandrasekhar recursion (CR) suggested by
Herbst (2015), and a filter proposed by Koopman and Durbin (2000) that bases on a univariate
treatment of multivariate observation vectors (UKF). Apart from minor numerical errors, all
filters evaluate the likelihood with the same accuracy since, given the (approximated) linear
policy function, they all compute the model’s exact likelihood. Hence, the comparison of the four
filters focuses on the computational time required to evaluate the model’s likelihood function.
When compared to the regular KF or the UKF, we find that the ASKF reduces the computational
burden by 60 to 80 percent. Furthermore, we find that the ASKF is up to three times faster than
the CR.

The second essay (Chapter 3), “Business Cycle Accounting for the German Fiscal Stimulus
Program during the Great Recession”, is joint work with Daniel Fehrle and the current version of
the working paper by Fehrle and Huber (2022). The essay contains a business cycle accounting
(BCA) analysis in the spirit of Chari et al. (2007) for the Great Recession in Germany and the
related policy measures enacted by the German government to counter it.

BCA analyses employ a so-called prototype economy, representing a real business cycle
(RBC) model extended by time-varying distortions in nearly every market. Chari et al. (2007)
construct the origins of these distortions, or wedges, as taxes, nominal and real frictions,
changes in expectations, etc. While the interpretation of these wedges is non-structural, the
parameterization corresponds to ad-valorem taxes, productivity, or government spending. The
wedges’ driver is a reduced-form Markov process, commonly approximated by a stationary
vector autoregression (VAR) with one lag. Using empirical time series, one can estimate the
parameters of the VAR process and determine the states of the wedges. These determined
wedges are fed back into the model one by one to assess the contribution of each wedge to
the fluctuation of macroeconomic aggregates. Our prototype economy includes wedges to the
variables government consumption, durables, investment, labor, net exports, and efficiency and
we show how to map the measures of the German fiscal stimulus program towards them.5

Using the state-space methods discussed in the first essay (Huber, 2022), we estimate 59
parameters – two structural parameters and the 57 parameters of the wedges’ underlying VAR
process – of our prototype economy via maximum-likelihood. For this purpose, we introduce
a reliable and quick procedure to locate the maximum of the likelihood function. This two-
step procedure can be summarized as follows: In the first step, we maximize the conditional
likelihood received from a SKF, based on the assumption that the initial states are fixed and
known in their long-run equilibrium. Besides the SKF’s speed advantage, there is also an
analytical and unique solution for the maximizing variance matrix of the wedges’ VAR process.
The estimator obtained with this procedure retains the properties of a maximum-likelihood
estimator, yet, it is usually less accurate than the maximum-likelihood estimator based on the
commonly used unconditional likelihood. The first-step estimates are thus only the guess for
the actual (second-step) estimation, which maximizes the unconditional likelihood function.
Using this procedure, we combine the speed and robustness advantages of the conditional
maximum-likelihood estimator with the higher efficiency of an unconditional initialization.

In the subsequent BCA analysis, we find that the efficiency wedge mainly drove the crises
(62%), followed by the net exports (26%) and the investment wedge (19%). The government
consumption wedge and the durables wedge acted counter-cyclically (about -5% each). Fur-
thermore, the labor wedge contributed only 3% to the crisis but induced a fast recovery. These
statistics are robust except for the investment wedge. We discuss the results against different

5In this context, the term efficiency refers to the efficiency wedge parameterized by a distortion of labor productivity.
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market interventions, e.g., we attribute the counter-cyclicality of the durables wedge to the cash
for clunkers program.

The third essay (Chapter 4), “Polynomial Chaos Expansion: Efficient Evaluation and Estimation
of Computational Models”, is joint work with Daniel Fehrle and Christopher Heiberger and
the current version of the working paper by Fehrle, Heiberger, and Huber (2022). The essay
discusses the suitability of a method known as generalized polynomial chaos expansion (PCE) –
going back to Xiu and Karniadakis (2002) – for computational economics and, in particular, for
DSGE models.

In a nutshell, we can describe PCE as follows: Considering the model’s parameters as (stochas-
tically independent) random variables, the PCE – under some general assumptions – provides the
means to represent the model’s QoI as a series expansion of its uncertain parameters. Thereby,
the polynomials of this Fourier series belong to families that are orthogonal with respect to the
densities of the model’s parameters. Further, we may determine the coefficients of the truncated
Fourier series from the inner product of the mapping from the parameter values to the model’s
QoI and the orthogonal polynomials. Provided that we cannot compute this inner product
analytically, we may employ numerical integration rules, such as Gauss quadratures, which,
if the dimensionality of the unknown parameters is not too large, require only a comparably
small number of model evaluations. As the number of parameters increases, we can switch to
sparse grid methods, such as Smolyak-Gauss quadratures, to approximate the inner product
or determine the coefficients using the least-squares method. Given the respective formulae –
and compared to the repeated, potentially time-consuming evaluation of the entire model – the
repeated evaluation of the model’s QoI becomes inexpensive in terms of computational time
required.

In the first part of our numerical analysis, we investigate the efficiency of the PCE when used
to evaluate the QoIs of the benchmark RBC model. We employ the PCE method to (point-wise)
approximate the mapping between the parameters and the model’s (approximated) QoIs – its
linear solution, a non-linear and global solution, its variables’ unconditional second moments,
and its impulse response function – in terms of a series expansion of its parameters. The accuracy
of this approximation depends on the truncation level and the accuracy of the PCE coefficients,
while the computational effort mainly relies on the number of model evaluations required to
approximate these PCE coefficients. We analyze the convergence behavior of the PCE – in the
sense of the L2 norm of the approximation error over the parameters’ support – and find linear
convergence as we increase the truncation level.6 We also compare the different approaches
to derive the PCE coefficients – full-grid quadrature rules, sparse-grid quadrature rules, and
the least-squares method – regarding the approximation’s accuracy and the computational time
required. Our findings suggest that the PCE constructed from a sparse-grid quadrature is most
efficient, followed by least squares.

In the second part of our numerical analysis, we employ Monte Carlo experiments to investigate
the efficiency of the PCE in the context of parameter estimation. Therefore, we estimate
the model’s parameters by generalized method of moments (GMM), simulated method of
moments (SMM), maximum-likelihood estimation (MLE), and Bayesian estimation (BE) but use
PCE to evaluate the QoI for different parameter values. In terms of accuracy and computational
time required, we compare these parameter estimates to the estimates obtained by repeatedly
solving for the model’s QoIs. We find that the PCE-based estimates deviate only negligibly from
the benchmark procedure, while the computation time reduces by 99 percent for BE and by 50
percent for GMM, SMM, and MLE.

6For this exercise, we use a full-grid quadrature rule with enough nodes to approximate the PCE coefficients
accurately since we want to abstract from possible errors in calculating these coefficients.
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Chapter 2

An Augmented Steady-State Kalman Filter to
Evaluate the Likelihood of Linear and
Time-Invariant State-Space Models
— Johannes Huber —

2.1 Introduction
Since their introduction in the 1980s, dynamic stochastic general equilibrium (DSGE) models
have become a cornerstone of modern macroeconomics. While the first class of DSGE models
mainly consisted of small-scale models with a handful of equations and only a few shocks (e.g.,
Hansen, 1985; King et al., 1988), the complexity of these models has increased significantly
over the past decades (see, e.g., Leeper et al., 2010; Gadatsch et al., 2016; Drygalla et al., 2020).
In particular, New-Keynesian models, such as those of Christiano et al. (2005) or Smets and
Wouters (2003, 2007), are no longer used only for academic purposes but also for monetary
policy analysis.1 A popular approach to specify the parameters of a (log-) linearized DSGE
model is to treat its policy function as a linear (and time-invariant) state-space model (SSM),
and estimate this SSM using likelihood-based methods (e.g., Ireland, 2004; An and Schorfheide,
2007; Chari et al., 2007). However, as the complexity of the model increases, the repeated
evaluation of the likelihood function can become time-consuming.2 This paper proposes an
algorithm to evaluate the likelihood of linear and time-invariant SSMs. We find that this
augmented steady-state Kalman filter (ASKF), as we call it, can significantly reduce the time
required to evaluate the likelihood of (log-) linearized DSGE models, such as the one introduced
by Smets and Wouters (2007). Although we focus mainly on DSGE models in this paper, the
ASKF may also be useful for estimating other linear and time-invariant SSMs such as, e.g.,
dynamic factor models.

There are two likelihood-based approaches to estimate the parameters of DSGE models,
namely the frequentist and the Bayesian approach. The frequentist approach considers the
set of unknown parameters as fixed and estimates them by maximum-likelihood. The number
of likelihood evaluations within this approach remains manageable for a limited amount of
unknown parameters and a well-shaped likelihood function. However, even for well-identified
models, due to the curse of dimensionality, maximization of the likelihood function often
becomes a difficult task as the dimension of the parameter space rises. Thus, problems with
a high-dimensional parameter space often require global search routines, such as simulated
annealing, to locate the global maxima (see, e.g., Andreasen, 2010; Šustek, 2011). However,
exploring a high-dimensional parameter space usually also requires a considerable amount of

1E.g., the European Central Bank uses an open-economy extension of the model by Smets and Wouters (2007),
the so-called New Area-Wide Model, for macroeconomic projection exercises.

2Herbst (2015) reports that the likelihood is sometimes evaluated up to several million times, for both classical
and the Bayesian approach.
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likelihood evaluations. Hence, efficient techniques to evaluate the likelihood function become
essential as the number of parameters increases.

In contrast to the frequentist approach, Bayesian econometricians treat the unknown param-
eters as random variables. By combining the information contained in the data (likelihood
function) with their prior beliefs about the parameters (prior density), the Bayesian approach
seeks to gain information about the (posterior) density of the unknown parameters for a given
set of data. From a technical perspective, modern sampling techniques, like the random walk
Metropolis-Hasting (RWMH) algorithm used by Smets and Wouters (2007), the tailored ran-
domized block Metropolis-Hastings (TaRBMH) algorithm suggested by Chib and Ramamurthy
(2010), or the Sequential Monte Carlo sampler by Herbst and Schorfheide (2014), provide easily
accessible ways to generate draws from the posterior distribution, that are often in some ways
less challenging than maximizing the likelihood function. However, all three samplers men-
tioned above require a considerable amount of likelihood evaluations. For example, estimating
a medium-scale DSGE model, such as the model by Smets and Wouters (2007), requires up to
several million likelihood evaluations, depending on the selected sampling algorithm.3 Thus not
surprisingly, Herbst (2015) reports that, especially in medium to large-scale DSGEs models, the
likelihood evaluation eventually becomes one of the bottlenecks in the estimation process.

As mentioned above, we can treat the policy function of (log-) linearized DSGE models as
a linear SSM, where we assume that the behavior of a set of time series links to the dynamics
of some potentially unobserved states. In the case of linear SSMs with Gaussian disturbances,
we may use the so-called Kalman filter (KF) to recursively determine these states’ mean vector
and variance matrix for a given set of observed data. Consequently, the KF also provides the
means to evaluate the likelihood function of the model. However, this recursive algorithm
quickly becomes computationally demanding as the model’s complexity increases. To reduce the
computational burden of the KF, we might exploit the fact that for time-invariant and stationary
SSMs, the uncertainty about the model’s states converges towards an equilibrium as the number
of observations increases. Hence, after a certain number of observations, it is no longer necessary
to update the states’ variance matrix, and we can replace the regular KF with a stationary
recursion, which we refer to as a steady-state Kalman filter (SKF). However, the convergence
process of the states’ variance matrix can take many periods, especially when estimating DSGE
models. Therefore, in this paper, we propose a variant of the KF based on a SKF augmented
in the manner of de Jong (1988, 1991). We show that the additional computations caused by
augmenting the filter require fewer arithmetic operations than those necessary to update the
states’ variance matrix. We find that this ASKF can significantly reduce the computational burden
of the likelihood evaluation in medium- to large-scale SSMs. Furthermore, we show that for
DSGE models without measurement error, where the number of exogenous state variables equals
the number of the observable time series, it is usually possible to determine the equilibrium
variance matrix of the model’s states analytically.

The ASKF adds to a strand of literature that attempts to evaluate the likelihood of linear SSMs
more efficiently. For models where the number of observed time series exceeds the number
of states, Jungbacker and Koopman (2014) suggest a model transformation that reduces the
dimensionality of the observation vector to the dimension of the state vector. This „collapsing of
large observation vectors,“ as Durbin and Koopman (2012) call it, is particularly helpful in the
context of dynamic factor models, where we attribute the common dynamics from a typically
large number of time series to the movement in a small number of unobserved factors.

3Note that Smets and Wouters (2007) generate only 250000 draws from the posterior distribution using the
Random Walk Metropolis-Hastings sampler, where each draw is equivalent to one likelihood evaluation. However,
as mentioned by Chib and Ramamurthy (2010), a careful exploration of the parameter space to find the mode
of the posterior distribution needed to tune the Random Walk Metropolis-Hastings algorithm often requires a
large amount of additional likelihood evaluations.
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Koopman and Durbin (2000) propose a version of the KF in which they do not treat obser-
vations as vectors but consider each element of the observation vector as a new observation.
Durbin and Koopman (2012, Chapter 6.4.4) show that this univariate treatment of multivariate
observation vectors (UKF) requires fewer arithmetic operations than the regular KF, especially
when the number of observed time series is large. Further, the UKF has proven particularly
helpful when dealing with diffuse initialization problems.

Using the generic SSM of Chib and Ramamurthy (2010) – a simulation model with ten
observable time series and five state variables – to compare the ASKF with the UKF, we find that
the former eventually will outperform the latter, provided that the convergence process of the
states’ variance matrix lasts for at least 50 periods. Additionally, we use the model transformation
by Jungbacker and Koopman (2014) to collapse the dimension of the observation vector, finding
that, in this case, the ASKF becomes profitable after about 75 periods. The ASKF needs some
periods to acclimatize because it requires determining the equilibrium variance matrix of the
model’s states prior to the actual recursion. However, since the convergence speed of the states’
variance matrix typically cannot be determined ex-ante and the likelihood evaluation is usually
relatively cheap in cases where the convergence process lasts only for a couple of periods, we
consider the ASKF a valid option to evaluate the likelihood of SSMs, where the number of
observed time series exceeds the number of states.

If, on the other hand, the number of states is significantly larger than the number of observable
variables, as is often the case for structural DSGE models, the techniques mentioned above
become less valuable. For this reason, Herbst (2015) suggests using the Chandrasekhar recursion
(CR) developed by Morf (1974) and Morf et al. (1974) when estimating medium to large-scale
DSGE models. Compared to the regular Kalman recursion, this algorithm replaces the Riccati
difference equation (RDE), typically used to update the state variance matrix by another set
of difference equations. When the number of state variables is significantly larger than the
dimension of the observation vector, this set of „Chandrasekhar-type“ difference equations
can be shown to require fewer arithmetic operations than the original algorithm. We compare
FORTRAN and MATLAB® implementations of the CR and the ASKF using the DSGE model
introduced by Smets and Wouters (2007) as a benchmark. Even considering a variant of the
Smets and Wouters (2007) model, in which all model variables are considered to be states,
which is favorable for the CR, the FORTRAN implementation of the ASKF is almost twice as fast
as the FORTRAN implementation of the CR. The ASKF performs even better in MATLAB®, being
about three times quicker than the CR. Compared to the regular KF and the UKF, we find that
the ASKF reduces the computational burden by 60 to 80 percent, depending on whether we
consider all model variables as states or not.

The remainder of the paper reads as follows. The following section revisits some basic
concepts necessary for the derivation of the ASKF. In Section 2.3, we will outline the basic
idea of the ASKF and present an efficient algorithm to compute the log-likelihood of linear and
time-invariant SSMs. Furthermore, we compare the additive and multiplicative operations of the
regular KF and the ASKF for each additional observation and discuss the latter’s implementation.
In the subsequent section, we apply the ASKF to the generic SSM by Chib and Ramamurthy
(2010) and the DSGE model introduced by Smets and Wouters (2007) and compare it in terms
of speed and accuracy to the regular KF, the UKF, and the CR. The last section concludes the
paper.

2.2 State-spacemodels and the Kalman-Filter
In the following, we revisit some basic concepts and tools relevant throughout this paper. First,
we introduce the class of linear and time-invariant state-space models (SSMs) and a textbook
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version of the Kalman filter (KF). Then we analyze the asymptotic properties of the filter and
the concept of a steady-state Kalman filter (SKF). Finally, we introduce the augmented Kalman
filter (AKF), which will form the foundation for deriving the augmented steady-state Kalman
filter (ASKF) in the subsequent section.

2.2.1 State-space representation
As a general framework for our analysis, let us assume we have the following time-invariant,
linear, and Gaussian SSM:4

yt = h+H ·wt + ut , ut ∼ N(0,R), ∀t = 1, 2, . . . , N (2.2.1a)

wt = F ·wt−1 + vt , vt ∼ N(0,Q), w0 ∼ N(µ0,C0), ∀t = 1, 2, . . . , N (2.2.1b)

where yt ∈ Rny and wt ∈ Rnw are vectors containing the observed data and the potentially
unobserved states at time t. The system matrices F ∈ Rnw×nw , H ∈ Rny×nw , Q ∈ Rnw×nw , R ∈ Rny×ny ,
and the vector h ∈ Rny may be functions of a potentially uncertain vector θ of time-invariant
deep parameters. The normally distributed disturbances ut ∈ Rny and vt ∈ Rnw are assumed to
be serially independent and uncorrelated with each other, i.e.,

E[uiu
T
j ] =

¨

R, i = j,
0, i 6= j.

, E[viv
T
j ] =

¨

Q, i = j,
0, i 6= j.

, E[uiv
T
j ] = 0, ∀ i, j = 1,2, . . . , N .

Furthermore, they shall be uncorrelated to the initial state vector w0, so that

E[ut(w0 −µ0)
T ] = E[vt(w0 −µ0)

T ] = 0, ∀t = 1, 2, . . . , N .

If all eigenvalues of the matrix F lie within the unit circle, we will call (2.2.1) a stationary SSM.
Throughout this paper, we will use the SSM (2.2.1) as a flexible and general framework for
the derivation and analysis of the ASKF. However, in some situations it will be convenient
to consider the special case of the SSM (2.2.1) without the measurement error ut , i.e., ut =
0, ∀t = 1,2, . . . , N and R= 0, resulting in

yt = h+H ·wt , ∀t = 1, 2, . . . , N (2.2.2a)

wt = F ·wt−1 + vt , vt ∼ N(0,Q), w0 ∼ N(µ0,C0), ∀t = 1, 2, . . . , N (2.2.2b)

Further, we will assume the system matrices H, F, and Q of SSM (2.2.2) to take the form

H=
�

Hz Hx

�

, (2.2.2c)

F=
�

Fz

Fx

�

, (2.2.2d)

Q=
�

Qz 0
0 0

�

, (2.2.2e)

and that the quantities wt and vt define as

wt :=
�

zT
t xT

t

�T
, vt :=

�

vT
t,z 0

�T
, ∀ t = 1,2, . . . , N ,

4We refer to Durbin and Koopman (2012, Chapter 4) for a textbook treatment of the KF with respect to SSMs,
where the system matrices are allowed to change over time. However, note that most (log-) linearized DSGE
and a variety of other time series models can be represented in terms of a time-invariant SSM.
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where xt ∈ Rnx represents the vector of the predetermined states already known from period t−1.
In contrast, the vector zt ∈ Rnz collects the exogenous states of the model, whose realization
is affected by the stochastic innovations vector vt,z ∈ Rnz . The framework described by SSM
(2.2.2) will meet the design requirements of a large number (log-) linearized DSGE models,
such as the model introduced by Smets and Wouters (2007).

2.2.2 The Kalman filter
Both Bayesian and frequentist estimation techniques often require the evaluation of the likelihood
function. A suitable tool for this purpose is the KF. Since the SSM (2.2.1) is Gaussian, for a given
initialization (µ0,C0) and a set of observations YN = {y1,y2, . . . ,yN} generated by SSM (2.2.1),
the KF represents a recursive algorithm to compute the mean vectors — wt|t−1 := E[wt |Yt−1]
and µt := E[wt |Yt]— and variance matrices — Pt|t−1 := Var[wt |Yt−1] and Ct := Var[wt |Yt]—
of wt given Yt−1 and wt given Yt , respectively, for all periods t = 1,2, . . . , N . If we define

Kt := Pt|t−1HT
�

HPt|t−1HT +R
�−1

, ∀t = 1,2, . . . , N , (2.2.3)

and let et := yt − h−Hwt|t−1 and Ut := HPt|t−1HT + R denote the forecast error of yt given
Yt−1 and its corresponding variance matrix, respectively, we receive the Kalman recursion for
t = 1,2, . . . , N as

wt|t−1 = F µt−1, (2.2.4a) Pt|t−1 = F Ct−1 FT +Q, (2.2.4b)

et = y(h)t −H wt|t−1, (2.2.4c) Ut = H Pt|t−1 HT +R, (2.2.4d)

µt = wt|t−1 +Kt et , (2.2.4e) Ct = Pt|t−1 −Kt H Pt|t−1, (2.2.4f)

where y(h)t := yt − h for all t = 1, 2, . . . , N . A detailed derivation of recursion (2.2.4) is provided
in Appendix 2.A. Throughout this paper we will follow Lütkepohl (2007) and refer to the matrix
Kt as the so-called Kalman gain.5

To avoid confusion, note that alternatively to the initialization (µ0,C0) the KF may also be
initialized at (w1|0,P1|0) with w1 ∼ N(w1|0,P1|0). In this case the state equation (2.2.1b) for
t = 1 becomes redundant so that the corresponding SSM reduces to

yt = h+H ·wt + ut , ut ∼ N(0,R), ∀t = 1, 2, . . . , N , (2.2.5a)

wt = F ·wt−1 + vt , vt ∼ N(0,Q), w1|Y0 ∼ N(w1|0,P1|0), ∀t = 2, 3, . . . , N . (2.2.5b)

The Kalman recursion for the SSM (2.2.5) is identical to recursion (2.2.4), apart from the fact
that in t = 1 steps (2.2.4a) and (2.2.4b) are redundant, since w1|0 and P1|0 are already known.
Thus, if we choose w1|0 = Fµ0 and P1|0 = FC0FT +Q, the quantities computed by the KF are the
same as the ones computed for the SSM (2.2.1). Although the Kalman filter is often derived
based on the alternative SSM (2.2.5) (see e.g., Hamilton (1994, pp. 372-408), Durbin and
Koopman (2012) or DeJong and Dave (2011)), hereafter we will focus on the SSM (2.2.1)
presented at the beginning of this subsection, since it is more convenient for the derivation of
the ASKF in Section 2.3.

As an important by-product the KF provides a possibility to evaluate the likelihood function of
the SSM (2.2.1) for a given set of parameters θ and a given initialization (µ0,C0). To see this,
note that yt given Yt−1 is normally distributed for all t = 1, 2, . . . , N , with corresponding mean

5Note that some authors, e.g., Hamilton (1994) and Durbin and Koopman (2012), define the Kalman gain as
Kt := FPt|t−1HT

�

HPt|t−1HT
�−1

. In this case the Kalman gain defines the gain matrix with respect to wt+1 given
Yt , while in the current paper it is treated as the gain matrix with respect to wt given Yt .
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vector h+Hwt|t−1 and variance matrix Ut . Hence using the forecast-error decomposition the
log-density of YN yields:

log
�

fYN

�

= −ny N

2
log(2π) − 1

2

N
∑

t=1

log |Ut | −
1
2

N
∑

t=1

eT
t U−1

t et . (2.2.6)

It is well-known (see e.g., Durbin and Koopman (2012, pp. 185)) that under quite general regu-
larity conditions the distribution of the maximum-likelihood estimator for the deep parameters
θ , defined by

θ̂ := arg max
θ

log
�

fYN

�

,

is for large N approximately normally distributed with mean vector θ̂ and variance matrix

ÓVar
�

θ̂
�

=

�

∂ log
�

fYN

�

∂ θ ∂ θ T

�−1

.

For a more detailed treatment of the asymptotic properties of the maximum-likelihood estimator,
see e.g Hamilton (1994) and Harvey (1990a).

Taking the Bayesian perspective the density fYN
for a given parameter vector θ is also important,

since it is required to generate draws from posterior distribution fθ |YN
∝ fYN |θ · fθ .

Note that the quantities of the KF, and therefore the log-likelihood defined by (2.2.6), are
conditional on the distribution of the initial state vector w0, which itself is determined by (µ0,C0).
The probably most common initialization strategy for stationary SSMs, is to specify µ0 and C0 as
the unconditional mean vector µ and the unconditional variance matrix C of the state vector wt

(see e.g., Hamilton (1994, pp. 378) or Durbin and Koopman (2012, pp. 123,137-138)). These
are obtainable from the state equation (2.2.1b) as

µ= 0 (2.2.7a)

and as the positive semi-definite matrix C solving the discrete Lyapunov equation

0= FCFT +Q−C. (2.2.7b)

This means that µ0 and C0 are determined by F and Q, which in turn are determined by the
vector of deep parameters θ . Consequently, using this initialization (2.2.6) represents the exact
or unconditional log-likelihood of the model.

2.2.3 The steady-state Kalman filter
Within the class of time-invariant and linear SSMs, it is a well-known feature of the KF that
under certain circumstances the sequences {Ct}Nt=1 and {Pt|t−1}Nt=1 converge towards fixed
matrices. In this case we call the KF asymptotically time-invariant. To establish conditions for
an asymptotically time-invariant filter, first note that in a time-invariant SSM like (2.2.1), the
sequences {Ct}Nt=1 and {Pt|t−1}Nt=1, obtained by the Kalman recursion (2.2.4) do not depend on
the data itself. This becomes obvious if we use (2.2.4b), (2.2.4d), and (2.2.4f) to obtain the law
of motion of the sequence {Ct}Nt=1 as

Ct = FCt−1FT +Q− �FCt−1HT +G
� �

HCt−1HT +R
�−1 �

HCt−1FT +GT
�

, (2.2.8a)
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with H := HF, G := QHT and R := HQHT + R. Analogously, we can also obtain the law of
motion of the sequence {Pt|t−1}Nt=1 as

Pt+1|t = FPt|t−1FT − FPt|t−1HT
�

HPt|t−1HT +R
�−1

HPt|t−1FT +Q. (2.2.8b)

Furthermore, both (2.2.8a) and (2.2.8b) belong to the class of Riccati difference equations
(RDEs), which convergence properties have been intensively studied by the literature (see
e.g., Caines and Mayne (1970), Chan et al. (1984), de Souza et al. (1986) or De Nicolao and
Gevers (1992)). In what follows, we give a brief summary of their results by establishing some
well-known sufficient conditions under which the sequences {Ct}Nt=1 and {Pt|t−1}Nt=1 converge
against fixed matrices.6

We shall introduce some basic notions in advance: First, we call non-negative definite matrices
C+ and P+ solutions of RDEs (2.2.8a) and (2.2.8b), respectively, if they satisfy the discrete
algebraic Riccati equations (DAREs)

C+ = FC+FT +Q− �FC+HT +G
� �

HC+HT +R
�−1 �

HC+FT +GT
�

, (2.2.9a)

P+ = FP+FT − FP+HT
�

HP+HT +R
�−1

HP+FT +Q, (2.2.9b)

corresponding to (2.2.8a) and (2.2.8b), respectively. Furthermore, if C+ and P+ = FC+FT+Q are
solutions to RDE (2.2.8a) and (2.2.8b), respectively, we call them stabilizing / strong solutions,
if and only if all eigenvalues of the matrix

F̃ = F
�

I− P+HT
�

HP+HT +R
�−1

H
�

(2.2.10)

are inside / inside or on the unit circle.7 Consequently, every stabilizing solution is also a strong
solution, while a strong solution is not necessarily also a stabilizing solution. Further, we may
show that RDEs such as (2.2.8a) or (2.2.8b) have at most one (and therefore unique) strong
solution (see e.g., de Souza et al., 1986).

Using this terminology we may establish three sufficient conditions under which the KF
becomes asymptotically time-invariant:

Proposition 2.2.1. Suppose C0 ∈ Rnw×nw is an arbitrary, but symmetric and positive-definite
matrix. Then in case of SSM (2.2.1) the sequences {Ct}Nt=1 and {Pt|t−1}Nt=1 converge towards
fixed matrices C+ and P+, i.e.

lim
N→∞

{Ct}Nt=1 = C+ and lim
N→∞

{Pt|t−1}Nt=1 = P+,

if at least one of the following statements is true:

(i) The matrix R is non-singular and all eigenvalues of the matrix F are inside the unit-circle. In
this case C+ and P+ are stabilizing solutions of the RDEs (2.2.8a) and (2.2.8b), respectively.

(ii) The matrix R is non-singular and all eigenvalues of the matrix F = F−GR−1H are inside
the unit-circle. In this case C+ and P+ are stabilizing solutions of the RDEs (2.2.8a) and
(2.2.8b), respectively.

6For a more general discussion on the convergence of time-invariant RDEs see Appendix 2.B.
7Note that some authors, e.g., Bini et al. (2012); Chiang et al. (2010), use the term almost stabilizing solution as

synomym for a strong solution.
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(iii) The matrix C0 satisfies the discrete Lyapunov equation

0= FC0FT +Q−C0

and the all eigenvalues of the matrix F are inside the unit-circle. In this case C+ and P+
are strong solutions of the RDEs (2.2.8a) and (2.2.8b), respectively. Moreover, we may
state that the matrices C0 −C+ and P1|0 − P+ are positive-semi-definite.

We postpone the formal proof of Proposition 2.2.1 to Appendix 2.B. From statement (i) of
Proposition 2.2.1 follows that for all SSMs relying on a stationary process for wt the KF becomes
asymptotically time-invariant if the variance matrix of the measurement error ut is non-singular.
These assumptions are often met, for example, in the context of dynamic factor models (see
e.g., Stock and Watson, 2016). There are however situations where R might be singular, but
R has full rank. This is often the case in the DSGE context (see e.g., Chari et al., 2007), as
measurement errors are often omitted in these models. In this case we may use statement (ii)
of Proposition 2.2.1, to investigate the convergence of (2.2.8a). If neither the conditions of
statement (i) nor the conditions of statement (ii) are satisfied, statement (iii) will at least ensure
that for any stationary SSM, both the matrix sequences, {Ct}Nt=1 and {Pt|t−1}Nt=1, converge to an
equilibrium, provided they are initialized at the unconditional variance matrix C of the state
vector.

As mentioned before, all three statements of Proposition 2.2.1 provide sufficient conditions
for the convergence of the matrix sequences {Ct}Nt=1 and {Pt|t−1}Nt=1. However, statements (i)
and (ii) of Proposition 2.2.1 imply that C+ and P+ are stabilizing solutions of the RDEs (2.2.8a)
and (2.2.8b), while statement (iii) guarantees only convergence to a strong solution. Note that
convergence to a stabilizing solution has the major advantage that we may use standard methods,
such as the Schur algorithm (Bini et al., 2012, Chapter 3.2), the Newton algorithm (Bini et al.,
2012, Chapter 3.3) or the doubling algorithm (Anderson and Moore, 1979, Chapter 6.7), to
numerically solve (2.2.9a) for its stabilizing solution. Although there are iterative algorithms
for determining a strong solution, such as the structured doubling algorithm described by Bini
et al. (2012, Chapter 5), these algorithms are potentially less efficient from a computational
point of view (see e.g., Chiang et al., 2010).

One of the advantages of an asymptotically time-invariant filter is that at a certain period τ,
when Cτ has converged sufficiently close to C+, i.e., Cτ ≈ Cτ−1, the Kalman recursion (2.2.4)
for µt might be replaced by

µt,+ = K+ y(h)t + J+ µt−1,+, ∀ t = τ+ 1,τ+ 2, . . . , N , (2.2.11a)

with

P+ = FC+FT +Q, (2.2.11b)

U+ = HP+HT +R, (2.2.11c)

K+ = P+HT U−1
+ , (2.2.11d)

J+ = (I−K+H)F. (2.2.11e)

This usually reduces the computational burden significantly, since (2.2.11) does not involve
the computationally expensive steps (2.2.4b), (2.2.4d) and (2.2.4f) of the original recursion.
Furthermore, from (2.2.4a) and (2.2.4c) follows that the quantities et and wt|t−1 for t =
τ+ 1,τ+ 2, . . . , N may be received in vectorized form as
�

wτ+1|τ,+ · · · wN |N−1,+

�

= F
�

µτ,+ · · · µN−1,+

�

, (2.2.11f)
�

eτ+1,+ · · · eN ,+

�

=
�

y(h)τ+1 · · · y(h)N

�−H
�

µτ,+ · · · µN−1,+

�

, (2.2.11g)
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Throughout this paper, we will refer to the time-invariant filter described by (2.2.11) as the SKF.
A detailed derivation of (2.2.11) is given in Appendix 2.C.

Note that Hansen and Sargent (2013, pp. 160) suggest to initialize the KF at the stabilizing
solution of (2.2.8a) or (2.2.8b), respectively, i.e., µ0 = µ0,+ and C0 = C+.8 This initialization
is often used in the context of maximum-likelihood estimation, since despite the fact that the
log-likelihood calculated on the basis of this initialization usually does not reflect the exact or
unconditional log-likelihood, the determined maximum-likelihood estimator may (under cer-
tain preconditions, see e.g., Harvey, 1990b, pp. 119, 129) have the same large-sample properties
as the unconditional maximum-likelihood estimator. Although, the maximum-likelihood es-
timators based on an initialization different from the exact or unconditional initialization is
in generally less efficient, the steady-state initialization has the advantage that the resulting
log-likelihood can be computed using the quicker SKF (2.2.11) with τ= 0. Furthermore, given
C0 = C+ we can rewrite (2.2.6) in a more compact way:

log
�

fYN

�

+ = −
1
2

�

ny N log(2π) + N log |U+|+ tr
�

eT
1:N ,+ U−1

+ e1:N ,+

��

, (2.2.12)

where e1:N ,+ :=
�

e1,+ · · · eN ,+

�

.

2.2.4 The augmented Kalman filter
There may be situations where we want to investigate how the initial state vector (or some
components of it) affects the quantities obtained by the KF. For instance, consider a SSM with
several non-stationary states. A typical approach to initialize such a model is to consider the
non-stationary elements of state vector as diffuse, which means that their variance will tend
towards infinity. In such situations, it might be worth considering another variant of the KF,
which goes back to influential work by de Jong (1988, 1991). In what follows, we briefly describe
a version of what Durbin and Koopman (2012) call the augmented Kalman filter (AKF).9

Let us assume that w0 ∈ Rnw̄ and d ∈ Rnd with nw̄, nd ≤ nw are two independent random
vectors, such that we may write the initial state vector as

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0), (2.2.13)

where aw ∈ Rnw , Aw ∈ Rnw×nw̄ and Ad ∈ Rnw×np . Note that (2.2.13) implies that w0 has the mean
vector µ0 = aw + Awµ0 + Adδ0 and the variance matrix C0 = AwC0AT

w + AdD0AT
d . By choosing

aw, Aw and Ad appropriately, we may use (2.2.13) to decompose w0 into multiple components
of interest. Durbin and Koopman (2012), for instance, choose aw, Aw and Ad, such that aw

represents the fixed (and observable) elements, w0 the stationary elements, and d the diffuse
elements of w0.

Now suppose, we specified w0 according to (2.2.13) and want to examine how the distribution
of the random vector d affects the quantities µt and Ct of the KF. As we show in Appendix 2.D,
denoting the time t quantities generated by the Kalman recursion (2.2.4) initialized at (µ̃0, C̃0),
with

µ̃0 = aw +Aw µ0, (2.2.14a)

C̃0 = Aw C0 AT
w, (2.2.14b)

8Note that in this context µ0,+ is usually chosen to be unconditional mean vector µ= 0.
9A similar treatments of the AKF with respect to the alternative state-space representation (2.2.5) are given by

Durbin and Koopman (2012, Chapter 5.7).
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by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t , we may express µt and Ct as

µt = µ̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

, ∀ t = 1, 2, . . . , N , (2.2.15a)

Ct = C̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1
AT

d MT
t , ∀ t = 1, 2, . . . , N , (2.2.15b)

where we may obtain st , St and Mt recursively as

st = st−1 + (HFMt−1)
T Ũ−1

t ẽt , ∀ t = 1,2, . . . , N , (2.2.15c)

St = St−1 + (HFMt−1)
T Ũ−1

t (HFMt−1), ∀ t = 1,2, . . . , N , (2.2.15d)

Mt =
�

I− K̃tH
�

F Mt−1, ∀ t = 1,2, . . . , N , (2.2.15e)

with s0 = 0, S0 = 0 and M0 = I. Furthermore, we may write the log-density of YN as

log( fYN
) = log

�

fYN |d=0

�− 1
2

log |I+D0 AT
d SN Ad | −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ), (2.2.16)

where log
�

fYN |d=0

�

represents the log-density of YN given d = 0.10 Thus, using the AKF (2.2.15)
we can directly examine the effect of δ0 and D0 on µt , Ct and log( fYN

) from (2.2.15a), (2.2.15b),
and (2.2.16). This allows us to study the special cases in which parts of w0 are considered to be
fixed (i.e., D0→ 0) or diffuse (i.e., D0→∞). In Appendix 2.D we provide a digression on how
to incorporate initialization strategies for non-stationary SSMs within the AKF (2.2.15).

2.3 Augmented steady-state Kalman filter
Equipped with the concepts introduced in the previous section, we now turn our attention to
the derivation of the ASKF. For this purpose, we will first outline the basic idea of an ASKF and
obtain a general algorithm to evaluate the likelihood function of a linear and time-invariant SSM.
We show that compared to the standard KF this algorithm lowers the computational burden
associated with each additional observation. Finally, we provide conditions for applicability of
the ASKF which we show are satisfied for all stationary SSMs. Further, we show that for the
SSM (2.2.2) with ny = nz the algorithm can be additionally optimized, since in this case there
is an analytical solution to RDE (2.2.8a).

2.3.1 Basic idea
Suppose we want to evaluate the log-density log( fYN

) of the SSM (2.2.1) for a given initialization
(µ0,C0). Furthermore, suppose that the RDE (2.2.8a) has a solution C+ such that C0 −C+ is a
positive semi-definite matrix.

As mentioned earlier, we can determine the log( fYN
) for this initialization using the KF (2.2.4)

and equation (2.2.6). However, we could also employ the AKF (2.2.15) along with equation
(2.2.16) to determine log( fYN

). To do so, we need to specify the model (2.2.13) for the initial

10Note that the recursion for st , St and Mt can be incorporated in the Kalman recursion used to compute µ̃t ,
C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t . A detailed derivation of equations (2.2.15)-(2.2.16) and how these steps
can be incorporated in the Kalman recursion (2.2.4) is provided in Appendix 2.D. A similar treatment of the
AKF with respect to the alternative state-space representation (2.2.5) is given by Durbin and Koopman (2012,
pp. 141-146).
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state vector w0 such that

µ0 = aw +Aw µ0 +Ad δ0, (2.3.1a)

C0 = Aw C0 AT
w +Ad D0 AT

d , (2.3.1b)

ensuring that w0 ∼ N(µ0,C0). There are several possible specifications of (2.2.13) which satisfy
(2.3.1a) and (2.3.1b). The basic idea of the ASKF is to choose the model (2.2.13) for the
initial state vector w0 in a way that makes the Kalman recursion, on which the AKF is based,
time-invariant. To do so, we will specify (2.2.13) as follows: First, we will set

aw = 0, (2.3.2a)

Aw = I, (2.3.2b)

µ0 = µ0, (2.3.2c)

C0 = C+, (2.3.2d)

so that from (2.2.14a) and (2.2.14b) follows µ̃0 = µ0 and C̃0 = C+, respectively. Second, in
order to satisfy (2.3.1a) and (2.3.1b), we set

δ0 = 0, (2.3.2e)

D0 = I, (2.3.2f)

and choose Ad such that

AdAT
d = C0 −C+. (2.3.2g)

Hence, the fully specified version of (2.2.13) yields

w0 =w0 +Ad d, w0 ∼ N(µ0,C+), d ∼ N(0, I). (2.3.3)

In the current paper, we use the singular value decomposition of C0−C+ to obtain Ad . However,
note that in the cases where C0−C+ is non-singular, one might also set Ad = I and D0 = C0−C+.
In either way, we need to ensure that D0 is positive definite.

Specifying (2.2.13) this way, the quantities µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t corresponding
to the KF (2.2.4) initialized at (µ̃0, C̃0) become

µ̃t = µt,+, w̃t|t−1 =wt|t−1,+, ẽt = et,+,

C̃t = C+, P̃t|t−1 = P+, Ũt = U+, K̃t = K+, ∀ t = 1,2, . . . , N ,

where µt,+, C+, wt|t−1,+, P+, et,+, U+ and K+ are the quantities computed by the SKF based
on the initialization (µ0,+,C+), with µ0,+ = µ0. This reduces the computational burden of the
AKF in two ways: First, instead of the regular KF we may use the faster SKF to compute the
quantities µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt , K̃t and log

�

fYN |d=0

�

. Second, we can simplify the recursion
(2.2.15c)-(2.2.15e), since the expression

�

I− K̃tH
�

F becomes time-invariant and identically to
J+. Thus, the quantity Mt reduces to

Mt = Jt
+, ∀ t = 0, 1, . . . , N . (2.3.4)
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2.3.2 Likelihood evaluation
Furthermore, suppose our interest lies exclusively in the evaluation of the log-density log

�

fYN

�

.
If we specify (2.2.13) according to (2.3.2), we can simplify (2.2.16) to

log( fYN
) = log

�

fYN

�

+ −
1
2

log |I+AT
d SN Ad |+

1
2

sT
N Ad (I+AT

d SN Ad)
−1 AT

d sN , (2.3.5)

where log
�

fYN

�

+ = log
�

fYN |d=0

�

represents the log-density obtained from the SKF based on the
initialization (µ0,+,C+), with µ0,+ = µ0. Hence, the log-density log

�

fYN

�

is fully determined by
log

�

fYN

�

+, sN , SN , and Ad .
It turns out that we may further optimize the computation of sN , SN , and log

�

fYN

�

+, in terms
of the required arithmetic operations. To do so, let us define

bt := VT et,+, ∀ t = 1,2, . . . , N , (2.3.6a)

Bt :=
�

Jt
+

�T
HT V, ∀ t = 0,1, . . . , N − 1, (2.3.6b)

with V satisfying U−1
+ = VVT , so that we may obtain sN and SN as

sN = B0:N−1 vec (b1:N ), (2.3.7a)

SN = B0:N−1 BT
0:N−1, (2.3.7b)

with B0:N−1 :=
�

B0, · · · ,BN−1

�

and b1:N :=
�

b1, · · · ,bN

�

. It follows from (2.3.6) that b1:N yields

b1:N = VT e1:N ,+, (2.3.8)

and that B0:N−1 is recursively defined by

Bt := JT
+ Bt−1 ∀ t = 1,2, . . . , N − 1, (2.3.9)

with B0 = HT V. Hence, using (2.3.8) to rewrite (2.2.12) as

log
�

fYN

�

+ = −
1
2

�

ny N log(2π) + N log |U+|+ tr
�

b1:N bT
1:N

��

, (2.3.10)

the log-density log
�

fYN

�

+ is obtainable by performing the steps displayed in Algorithm 3.1.

The ASKF described in Algorithm 3.1 has several advantages compared to the regular KF,
where the probably most important is that, although the initial setup (Steps (1)-(3)) of the filter
is more expansive, it requires fewer arithmetic operations for each additional observation, so
that the recursive part of the algorithm is more efficient. To see this, suppose we implement
the KF and the ASKF using standard matrix multiplication, ignoring the advantages which may
arise from the symmetrical nature of variance matrices. For this case, Table 2.1 lists the number
of additional additive and multiplicative operations that result if we increase the number of
observations from N to N + 1. It turns out that the ASKF saves n2

y + nw(n2
w − 1) + nw(nw − 1) +

nw(nw−1)2+2ny(ny−1)(nw−1) additive and 2n3
w+ny+n2

y(nw−1)+ny(ny−1)nw multiplicative
operations for each additional observation. Further, and almost more importantly, the ASKF
does not require the repeated computation of the inverse and the determinant of the ny × ny

matrix Ut . Finally, the ASKF offers more room for parallelization since only the computation of
µt,+ and Bt are strictly sequential.
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Algorithm 3.1: Using the ASKF to compute log
�

fYN

�

for the SSM (2.2.1)

Input :µ0, C0 and C+, where C0 −C+ is positive semi-definite;

Execute : Steps (1)-(7);

(1) Choose aw, Aw, µ0, C0, δ0, D0, and Ad according to (2.3.2);

(2) Obtain P+, U+, K+ and J+ from (2.2.11b)-(2.2.11e);

(3) Obtain V such that U−1
+ = VVT and set B0 = HT V;

(4) for t = 1 to N − 1 do

Obtain µt,+ (with µ0,+ = µ0) and Bt from (2.2.11a) and (2.3.9);

(5) Obtain e1:N ,+ and b1:N from (2.2.11g) and (2.3.8);

(6) Obtain sN , SN and log
�

fYN

�

+ from (2.3.7a), (2.3.7b) and (2.3.10);

(7) Obtain log
�

fYN

�

from (2.3.5);

Output : log
�

fYN

�

;

2.3.3 Requirements to apply the augmented steady-state Kalman filter
To apply Algorithm 3.1 to the SSM (2.2.1) for a given initialization (µ0,C0), we need to satisfy
the following assumptions:

Assumption 2.3.1. We assume that

(i) there is a solution C+ to the RDE (2.2.8a),

(ii) such that the matrix C0 −C+ is positive semi-definite.

While Assumption 2.3.1(i) is needed to use the SKF at all, Assumption 2.3.1(ii) is necessary
to satisfy (2.3.1b), since D0 is positive-definite by definition, so that AdD0AT

d must be at least
positive-semi-definite. Although it is not necessary in theory, in practice, it is advisable to
ensure that C+ represents a strong solution of RDE (2.2.8a). Otherwise the matrix J+ possesses
explosive eigenvalues, making Algorithm 1 numerically unstable.11

Stationary state-space models: To check how restrictive the conditions of Assumption 2.3.1
are, let us first consider the class of stationary SSMs. Thus, we consider models where all the
eigenvalues of the transition matrix F lie within the unit circle, or in other words where F is
stable. Thus, from Corollary 2.2.1(iii), we know that for stationary SSMs, the preconditions
for the usage of the ASKF will be satisfied, provided we use the unconditional variance of wt

to initialize the SSM (2.2.1), i.e., C0 = C. To obtain C+, which in this case is a strong solution
to (2.2.8a), we could use an iterative algorithm, such as the structured doubling algorithm
described by Bini et al. (2012, Chapter 5). It is convenient to consider two special cases where
C+ we may obtain in a different manner.

11Note that we show in Appendix 2.B and 2.C that the matrices F̃ and J+ share the same set of eigenvalues.
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Table 2.1: Computational expanse of an additional observation

augmented steady-state Kalman filter
Eqn. Additional Matrix Operations Multiplications Additions
(2.2.11a) (nw × ny)[(ny × 1)− (ny × 1)] + (nw × nw)(nw × 1) ny nw + n2

w ny nw + n2
w + ny − nw

(2.3.9) (nw × nw)(nw × ny) ny n2
w ny n2

w − ny nw
(2.2.11g) (ny × 1)− (ny × nw)(nw × 1) ny nw ny nw
(2.3.8) (ny × ny)(ny × 1) n2

y n2
y − ny

(2.3.7a) (nw × 1) + (nw × ny)(ny × 1) ny nw ny nw
(2.3.7b) (nw × nw) + (nw × ny)(ny × nw) ny n2

w ny n2
w

(2.3.10) (ny × ny) + (ny × 1)(1× ny) n2
y n2

y

mASKF 2n2
y + n2

w + 2ny n2
w + 3ny nw

aASKF 2n2
y + n2

w − nw + 2ny n2
w + 2ny nw

Kalman filter
Eqn. Additional Matrix Operations Multiplications Additions
(2.2.4a) (nw × nw)(nw × 1) n2

w n2
w − nw

(2.2.4b) (nw × nw)(nw × nw)(nw × nw) + (nw × nw) 2n3
w 2n3

w − n2
w

(2.2.4c) (ny × 1)− (ny × 1)− (ny × nw)(nw × 1) ny nw ny nw + 2ny − nw
(2.2.4d) (ny × nw)(nw × nw)(nw × ny) + (ny × ny) ny n2

w + n2
y nw ny n2

w + n2
y nw − ny nw

(2.2.3) (nw × ny)(ny × ny) n2
y nw n2

y nw − ny nw

(2.2.4e) (nw × 1) + (nw × ny)(ny × 1) ny nw ny nw
(2.2.4f) (nw × nw)− (nw × ny)(ny × nw) ny n2

w ny n2
w

(2.2.6) (1× 1) + (1× ny)(ny × ny)(ny × 1) n2
y + ny n2

y

mKF 2n3
w + n2

y + n2
w + ny + 2n2

y nw + 2ny n2
w + 2ny nw

aKF 2n3
w + n2

y + 2ny − 2nw + 2n2
y nw + 2ny n2

w

Comparison
mKF −mASKF 2n3

w + ny + n2
y(nw − 1) + ny(ny − 1)nw

aKF − aASKF n2
y + nw(n2

w − 1) + nw(nw − 1) + nw(nw − 1)2 + 2ny(ny − 1)(nw − 1)

We count nm(l − 1) additive and nml multiplicative operations for product of a m × l and a l × n matrix. Further, nm additive
operations are counted for the sum/difference of two m×n matrices. The aKF and aASKF denote the number additive operations of
the corresponding filter, while mKF and mASKF denote their required number of multiplicative operations.

Case 1: If we consider a stationary SSM, where the variance matrix R of the measurement
error is positive-definite, it follows from Corollary 2.2.1(i) that the RDE (2.2.8a) converges
to a stabilizing solution C+ for any positive-definite initialization C0. Furthermore, C+ can
be considered the only non-negative-definite solution of the RDE (2.2.8a).12 Thus, using the
unconditional initialization, i.e., C0 = C, we may apply the classic techniques discussed in the
previous section to obtain the stabilizing solution C+ of RDE (2.2.8a). The same argumentation
applies to stationary SSMs, where R is positive-definite and where F is stable.
Case 2: Now, let us consider SSMs of the form (2.2.2), where the number of observable
variables ny equals the number of exogenous states variables nz. In the following Proposition,
we will show that in this case, we may obtain C+ = 0 as a solution to the RDE (2.2.8a) if the
matrix Hz is non-singular.

Proposition 2.3.1. Suppose there is a SSM of the form described by (2.2.2) where

(i) the number of observable variables ny equals the number of (state-) disturbances nz,

(ii) and where the matrix Hz is non-singular.

Then C+ := 0 is a solution to the RDE (2.2.8a).

Proof:
To prove that C+ := 0 is a solution to the RDE (2.2.8a), it is sufficient to show that C+ := 0

12This follows from Proposition 2.B.1(ii) in Appendix 2.B.
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satisfies the DARE

C+ = FC+FT +Q − FC+HT
�

HC+HT +R
�−1

HC+FT . (2.3.11)

with F := F−GR−1H and Q := Q−GR−1GT , which, due to Lemma 2.B.1 in Appendix 2.B, is
equivalent to the DARE (2.2.9a) corresponding to the RDE (2.2.8a). To see that C+ := 0 is a
solution to (2.3.11), note that for the SSM (2.2.2)

R = HQHT =
�

Hz Hx

�

�

Qz 0
0 0

��

HT
z

HT
x

�

=
�

HzQz 0
�

�

HT
z

HT
x

�

= HzQzH
T
z .

Thus, from the definition of Q follows that

Q = Q−GR−1GT = Q−QHT
�

HzQzH
T
z

�−1
HQ

=
�

Qz 0
0 0

�

−
�

Qz 0
0 0

��

HT
z

HT
x

�

�

Hz Qz HT
z

�−1 �
Hz Hx

�

�

Qz 0
0 0

�

=
�

Qz 0
0 0

�

−
�

QzH
T
z

0

�

(HT
z )
−1 Q−1

z H−1
z

�

HzQz 0
�

=
�

Qz 0
0 0

�

−
�

Qz

0

�

Q−1
z

�

Qz 0
�

=
�

Qz 0
0 0

�

−
�

Qz 0
0 0

�

= 0.

This, however, means that (2.3.11) simplifies to

C+ = FC+FT − FC+HT
�

HC+HT +R
�−1

HC+FT ,

which is clearly satisfied if we set C+ = 0.

�

This result is convenient since C+ = 0 satisfies Assumption 2.3.1(ii) for any positive semi-definite
C0.13 This means for ny = nz = rk(Hz), we do not even have to obtain C+ numerically and may
use Algorithm 3.1 to compute log

�

fYN

�

for an arbitrary initialization (µ0,C0).
At this point, it is appropriate to discuss why most DSGE models without measurement errors

will meet the preconditions of Proposition 2.3.1. To see this, first, consider the scenario where
ny > nz. This, in general, will lead to a model that is unable to match the data.14 Consequently,
we will have to include an appropriate number of measurement disturbances into our SSM.
However, adding zeros to the corresponding entries in the transitions matrix F we may treat
these measurement disturbances as state disturbances and get yet a SSM without measurement
error satisfying condition (i) of Proposition 2.3.1. Thus ny > nz is less of a problem. Now
consider the opposite case where ny < nz, which usually implies that our model can replicate the
data with more than one set of state disturbances. Admittedly this does not necessarily pose a
problem in estimating the model using the common KF (2.2.4). However, in this case, it is often
possible to include additional observable data series to increase the information used to estimate
the model’s parameters. This is especially true in the DSGE context since the observation vector
yt often reflects only a fraction of the potentially observable variables for these models.

Assuming nz = ny holds, we will usually find that condition (ii) of Proposition 2.3.1 is also
satisfied. To see this, note that there are only two possible scenarios where the model might
13As mentioned before, in practice, we might have to check if C+ = 0 represents a strong solution.
14We exclude the trivial case with redundant observations that are linear combinations of the remaining set of data.
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not satisfy condition (ii) of Proposition 2.3.1: In the first scenario, we have the trivial case with
rk(Hz)≤ rk(H)< ny , indicating that a fraction of the observations vector yt can be written as
a linear combination of the remaining set of observations in yt and thus contains redundant
information. More interesting is the second scenario, where rk(Hz)< rk(H) = ny . In this case, a
fraction of yt contains information that, from the model’s perspective, was already determined
in the previous period t − 1. To see this, note that we can reorder the observations vector yt so
that we can write

yt =

�

y(1)t

y(2)t

�

=

�

H(1)x
H(2)x

�

xt +

�

H(1)z
H(2)z

�

zt (2.3.12)

with rk(H(1)z ) = rk(Hz). This, however, means there is a matrix Γ satisfying

H(2)z = Γ H(1)z ,

and we can rewrite (2.3.12) to
�

y(1)t

y(2)t

�

−
�

0
Γ

�

y(1)t

︸ ︷︷ ︸

:=ỹt=

�

ỹ(1)t

ỹ(2)t

�

=

�

H(1)x
H(2)x − Γ H(1)x

�

︸ ︷︷ ︸

:=H̃x

xt +
�

H(1)z
0

�

︸ ︷︷ ︸

:=H̃z

zt . (2.3.13)

It becomes obvious from (2.3.13) that ỹ(2)t , which is the lower part of the transformed observa-
tions vector ỹt , only depends on xt , which was determined in the previous period t − 1. Hence
information on ỹ(2)t , from the model’s perspective, is already available in t−1. A possible solution
to this problem might be to replace ỹ(2)t with ˜̃y(2)t := ỹ(2)t+1. However, in summary, we can state
that a singular Hz matrix in most cases is due to a misspecified observations vector yt .

Non-stationary state-space models: In cases where the initial state vector w0 contains non-
stationary elements, there is typically no stabilizing solution to the RDE (2.2.8a), and it remains
unclear if we can meet the preconditions of Assumption 2.3.1. However, this does not mean that
Algorithm 3.1 is impractical for non-stationary SSMs. To see this, remember that it follows from
Proposition 2.3.1 that for the SSM (2.2.2) with ny = nz = rk(Hz), there is a solution C+ = 0
satisfying Assumption 2.3.1. This can be seen as an advantage compared to the CR discussed by
Herbst (2015), which strictly requires the transition matrix F to be stable.

2.4 Application
In this section, we illustrate the usage of the ASKF and compare it in terms of speed and
performance to three competitors. As a benchmark algorithm, we use the regular KF (2.2.4),
representing one of the most basic versions of the filter. The second competitor is a version of the
Chandrasekhar recursion (CR) developed by Morf (1974) and Morf et al. (1974). Compared to
the regular KF, this algorithm replaces the RDE (2.2.8a) or (2.2.8b), respectively, with another
set of difference equations. Herbst (2015) points out that this set of „Chandrasekhar-type“
difference equations requires fewer arithmetic operations than the regular KF, if the number of
states nw is large compared to the dimension ny of the observation vector yt . Therefore, Herbst
(2015) suggests using the CR when estimating medium to large-scale DSGE models since these
models typically possess a large number of state variables and only a handful of observable
variables. The implementation of the CR follows the procedure described by Herbst (2015).
As the last competitor, we choose a version of the KF based on the univariate treatment of
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multivariate observation vectors (UKF) by Koopman and Durbin (2000). To briefly recapitulate
the basic idea of this method, suppose that Hi represents the ith row of the matrix H and
that yt,i, ut,i, and hi denote the ith element of the vectors yt , ut , and h, respectively. Under

the assumption that R is a diagonal matrix, with R= diag
�

R2
1, . . . , R2

ny

�

, Koopman and Durbin
(2000) suggest replacing the multivariate measurement equation (2.2.1a) with its univariate
equivalent

yt,i = hi +Hi ·wt,i + ut,i, ut,i ∼ N(0, R2
i ) ∀i = 1,2, . . . , ny , ∀t = 1,2, . . . , N , (2.4.1a)

where wt,i−1 =wt for all i = 1, 2, . . . , ny .15 Subsequently, the corresponding version of the state
equation yields

wt,i =

¨

F ·wt−1,ny
+ vt , i = 1,

wt,i−1, i = 2,3, . . . , ny ,
, ∀t = 1,2, . . . , N . (2.4.1b)

Note that (2.4.1) can be interpreted as an univariate SSM with nw states and N ·ny observations,
whose log-likelihood function is obtainable employing the KF.16 Durbin and Koopman (2012,
Chapter 6.4.4) show that compared to the multivariate treatment, this univariate approach can
significantly reduce the number of arithmetic operations. This is especially true for models
where ny is large since the UKF avoids the inversion of the ny × ny matrix Ut . Instead, the
UKF will compute ny times the inverse of a scalar. For a textbook treatment of the UKF and its
implementation, we refer to Durbin and Koopman (2012, Chapter 6.4)

To compare the four filters, we use two frameworks: First, we analyze the generic SSM by
Chib and Ramamurthy (2010) as an example of a classic stationary SSM with measurement
error. This simulation model essentially represents the SSM (2.2.1) with ny = 10 observation
variables and nw = 5 state variables, where 60 of the parameters are estimated while treating
the remaining parameters as fixed. We use the same (arbitrary) chosen set of data generating
parameters as Chib and Ramamurthy (2010). While this generic SSM has no particular economic
interpretation, it is an example of a SSM where the number of observable time series (ny = 10)
exceeds the number of unobserved states (nw = 5). Therefore, we will also consider the model
transformation suggested by Jungbacker and Koopman (2014), which collapses the initially
10× 1 observation vector into a new 5× 1 observation vector.17

Second, we consider the medium-scale DSGE model introduced by Smets and Wouters (2007)

15Note that the UKF is not restricted to cases where R is a diagonal matrix (see e.g., Durbin and Koopman, 2012,
Chapter 6.4.3).

16At this point it should be mentioned that the system matrices of (2.4.1) depend on the index i. To deal with this
the Kalman recursion (2.2.4) must be slightly adjusted.

17Briefly summarized, the idea behind this procedure is to find matrices A∗ ∈ Rnw×nw and A+ ∈ Rny−nw×nw to linearly
transform yt to

�

y∗t
y+t

�

:=
�

A∗

A+

�

yt ,

such that we may write the transformed measurement equation as

�

y∗t
y+t

�

=
�

h∗

h+

�

+
�

H∗

0

�

wt +
�

u∗t
u+t

�

,
�

u∗t
u+t

�

∼ N
��

0
0

�

,
�

R∗t 0
0 R+t

��

, ∀t = 1,2, . . . , N .

Thus, the collapsed measurement equations yields

y∗t = h∗ +H∗ wt + u∗t , u∗t ∼ N(0,R∗t ), ∀t = 1,2, . . . , N .

The vector y+t = h++u+t with u+t ∼ N(0,R+t ), however, is independent of wt and u∗t and can therefore be treated
separately. For a textbook treatment we refer to Durbin and Koopman (2012, Chapter 6.5).
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as an example for a SSM without measurement error, where we may use Proposition 2.3.1 to
obtain C+. Since both the generic SSM by Chib and Ramamurthy (2010) as well as the model by
Smets and Wouters (2007) represent stationary models, we use the unconditional initialization
strategy to obtain (µ0,C0).

To obtain the steady-state variance matrix C+ in the case of the generic SSM by Chib and
Ramamurthy (2010), we will use the Schur algorithm described by Bini et al. (2012, Chapter 3)
to solve the DARE (2.2.9a) corresponding to RDE (2.2.8a). We use the same algorithm to solve
the discrete Lyapunov equation (2.2.7b) for the unconditional variance matrix C of the state
vector wt .

All computations in this section were coded in MATLAB® 2019a or FORTRAN (using the
Intel® IFORT compiler) and executed on a Window 10 64-bit machine with a 3.60 GHz Intel®

Core™i7-7700 CPU and 32 GB of RAM. Further, it is worth mentioning that the FORTRAN code
makes extensive use of the BLAS and LAPACK routines, such as dsymm or dsryk, that come
with Intel®’s Math Kernel Library to exploit the symmetric nature of variance matrices wherever
possible.

To compare the different filters, we consider a Bayesian setup and use the tailored randomized
block Metropolis-Hastings (TaRBMH) sampler to generate 11000 draws from the posterior
distribution fθ |Yt

∝ fYt |θ × fθ , where we discard the first 1000 draws as burn-ins. Subsequently,
we compare the speed and accuracy of each filter by recomputing each of the 10000 remaining
parameter sets using the regular KF as the benchmark.

In a nutshell, we may summarize the TaRBMH sampler by Chib and Ramamurthy (2010) as
follows: With each draw from the posterior distribution, we partition the parameter vector θ into
multiple blocks. Thereby, both the number of blocks and the allocation of the parameters into the
blocks are random. The parameters of each block are then sequentially updated by a Metropolis-
Hastings step, where we draw the proposals from a multivariate student-t density with ν degrees
of freedom. To parameterize the proposal density, we follow Chib and Ramamurthy (2010)
and detect the conditional posterior mode (with respect to the block-parameters) by means of
simulated annealing based on a linear cooling schedule. The proposal density’s mean vector
and scaling matrix then reflect the conditional posterior mode and the corresponding Hessian
matrix.

The tuning parameters of the TaRBMH sampler and the corresponding simulated annealing
algorithm (see Table 2.2) used to specify the proposal density are identical to the setup by Chib
and Ramamurthy (2010).

Table 2.2: TaRBMH and simulated annealing settings

TaRBMH
Parameter Description GSSMa SW07b

pB Probability for a new block 0.15 0.15
M Number of draws 10000 10000
n0 Number of burn-ins 1000 1000
ν Degrees of freedom of the proposal densitya 15 10

Simulated annealing with linear cooling schedule
t0 Initial temperature 5 5
a Cooling constant 0.4 0.4
K Number of stages in cooling schedule 8 4
b Stage expansion factor 8 6
s Scaling factor for new proposals 0.02 0.02
a GSSM: The generic SSM introduced by Chib and Ramamurthy (2010).
b SW07: The DSGE model introduced by Smets and Wouters (2007).
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2.4.1 Generic state-spacemodel
We may express the generic SSM by Chib and Ramamurthy (2010) in terms of the SSM (2.2.1)
by defining the system matrices h, H, F, Q, and R as

h=





h1
...

h10



 ∈ R10×1, H=





1 H2,1 · · · H10,1
. . . . . .

...
1 H6,5 · · · H10,5





T

∈ R10×5,

F= diag(F1,1, . . . , F5,5) ∈ R5×5, Q= I ∈ R5×5, R= diag(eσ
2
1 , . . . , eσ

2
10) ∈ R10×10.

Further, the vector

θ =
�

F1,1 . . . F5,5 h1 . . . h10 H2,1 . . . H10,5 σ2
1 . . . σ2

10

�T

collects the 60 uncertain parameters of the model. To estimate the model, we follow Chib
and Ramamurthy (2010) and simulate a set of 200 observations using the data generating
parameters presented in Table 2.3. In choosing the prior distributions fθ of the uncertain
parameters displayed in Table 2.3, we once again follow Chib and Ramamurthy (2010). We
report the estimation results for each of the four filters in Table 2.4. The whole estimation
procedure requires about 46 million likelihood evaluations.18

Table 2.5 shows the time needed by each filter to reevaluate the log-densities fYt |θ and fθ for
all 10000 draws from the posterior distribution. To get an intuition for the numerical accuracy
of each filter, Table 2.5 also provides the l2-Norm of the deviations between the log-likelihood
computed with a particular filter and the log-likelihood evaluated using the regular KF.

For MATLAB® implementation of the full model, we see that, in comparison to the regular
KF or the UKF, the ASKF requires less than half of the time. In FORTRAN, the ASKF reduces
the computational burden, even more, requiring only about 12 percent and 33 percent of the
time compared to the KF and UKF, respectively. Unsurprisingly, the slowest filter for both
implementations is the CR. In line with the results of Herbst (2015), we find that the CR
becomes inefficient compared to the regular KF when ny ≥ nw.

The lower part of Table 2.5 displays the results obtained when using the technique described
by Jungbacker and Koopman (2014) to collapse the observations vector to the dimension
of the state vector. Except for the ASKF, this model transformation significantly reduces the
computational burden of all filters. However, the ASKF remains the fastest filter in both the
MATLAB® and the FORTRAN implementation.

Overall, the FORTRAN implementation of the generic SSM by Chib and Ramamurthy (2010)
seems to be twice as fast as its MATLAB® counterpart. The numerical deviation of the filters
compared to the standard KF are similar, with the CR being closest to the KF.

At this point, we have to mention that all results considered so far were under the hypothesis
that the convergence process from C0 to C+ stretches over the complete observation interval
(N = 200). However, in practice, there might be some period τ where Cτ has converged
sufficiently close to C+ so that we can switch from the filter at hand to the SKF described in
(2.2.11). Thus, if the convergence process lasts only a few periods, it could be that the additional
effort to solve the RDE (2.2.8a) for C+ outweighs the efficiency gains from the more efficient
recursive part of the ASKF. To get an intuition of how many periods are necessary so that the
ASKF outperforms the other filters in terms of speed, depending on the number of observations
N , Figure 2.1 displays the computation time of each of the filters relative to the computation
time of the KF.
18A large part of these likelihood evaluations stem from the repeated numerical evaluation of the conditional

Hessian matrix, which is required to specify the proposal density of a random block.
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As expected, Figure 2.1 shows that for a low number of observations (N < 10), the ASKF is
outperformed by the other filters but becomes faster as N rises. For the MATLAB® implementation
of the full model, the ASKF becomes the fastest option to compute the log-likelihood in cases
where the convergence process takes more than 25 periods, while in FORTRAN, it takes the
ASKF about 50 periods to outperform the UKF. When using the collapsed model, where the
efficiency gains from the ASKF are smaller, in both MATLAB® and the FORTRAN implementation,
it takes about 75 periods for the ASKF to become the fastest option.

Since, depending on the model’s parameter values, the convergence speed of the matrix
sequence {Ct}Nt=1 may vary, in practice, it is often impossible to determine ex-ante in which
period a switch to SKF is possible. Thus, using the ASKF to evaluate the log-likelihood is probably
not a bad choice, especially considering that in cases where we may switch early to the SKF,
the choice of the filter might become secondary for the overall time needed to evaluate the
log-likelihood.

Table 2.3: Data generating parameters and prior density – Generic state-space model

Parameter Data generating parameters Priora

h1, . . . , h5 0.20 1.40 1.80 0.10 0.90 0.50 0.50 0.50 0.50 0.50
(5.00) (5.00) (5.00) (5.00) (5.00)

h6, . . . , h10 1.00 2.00 0.10 2.20 1.50 0.50 0.50 0.50 0.50 0.50
(5.00) (5.00) (5.00) (5.00) (5.00)

H2,1 0.50 0.00
(5.00)

H3,1, H3,2 0.60 0.00 0.00 0.00
(5.00) (5.00)

H4,1, . . . , H4,3 0.00 0.20 −0.10 0.00 0.00 0.00
(5.00) (5.00) (5.00)

H5,1, . . . , H5,4 −0.20 0.00 −0.70 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00)

H6,1, . . . , H6,5 0.00 0.00 −0.40 −0.50 0.00 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H7,1, . . . , H7,5 0.30 0.20 0.00 0.00 −0.30 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H8,1, . . . , H8,5 −0.50 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H9,1, . . . , H9,5 0.00 −0.50 0.30 −0.10 0.00 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

H10,1, . . . , H10,5 0.00 0.00 0.20 0.00 −0.40 0.00 0.00 0.00 0.00 0.00
(5.00) (5.00) (5.00) (5.00) (5.00)

F1,1, . . . , F5,5 0.80 0.20 0.75 0.60 0.10

σ2
1, . . . ,σ2

5 log(1.00) log(0.30) log(1.00) log(0.20) log(0.60) −1.00 −1.00 −1.00 −1.00 −1.00
(1.00) (1.00) (1.00) (1.00) (1.00)

σ2
6, . . . ,σ2

10 log(0.50) log(1.00) log(1.00) log(0.75) log(0.60) −1.00 −1.00 −1.00 −1.00 −1.00
(1.00) (1.00) (1.00) (1.00) (1.00)

a All parameters are normally distributed. The first parameter denotes the prior mean, while the second parameter (in parentheses)
denotes the prior variance.

2.4.2 Smets andWouters model
The model introduced by Smets and Wouters (2003, 2007) is at the core of most medium- to
large-scale DSGE models used to analyze monetary policy. To put it in the words of Herbst and
Schorfheide (2016, pp. 12): „By now, the SW model has become one of the workhorse models
in the DSGE model literature and in central banks around the world.“

Among other features, the model includes sticky prices and wages, investment adjustment
costs, habit formation, and variable capital utilization. In what follows, we use the Smets and
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Table 2.4: Estimation results – Generic state-space model

θ
Mean 5 percent quantile 95 percent quantile

KF CR UKF ASKF KF CR UKF ASKF KF CR UKF ASKF
F1,1 0.74 0.74 0.74 0.74 0.64 0.64 0.64 0.64 0.84 0.83 0.84 0.84
F2,2 0.36 0.36 0.36 0.36 0.19 0.19 0.19 0.19 0.53 0.53 0.53 0.53
F3,3 0.70 0.70 0.70 0.70 0.58 0.58 0.58 0.58 0.81 0.81 0.81 0.81
F4,4 0.41 0.41 0.42 0.42 0.27 0.27 0.28 0.28 0.55 0.56 0.56 0.56
F5,5 0.06 0.06 0.06 0.06 −0.15 −0.15 −0.15 −0.15 0.28 0.27 0.27 0.28
h1 0.15 0.16 0.14 0.15 −0.40 −0.38 −0.43 −0.41 0.69 0.68 0.70 0.71
h2 1.20 1.21 1.20 1.20 0.88 0.88 0.86 0.87 1.51 1.52 1.53 1.52
h3 1.65 1.68 1.64 1.66 1.11 1.04 1.02 1.06 2.25 2.30 2.26 2.27
h4 0.22 0.22 0.22 0.21 −0.06 −0.07 −0.06 −0.06 0.49 0.50 0.50 0.48
h5 0.89 0.88 0.90 0.89 0.52 0.48 0.51 0.50 1.27 1.30 1.29 1.26
h6 0.94 0.94 0.95 0.95 0.72 0.71 0.71 0.72 1.17 1.17 1.18 1.18
h7 1.90 1.90 1.90 1.90 1.67 1.66 1.67 1.67 2.12 2.12 2.12 2.12
h8 0.33 0.32 0.33 0.32 0.07 0.07 0.07 0.06 0.57 0.59 0.59 0.57
h9 2.10 2.10 2.10 2.10 1.89 1.88 1.88 1.89 2.32 2.32 2.32 2.32
h10 1.50 1.50 1.50 1.50 1.36 1.35 1.35 1.36 1.64 1.65 1.65 1.65
H2,1 0.44 0.44 0.44 0.44 0.28 0.29 0.29 0.28 0.60 0.60 0.60 0.60
H3,1 0.69 0.69 0.70 0.69 0.46 0.46 0.47 0.46 0.92 0.93 0.93 0.92
H4,1 0.14 0.14 0.14 0.13 −0.02 −0.03 −0.05 −0.04 0.31 0.31 0.31 0.30
H5,1 −0.30 −0.30 −0.31 −0.30 −0.48 −0.50 −0.50 −0.49 −0.11 −0.11 −0.12 −0.12
H6,1 −0.08 −0.08 −0.08 −0.08 −0.22 −0.21 −0.22 −0.21 0.05 0.06 0.06 0.06
H7,1 0.31 0.31 0.31 0.31 0.20 0.20 0.20 0.20 0.42 0.42 0.43 0.42
H8,1 −0.27 −0.28 −0.28 −0.28 −0.42 −0.43 −0.43 −0.43 −0.13 −0.13 −0.12 −0.13
H9,1 0.07 0.07 0.07 0.08 −0.06 −0.05 −0.05 −0.05 0.20 0.20 0.20 0.20
H10,1 0.03 0.03 0.03 0.03 −0.06 −0.06 −0.06 −0.06 0.13 0.13 0.13 0.13
H3,2 −0.06 −0.06 −0.06 −0.05 −0.32 −0.33 −0.33 −0.33 0.20 0.22 0.21 0.22
H4,2 0.21 0.21 0.21 0.22 −0.00 −0.01 −0.01 0.00 0.44 0.44 0.45 0.46
H5,2 −0.00 −0.00 −0.00 −0.01 −0.26 −0.28 −0.27 −0.28 0.25 0.26 0.26 0.26
H6,2 0.18 0.18 0.18 0.17 0.01 0.00 −0.01 −0.00 0.36 0.35 0.36 0.35
H7,2 0.14 0.14 0.14 0.14 −0.04 −0.04 −0.04 −0.04 0.31 0.32 0.31 0.31
H8,2 −0.05 −0.05 −0.05 −0.05 −0.26 −0.26 −0.26 −0.25 0.16 0.15 0.16 0.16
H9,2 −0.57 −0.57 −0.57 −0.57 −0.75 −0.75 −0.75 −0.75 −0.39 −0.39 −0.39 −0.39
H10,2 −0.11 −0.10 −0.11 −0.10 −0.25 −0.25 −0.25 −0.25 0.03 0.04 0.04 0.04
H4,3 −0.21 −0.20 −0.20 −0.19 −0.39 −0.39 −0.39 −0.39 −0.01 −0.01 −0.02 −0.00
H5,3 −0.63 −0.63 −0.63 −0.63 −0.80 −0.80 −0.80 −0.81 −0.46 −0.46 −0.46 −0.46
H6,3 −0.34 −0.34 −0.34 −0.35 −0.48 −0.47 −0.47 −0.49 −0.22 −0.21 −0.21 −0.22
H7,3 −0.11 −0.11 −0.11 −0.11 −0.23 −0.24 −0.24 −0.23 0.01 0.01 0.01 0.01
H8,3 −0.14 −0.14 −0.14 −0.14 −0.30 −0.30 −0.30 −0.30 0.03 0.03 0.02 0.03
H9,3 0.28 0.28 0.28 0.28 0.17 0.17 0.17 0.17 0.39 0.39 0.39 0.39
H10,3 0.17 0.17 0.17 0.17 0.08 0.07 0.07 0.07 0.27 0.27 0.26 0.27
H5,4 0.09 0.08 0.09 0.09 −0.12 −0.11 −0.11 −0.11 0.28 0.28 0.28 0.29
H6,4 −0.58 −0.58 −0.58 −0.58 −0.70 −0.70 −0.70 −0.70 −0.47 −0.46 −0.47 −0.47
H7,4 −0.00 0.00 0.00 0.00 −0.14 −0.13 −0.14 −0.13 0.14 0.14 0.14 0.14
H8,4 0.61 0.61 0.61 0.61 0.47 0.47 0.47 0.47 0.76 0.76 0.76 0.76
H9,4 −0.11 −0.11 −0.11 −0.11 −0.23 −0.23 −0.23 −0.23 0.01 0.01 0.01 0.01
H10,4 −0.01 −0.01 −0.01 −0.01 −0.13 −0.12 −0.12 −0.12 0.10 0.10 0.10 0.10
H6,5 0.19 0.19 0.19 0.19 0.05 0.05 0.05 0.05 0.33 0.33 0.33 0.33
H7,5 −0.41 −0.42 −0.42 −0.42 −0.61 −0.61 −0.61 −0.61 −0.23 −0.23 −0.23 −0.23
H8,5 −0.03 −0.02 −0.03 −0.02 −0.22 −0.21 −0.22 −0.21 0.16 0.17 0.16 0.17
H9,5 −0.18 −0.18 −0.18 −0.18 −0.34 −0.33 −0.34 −0.34 −0.02 −0.02 −0.02 −0.02
H10,5 −0.49 −0.49 −0.49 −0.49 −0.64 −0.65 −0.65 −0.65 −0.34 −0.34 −0.34 −0.34
σ2

1 0.08 0.09 0.09 0.08 −0.23 −0.23 −0.23 −0.24 0.39 0.40 0.40 0.38
σ2

2 −0.69 −0.70 −0.70 −0.68 −1.31 −1.34 −1.30 −1.28 −0.21 −0.22 −0.22 −0.21
σ2

3 −0.34 −0.35 −0.35 −0.34 −0.81 −0.83 −0.82 −0.81 0.07 0.05 0.05 0.07
σ2

4 −1.44 −1.45 −1.43 −1.44 −2.30 −2.31 −2.24 −2.29 −0.81 −0.81 −0.80 −0.80
σ2

5 −0.15 −0.14 −0.15 −0.15 −0.58 −0.57 −0.56 −0.56 0.20 0.21 0.21 0.21
σ2

6 −0.97 −0.96 −0.97 −0.97 −1.29 −1.28 −1.29 −1.29 −0.68 −0.68 −0.69 −0.68
σ2

7 −0.10 −0.10 −0.10 −0.10 −0.33 −0.34 −0.33 −0.34 0.12 0.12 0.11 0.12
σ2

8 0.07 0.07 0.07 0.07 −0.13 −0.13 −0.13 −0.13 0.27 0.28 0.28 0.27
σ2

9 −0.48 −0.48 −0.48 −0.49 −0.75 −0.75 −0.75 −0.76 −0.23 −0.23 −0.24 −0.24
σ2

10 −0.72 −0.73 −0.72 −0.73 −1.00 −1.02 −1.01 −0.99 −0.47 −0.48 −0.48 −0.49

Wouters (2007) model, which is a slightly adjusted version of the original model described by
Smets and Wouters (2003). The model consists of 62 equations in 35 endogenous variables,
20 predetermined, and 7 endogenous state variables. We give a complete description of the
model’s implementation in Appendix 2.E. To fit the model to the data, we follow Smets and
Wouters (2007) and use quarterly time series of the log difference of real GDP, the log difference
of real consumption, the log difference of real investment, and the log difference of real wages,
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Table 2.5: Speed comparison – Generic state-space model

Full MATLAB® FORTRAN
ny = 10, nw = 5 KF CR UKF ASKF KF CR UKF ASKF
Elapsed time: 43s 82s 35s 17s 17s 19s 6s 2s
l2-Norm: - 2.1e−09 2.2e−09 2.1e−09 - 0.5e−10 0.6e−09 0.2e−09

Collapsed MATLAB® FORTRAN
ny = 5, nw = 5 KF CR UKF ASKF KF CR UKF ASKF
Elapsed time: 32s 46s 22s 16s 9s 9s 4s 2s
l2-Norm: - 1.1e−09 1.2e−09 1.1e−09 - 0.3e−10 0.2e−09 0.1e−09

Figure 2.1: Speed comparison – Generic state-space model
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(a) MATLAB® - Full model
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(b) FORTRAN - Full model
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(c) MATLAB® - Collapsed model
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(d) FORTRAN - Collapsed model

the log of hours worked, the log difference of GDP deflator, and the federal funds rate for the
U.S. from 1966 : 1 to 2004 : 4.

To obtain the model’s linear policy function, we use the general Schur decomposition in the
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manner of Klein (2000). We then transform the solved model into a SSM without a measurement
error. We consider two different state-space representations of the model: (i) A reduced SSM
with ny = 7 and nw = 27, including only the predetermined and endogenous state variables
in the state vector, and (ii) the full SSM with ny = 7 and nw = 62, treating all of the model’s
variables as state variables.19 Further, as shown in Appendix 2.E, the log-linearized model
satisfies the preconditions of Proposition 2.3.1, and thus we may obtain the solution of the RDE
(2.2.8a) as C+ = 0.

To estimate the model, we use the same prior densities as Smets and Wouters (2007). In Table
2.6, we report these prior densities together with the estimation results of the four different
filters. All results of Table 2.6 refer to the reduced SSM and were computed in MATLAB®. Again,
the posterior statistics obtained by the different filters are similar. Each filter requires about 15
million likelihood evaluations to generate the 10000 draws from the posterior distribution. The
filters also perform similarly in terms of the percentages of failed tries, where the particular
algorithm could not evaluate the objective function.

The most significant differences between the filters occur in the total time required to estimate
the model. The ASKF is about one-third faster than the standard KF and reduces the overall
estimation time by more than 11 hours. Moreover, compared to the UKF, which represents
the second fastest option in this setup, the ASKF is still 6 hours ahead. This is despite the
fact that the evaluation of the log-likelihood now also includes the computation of the policy
function so that the actual filtering process only accounts for a part of the total evaluation time.
Surprisingly, the CR performs even slower than the KF, which leads to the conclusion that in the
reduced version of the Smets and Wouters model, nw is too small compared to ny for the CR to
be efficient.

Table 2.7 shows the results of the reevaluation of the 10000 draws from the posterior dis-
tribution. In addition to the time required for the actual filtering process, we also report the
times required to compute the policy function, the unconditional initialization, and the prior
density. Considering the reduced model, we again see that the ASKF significantly reduces the
computational time required in both MATLAB® and FORTRAN. In MATLAB®, the ASKF reduces
the actual filtering time compared to the KF, the CR, and the UKF by about 73, 79, and 60
percent, respectively. In FORTRAN, the computation time is reduced by 82 and 69 percent,
respectively, compared to the KF and the UKF. Compared to its MATLAB® implementation,
the CR performs better in FORTRAN. Nevertheless, compared to the ASKF, the computational
burden is almost four times higher.

The lower part of Table 2.7 displays the results of the speed comparison in case we include
all 62 variables of the Smets and Wouters model as states in the SSM. The main difference in
this setup is the performance of the CR, which is now about twice as fast as the KF and UKF,
respectively, in both MATLAB® and FORTRAN. The CR also gets closest to the ASKF in terms of
speed, but it is still three times faster in MATLAB® and almost twice as fast in FORTRAN.

In all four implementations considered in Table 2.7, the ASKF reduces the portion of the
actual filtering process on the total computing time to less than one-fifth. Furthermore, it is
worth mentioning that in the case of the Smets and Wouters model, the performance of the
ASKF is also less dependent on the convergence speed of the matrix sequence {Ct}Nt=1, since due
to Proposition 2.3.1, we do not have to determine C+ numerically.

19Note that using the full SSM will result in a singular unconditional variance matrix C of the state vector wt , since
in this case wt contains redundant states.



CHAPTER 2 AN AUGMENTED STEADY-STATE KALMAN FILTER TO EVALUATE THE LIKELIHOOD OF LINEAR AND

TIME-INVARIANT STATE-SPACE MODELS
31

Table 2.6: Prior and estimation results – Smets and Wouters model

θ
Prior Posterior

Densitya Mean Std. Dev.
Mean 5 percent quantile 95 percent quantile

KF CR UKF ASKF KF CR UKF ASKF KF CR UKF ASKF
ϕ Normal 4.000 1.500 5.60 5.47 5.54 5.48 3.63 3.40 3.60 3.40 8.04 7.91 7.93 7.98
σc Normal 1.500 0.375 1.33 1.32 1.31 1.33 1.11 1.09 1.10 1.11 1.59 1.57 1.56 1.59
h Beta 0.700 0.100 0.72 0.72 0.72 0.71 0.63 0.63 0.64 0.62 0.79 0.80 0.80 0.80
ξw Beta 0.500 0.100 0.70 0.69 0.70 0.69 0.57 0.57 0.57 0.57 0.81 0.80 0.82 0.80
σl Normal 2.000 0.750 1.83 1.84 1.85 1.79 0.82 0.79 0.84 0.77 3.13 3.15 3.08 3.05
ξp Beta 0.500 0.100 0.64 0.63 0.64 0.64 0.54 0.54 0.55 0.54 0.75 0.73 0.75 0.74
ιw Beta 0.500 0.150 0.59 0.58 0.58 0.58 0.34 0.34 0.36 0.33 0.80 0.82 0.80 0.80
ιp Beta 0.500 0.150 0.24 0.25 0.24 0.25 0.10 0.11 0.10 0.11 0.41 0.44 0.42 0.42
ψ Beta 0.500 0.150 0.56 0.57 0.56 0.56 0.34 0.35 0.36 0.35 0.77 0.77 0.75 0.76
Φ Normal 1.250 0.125 1.60 1.60 1.60 1.60 1.46 1.46 1.46 1.46 1.75 1.74 1.74 1.75
rπ Normal 1.500 0.250 2.03 2.05 2.03 2.06 1.71 1.75 1.72 1.73 2.39 2.38 2.37 2.40
ρ Beta 0.750 0.100 0.80 0.80 0.80 0.80 0.75 0.75 0.75 0.75 0.84 0.84 0.84 0.85
ry Normal 0.125 0.050 0.08 0.08 0.08 0.09 0.05 0.05 0.05 0.05 0.13 0.13 0.13 0.13
r∆y Normal 0.125 0.050 0.22 0.22 0.22 0.22 0.17 0.17 0.17 0.17 0.27 0.27 0.27 0.27
π̄ Gamma 0.625 0.100 0.71 0.70 0.71 0.71 0.51 0.52 0.52 0.52 0.91 0.91 0.91 0.91
β̃ Gamma 0.250 0.100 0.16 0.16 0.17 0.16 0.07 0.07 0.08 0.07 0.28 0.27 0.27 0.27
l̄ Normal 0.000 2.000 0.73 0.84 0.84 0.74 −1.87 −1.60 −1.71 −1.77 3.30 3.29 3.22 3.31
γ̄ Normal 0.400 0.100 0.42 0.42 0.42 0.42 0.39 0.38 0.39 0.39 0.45 0.45 0.45 0.45
α Normal 0.300 0.050 0.19 0.19 0.19 0.19 0.16 0.16 0.16 0.16 0.22 0.22 0.22 0.22
ρa Beta 0.500 0.200 0.96 0.96 0.96 0.96 0.93 0.94 0.93 0.94 0.98 0.98 0.98 0.98
ρb Beta 0.500 0.200 0.24 0.25 0.24 0.26 0.08 0.09 0.08 0.08 0.48 0.45 0.46 0.51
ρg Beta 0.500 0.200 0.98 0.98 0.98 0.98 0.96 0.96 0.96 0.96 0.99 0.99 0.99 0.99
ρi Beta 0.500 0.200 0.71 0.72 0.72 0.71 0.60 0.60 0.61 0.60 0.82 0.83 0.83 0.82
ρr Beta 0.500 0.200 0.16 0.16 0.16 0.16 0.06 0.06 0.06 0.05 0.29 0.29 0.28 0.28
ρp Beta 0.500 0.200 0.90 0.90 0.89 0.90 0.79 0.80 0.78 0.79 0.97 0.97 0.97 0.98
ρw Beta 0.500 0.200 0.97 0.97 0.97 0.97 0.94 0.95 0.94 0.94 0.99 0.99 0.99 0.99
µp Beta 0.500 0.200 0.69 0.70 0.68 0.70 0.45 0.46 0.45 0.49 0.84 0.87 0.85 0.86
µw Beta 0.500 0.200 0.85 0.85 0.84 0.84 0.72 0.71 0.70 0.70 0.94 0.94 0.93 0.94
ρga Beta 0.500 0.250 0.52 0.52 0.51 0.52 0.34 0.35 0.34 0.34 0.69 0.69 0.69 0.69
σa Inv. Gamma 0.100 2.000 0.46 0.46 0.46 0.46 0.41 0.41 0.41 0.41 0.51 0.51 0.51 0.51
σb Inv. Gamma 0.100 2.000 0.24 0.24 0.24 0.23 0.18 0.19 0.19 0.18 0.28 0.28 0.29 0.28
σg Inv. Gamma 0.100 2.000 0.53 0.53 0.53 0.53 0.48 0.48 0.48 0.48 0.58 0.59 0.59 0.59
σi Inv. Gamma 0.100 2.000 0.45 0.45 0.45 0.45 0.37 0.37 0.36 0.37 0.54 0.55 0.54 0.56
σr Inv. Gamma 0.100 2.000 0.25 0.25 0.25 0.25 0.22 0.22 0.22 0.22 0.28 0.28 0.28 0.28
σp Inv. Gamma 0.100 2.000 0.14 0.14 0.14 0.14 0.11 0.11 0.11 0.11 0.17 0.17 0.17 0.17
σw Inv. Gamma 0.100 2.000 0.25 0.25 0.25 0.25 0.21 0.21 0.21 0.21 0.29 0.29 0.29 0.29

KF CR UKF ASKF
Overall - Estimation time: 35h 05m 23s 38h 43m 02s 30h 11m 23s 23h 46m 24s
Value of Ojc.Fct at Posterior Mode:b −858.14 −858.26 −857.97 −856.63
Number of likelihood evaluations: 15174679 15173491 15193695 15190701
Percentage of failed evaluations: 0.49 0.50 0.47 0.49
Acceptance rate (in %): 49.86 50.12 49.77 49.85

a Inv. Gamma denotes the Inverse Gamma type-1 distribution.
b Refers to the highest value of the object function for all 10000 draws.

Table 2.7: Speed comparison – Smets and Wouters model

Reduced MATLAB® FORTRAN
ny = 7, nw = 27 KF CR UKF ASKF KF CR UKF ASKF
Filtering time: 37s 47s 25s 10s 22s 15s 13s 4s
l2-Norm: - 3.0e−08 3.0e−09 1.2e−10 - 0.8e−07 0.1e−08 0.2e−09

Policy function 17s 33s
Initialization 18s 18s
Prior density 13s 0s

Full MATLAB® FORTRAN
ny = 7, nw = 62 KF CR UKF ASKF KF CR UKF ASKF
Filtering time: 101s 57s 92s 18s 79s 28s 65s 15s
l2-Norm: - 1.8e−08 2.1e−09 2.2e−09 - 0.9e−08 0.9e−09 0.4e−09

Policy function 18s 33s
Initialization 74s 71s
Prior density 13s 0s
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2.5 Conclusion
The objective of this paper was to propose the ASKF as an efficient algorithm to evaluate the
likelihood of linear and time-invariant SSMs. The results concerning the performance of the
ASKF are promising. It performs well regardless of whether the number of observable time
series ny outweighs the number of states nz or vice versa. The basis for its efficiency is the –
compared to the regular KF – faster recursive part of the ASKF, reducing the cost per additional
observation. The ultimate performance of the ASKF is mainly determined by two factors: The
length of the filtering period and the time needed to determine the equilibrium variance matrix
of the model’s states, where the former is determined by the number of observations N of the
available data set and the required periods τ until it might be possible to switch to the SKF. The
larger the filtering period, the less the additional computational effort to solve RDE (2.2.8a)
for C+ will weigh compared to the total filtering time. Furthermore, as we show in Proposition
2.3.1, for many DSGE models, such as the model introduced by Smets and Wouters (2007), it is
not even necessary to solve RDE (2.2.8a) numerically, since for SSMs of the form (2.2.2) with
ny = nz = rk(Hz) an analytic solution for C+ is available. This feature makes the ASKF for these
kinds of model even more attractive.
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Appendix

The Appendix of this paper is structured as follows: The first section contains the formal
derivation of the standard Kalman filter (KF) and, in particular, of the difference equations that
determine the sequence {Ct}Nt=1 of the states’ conditional variance matrix. In Section 2.B, we
establish the formal foundation to address the question under which conditions the sequence
{Ct}Nt=1 converges to a long-run equilibrium. Given this long-term equilibrium, we derive the set
of equations determining the steady-state Kalman filter (SKF) in Section 2.C. In Section 2.D, we
provide the formal derivation of the augmented Kalman filter (AKF), which, together with the
SKF, builds the basis of the augmented steady-state Kalman filter (ASKF) proposed in this paper.
The last section of the Appendix outlines the implementation of the dynamic stochastic general
equilibrium (DSGE) model by Smets and Wouters (2007) that we employ as an application in
this paper.

2.A Derivation of the Kalman filter
This appendix contains the formal derivation of the Kalman recursion (2.2.4) with respect to
the state-space model (SSM) (2.2.1), where for the most part, we will follow the textbook
treatments by Durbin and Koopman (2012, Chapter 4) and Harvey (1990b, Chapter 3). For
convenience, let us restate the linear, time-invariant, and Gaussian SSM (2.2.1) introduced in
Section 2.2:

yt = h+H ·wt + ut , ut ∼ N(0,R), ∀t = 1,2, . . . , N
wt = F ·wt−1 + vt , vt ∼ N(0,Q), w0 ∼ N(µ0,C0), ∀t = 1,2, . . . , N

with

E[uiu
T
j ] =

¨

R, i = j,
0, i 6= j.

, E[viv
T
j ] =

¨

Q, i = j,
0, i 6= j.

, E[uiv
T
j ] = 0, ∀ i, j = 1,2, . . . , N ,

and

E[ut(w0 −µ0)
T ] = 0, E[vt(w0 −µ0)

T ] = 0, ∀t = 1,2, . . . , N .

Before turning to the derivation of recursion (2.2.4), it is appropriate to discuss some im-
plications arising from the assumptions made regarding the SSM (2.2.1), which are essential
for the subsequent derivation of the Kalman recursion. First, since yt−1 is a linear combination
of u1, . . . ,ut−1, v1, . . . ,vt−1, and w0, and since vt is independent of u1, . . . ,ut−1, v1, . . . ,vt−1 and
w0, it is straightforward that vt is independent of Yt−1 = {y1,y2, . . . ,yN}, i.e., vt given Yt−1

equals vt . Second, since the initial state vector w0 and the disturbances u1, . . . ,uN , v1, . . . ,vN

are normally distributed, it follows from the linearity of equations (2.2.1a) and (2.2.1b) that
w1, . . . ,wN and y1, . . . ,yN are normally distributed as well. Consequently, wt and yt given Yt−1
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as well as wt given Yt are also normally distributed for t = 1,2, . . . , N . This directly follows
from a well-known Lemma about the conditional distribution of jointly normally distributed
random vectors.

Lemma 2.A.1. Suppose the random vectors x ∈ Rn and y ∈ Rm are jointly normally distributed
with mean vector and variance matrix:

E
�

x
y

�

=
�

µx

µy

�

and Var
�

x
y

�

=
�

Σxx Σxy

Σyx Σyy

�

,

where Σyy has rank m. Then the conditional distribution of x given y is normal with mean vector
and variance matrix:

E[x|y] = µx +ΣxyΣ
−1
yy (y−µy) and Var[x|y] = Σxx −ΣxyΣ

−1
yy Σxy

T .

Proof:
See Durbin and Koopman (2012, pp. 77-78).

�

Lemma 2.A.1 is also a fundamental element of the Kalman filter (KF) in the context of a linear
SSM with normally distributed disturbances. Starting in t = 1, for each period t = 1,2, . . . , N
the KF performs two steps:

Prediction step: First we use equation (2.2.1b) to obtain the mean vector

wt|t−1 = E[wt |Yt−1]
= E[F wt−1 + vt |Yt−1]
= F E[wt−1|Yt−1] + E[vt |Yt−1]
= F µt−1, (2.A.1)

and variance matrix

Pt|t−1 = Var[wt |Yt−1]
= Var[F wt−1 + vt |Yt−1]
= F Var[wt−1|Yt−1] FT + Var[vt |Yt−1]
= F Ct−1 FT +Q, (2.A.2)

of wt given Yt−1, where µt−1 and Ct−1 are known from a previous iteration or in case of t = 1
directly through the initialization (µ0,C0).

Updating step: In this second step, we use Lemma 2.A.1 and the new information derived
from yt to compute µt = E[wt |Yt] and Ct = Var[wt |Yt]. Note that given Yt−1, the random vector

�

wt

yt

�

=
�

wt

h+Hwt + ut

�

=
�

0
h

�

+
�

I 0
H I

� �

wt

ut

�

is jointly normally distributed since it is linear in wt given Yt−1 and ut . Thus wt given Yt−1 and
yt given Yt−1 are jointly normally distributed with mean vector and variance matrix:

E
�

wt

yt

�

�

�Yt−1

�

=
�

wt|t−1

h+Hwt|t−1

�

and Var
�

wt

yt

�

�

�Yt−1

�

=
�

Pt|t−1 Xt

XT
t Ut

�

.
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with

Ut := Var [yt |Yt−1] = Var [h+H wt + ut |Yt−1]

= H Var [wt |Yt−1] HT + Var [ut |Yt−1]

= H Pt|t−1 HT +R,

Xt := Cov [wt ,yt |Yt−1] = E
�

(wt − E[wt |Yt−1]) (yt − E[yt |Yt−1])
T
�

�Yt−1

�

= E
��

wt −wt|t−1

�

(h+Hwt + ut − E[h+Hwt + ut |Yt−1])
T
�

�Yt−1

�

= E
�

�

wt −wt|t−1

� �

wt −wt|t−1

�T �
�Yt−1

�

HT + E
��

wt −wt|t−1

�

uT
t

�

�Yt−1

�

= Var [wt |Yt−1]H
T +Cov [wt ,ut |Yt−1]

= Pt|t−1 HT .

Hence, the mean vector µt and the variance matrix Ct of wt given Yt follow directly from
Lemma 2.A.1 as

µt = E[wt |Yt] = E[wt |yt ,Yt−1]

=wt|t−1 +Xt U−1
t (yt − E[yt |Yt−1])

=wt|t−1 + Pt|t−1HT
�

HPt|t−1HT +R
�−1 �

yt − h−Hwt|t−1

�

(2.A.3)

Ct = Var[wt |Yt] = Var[wt |yt ,Yt−1]

= Pt|t−1 −Xt U−1
t XT

t

= Pt|t−1 − Pt|t−1HT
�

HPt|t−1HT +R
�−1

HPt|t−1. (2.A.4)

If we define Kt for all t = 1,2, . . . , N as in (2.2.3) and replace yt − h with y(h)t , the Kalman
recursion (2.2.4) follows directly from (2.A.1) – (2.A.4).

2.B Convergence properties of the Riccati di�erence equation
The purpose of this appendix is to give the reader a general idea under which conditions the
Riccati difference equations (RDEs)

Ct = FCt−1FT +Q− �FCt−1HT +G
� �

HCt−1HT +R
�−1 �

HCt−1FT +GT
�

,

Pt+1|t = FPt|t−1FT − FPt|t−1HT
�

HPt|t−1HT +R
�−1

HPt|t−1FT +Q,

with H := HF, G := QHT , and R := HQHT +R, described by equations (2.2.8a) and (2.2.8b),
have a fixed-point and for which initialization they converge to this fixed-point. To this end,
the first part of this appendix deals with cases where either the matrix R or at least the matrix
R is non-singular, drawing from the convergence results provided by de Souza et al. (1986).20

Since the results of de Souza et al. (1986) are fairly general, we shall also discuss some more
frequently consulted conditions — namely stability, observability and reachability, detectability
and stabilizability — sufficient for convergence of RDEs, such as (2.2.8a) or (2.2.8b). The
second part of this appendix contains the formal proof of Proposition 2.2.1.

20Note that the non-singularity of R implies that R must be also non-singular.



CHAPTER 2 AN AUGMENTED STEADY-STATE KALMAN FILTER TO EVALUATE THE LIKELIHOOD OF LINEAR AND

TIME-INVARIANT STATE-SPACE MODELS
38

2.B.1 Results by de Souza et al. (1986)
De Souza et al. (1986) provide some general convergence results related to (ordinary) RDEs of
the form

Σt = FΣt−1FT − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT +Q, ∀t = 1, 2, . . . , N , (2.B.1)

with F ∈ Rn×n, H ∈ Rm×n, Q ∈ Rn×n, and R ∈ Rm×m. Further, they assume that Q and R are
symmetric matrices with Q= DDT ≥ 0, D ∈ Rn×n and R> 0.21 Thus, their results are directly
transferable to RDE (2.2.8b) if the variance matrix R of the measurement error ut is non-singular.
On the other hand, if R is singular, we can use their results to study the convergence properties of
RDE (2.2.8a), which is sometimes called a generalized RDE, provided at least R is non-singular.
To do so, we can transform the general RDE (2.2.8a) into an ordinary RDE of the form (2.B.1)
using the following lemma:

Lemma 2.B.1. Suppose the matrices F ∈ Rn×n, H ∈ Rm×n and G ∈ Rn×m, as well as the variances
matrices Q ∈ Rn×n and R ∈ Rm×m with R > 0 refer to the generalized RDE

Σt = FΣt−1FT +Q− �FΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1FT +GT
�

, (2.B.2)

that generates the matrix sequence {Σt}Nt=0 with a variance matrix Σ0 ≥ 0. Then the RDE

Σt = FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT ,

with F := F−GR−1H and Q := Q−GR−1GT , is equivalent to (2.B.2).

Proof:
The statement follows from the fact that we may rewrite the right-hand side of (2.B.2) to

FΣt−1FT +Q− �FΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1FT +GT
�

=
�

F +GR−1H
�

Σt−1

�

F +GR−1H
�T
+Q +GR−1GT

− ��F +GR−1H
�

Σt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1

�

F +GR−1H
�T
+GT

�

= FΣt−1FT + FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1HΣt−1HT R−1GT +Q +GR−1GT

− �FΣt−1HT +GR−1HΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1FT +HΣt−1HT R−1GT +GT
�

= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT

+ FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1HΣt−1HT R−1GT +GR−1GT

− FΣt−1HT
�

HΣt−1HT +R
�−1 �

HΣt−1HT R−1GT +GT
�

− �GR−1HΣt−1HT +G
� �

HΣt−1HT +R
�−1

HΣt−1FT

− �GR−1HΣt−1HT +G
� �

HΣt−1HT +R
�−1 �

HΣt−1HT R−1GT +GT
�

= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT

+ FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1
�

HΣt−1HT +R
�

R−1GT

− FΣt−1HT
�

HΣt−1HT +R
�−1 �

HΣt−1HT +R
�

R−1GT

−GR−1
�

HΣt−1HT +R
� �

HΣt−1HT +R
�−1

HΣt−1FT

−GR−1
�

HΣt−1HT +R
� �

HΣt−1HT +R
�−1 �

HΣt−1HT +R
�

R−1GT

21Note that the notation A> 0 (or A≥ 0) means that the matrix A is positive-definite (or positive-semi-definite).
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= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT

+ FΣt−1HT R−1GT +GR−1HΣt−1FT +GR−1
�

HΣt−1HT +R
�

R−1GT

− FΣt−1HT R−1GT −GR−1HΣt−1FT −GR−1
�

HΣt−1HT +R
�

R−1GT

= FΣt−1FT +Q − FΣt−1HT
�

HΣt−1HT +R
�−1

HΣt−1FT .

�

Stabilizing and strong solutions: Note that if the RDE (2.B.1) converges to a fixed matrix Σ,
we may state that Σ is a solution to the discrete algebraic Riccati equation (DARE)

Σ= FΣFT − FΣHT
�

HΣHT +R
�−1

HΣFT +Q. (2.B.3)

We call (2.B.3) the DARE corresponding to the RDE (2.B.1). Considering the convergence of
(2.B.1), two types of solutions to the DARE (2.B.3) are of particular importance.

Definition 2.B.1. Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, Q ∈ Rn×n and R ∈ Rm×m refer to the
RDE (2.B.1) that generates the matrix sequence {Σt}Nt=0 with a variance matrix Σ0 ≥ 0. Further
suppose that (2.B.3) is the DARE corresponding to the RDE (2.B.1), then a real symmetric
matrix Σ≥ 0 satisfying the DARE (2.B.3) is called a stabilizing / strong solution, if and only if
the eigenvalues of the matrix

F̃ = F
�

I−ΣHT
�

HΣHT +R
�−1

H
�

are inside / inside or on the unit circle.22

As we will see, (2.B.1) often converges towards its strong (stabilizing) solution, provided this
solution exists. Furthermore, to show that the DAREs

C+ = FC+FT +Q− �FC+HT +G
� �

HC+HT +R
�−1 �

HC+FT +GT
�

, (2.B.4)

P+ = FP+FT − FP+HT
�

HP+HT +R
�−1

HP+FT +Q, (2.B.5)

corresponding to the RDEs (2.2.8a) and (2.2.8b) have strong (stabilizing) solutions, it is suffi-
cient to show that one of the DAREs (2.B.4) and (2.B.5) has a strong (stabilizing) solution. To
see this we propose the following Lemma:

Lemma 2.B.2. The matrix C+ is a stabilizing / strong solution to (2.B.4), if and only if P+ is a
strong / stabilizing solution to (2.B.5).

Proof:
From Definition 2.B.1 follows that P+ is a stabilizing / strong solution to (2.B.5), if and only if
the eigenvalues of the matrix

F̃P+ = F
�

I− P+HT
�

HP+HT +R
�−1

H
�

are inside / inside or on the unit circle. Analogously, using Lemma 2.B.1 we may state that C+
is a stabilizing / strong solution to (2.B.4), if and only if the eigenvalues of the matrix

F̃C+ = F
�

I−C+HT
�

HC+HT +R
�−1

H
�

22This definition is taken from Chan et al. (1984) and de Souza et al. (1986).
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are inside / inside or on the unit circle. Thus, to prove the claim of Lemma 2.B.2 we will show
that F̃P+ and F̃C+ share the same set of eigenvalues. To see this, note that using the definitions of
F, H, and R as well as (2.2.4b), we may write

F̃C+ = F
�

I−C+HT
�

HC+HT +R
�−1

H
�

=
�

F−GR−1H
�

�

I−C+FT HT
�

HFC+FT HT +HQHT +R
�−1

HF
�

=
�

F−QHT
�

HQHT +R
�−1

HF
��

I−C+FT HT
�

HFC+FT HT +HQHT +R
�−1

HF
�

=
�

F−QHT
�

HQHT +R
�−1

HF
��

I−C+FT HT
�

HP+HT +R
�−1

HF
�

=
�

I−QHT
�

HQHT +R
�−1

H
��

F− FC+FT HT
�

HP+HT +R
�−1

HF
�

=
�

I−QHT
�

HQHT +R
�−1

H
��

F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF
�

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

+QHT
�

HQHT +R
�−1

HP+HT
�

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1

HQHT
�

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

+QHT
�

HQHT +R
�−1

HP+HT
�

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1

HQHT
�

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1

R
�

HP+HT +R
�−1

HF

+QHT
�

HQHT +R
�−1

R
�

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

+QHT
�

HQHT +R
�−1 �

HP+HT +R
� �

HP+HT +R
�−1

HF

−QHT
�

HQHT +R
�−1 �

HQHT +R
� �

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF+QHT
�

HP+HT +R
�−1

HF−QHT
�

HQHT +R
�−1

HF

+QHT
�

HQHT +R
�−1

HF−QHT
�

HP+HT +R
�−1

HF

= F− P+HT
�

HP+HT +R
�−1

HF

=
�

I− P+HT
�

HP+HT +R
�−1

H
�

F

Since F and
�

I− P+HT
�

HP+HT +R
�−1

H
�

are both square matrices, the matrix F̃C+ must have

the same set of eigenvalues as the matrix F̃P+ .
23 This completes the proof.

�

Some concepts of linear systems theory: To eventually obtain conditions under which RDE
(2.B.1) converges to a fixed matrix Σ , we introduce the concepts of stability, observability, and
reachability from linear system theory:24

Definition 2.B.2. Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with
Q = DDT , D ∈ Rn×n, refer to the RDE (2.B.1) that generates the matrix sequence {Σt}Nt=0 with a

23Note that from A,B ∈ Rn×n follows that the matrices C= AB and D= BA share the same set of eigenvalues. See
e.g. Theorem 6.12 by Searle and Khuri (2017, pp. 140).

24See also (Gu, 2012, Chapter 3).
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variance matrix Σ0 ≥ 0. Further suppose that (2.B.3) is the DARE corresponding to the RDE
(2.B.1), then

(i) The matrix F is called stable, if and only if for any eigenvalue λ of the matrix F it holds
that

|λ|< 1.

(ii) The pair (H,F) is called observable, if and only if

rk
�

HT FT HT · · · (FT )n−1 HT
�

= n.

(iii) The pair (F,D) is called reachable, if and only if

rk
�

D F D · · · Fn−1 D
�

= n.

With respect to the SSM (2.2.1), a stable transition matrix F ensures that wt follows a
stationary process so that the unforced system

wt = Fwt−1, w0 6= 0,

is asymptotically stable, i.e., lim
t→∞wt = 0. Observability and reachability are dual concepts,

i.e., for an observable pair (H,F), we may claim that the pair (FT ,HT ) is reachable and vice
versa. Observability of the pair (H,F) can also be understood in the sense that, in the case of an
unforced system

yt = Hwt , wt = Fwt−1,

there is some l ∈ N, such that the initial state vector w0 may be obtained from {yt}lt=1 (see Gu,
2012, pp. 70). Reachability of the pair (F,D), on the other hand, can be interpreted in the sense
that there is a bounded control input {vt}lt=1, l ∈ N, so that the system

wt = Fwt−1 +Dvt ,

can reach a state w∗, i.e., wl = w∗, for a given initial state w0 (see Gu, 2012, pp. 75). As we
will see, observability and reachability are sufficient conditions for (2.B.1) to converge to a
stabilizing solution for Σ 0 > 0. However, since especially the assumption of reachability does
not hold for a variety of econometric models,25 somewhat weaker concepts than observability
and reachablility are detectability and stabilizability:

Definition 2.B.3. Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with
Q= DDT , D ∈ Rn×n, refer to the RDE (2.B.1) that generates the matrix sequence {Σ t}Nt=0 with
a variance matrix Σ 0 ≥ 0. Further suppose that (2.B.3) is the DARE corresponding to the RDE
(2.B.1), then

(i) The pair (H,F) is called detectable, if for any eigenvalue λ of the matrix F with |λ| ≥ 1,
there does not exist a n-dimensional eigenvector q 6= 0 such that

Fq= λq, Hq= 0.

25See e.g. Harvey (1990b, pp. 118) who illustrates that a non-invertible moving average process of order one will
always be observable, but never be reachable.
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(ii) The pair (F,D) is called stabilizable, if for any eigenvalue λ of the matrix FT with |λ| ≥ 1,
there does not exist a n-dimensional eigenvector q 6= 0 such that

FT q= λq, DT q= 0.

(iii) Further an eigenvalue λ of the matrix F is said to be (F,D)-unreachable (of rank p) if
and only if there exists a set of (p) n-dimensional generalized eigenvectors qi 6= 0 with
i = 1, . . . , p and q0 = 0 such that

FT qi = λqi + qi−1, DT qi = 0.

In the following lemma, we postulate some well-known links from detectability and stabiliz-
ability to the concepts in Definition 2.B.2:

Lemma 2.B.3. Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with
Q = DDT , D ∈ Rn×n, refer to the RDE (2.B.1) that generates the matrix sequence {Σt}Nt=0 with a
variance matrix Σ0 ≥ 0. Further suppose that (2.B.3) is the DARE corresponding to the RDE
(2.B.1), then we may state that:

(i) If the matrix F is stable, then the pair (H,F) is detectable.

(ii) If the matrix F is stable, then the pair (F,D) is stabilizable.

(iii) If the pair (H,F) is observable it is also detectable.

(iv) If the pair (F,D) is reachable it is also stabilizable.

(v) The pair (F,D) is stabilizable, if and only if the matrix F has no (F,D)-unreachable eigen-
values on or outside the unit circle, i.e. λ≤ 1.

(vi) The pair is (F,D) is reachable, if and only if the matrix F has no (F,D)-unreachable
eigenvalues.

Proof:

(i) Note that the stability of F implies that there are no eigenvalues λ of the matrix F with
|λ| ≥ 1. Consequently, for all eigenvalues with |λ| ≥ 1 (where there are none), there does
not exist an n-dimensional vector q 6= 0 such that

Fq= λq, Hq= 0.

(ii) Note that the stability of F implies that there are no eigenvalues λ of the matrix FT with
|λ| ≥ 1. Consequently, for all eigenvalues with |λ| ≥ 1 (where there are none), there does
not exist an n-dimensional vector q 6= 0 such that

FT q= λq, DT q= 0.

(iii) The statement follows from the fact that observability of the pair (H,F) implies that the
matrix F has no eigenvector q (corresponding to an eigenvalue λ) such that

Fq= λq, Hq= 0.
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This is true, since otherwise we could write

qT
�

HT FT HT · · · (FT )n−1 HT
�

=
�

qT HT qT FT HT · · · qT (FT )n−1 HT
�

=
�

(H q)T (H F q)T · · · (H Fn−1 q)T
�

=
�

(H q)T λ (H q)T · · · λn−1 (H q)T
�

=
�

0 0 · · · 0
�

= 0,

so that
rk
�

HT FT HT · · · (FT )n−1 HT
�

< n.

(iv) The statement follows from the fact that reachability of the pair (F,D) implies that the
matrix FT has no eigenvector q (corresponding to an eigenvalue λ) such that

FT q= λq, DT q= 0.

This is true, since otherwise we could write

qT
�

D F D · · · Fn−1 D
�

=
�

qT D qT F D · · · qT Fn−1 H
�

=
�

(DT q)T (DT FT q)T · · · (DT (FT )n−1 q)T
�

=
�

(DT q)T λ (DT q)T · · · λn−1 (DT q)T
�

=
�

0 0 · · · 0
�

= 0,

so that
rk
�

D F D · · · Fn−1 D
�

< n.

(v) Follows directly from Definition 2.B.3 (ii)-(iii).

(vi) Follows from Theorem 3.10. Gu (2012, pp. 77).

�

Roughly speaking, we may describe detectability / stabilizability as the claim that all parts, or
more precisely all eigenvalues of the transition matrix F, are either (H,F) observable / (F,D)
reachable or stable. Please note that some authors, e.g., Harvey (1990b, pp. 115), use the
related concept of Controllability instead of the concept of Reachability. For more details on
linear systems theory, we refer the reader to Gu (2012, Chapter 3) as well as Anderson and
Moore (1979, Appendix C).

Some general convergence results: Finally, we collect the main results on the convergence
of the RDE (2.B.1) provided by de Souza et al. (1986) in the following Proposition:

Proposition 2.B.1. Suppose the matrices F ∈ Rn×n, H ∈ Rm×n, R ∈ Rm×m and Q ∈ Rn×n, with
Q = DDT , D ∈ Rn×n, refer to the RDE (2.B.1) that generates the matrix sequence {Σt}Nt=0 with a
variance matrix Σ0 ≥ 0. Further suppose that (2.B.3) is the DARE corresponding to the RDE
(2.B.1), then

(i) The strong solution Σs of the DARE (2.B.3) exists and is unique if and only if (H,F) is
detectable. Furthermore, subject to (Σ0 −Σs)≥ 0, the RDE (2.B.1) converges to the strong
solution (i.e. lim

t→∞Σt = Σs).
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(ii) The strong solution Σs is the only non-negative definite solution of the DARE (2.B.3) if
and only if (H,F) is detectable and F has no (F,D)-unreachable eigenvalues outside the
unit circle.

(iii) The strong solution Σs is a stabilizing solution of the DARE (2.B.3) if and only if (H,F) is
detectable and F has no (F,D)-unreachable eigenvalues on the unit circle. Furthermore,
subject to Σ0 > 0, the RDE (2.B.1) converges to the strong and stabilizing solution Σs.

Proof:

(i) See de Souza et al. (1986, Theorem 3.2-A and theorem 4.2).

(ii) See de Souza et al. (1986, Theorem 3.2-B).

(iii) See de Souza et al. (1986, Theorem 3.2-C and theorem 4.1).

�

From Proposition 2.B.1(i)-(iii) and Lemma 2.B.3(v) follows the well-known result that the RDE
(2.B.1) converges to a stabilizing solution if the pair (H,F) is detectable while the pair (F,D)
is stabilizable. Furthermore, it follows from Lemma 2.B.3(i)-(iii) that the same holds true if
F is stable and/or if the pair (H,F) is observable while the pair (F,D) is reachable. However,
Proposition 2.B.1(i) also allows to investigate the existence and convergence to a strong solution.

2.B.2 Proof of Proposition 2.2.1
To prove claims (i) and (ii) of Proposition 2.2.1, we will consult the results of Proposition 2.B.1
and Lemmas 2.B.1, 2.B.2 and 2.B.3, while the proof of claim (iii) basis on Proposition 13.1 by
(Hamilton, 1994, pp. 390) and Lemma 2.B.2.

Statement (i): To prove the claim (i), we first consider the sequence {Pt|t−1}Nt=1 determined
by the (ordinary) RDE (2.2.8b). Since R is a non-singular matrix by assumption, we may use
the results by de Souza et al. (1986) to analyze the convergence behavior of {Pt|t−1}Nt=1. Using
the fact that the matrix F is stable by assumption, it follows from Lemma 2.B.3 (i), (ii), and (v)
that (H,F) is detectable and F has no (F,D)-unreachable eigenvalues on (or outside) the unit
circle. Thus, the claim related to the sequence {Pt|t−1}Nt=1 follows directly from the „if “ part
of Proposition 2.B.1 (iii). The claim related to the sequence {Ct}Nt=1 then follows directly from
Lemma 2.B.2 and the „only if“ part of Proposition 2.B.1 (iii).

Statement (ii): To prove the claim (ii), we first consider the sequence {Ct}Nt=1 determined
by the (general) RDE (2.2.8a). Since R is a non-singular matrix by assumption, we may use
Lemma 2.B.1 to transform (2.2.8a) into the (ordinary) RDE

Ct = FCt−1FT +Q − FCt−1HT
�

HCt−1HT +R
�−1

HCt−1FT , (2.B.6)

with F := F − GR−1H and Q := Q − GR−1GT . Based on (2.B.6), we may use the results by
de Souza et al. (1986) to analyze the convergence behavior of {Ct}Nt=1. Using the fact that the
matrix F is stable by assumption, it follows from Lemma 2.B.3 (i), (ii), and (v) that (H,F) is
detectable and F has no (F,D)-unreachable eigenvalues on (or outside) the unit circle. Thus,
the claim related to the sequence {Ct}Nt=1 follows directly from the „if “ part of Proposition 2.B.1
(iii). The claim related to the sequence {Pt|t−1}Nt=1 then follows directly from Lemma 2.B.2 and
the „only if “ part of Proposition 2.B.1 (iii).
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Statement (iii): Hamilton (1994, Chapter 13) shows that using the unconditional initialization,
the sequence {Pt|t−1}Nt=1 is non-increasing, i.e., Pt|t−1 − Pt+1|t is positive semi-definite for all
t = 1, . . . , N − 1, and converges to a strong solution P+, with P1|0 − P+ = C0 − P+ ≥ 0.26

Furthermore, it follows from (2.2.3) and (2.2.4f) that

P+ −C+ = P+HT
�

HP+HT +R
�−1 �

HP+HT +R
� �

HP+HT +R
�−1

HP+ ≥ 0

so that

C0 −C+ ≥ C0 − P+ = P1|0 − P+ ≥ 0.

Since we know from Lemma 2.B.2 that C+ is a strong solution of RDE (2.2.8a), the claim related
to the sequence {Ct}Nt=1 follows directly from Proposition 2.B.1 (i).

�

2.C Derivation of the steady-state Kalman filter
In this appendix, we provide the formal derivation of the steady-state Kalman filter (SKF)
(2.2.11) and the steady-state log-likelihood (2.2.12). To do so, note that if we initialize the KF
at (µ0,+,C+), where C+ is a solution to (2.B.4), Ct = C+ for all t = 1,2, . . . , N . Furthermore,
the quantities Pt|t−1, Ut , and Kt become time-invariant, too. If we denote their steady-state
equivalents as P+, U+, and K+, it follows directly from (2.2.4b), (2.2.4d), and (2.2.3) that

P+ = FC+FT +Q, U+ = HP+HT +R, K+ = P+HT U−1
+ .

Since, in this case, the updating steps (2.2.4b),(2.2.4d), and (2.2.4f) of the Kalman recursion
(2.2.4), and the updating of the gain matrix (2.2.3), become redundant, the Kalman recursion
(2.2.4) for t = 1,2, . . . , N reduces to

wt|t−1,+ = Fµt−1,+, (2.C.1a)

et,+ = y(h)t −Hwt|t−1,+, (2.C.1b)

µt,+ =wt|t−1,+ +K+et,+. (2.C.1c)

Defining

J+ := (I−K+H)F,

we can use equations (2.C.1a) to (2.C.1c) to determine the law of motion for µt,+ as

µt,+ =wt|t−1,+ +K+et,+

=wt|t−1,+ +K+
�

y(h)t −Hwt|t−1,+

�

= Fµt−1,+ +K+
�

y(h)t −HFµt−1,+

�

= K+ y(h)t + (I−K+H)F µt−1,+

= K+ y(h)t + J+ µt−1,+, ∀t = 1, 2, . . . , N . (2.C.2)

This means we can use (2.C.2) to determine µt,+ for t = 0,1, . . . , N − 1 recursively. It follows
directly from equations (2.C.1b) and (2.C.1c) that the quantities wt|t−1 and et for t = 1, 2, . . . , N

26Note that from C0 = F C0FT +Q and (2.2.4b) follows that P1|0 = F C0FT +Q= C0.
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are then determined by
�

w1|0,+ · · · wN |N−1,+

�

= F
�

µ0,+ · · · µN−1,+

�

, (2.C.3)
�

e1,+ · · · eN ,+

�

=
�

y(h)1 · · · y(h)N

�−H
�

w1|0,+ · · · wN |N−1,+

�

=
�

y(h)1 · · · y(h)N

�−HF
�

µ0,+ · · · µN−1,+

�

. (2.C.4)

Note that we can also simplify the log-likelihood conditional to the initialization (µ0,+,C+), since
in this case Ut = U+ for all t = 1, . . . , N . Hence, we can define the log-likelihood computed
based on the SKF as

log
�

fYN

�

+ = −
1
2

�

ny N log(2π) +
N
∑

t=1

log |U+| +
N
∑

t=1

eT
t,+ U−1

+ et,+

�

= −1
2

�

ny N log(2π) + N log |U+|
�− 1

2

N
∑

t=1

tr
�

eT
t,+ U−1

+ et,+

�

= −1
2

�

ny N log(2π) + N log |U+|
�− 1

2

N
∑

t=1

tr
�

U−1
+ et,+eT

t,+

�

= −1
2

�

ny N log(2π) + N log |U+|
�− 1

2
tr

�

N
∑

t=1

U−1
+ et,+eT

t,+

�

= −1
2

�

ny N log(2π) + N log |U+|
�− 1

2
tr

�

U−1
+

N
∑

t=1

et,+eT
t,+

�

= −1
2

�

ny N log(2π) + N log |U+|+ tr
�

U−1
+

�

e1,+ · · · eN ,+

� �

e1,+ · · · eN ,+

�T��

= −1
2

�

ny N log(2π) + N log |U+|+ tr
�

U−1
+ e1:N ,+eT

1:N ,+

��

,

= −1
2

�

ny N log(2π) + N log |U+|+ tr
�

eT
1:N ,+ U−1

+ e1:N ,+

��

, (2.C.5)

with e1:N ,+ :=
�

e1,+ · · · eN ,+

�

.
Further, note that since J+ = F̃C+ , we may analyze its eigenvalues to check if C+ is a strong /

stabilizing solution to RDE (2.2.8a).

2.D Derivation of the augmented Kalman filter
The first part of this appendix contains the formal derivation of the augmented Kalman filter
(AKF) (2.2.15) and the log-density log

�

fYN

�

given in (2.2.16). In the second part, we provide a
brief digression on how initialization strategies for non-stationary SSMs, such as the fixed-but-
unknown or the diffuse initialization, can be incorporated within the AKF (2.2.15). In the last
part of this appendix, we show how to incorporate the additional steps of the AKF into the KF
(2.2.4).

2.D.1 The augmented Kalman filter
Note that the derivation of the AKF given here in large parts follows the arguments of Durbin
and Koopman (2012, Chapter 5.7). However, we shall derive the AKF with respect to SSM
(2.2.1), while the elaborations of Durbin and Koopman (2012) are based on the alternative
state-space representation (2.2.5).
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For convenience, let us restate the model for the initial state vector from equation (2.2.13):

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0),

Further, we denoted the time t quantities generated by the Kalman recursion (2.2.4) initialized
at (µ̃0, C̃0), with µ̃0 = aw +Awµ0 and C̃0 = AwC0AT

w, by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt , and K̃t . In
the following derivation of the AKF (2.2.15a)-(2.2.15e)

µt = µ̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

, ∀ t = 1, 2, . . . , N ,

Ct = C̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1
AT

d MT
t , ∀ t = 1,2, . . . , N ,

st = st−1 + (HFMt−1)
T Ũ−1

t ẽt , s0 = 0, ∀ t = 1,2, . . . , N ,

St = St−1 + (HFMt−1)
T Ũ−1

t (HFMt−1), S0 = 0, ∀ t = 1,2, . . . , N ,

Mt =
�

I− K̃tH
�

F Mt−1, M0 = I, ∀ t = 1,2, . . . , N ,

and especially of the log-density

log( fYN
) = log

�

fYN |d=0

�− 1
2

log |I+D0 AT
d SN Ad| −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ),

given in (2.2.16), the Bayes theorem will play a key role as it allows us to decompose the
log-density log( fYN

) into

log
�

fYN

�

= log

�

fYN |d · fd

fd|YN

�

= log( fd) + log
�

fYN |d
�− log

�

fd|YN

�

. (2.D.1)

While for given δ0 and D0, the log-density log( fd) is fully specified, we need to obtain log
�

fYN |d
�

and log
�

fd|YN

�

to determine log
�

fYN

�

from the right-hand side of (2.D.1). Therefore, in the first
step, we will show that we can express the log-density log( fYN |d) as a function of log( fYN |d=0), d,
Ad , sN , and SN , where a crucial preliminary result will be the observation that the quantities
µt , wt|t−1, and et of the KF are linear functions of µ0. This observation is due to Rosenberg
(1973) and forms the basis for the so-called fixed-but-unknown initialization discussed later in
this appendix. Eventually, we will receive (2.2.15) and (2.2.16) using a fixed-point smoothing
algorithm to obtain log

�

fd|YN

�

.

Linearity of µt , wt|t−1, and et in µ0: In the following lemma, we will show that the quantities
µt , wt|t−1, and et of the KF are linear in µ0, while the quantities Ct , Pt|t−1, and Ut are independent
of µ0:

Lemma 2.D.1. Suppose for the SSM (2.2.1) the time t quantities generated by the Kalman
recursion (2.2.4) initialized at (µ̃0,C0) are denoted by µ̃t , C̃t , w̃t|t−1, P̃t|t−1, ẽt , Ũt and K̃t . Further
suppose µt , Ct , wt|t−1, Pt|t−1, et , Ut and Kt denote the time t quantities generated by the Kalman
recursion (2.2.4) initialized at (µ0,C0), then we can state that

Ct = C̃t , Pt|t−1 = P̃t|t−1, Ut = Ũt , Kt = K̃t ,

and that

µt = µ̃t +Mt ∆0, wt|t−1 = w̃t|t−1 + FMt−1 ∆0, et = ẽt −HFMt−1 ∆0,
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with

∆0 = µ0 − µ̃0, Ms =
∏s

j=1
Js− j+1, Jt = (I−KtH)F, ∀s = 0,1, . . . , N ,

for all t = 1, 2, . . . , N .

Proof:
Defining Jt := (I−KtH)F we can use equation (2.2.4a), (2.2.4c) and (2.2.4e) to obtain the law
of motion for µt as

µt =wt|t−1 +Ktet

=wt|t−1 +Kt

�

yt − h−H wt|t−1

�

=wt|t−1 +Kt (yt − h)−KtH wt|t−1

= (I−KtH)wt|t−1 +Kt (yt − h)
= (I−KtH)F µt−1 +Kt (yt − h)
= Jt µt−1 +Kt (yt − h) , ∀t = 1,2, . . . , N . (2.D.2)

Note that it follows from equations (2.2.3), (2.2.4b), (2.2.4d) and (2.2.4f), that the sequences
{Kt}Nt=1, {Pt|t−1}Nt=1, {Ut}Nt=1 and {Ct}Nt=0 referring to the initialization (µ0,C0) do not depend on
µ0 and therefore are identical to the sequences {K̃t}Nt=1, {P̃t|t−1}Nt=1, {Ũt}Nt=1 and {C̃t}Nt=0 referring
to the initialization (µ̃0,C0). Consequently, we can state that law of motion for µ̃t similar to
(2.D.2) is given by

µ̃t = Jt µ̃t−1 +Kt (yt − h) , ∀t = 1,2, . . . , N . (2.D.3)

Moreover, defining ∆t = µt − µ̃t for all t = 0, 1, . . . , N , we may use (2.D.2) and (2.D.3) to write

∆t = Jt ∆t−1

= Jt · Jt−1 ∆t−2

...

= Jt · Jt−1 · . . . · J1 ∆0

=

�

t
∏

j=1

Jt− j+1

�

∆0

=Mt ∆0, ∀t = 0, 1, . . . , N , (2.D.4)

with

Mt :=
t
∏

j=1

Jt− j+1, ∀t = 0,1, . . . , N .

Note that from the definition of the
∏

(·) operator follows that M0 =
∏0

j=1 J j+1 = I. The
statement of Lemma 2.D.1 then follows directly from (2.D.4), (2.2.4a) and (2.2.4b):

µt = µ̃t +Mt ∆0, ∀t = 0,1, . . . , N , (2.D.5)

wt|t−1 = F µt−1

= F µ̃t−1 + FMt−1 ∆0

= w̃t|t−1 + FMt−1 ∆0, ∀t = 1,2, . . . , N , (2.D.6)

et = yt − h−Hwt|t−1
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= yt − h−H
�

w̃t|t−1 + FMt−1 ∆0

�

= yt − h−Hw̃t|t−1 −HFMt−1 ∆0

= ẽt −HFMt−1 ∆0, ∀t = 1,2, . . . , N . (2.D.7)

�

As mentioned before, this observation, closely connected to the so-called fixed-but-unknown
initialization, where we treat the elements of d as fixed parameters that we may estimate via
maximum-likelihood, is due to Rosenberg (1973).

Obtaining log( fYN |d) as a function of log( fYN |d=0), d, Ad , sN , and SN : In the following Propo-
sition, we use Lemma 2.D.1 to obtain the analytical maximum-likelihood estimator for d and
show that we may rewrite log( fYN |d) as a function of log( fYN |d=0), d, Ad , sN , and SN :

Proposition 2.D.1. Suppose the initial state vector w0 can be written as

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0),

where w0 ∈ Rnw̄ , nw̄ ≤ nw and d ∈ Rnd , nd ≤ nw represent two independent random vectors.
Suppose for SSM (2.2.1) the time t quantities generated by the Kalman recursion (2.2.4)
initialized at (µ̃0, C̃0), with µ̃0 = aw + Awµ0 and C̃0 = AwC0AT

w, are denoted by µ̃t , C̃t , w̃t|t−1,
P̃t|t−1, ẽt , Ũt and K̃t . Then for the SSM (2.2.1) the conditional log-density of YN given d may be
written as

log
�

fYN |d
�

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN Ad d,

with

st =
N
∑

i=1

ET
i Ũ−1

i ẽi, St =
N
∑

i=1

ET
i Ũ−1

i Ei

Et = HFMt−1, Mt−1 =
∏t−1

j=1
Jt− j, Jt =

�

I− K̃tH
�

F, ∀t = 1,2, . . . , N .

Further, the maximum-likelihood estimator of d for a given sample YN yields

d̂ = argmax
d

log
�

fYN |d
�

=
�

AT
d SN Ad

�−1
AT

d sN ,

with

ÓVar[d̂] = −
�

∂ 2 log
�

fYN |d
�

∂ d ∂ dT

�−1

=
�

AT
d SN Ad

�−1
.

Proof:
Note that we may write the mean vector and the variance matrix of w0 given d as

µ0|d := E[w0|d] = µ̃0 + d, C0|d := Var[w0|d] = C̃0,

with d = Ad d. Suppose for SSM (2.2.1) the time t quantities generated by the Kalman recursion
(2.2.4) initialized at (µ0|d,C0|d) are denoted by µt|d, Ct|d, wt|t−1,d, Pt|t−1,d, et|d, Ut|d and Kt|d.
Then the conditional log-density of YN given d follows from (2.2.6) as

log
�

fYN |d
�

= −N ny

2
log(2π) − 1

2

N
∑

t=1

log
�

�Ut|d
�

� − 1
2

N
∑

t=1

eT
t|d U−1

t|d et|d.
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Hence, using Lemma 2.D.1 we may write

log
�

fYN |d
�

= −N ny

2
log(2π) − 1

2

N
∑

t=1

log
�

�Ũt

�

�− 1
2

N
∑

t=1

�

ẽt − Et d
�T

Ũ−1
t

�

ẽt − Et d
�

. (2.D.8)

The first part of the proof is completed by rewriting the (2.D.8) to

log
�

fYN |d
�

= −N ny

2
log(2π) − 1

2

N
∑

t=1

log
�

�Ũt

�

�− 1
2

N
∑

t=1

�

ẽt − Et d
�T

Ũ−1
t

�

ẽt − Et d
�

= −N ny

2
log(2π) − 1

2

N
∑

t=1

log
�

�Ũt

�

� − 1
2

�

N
∑

t=1

ẽT
t Ũ−1

t ẽt

�

︸ ︷︷ ︸

=log(fYN |d=0)

+
1
2

�

N
∑

t=1

ẽT
t Ũ−1

t Et d

�

+
1
2

�

N
∑

t=1

dT ET
t Ũ−1

t ẽt

�

− 1
2

�

N
∑

t=1

dT ET
t Ũ−1

t Et d

�

= log
�

fYN |d=0

�

+
1
2

�

N
∑

t=1

ẽT
t Ũ−1

t Et

�

d +
1
2

dT

�

N
∑

t=1

ET
t Ũ−1

t ẽt

�

− 1
2

dT

�

N
∑

t=1

ET
t Ũ−1

t Et

�

d

= log
�

fYN |d=0

�

+
1
2

sT
Nd +

1
2

dT sN
︸ ︷︷ ︸

=d̄TsN , since (d̄TsN)∈R1×1.

−1
2

dT SN d

= log
�

fYN |d=0

�

+ dT sN −
1
2

dT SN d

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN A d. (2.D.9)

Since sN , SN , Ad and log
�

fYN |d=0

�

do not depend on d, using matrix differentiating rules (see
e.g. Lütkepohl (2007, pp. 664-671)) the first and second order derivatives of log

�

fYN |d
�

with
respect to d yield

∂ log
�

fYN |d
�

∂ d
= AT

d sN −AT
d SN Ad d, (2.D.10a)

∂ log
�

fYN |d
�

∂ d ∂ dT
= −AT

d SN Ad. (2.D.10b)

If the matrix AT
d SN Ad has full rank, equating (2.D.10a) to zero yields the maximum-likelihood

estimator for d given (YN )

d̂ = argmax
d

log
�

fYN |d
�

=
�

AT
d SN Ad

�−1
AT

d sN ,

with

ÓVar[d̂] = −
�

∂ 2 log
�

fYN |d
�

∂ d ∂ dT

�−1

=
�

AT
d SN Ad

�−1
.

�

Derivation of (2.2.15) and (2.2.16): Using the results of Lemma 2.D.1 and Proposition 2.D.1,
we may ultimately obtain the formulas of the AKF (2.2.15) and the log-density log( fYN

) given in
(2.2.16). Therefore, let us establish the following Proposition:
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Proposition 2.D.2. Suppose the initial state vector w0 can be written as

w0 = aw +Aw w0 +Ad d, w0 ∼ N(µ0,C0), d ∼ N(δ0,D0),

where w0 ∈ Rnw̄ , nw̄ ≤ nw and d ∈ Rnd , nd ≤ nw represent two independent random vectors.
Suppose for SSM (2.2.1) the time t quantities generated by the Kalman recursion (2.2.4)
initialized at (µ̃0, C̃0), with µ̃0 = aw + Awµ0 and C̃0 = AwC0AT

w, are denoted by µ̃t , C̃t , w̃t|t−1,
P̃t|t−1, ẽt , Ũt and K̃t . Suppose the variance matrix D0 is positive definite. Then for the SSM
(2.2.1) the conditional distributions of d and wt given Yt are Gaussian with mean vectors

δ t := E [d|Yt] =
�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

,

µt := E [wt |Yt] = µ̃t +MtAd δ t ,

and variance matrices:

Dt := Var [d|Yt] =
�

D−1
0 +AT

d St Ad

�−1
,

Ct := Var [wt |Yt] = C̃t +MtAdDtA
T
d MT

t ,

where

st =
t
∑

i=1

ET
i Ũ−1

i ẽi, St =
t
∑

i=1

ET
i Ũ−1

i Ei and

Et = HFMt−1, Mt−1 =
∏t−1

j=1
Jt− j, Jt =

�

I− K̃tH
�

F, ∀t = 1,2, . . . , N .

Further, the log-density of YN may be written as

log( fYN
) = log

�

fYN |d=0

�− 1
2

log |I+D0 AT
d SN Ad| −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ).

Proof:
From Lemma 2.A.1 and the linearity of the SSM (2.2.1) follows that d given Yt is normally
distributed with the corresponding log-density

log
�

fd|Yt

�

= −nd

2
log(2π) − 1

2
log |Dt | −

1
2
(d−δ t)

T D−1
t (d−δ t) , (2.D.11)

where δ t := E [d|Yt] and Dt := Var [d|Yt] denote mean vector and the variance matrix of d
given Yt . Since d given Yt is normally distributed, the mode and the mean of log

�

fd|Yt

�

coincide
and we can write

δ t = argmax
d

log
�

fd|Yt

�

.

Additionally from (2.D.11) and matrix differentiating rules (see e.g. Lütkepohl (2007, pp. 664-
671)) follows that the Hessian matrix of log

�

fd|Yt

�

with respect to d is

∂ 2 log
�

fd|Yt

�

∂ d ∂ dT
=
∂

∂ d

�

−1
2

∂ (d−δ t)
T D−1

t (d−δ t)

∂ dT

�
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=
∂

∂ d

�

−1
2

∂ (δ t − d)T D−1
t (δ t − d)

∂ dT

�

=
∂

∂ d

�

−1
2

�−2 (δ t − d)T D−1
t

�

�

=
∂

∂ d

�

(δ t − d)T D−1
t

�

= −D−1
t ,

and the variance matrix Dt yields

Dt = −
�

∂ 2 log
�

fd|Yt

�

∂ d ∂ dT

�−1

. (2.D.12)

Hence, to prove the first part of Proposition 2.D.2 we need to obtain the first and second order
derivatives of log

�

fd|Yt

�

with respect to d. To do so, we first use the Bayes Theorem to rewrite
log

�

fd|Yt

�

as

log
�

fd|Yt

�

= log

�

fYt |d · fd

fYt

�

= log( fd) + log
�

fYt |d
�− log

�

fYt

�

. (2.D.13)

Note that the first term on the right-hand side of (2.D.13) is the log-density of d, which yields

log( fd) = −
nd

2
log(2π) − 1

2
log |D0| −

1
2
(d−δ0)

T D−1
0 (d−δ0) . (2.D.14)

Differentiating equation (2.D.14) with respect to d we get

∂ log ( fd)
∂ d

= −1
2
∂

∂ d

�

(d−δ0)
T D−1

0 (d−δ0)
�

= −1
2
∂

∂ d

�

(δ0 − d)T D−1
0 (δ0 − d)

�

= −1
2

�−2D−1
0 (δ0 − d)

�

= D−1
0 (δ0 − d)

= D−1
0 δ0 −D−1

0 d. (2.D.15)

Furthermore, we already obtained the first order derivatives of the conditional log-likelihood
log

�

fYt |d
�

with respect to d in equation (2.D.10a). Finally, we get the first order derivatives of
log

�

fYt

�

with respect to d as

∂ log
�

fYt

�

∂ d
= 0, (2.D.16)

since we can obtain log
�

fYt

�

without knowledge of d from equation (2.2.6) by initializing the
Kalman recursion (2.2.4) at

�

µ0,C0

�

with µ0 = aw+Aw µ0+Ad δ0 and C0 = Aw C0 AT
w+Ad D0 AT

d .
Hence, from equations (2.D.10a), (2.D.13), (2.D.15) and (2.D.16) we receive

∂ log
�

fd|Yt

�

∂ d
=
∂ log ( fd)
∂ d

+
∂ log

�

fYt |d
�

∂ d
− ∂ log

�

fYt

�

∂ d
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= D−1
0 δ0 −D−1

0 d+AT
d st −AT

d St Ad d

= D−1
0 δ0 +AT

d st −
�

D−1
0 +AT

d St Ad

�

d, (2.D.17)

and the mean vector δ t of d given Yt is obtained as

δ t = arg max
d

log
�

fd|Yt

�

=
�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

,

by equating (2.D.17) to zero and solving with respect to d. To obtain Dt , we compute the
Hessian of log

�

fd|Yt

�

with respect to d by differentiating (2.D.17) with respect to dT , which
results in

∂ log
�

fd|Yt

�

∂ d ∂ dT
= − �D−1

0 +AT
d St Ad

�

. (2.D.18)

Thus, due to (2.D.12), the variance matrix Dt of d given Yt equals

Dt = −
�

∂ 2 log
�

fd|Yt

�

∂ d ∂ dT

�−1

=
�

D−1
0 +AT

d St Ad

�−1
.

Moreover, we can state that
�

d
wt

�

given Yt is normally distributed with mean vector

E
�

d
wt

�

�

�Yt

�

=
�

δ t

µ̃t +MtAd δ t

�

(2.D.19)

and variance matrix

Var
�

d
wt

�

�

�Yt

�

=
�

Dt DtA
T
d MT

t
MtAdDt C̃t +MtAdDtA

T
d MT

t

�

. (2.D.20)

This may be seen from the fact that we can write the joint density function of d and wt given Yt

as

fd,wt |Yt
= fd|Yt

· fwt |d,Yt

=(2π)−
np
2 |Dt |−

1
2 exp

�

−1
2
(d−δ t)

T D−1
t (d−δ t)

�

× (2π)− nw
2
�

�C̃t

�

�

− 1
2 exp

�

−1
2

�

wt − µ̃t −MtAdd
�T

C̃−1
t

�

wt − µ̃t −MtAdd
�

�

=(2π)−
np+nw

2

�

�

�

�

�

Dt 0
0 C̃t

�

�

�

�

�

− 1
2

× exp

�

−1
2

�

d−δ t

wt − µ̃t −MtAdd

�T �D−1
t 0
0 C̃−1

t

��

d−δ t

wt − µ̃t −MtAdd

�

�

=(2π)−
np+nw

2









�

�

�

�

�

I 0
MtAd I

�

�

�

�

�

︸ ︷︷ ︸

=1

�

�

�

�

�

Dt 0
0 C̃t

�

�

�

�

�

�

�

�

�

�

I AT
d MT

t
0 I

�

�

�

�

�

︸ ︷︷ ︸

=1









− 1
2
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× exp

�

− 1
2

�

d−δ t

wt − µ̃t −MtAdd

�T �
I AT

d MT
t

0 I

��

I AT
d MT

t
0 I

�−1

︸ ︷︷ ︸

=I

×
�

Dt 0
0 C̃t

�−1�
I 0

MtAd I

�−1�
I 0

MtAd I

�

︸ ︷︷ ︸

=I

�

d−δ t

wt − µ̃t −MtAdd

�

�

=(2π)−
np+nw

2

�

�

�

�

�

I 0
MtAd I

��

Dt 0
0 C̃t

��

I AT
d MT

t
0 I

�

�

�

�

�

− 1
2

× exp

�

− 1
2

�

d−δ t

MtAdd−MtAdδ t +wt − µ̃t −MtAdd

�T

×
��

I 0
MtAd I

��

Dt 0
0 C̃t

��

I AT
d MT

t
0 I

��−1

×
�

d−δ t

MtAdd−MtAdδ t +wt − µ̃t −MtAdd

�

�

=(2π)−
np+nw

2

�

�

�

�

�

Dt DtA
T
d MT

t
MtAdDt C̃t +MtAdDtA

T
d MT

t

�

�

�

�

�

− 1
2

× exp

�

− 1
2

�

d−δ t

wt −
�

µ̃t +MtAdδ t

�

�T �
Dt DtA

T
d MT

t
MtAdDt C̃t +MtAdDtA

T
d MT

t

�−1

×
�

d−δ t

wt −
�

µ̃t +MtAdδ t

�

��

.

Consequently, it follows from (2.D.19) and (2.D.20) that wt given Yt is normally distributed
with mean vector µt and variance matrix Ct defined by

µt := E [wt |Yt] = µ̃t +MtAdδ t ,

Ct := Var [wt |Yt] = C̃t +MtAdDtA
T
d MT

t .

The claim about log-density of YN then follows directly from equations (2.D.9), (2.D.11),
(2.D.13) and (2.D.14):

log( fYN
) = log( fYN |d) + log( fd)− log( fd|YN

)

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN Ad d

︸ ︷︷ ︸

log(fYN |d), from (2.D.9).

−nd

2
log(2π) − 1

2
log |D0| −

1
2
(d−δ0)

T D−1
0 (d−δ0)

︸ ︷︷ ︸

=log(fd), from (2.D.14).

−
�

−nd

2
log(2π) − 1

2
log |DN | −

1
2
(d−δN )

T D−1
N (d−δN )

�

︸ ︷︷ ︸

=log(fd|YN ), from (2.D.11).

= log
�

fYN |d=0

�− 1
2

log |D0|+
1
2

log |DN |+ dT AT
d sN −

1
2

dT AT
d SN Ad d

− 1
2
(d−δ0)

T D−1
0 (d−δ0)

+
1
2
(d−δN )

T D−1
N (d−δN )
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= log
�

fYN |d=0

�− 1
2
(log |D0| − log |DN |) + dT AT

d sN −
1
2

dT AT
d SN Ad d

− 1
2

dT D−1
0 d +

1
2

dT D−1
0 δ0 +

1
2
δT

0 D−1
0 d

︸ ︷︷ ︸

=dT(D−1
0 δ0), since

�

δT
0 D−1

0 d
� ∈ R.

−1
2
δT

0 D−1
0 δ0

+
1
2

dT D−1
N d −1

2
dT D−1

N δN −
1
2
δT

N D−1
N d

︸ ︷︷ ︸

=−dT(D−1
N δN), since

�

δT
N D−1

N d
� ∈ R.

+
1
2
δT

N D−1
N δN

= log
�

fYN |d=0

�− 1
2

log
�

�D0D−1
N

�

�− 1
2
δT

0 D−1
0 δ0 +

1
2
δT

N D−1
N δN

− 1
2

�

dT AT
d SN Ad d+ dT D−1

0 d
�

︸ ︷︷ ︸

=dT(D−1
0 +AT

d SN Ad)d

+dT
�

D−1
0 δ0

�

+ dT AT
d sN

︸ ︷︷ ︸

=dT(D−1
0 δ0+AT

d sN)

+
1
2

dT D−1
N d

︸ ︷︷ ︸

=dT(D−1
0 +AT

d SN Ad)d

− dT
�

D−1
N δN

�

︸ ︷︷ ︸

=dT(D−1
0 δ0+AT

d sN)

= log
�

fYN |d=0

�− 1
2
δT

0 D−1
0 δ0

− 1
2

log
�

�D0D−1
N

�

�

︸ ︷︷ ︸

=− 1
2 log|D0(D−1

0 +AT
d SN Ad)|

+
1
2
δT

N D−1
N δN

︸ ︷︷ ︸

= 1
2 (D

−1
0 δ0+AT

d sN)T(D−1
0 +AT

d SN Ad)−1(D−1
0 δ0+AT

d sN)

= log
�

fYN |d=0

�− 1
2

log |I+D0 AT
d SN Ad| −

1
2
δT

0 D−1
0 δ0

+
1
2
(D−1

0 δ0 +AT
d sN )

T (D−1
0 +AT

d SN Ad)
−1(D−1

0 δ0 +AT
d sN ),

which completes the proof.27

�

Note that (2.2.16) follows directly from the claims of Proposition 2.D.2, while we may obtain
(2.2.15a) and (2.2.15b) by substituting δ t =

�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

and Dt =
�

D−1
0 +AT

d St Ad

�−1
into µt = µ̃t +MtAd δ t and Ct = C̃t +MtAdDtA

T
d MT

t , respectively. To derive
the remaining formulas of the AKF, notice that defining the sequences {st}Nt=0, {Mt}Nt=0, and
{St}Nt=0 as in Propositions 2.D.1 and 2.D.2 is equivalent to their recursive derivation given in
(2.2.15c)-(2.2.15e). To see this, note that

st =
t
∑

i=1

ET
i Ũ−1

i ẽi

=
t
∑

i=1

(HFMi−1)
T Ũ−1

i ẽi

= (HFMt−1)
T Ũ−1

t ẽt +
t−1
∑

i=1

(HFMi−1)
T Ũ−1

i ẽi

= st−1 + (HFMt−1)
T Ũ−1

t ẽt ,

St =
t
∑

i=1

ET
i Ũ−1

i Ei

27Note that some arguments of this proof are taken from Durbin and Koopman (2012, pp. 141-144) and de Jong
(1988).
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=
t
∑

i=1

(HFMi−1)
T Ũ−1

i (HFMi−1)

= (HFMt−1)
T Ũ−1

t (HFMt−1) +
t−1
∑

i=1

(HFMi−1)
T Ũ−1

i (HFMi−1)

= St−1 + (HFMt−1)
T Ũ−1

t (HFMt−1),

Mt =
∏t

j=1
Jt+1− j

= Jt Jt−1 . . . J1

= Jt

∏t−1

j=1
Jt− j

= Jt Mt−1

=
�

I− K̃tH
�

F Mt−1.

Further, by definition of the
∑

(·) and the
∏

(·) operator, we get:

s0 =
0
∑

i=1

ET
i Ũ−1

i ẽi = 0, S0 =
0
∑

i=1

ET
i Ũ−1

i Ei = 0, M0 =
0
∏

j=1

J1− j = I.

2.D.2 Initialization strategies for non-stationary state-spacemodels
In the following, we present two well-known strategies, namely the fixed-but-unknown and the
diffuse initialization, to choose (µ0,C0) in the context of non-stationary SSMs.

Fixed-but-unknown initialization: Imagine the state vector wt contains some non-stationary
elements, which implies that the unconditional second moments of wt do not exist; therefore an
unconditional initialization is impossible. One way to handle non-stationary SSMs is to treat the
non-stationary elements in w0 as fixed-but-unknown and estimate them via maximum-likelihood.
We refer to this approach, which goes back to Rosenberg (1973), as the fixed-but-unknown
initialization. As de Jong (1988) shows, we can easily apply the fixed-but-unknown initialization
within the framework of the AKF. To see this, suppose that we may reorder the initial state
vector w0 such that

w0 =

�

w(1)0

w(2)0

�

∼ N

��

µ(1)0

µ(2)0

�

,

�

C(1)0 0
0 C(2)0

��

, µ(1)0 = µ
(1), C(1)0 = C(1), C(2)0 = zI, (2.D.21)

where w(1)0 and w(2)0 denote the stationary and non-stationary elements, respectively, and where
µ(1) and C(1) represent the unconditional mean vector and the unconditional variance matrix of
w(1)t . For an initial state vector w0 as defined in (2.D.21), we can consider the fixed-but-unknown
initialization as the case where z tends to zero. We may also express w0, defined via (2.D.21)
using (2.2.13) by setting

µ0 = 0, C0 = C(1)0 , aw =
�

0
0

�

, Aw =
�

I
0

�

,

δ0 = µ
(2)
0 D0 = C(2)0 = zI, Ad =

�

0
I

�

.
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Hence, we can apply the AKF to the initial state vector w0 defined by (2.D.21). If we now let z
tend to zero, i.e., d= δ0 and D0→ 0, (2.2.15a) and (2.2.15b) become

µt|d = E[wt |Yt ,d]

= lim
D0→0

µt

= lim
D0→0

µ̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1 �
D−1

0 δ0 +AT
d st

�

= lim
D0→0

µ̃t +MtAd

�

I+D0AT
d St Ad

�−1
D0

�

D−1
0 δ0 +AT

d st

�

= lim
D0→0

µ̃t +MtAd

�

I+D0AT
d St Ad

�−1 �
δ0 +D0AT

d st

�

= µ̃t +MtAd (I)
−1 d

= µ̃t +MtAd d, ∀ t = 1,2, . . . , N , (2.D.22a)

Ct|d = Var[wt |Yt ,d]

= lim
D0→0

Ct

= lim
D0→0

C̃t +MtAd

�

D−1
0 +AT

d St Ad

�−1
AT

d MT
t

= lim
D0→0

C̃t +MtAd

�

I+D0AT
d St Ad

�−1
D0AT

d MT
t

= C̃t , ∀ t = 1,2, . . . , N , (2.D.22b)

and the conditional log-density of YN given d follows from Proposition 2.D.1 as

log
�

fYN |d
�

= log
�

fYN |d=0

�

+ dT AT
d sN −

1
2

dT AT
d SN Ad d. (2.D.23)

Further, if AT
d SN Ad is non-singular, we may obtain the maximum-likelihood estimator of d and

its estimated variance matrix from Proposition 2.D.1 as

d̂ =
�

AT
d SN Ad

�−1
AT

d sN , (2.D.24a)

ÓVar[d̂] =
�

AT
d SN Ad

�−1
. (2.D.24b)

Hence, substituting d by d̂ in (2.D.23) yields

log
�

fYN |d=d̂

�

= log
�

fYN |d=0

�

+ d̂T AT
d sN −

1
2

d̂T AT
d SN Ad d̂

= log
�

fYN |d=0

�

+
�

�

AT
d SN Ad

�−1
AT

d sN

�T
AT

d sN

− 1
2

�

�

AT
d SN Ad

�−1
AT

d sN

�T
AT

d SN Ad

�

�

AT
d SN Ad

�−1
AT

d sN

�

= log
�

fYN |d=0

�

+ sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN

− 1
2

sT
N Ad

�

AT
d SN Ad

�−1
AT

d SN Ad

�

AT
d SN Ad

�−1
AT

d sN

= log
�

fYN |d=0

�

+ sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN −
1
2

sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN

= log
�

fYN |d=0

�

+
1
2

sT
N Ad

�

AT
d SN Ad

�−1
AT

d sN , (2.D.25)

which is the log-density of YN concentrated with respect to d. This means that if we want to
evaluate the log-density of YN based on the fixed-but-unknown initialization for the non-stationary
elements w(2)0 of w0, we replace (2.2.6) with (2.D.25).
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Diffuse initialization: A rather contrary approach to the fixed-but-unknown initialization is
the so-called diffuse initialization, where we treat the non-stationary elements w(2)0 of the initial
state vector w0 as diffuse, i.e., z→∞ or equivalently D0→∞. Thus, treating w(2)0 as diffuse,
(2.2.15a) and (2.2.15b) yield

µt,z→∞ := lim
z→∞µt = µ̃t +MtAd

�

AT
d St Ad

�−1 �
AT

d st

�

, ∀ t = k, k+ 1, . . . , N , (2.D.26a)

Ct,z→∞ := lim
z→∞Ct = C̃t +MtAd

�

AT
d St Ad

�−1
AT

d MT
t , ∀ t = k, k+ 1, . . . , N , (2.D.26b)

where k is the first period where the matrix AT
d St Ad becomes non-singular. Thus, although the

initial state vector w0 in this case (z→∞) has an improper distribution, in the sense that it does
not integrate to one, it has a proper distribution conditional on Yk. In practice, when dealing
with non-stationary SSMs, we often use often only the first k observations to obtain µk,z→∞ and
Ck,z→∞. We then use the remaining observations to evaluate the log-likelihood based on the
original Kalman recursion (2.2.4) initialized at (µk,z→∞,Ck,z→∞). For more detailed treatments
of the diffuse initialization using the AKF, we refer the reader to textbook treatments by Harvey
(1990b) or Durbin and Koopman (2012).

2.D.3 Incorporating the augmented Kalman filter into the Kalman
recursion

To compute the log-likelihood log
�

fYN

�

based on the AKF, one augments the standard Kalman
recursion (2.2.4) initialized at (µ̃0, C̃0) so that for all t = 1,2, . . . , N , the quantity Mt can be
computed in parallel. To do so, we define

Wt|t−1 := FMt−1, ,∀ t = 1, 2, . . . , N (2.D.27)

so that we may compute Mt as

Mt =
∏t

j=1
Jt− j+1

= JtMt−1

=
�

I− K̃tH
�

FMt−1

=
�

I− K̃tH
�

Wt|t−1

=Wt|t−1 − K̃tHWt|t−1

=Wt|t−1 − K̃tEt ,∀ t = 1,2, . . . , N . (2.D.28)

Based on (2.D.27) and (2.D.28), we get the augmented Kalman recursion by extending (2.2.4a),
(2.2.4c), and (2.2.4e) from the standard Kalman recursion (2.2.4) initialized at (µ̃0, C̃0) to
�

w̃t|t−1 Wt|t−1

�

= F
�

µ̃t−1 Mt−1

�

, (2.D.29a)
�

ẽt Et

�

=
�

y(h)t 0
�−H

�

w̃t|t−1 Wt|t−1

�

, (2.D.29c)
�

µ̃t Mt

�

=
�

w̃t|t−1 Wt|t−1

�

+ K̃t

�

ẽt Et

�

, (2.D.29e)

for all t = 1, 2, . . . , N .
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2.E Smets andWouters model
The version of the dynamic stochastic general equilibrium (DSGE) model introduced by Smets
and Wouters (2007) that we use in this paper reflects a slightly adjusted version of the original
model that follows the Dynare implementation made available by Johannes Pfeifer.28

2.E.1 Stochastic process and residuals
The stochastic process driving the economy is given by

εa
t = ρa ε

a
t−1 +η

a
t ηa

t ∼ N(0,σa),

εb
t = ρb ε

b
t−1 +η

b
t ηb

t ∼ N(0,σb),
εg

t = ρg ε
g
t−1 +ρga η

a
t +η

g
t ηg

t ∼ N(0,σg),

εi
t = ρi ε

i
t−1 +η

i
t ηi

t ∼ N(0,σi),
εr

t = ρr ε
r
t−1 +η

r
t ηr

t ∼ N(0,σr),
εp

t = ρp ε
p
t−1 −µp η

p
t−1 +η

p
t ηp

t ∼ N(0,σp),
εw

t = ρw ε
w
t−1 −µwη

w
t−1 +η

w
t ηw

t ∼ N(0,σw),

where εa
t , εb

t , εg
t , εi

t , ε
r
t , ε

p
t , and εw

t denote a productivity shock, a risk premium shock, an
exogenous government spending shock, an investment-specific technology shock, a monetary
policy shock, a price markup shock, and a wage markup shock, respectively. In two periods, we
can write this stochastic process as

0= εa
t −ηa

t −ρa L
�

εa
t

�

, (2.E.1)

0= εb
t −ηb

t −ρb L
�

εb
t

�

, (2.E.2)

0= εg
t −ηg

t −ηa
t ρga −ρg L

�

εg
t

�

, (2.E.3)

0= εi
t −ηi

t −ρi L
�

εi
t

�

, (2.E.4)

0= εr
t −ηr

t −ρr L
�

εr
t

�

, (2.E.5)

0= εp
t −ηp

t + L
�

ηp
t

�

µp −ρp L
�

εp
t

�

, (2.E.6)

0= εw
t −ηw

t + L
�

ηw
t

�

µw −ρw L
�

εw
t

�

, (2.E.7)

0= Et

�

ηa
t+1

�

, (2.E.8)

0= Et

�

ηb
t+1

�

, (2.E.9)

0= Et

�

η
g
t+1

�

, (2.E.10)

0= Et

�

ηi
t+1

�

, (2.E.11)

0= Et

�

ηr
t+1

�

, (2.E.12)

0= Et

�

η
p
t+1

�

, (2.E.13)

0= Et

�

ηw
t+1

�

, (2.E.14)

where L(x t) denotes the variable x t lagged by one period, i.e, L(x t) = x t−1.

28Link: https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Smets_Wouters_2007/
Smets_Wouters_2007_45.mod

https://github.com/JohannesPfeifer/DSGE_mod/blob/109e04099fca6f477334b08e109092fa9c4f7e57/Smets_Wouters_2007/Smets_Wouters_2007_45.mod
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Smets_Wouters_2007/Smets_Wouters_2007_45.mod
https://github.com/JohannesPfeifer/DSGE_mod/blob/109e04099fca6f477334b08e109092fa9c4f7e57/Smets_Wouters_2007/Smets_Wouters_2007_45.mod
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Smets_Wouters_2007/Smets_Wouters_2007_45.mod
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2.E.2 Economywith sticky prices and wages
At the core of the log-linearized version of the model are 13 equations

0= yt −Φεa
t −αΦ ks

t +Φ lt (α− 1) , (2.E.15)

0= ks
t − L (kt)− zt , (2.E.16)

0= zt +
rk

t (ψ− 1)

ψ
, (2.E.17)

0= µp t + ε
a
t −α rk

t +wt (α− 1) , (2.E.18)

0= ks
t − lt + rk

t −wt , (2.E.19)

0= yt − εg
t − ct cy − it iy − zt zy , (2.E.20)

0= rt − εr
t − L (rt) ρ + r∆y L (yt)− r∆y L

�

y f
t

�− yt

�

r∆y − ry (ρ − 1)
�

+ y f
t

�

r∆y − ry (ρ − 1)
�

+πt rπ (ρ − 1) , (2.E.21)

0= −ik,γ ε
i
t ϕγ

2 + kt − it ik,γ + L (kt)
�

ik,γ − 1
�

, (2.E.22)

0= it − εi
t −

L (it)

β̄ γ+ 1
− qt

γ2ϕ
�

β̄ γ+ 1
� − Et [it+1] β̄ γ

β̄ γ+ 1
, (2.E.23)

0= qt −Et [πt+1] + rt −
Et

�

rk
t+1

�

rk
ss

rk
ss −δ+ 1

+
Et [qt+1] (δ− 1)

rk
ss −δ+ 1

+
σc ε

b
t

�

h
γ + 1

�

h
γ − 1

, (2.E.24)

0= ct − εb
t −
Et [ct+1]

h
γ + 1

− L (ct) h

γ
�

h
γ + 1

� +
Et [πt+1]

�

h
γ − 1

�

σc

�

h
γ + 1

� −
rt

�

h
γ − 1

�

σc

�

h
γ + 1

�

+
Et [lt+1] wlc (σc − 1)

σc

�

h
γ + 1

� − lt wlc (σc − 1)

σc

�

h
γ + 1

� , (2.E.25)

0= πt − εp
t −

ιp L (πt)

β̄ γ ιp + 1
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� �
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�
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�

h
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�
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�
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�
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γξw

�
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�

�

h
γ − 1

�

(εw (λw − 1) + 1)
, (2.E.27)

in the 14 endogenous variables that describe an economy with sticky price and wage contracts:
output yt , consumption ct , investment it , hours worked lt , capital services ks

t , capital stock kt ,
real wage wt , rental rate of capital rk

t , capital utilization rate zt , real value of existing capital
stock qt , inflation πt , nominal interest rate rt , gross price markup µp t , and potential output y f

t .
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2.E.3 Economywith flexible prices and wages

To determine potential output y f
t the model is augmented by the 11 equations

0= y f
t −Φεa

t −αΦ ks, f
t +Φ l f

t (α− 1) , (2.E.28)

0= ks, f
t − L

�

k f
t

�− z f
t , (2.E.29)

0= z f
t +

rk f
t (ψ− 1)
ψ

, (2.E.30)

0= εa
t −α rk f

t +w f
t (α− 1) , (2.E.31)

0= ks, f
t − l f

t + rk f
t −w f

t , (2.E.32)

0= w f
t +

c f
t

h
γ − 1

− l f
t σl −

L
�

c f
t

�

h

γ
�

h
γ − 1

� , (2.E.33)

0= y f
t − εg

t − cy c f
t − iy i f

t − zy z f
t , (2.E.34)

0= −ik,γ ε
i
t ϕγ

2 + k f
t − ik,γ i f

t + L
�

k f
t

� �

ik,γ − 1
�

, (2.E.35)

0= i f
t − εi

t −
L
�

i f
t

�

β̄ γ+ 1
− q f

t

γ2ϕ
�

β̄ γ+ 1
� − Et

�
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t+1

�

β̄ γ

β̄ γ+ 1
, (2.E.36)

0= q f
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�
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, (2.E.37)
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� , (2.E.38)

in the variables y f
t , c f

t , i f
t , l f

t , ks, f
t , k f

t , w f
t , rk, f

t , z f
t , q f

t , and r f
t , describing the corresponding

economy with flexible prices and wages.

2.E.4 Law of motion of lagged variables
The motion of the model’s 20 lagged and therefore predetermined variables is given by

0= L (yt+1)− yt , (2.E.39)

0= L (ct+1)− ct , (2.E.40)

0= L (it+1)− it , (2.E.41)

0= L (kt+1)− kt , (2.E.42)

0= L (rt+1)− rt , (2.E.43)

0= L (wt+1)−wt , (2.E.44)

0= L (πt+1)−πt , (2.E.45)

0= L
�

εa
t+1

�− εa
t , (2.E.46)

0= L
�

εb
t+1

�− εb
t , (2.E.47)

0= L
�

ε
g
t+1

�− εg
t , (2.E.48)

0= L
�

εi
t+1

�− εi
t , (2.E.49)
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0= L
�

εr
t+1

�− εr
t , (2.E.50)

0= L
�

ε
p
t+1

�− εp
t , (2.E.51)

0= L
�

εw
t+1

�− εw
t , (2.E.52)

0= L
�

η
p
t+1

�−ηp
t , (2.E.53)

0= L
�

ηw
t+1

�−ηw
t , (2.E.54)

0= L
�

y f
t+1

�− y f
t , (2.E.55)

0= L
�

c f
t+1

�− c f
t , (2.E.56)

0= L
�

i f
t+1

�− i f
t , (2.E.57)

0= L
�

k f
t+1

�− k f
t . (2.E.58)

2.E.5 Data and auxiliary variables
We fit the model to 7 quarterly time series of the log difference of per capita real GDP (dlGDPt),
the log difference of per capita real consumption (dlCONSt), the log difference of per capita
real investment (dl INVt) and the log difference of per capita real wages (dlWAGEt), log of per
capita hours worked (lHOURst/100), the log difference of GDP deflator (dlPt), and the federal
funds rate (F EDFUN DSt) for U.S. from 1966 to 2004. The series are displayed in Figure 2.2.
To link the model’s variables to the data we add 4 auxiliary variables ȳt , c̄t , īt , and w̄t which are
determined by

0= ȳt + L (yt)− yt , (2.E.59)

0= c̄t + L (ct)− ct , (2.E.60)

0= īt + L (it)− it , (2.E.61)

0= w̄t + L (wt)−wt . (2.E.62)

The link between the vector of observations yt and the model’s variables is then given by

yt =



















dlGDPt

dlCONSt

dl INVt

dlWAGEt

lHOURSt

dlPt

F EDFUN DSt



















=



















γ̄
γ̄
γ̄
γ̄

l̄
π̄
r̄



















+



















ȳt
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2.E.6 Policy function and BA-model
The economy described in equations (2.E.1)-(2.E.62) includes 62 variables: The 35 endogenous
variables yt , ct , it , lt , ks

t , kt , wt , rk
t , zt , qt , πt , rt , µp t , y f

t , c f
t , i f

t , l f
t , ks, f
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a
t , εb

t , εg
t , εi

t , ε
r
t , ε

p
t , and εw
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, and the 7 exogenous state variables ηa
t , η

b
t , ηg

t , ηi
t , η

r
t , η

p
t ,

and ηw
t . To solve the model for its policy function we collect the endogenous variables in the

vector y(m)t , the predetermined states in the vector x(m)t , and the exogenous states in the vector
z(m)t . Since equations (2.E.1)-(2.E.62) are linear in x(m)t , y(m)t , z(m)t , x(m)t+1, Ety

(m)
t+1, and Etz

(m)
t+1 they
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Figure 2.2: Data – Smets and Wouters model

1970-Q1 1980-Q1 1990-Q1 2000-Q1
−5

−2.5

0

2.5

5

quarter

pe
rc

en
t

(a) Per Capita Real Output Growth – dlGDPt

1970-Q1 1980-Q1 1990-Q1 2000-Q1
−4

−2

0

2

4

quarter

pe
rc

en
t

(b) Per Capita Real Consumption Growth – dlCONSt

1970-Q1 1980-Q1 1990-Q1 2000-Q1
−10

−5

0

5

10

quarter

pe
rc

en
t

(c) Per Capita Real Investment Growth – dl INVt

1970-Q1 1980-Q1 1990-Q1 2000-Q1
−2

0

2

4

quarter

pe
rc

en
t

(d) Per Capita Real Wage Growth – dlWAGEt

1970-Q1 1980-Q1 1990-Q1 2000-Q1
−10

−5

0

5

quarter

pe
rc

en
t

(e) Per Capita Hours Index – lHOURSt

1970-Q1 1980-Q1 1990-Q1 2000-Q1
−1

0

1

2

3

4

5

quarter

pe
rc

en
t

(f) Inflation – dlPt

1970-Q1 1980-Q1 1990-Q1 2000-Q1
−1

0

1

2

3

4

5

quarter

pe
rc

en
t

(g) Federal Funds Rate – F EDFUN DSt

Notes: The data is adopted from the FORTRAN codes provided by Herbst (2015) and covers 1966:Q1 to 2004:Q4.
The construction follows that of Smets and Wouters (2007) and is explained in detail by Herbst and Schorfheide
(2016). Source: Herbst (2015).
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may be rewritten as a rational expectations model of the form

B Et

�

w(m)t+1

y(m)t+1

�

= A

�

w(m)t

y(m)t

�

,

where w(m)t =
�

z(m)t x(m)t

�T
. As shown by Klein (2000), this model can be solved using the

generalized Schur decomposition. The resulting policy function takes the form:

x(m)t+1 = L x
x x(m)t + L x

z z(m)t , (2.E.63a)

y(m)t = L y
x x(m)t + L y

z z(m)t , (2.E.63b)

z(m)t+1 = ηt+1, (2.E.63c)

where the vector ηt collects the residuals ηa
t , η

b
t , ηg

t , ηi
t , η

r
t , η

p
t , and ηw

t . Further, we denote L̃ y
z

and L̃ y
x as the rows of L y

x and L y
z that correspond to the endogenous variables ȳt , c̄t , īt , w̄t , lt ,

πt , and rt , so that
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γ̄ γ̄ γ̄ γ̄ l̄ π̄ r̄
�T
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x x(m)t + L̃ y
z z(m)t .

2.E.7 State-space representation
Using the policy function (2.E.63), we may rewrite the solved model in terms of the SSM (2.2.2)
by defining wt , vt,z, h, H, F and Q as

vt,z =
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t η
g
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�T
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, Fz =
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0 0
�

, Fx =
�

L x
z L x

x

�

.

Consequently, the model satisfies the preconditions of Proposition 2.3.1, provided the matrix is
L̃ y

x is non-singular.

2.E.8 Parameters and steady-state
The model has 36 parameters to be estimated. The prior distributions of these parameters are
displayed in Table 2.6. Further, the model contains the 5 fixed parameters:

δ = 0.03, λw = 1.50, g y = 0.18, εp = 10.00, εw = 10.00.

as well as the 15 dependent parameters defined by

π∗ =
π̄

100
+ 1,

γ=
γ̄

100
+ 1,

β =
1

β̃

100 + 1
,

r̄ =
100γσc π∗

β
− 100,

β̄ =
β

γσc
,
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.



Chapter 3

Business Cycle Accounting for the German Fiscal
Stimulus Program during the Great Recession
— Daniel Fehrle and Johannes Huber —

3.1 Introduction
In response to the Great Recession in 2008 and 2009, the German government, like many others,
launched an expansive fiscal stimulus program. This policy intervened on different markets by
increasing transfers and government spending, decreasing tax rates and social contributions
and expanding short-time work possibilities. Particularly noteworthy is the German cash for
clunkers program, since this car subsidy affected one of Germany’s core industries and was
internationally incomparably large (5 Billion€or 0.2 percent of Gross Domestic Product (GDP)).
Altogether, the program amounted to 82 billion €or 3.2 percent of GDP. These considerable
expenditures raise the following questions: What are the consequences of these measures for
macroeconomic markets and how effective was this program for aggregated output?

Such questions are difficult to answer, which is why fiscal stimuli might be the most contro-
versially discussed anti-cyclical measures. To address them, there are basically two approaches
(see e.g. Hebous (2011)): The first is to model a theoretical framework with deep structural
equations, parameters, and shocks. An arbitrary number of shocks describes changes in fis-
cal policy, and impulse response functions as well as multipliers illustrate the consequences.
Since the structure, the parametrization, and, at least partly, the parameter values ground
on assumptions, the results are assumption-driven. The second approach bases on statistical
models, in particular vector autoregressions (VARs). They are less theoretical and, in comparison
to many of the former models, can be estimated with classical techniques. Unfortunately, in
general it is impossible to distinguish between market distortions and the agent’s responses to
these distortions. This makes it rather impractical to study the effects of the various market
interventions. Instead of selecting from these two approaches, we apply a third option, which
we describe as kind of a middle course. By employing the business cycle accounting (BCA)
approach as proposed by Chari et al. (2007) and revisited by Brinca et al. (2016), we investigate
the impact of the Great Recession during 2008 and 2009 in Germany, its aftermath, the impact
of monetary policy, and in particular, the effects of the German stimulus program.

The BCA framework is based on the benchmark real business cycle (RBC) model, which is
extended by time-varying distortions in nearly every market, the so-called "prototype economy".
Chari et al. (2007) interpret the origins of these market distortions as taxes, nominal and real
frictions, changes in expectations, etc. and call them "wedges". In contrast to most medium or
large scale dynamic stochastic general equilibrium (DSGE) models, the mechanisms underlying
these distortions are not structural. They are parameterized like taxes, technology, or government
spending and are driven by a reduced-form Markov process.1 Commonly this process is specified

1Note that Chari et al. (2009) argue that also some of the shocks in medium or large scale DSGE models, i.e. New
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by a VAR(1). Using time series data one can estimate the parameters of the VAR process and
measure the values of the wedges. These measured wedges are fed back into the model one by
one, to assess the contribution of each wedge to the business cycle. In a nutshell, BCA is the
fully developed "...through the lens of a neoclassical model"-approach.2 The slim theoretical
framework and the applicability of classical estimation techniques, in this instance maximum-
likelihood estimation (MLE), minimizes the number of assumptions required and thus the results
are less assumption-driven. Nevertheless, one can distinguish between market distortions and
the agents responses.

To increase the practicability of BCA in general and make it more suitable for the study of the
German stimulus program in particular, we differ from Chari et al. (2007) in our "prototype-
economy", in our estimation methodology, and in our mapping strategy.
Prototype-economy: We extend the benchmark model for the following reasons in three ways.
First, the wedges include a long- and a short-run component. This allows to differentiate
between growth and business cycle accounting. Since the German reunification, subaggregates
of demand grew at different rates. Without growth accounting, the underlying stochastic process
is non-stationary. Chari et al. (2007) set a common growth rate unfoundedly for all countries
equal to 1.6 percent. Brinca et al. (2016) detrend in such a way that the average trend-adjusted
log output of the economy under consideration is equal zero. The latter makes the estimation
procedure more robust. Our approach can be seen as a further stage.3 Second, we distinguish
between government spending and net exports. This enables a government spending analysis
and accounts for the fact that German industry is strongly depended on foreign trade. Third, we
exclude durable consumption goods from aggregated investment in order to consider the cash
for clunkers program separately. After all, the model includes the following wedges: government
consumption, durables, investment, labor, net exports, and efficiency. Previous work already
extends the benchmark model in various ways, e.g. Šustek (2011) includes an asset market and
a monetary policy wedge.
Estimation: We estimate two structural parameters and all parameters of the VAR process using
MLE, in sum 59, and identify the wedges with Kalman-smoothing. MLE in this context is difficult,
e.g. Gerth and Otsu (2018) report unsolved problems concerning likelihood optimization and
BCA.4 As many others, they avoid the problem by switching to Bayesian estimation. As we
argue, Bayesian methods are impracticable for BCA, because the reduced-form process is highly
abstract and thus, it seems impossible to make any a-priori assumptions. Furthermore, Brinca
et al. (2018) argue that weak identification associated with parameters of the VAR process is
negligible in the context of BCA. Unfortunately, this does not hold for structural parameters.
We introduce a reliable and quick procedure to locate the maximum of the likelihood function.
Using this procedure, it is a feasible exercise to apply tools that help overcome problems of
weak identification, namely plotting the likelihood contour, detecting the global maximum, and
executing robustness checks, all with respect to the uncertain structural parameters.

The procedure can be summarized as follows: In advance, we make sure that all uncertain
parameters are locally strictly identified according to the strategy of Iskrev (2010). Then,
we maximize the likelihood function, which we receive from a Kalman recursion, assuming
that the initial states are fixed and known in their long-run equilibrium. This initialization is

Keynesian models, are rather reduced-form than structural.
2This long-lasting approach was established by Solow (1957). To name but a few more recent applications: Kehoe

and Prescott (2002), Ohanian (2010), Lu (2012), Cho and Doblas-Madrid (2013), Karabarbounis (2014) or
Hansen and Ohanian (2016).

3Note that growth accounting is implicitly applied whenever different time series are detrended by univariate
filters, such as the HP-filter, the Hamilton filter or the Baxton-King filter. DeJong and Dave (2011, Chapter 6.1)
suggest a general procedure to estimate a common linear trend. Even by applying this strategy, the estimated
process lacks stationarity here.

4Gerth and Otsu (2018) do not account for growth, which potentially explains the problem.
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eventually equivalent to the procedure of Chari et al. (2007) but provides two advantages, i) the
computation of the likelihood function is less time-consuming and, ii) there exists an analytical
and unique solution for the maximizing conditional covariance matrix. Under fairly general
conditions, the estimator obtained with this procedure retains the properties of a maximum-
likelihood estimator, yet, it is less efficient than the maximum-likelihood estimator based on the
commonly used unconditional likelihood. Thus, we use the first parameter estimation only as a
guess for the actual estimation based on the more common, unconditional likelihood function.
As mentioned, we complete the process by determining the wedges with Kalman-smoothing.
Mapping: Chari et al. (2007) map different types of structural frictions towards the reduced-
form wedges, which they call "equivalent results". We map the particular measures of the
fiscal stimulus program and monetary policy in a similar manner and analyze whether these
interventions can explain counter-cyclical behavior. This follows Mulligan (2005) who initiates
the study of policy interventions as reduced-form errors of RBC models, and Kersting (2008)
who initiates the mapping of political measures, namely the 1980’s U.K. labor market reforms,
towards the wedges inside the BCA framework.

Our findings suggest that the crisis was mainly driven by the efficiency wedge, followed by the
net exports and the investment wedge. The government consumption wedge and especially the
durables wedge acted counter-cyclically. Furthermore, the labor wedge induced a fast recovery.
The results are robust except for the investment wedge.

We attribute the counter-cyclicality of the durables wedge to the cash for clunkers program,
which is equivalent to a durable good subsidy. Since the expenditures for government consump-
tion were higher than for the cash for clunkers program and the effects were similar, subsidies for
durable goods stimulated aggregated demand more efficiently. Mian and Sufi (2012) examine
the U.S. cash for clunkers program as a representative of durables and investment subsidies using
cross-section variation. They find that the program induced a large increase in car sales. Indeed,
in their study, the positive effect vanishes within one year due to intertemporal substitution.
In Germany, durable goods bust after the program, which suggest a similar substitution effect.
However, our BCA analysis indicates that this is the transmission towards the trajectory of
durables that would have occurred in the absence of the cash for clunkers program. In sum the
program’s effects are neither substituted entirely intra- nor intertemporally untill 2011-Q3. This
is at odds with the results of a times-series analysis by Leuwer and Süssmuth (2018), who find
large substitution effects. However, their work relies on the strong assumption that there were
no substantial changes simultaneously to the car subsidy. Berger and Vavra (2015) investigates
the households’ responses to durables subsidies over the business cycle for the U.S. and find
smaller effects in recessions, which is not at odds to our results, but make them more striking.

The labor market wedge induced recovery can be explained by expanded short-time work
possibilities as they can decrease hiring frictions in the aftermath of recessions. Using the
unemployment rate, Gehrke et al. (2019) argue that previous labor market reforms (so-called
Hartz reforms) probably drove the labor market wedge induced recovery. Our method cannot
distinguish between these explanations because both achieve equivalent results.

Similar interpretation problems concerning reduced-form shocks arise with measures of the
stimulus program which we map towards the efficiency, investment, and net exports wedge.
Since these wedges caused the crisis, pro-cyclical distortions exceed the effects of counter-cyclical
fiscal stimulus and monetary policy measures in those markets. Hence, pro-cyclical wedges
give no evidence for ineffective measures. Assuming that the fiscal stimulus program together
with monetary policy were the only counter-cyclical distortions, counter-cyclical wedges give
evidence for effective measures. Under this assumption, our results represent a lower bound for
the impact of fiscal and monetary policy measures and the pro-cyclical distortions.

Existing BCA applications for the Great Recession in Germany by Brinca et al. (2016) and
Gerth and Otsu (2018) suggest negligible effects of the investment wedge on the business cycle.
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Both treat durables and other investment goods as a composite. We get similar results, feeding
back both wedges at the same time into the model. In detail, the pro-cyclicality of the investment
wedge and the counter-cyclicality of the durables wedge offset each other, which is why previous
work potentially underrate the importance of the investment wedge and, as a consequence,
equivalent financial frictions.

Drygalla et al. (2020) as well as Gadatsch et al. (2016) investigate the German fiscal stimulus
program in medium-scale New-Keynesian DSGE models using Bayesian inference. They find
positive but small effects on GDP and the latter finds negative effects in the aftermath of the
crisis. However, neither of these studies account for durable consumption goods separately.

The remainder of the paper reads as follows. The next section sketches the German fiscal
stimulus program and the monetary policy of the European Central Bank (ECB). Furthermore,
we provide long-term series with focus on the crisis from 2008 till 2011 for the reunified German
economy. Thereafter, we describe our version of a prototype economy. We map the single
measures of the program to the wedges. In a next step, we present our calibration exercises and
the estimation strategy. We show the results with a robustness and discussion section and then
the paper concludes. Our Appendix presents the entire model as well as the source of our data
and the corresponding manipulation.

3.2 The German case

3.2.1 The fiscal stimuli packages I and II in detail
The German fiscal stimulus program was composed of two packages. The first became effective
at the end of 2008 and the second at the beginning of 2009 (Bundesgesetzblatt, 2008, 2009).

As Rosenberger (2013) describes, the first package amounted to 32 Billion € plus a loan
program of 15 Billion €. The fiscal stimulus consisted of a one year’s tax exemption on new
cars, higher tax deductions by permitting the reducing-balance method and increasing child
allowance, a lower employment insurance tax, as well as higher transfers for students and
retirees.

The second stimulus package amounted to 50 Billion€ plus both a loan and guarantee program
of 100 Billion€ and an increase of the German export credit guarantee program (Hermes cover)
of about 2 Billion €. The package consisted of investments in public infrastructure, financial
support for local and state authority spending, a subsidy on new cars at the amount of 2500 €
per car and in total 5 Billion €, subsidies for private innovations as well as lower income taxes
and social contributions. Short-time work possibilities and benefits were expanded, further
training was supported, and the Federal Employment Agency increased the number of job agents.

Table 3.1 presents following calculations by the OECD (2009) for the stimulus program. The
size of the fiscal stimulus program was on equal terms by reducing taxes and increasing transfers
and spending. Transfers to households amounted to 0.3 percent of GDP, where the cash for
clunkers composed two out of three. Extra government spending amounted to 0.8 percent of
GDP. The fiscal packages amounted to 3.2 percent of GDP, excluding all measures which did
not affected the national budget directly, e.g. the loan and guarantee program.
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Table 3.1: Composition of the fiscal program in percent of GDP

Tax
Individuals Social Contribution Business Total*

-0.6 -0.7 -0.3 -1.6

Spending
Transfers to households Transfers to business Government spending** Total***

0.3 0.3 0.8 1.6

Notes: * Including consumption tax measures. ** Final consumption + investment *** Including
transfers to sub-national government. Source: OECD (2009).

3.2.2 Monetary policy in the Great Recession
The monetary policy of the ECB also reacted to the recession. Figure 3.1 shows the minimum
bid rate on main refinancing operations and the interest rate on deposit facilities declined in the
aftermath of the declined inflation rate. The former declined from 4.25 percent in mid 2008 to
1 percent by mid 2009. Both interest rates have persisted since then.

Figure 3.1: Monetary policy and usage of the deposit facility
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Besides the conventional interest rate policy, the ECB applied further tools of monetary policy.
Here we give a short overview of the detailed reports of the European Central Bank (2010,
2011). In October 2008 the ECB switched from a variable-rate to a fixed-rate tender, eased
collateral requirements and enhanced the provision of liquidity. The ECB’s Governing Council
prolonged these measures several times. It decided to purchase bonds issued in the Euro area in
May 2009 and launched the Security Markets Program in June 2009. This program conducted
interventions on public and private debt securities markets in the Euro area. Then, in March
and May 2010, the Governing Council decided to switch back and forth between a variable-
and a fixed-rate tender and to intervene once again on the Euro area public and private debt
securities markets. The Council determined long-term refinance operations to provide liquidity
in August and October 2010.

3.2.3 Stylized facts for the German economy
Table 3.2 presents average long-run shares of subaggregates of the reunified German economy
(1991–2018). Private consumption expenditures account for 56 percent, whereby durables
account for 6 percent and non-durables for the half of GDP. The share of investment is determined
at 21 percent and of government consumption close to 19 percent. Net exports account for
almost 4 percent.
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Table 3.2: Long-run ratios in percent of GDP
(1991–2018)

Description x t/GDPt

polynomial chaos expansion 56.05
Non-durables consumption 49.72
Durable consumption 06.33
Investment 21.32
Government consumption. 18.87
Net exports 03.76

Source: See Appendix 3.C, own calculations.

Figures 3.2 and 3.3 present the cyclical behavior of GDP, its subaggregates and hours worked.
The time series are the relative deviations from the concerning linear trend. We choose a linear
trend filter instead of the commonly used HP-filter to be consistent with our estimation strategy.5

We observe a boom-bust cycle in GDP at about the same time of the dot-com bubble. This
cycle was followed by a recovery from 2005 till 2008, which ended in a heavy drop. This drop
depicts the Great Recession. GDP recovered fast and has moved along the long-run trend since
then.

Figure 3.2: Cyclical behavior of GDP
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Notes: The data is presented as relative deviations from linear trend. The light gray area indicates the crisis from
2008-Q1 – 2011-Q3, the dark gray area indicates the main effective period of the fiscal stimulus program 2008-Q4
– 2009-Q4. Source: see Appendix 3.C, own calculations.

Panel (a) of Figure 3.3 shows that investment has co-moved with GDP, but with a higher
volatility. Panel (b) displays two heavy short boom-bust-cycles of durables. The first peaked
at the end of 2006, shortly after the announcement of a value-added tax (VAT) increase. This
was followed by a bust at the beginning of 2007, when the increase took place. We observe
the second peak at the same time as the German cash for clunkers program, which was also
followed by a bust as the program expired. Government consumption was above its trend in the
middle and late 1990’s. It decreased at the beginning of the 2000’s and increased from 2008
till 2010. Since 2010 it has fluctuated around its trend. Non-durable consumption was below
its trend in the aftermath of the reunification, and was above the trend in the 2000’s until the
Great Recession and decreased slightly afterwards. Net exports relative to GDP decreased from

5Flor (2014) presents an overview of HP-filtered second moments of similar data.
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1997 till 2001 from their trend, and increased sharply afterwards till 2003. From then on until
the crisis they moved above the trend. Since the crisis they have fluctuated around the trend. In
the medium-run, hours worked declined after the German reunification till 2005 and from then
on they have increased. Hours worked have co-moved with GDP from 2000 onwards.

Figure 3.3: Cyclical behavior of different economic measures
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(a) Investment
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(b) Durables
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(c) Government Consumption
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(d) Non-durable Consumption
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(e) Net exports to GDP
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Notes: Despite hours worked, the data are presented as relative deviations from the corresponding linear trend.
Hours worked is the relative deviation from the average. The light gray area indicates the crisis from 2008-Q1 –
2011-Q3, the dark gray area indicates the main effective period of the fiscal stimulus program 2008-Q4 – 2009-Q4.
Source: see Appendix 3.C, own calculations.

The light gray area in Figures 3.2 and 3.3 indicates the Great Recession. GDP, hours worked
and investment decreased from the end of 2008 until the peak of the crisis in 2009-Q2 by 5
percentage points, 4 percentage points and 12 percentage points, respectively. Their recovery
completed in 2011. Durables increased during the time of the car subsidy – indicated through
the dark gray area – by 12 percentage points and decreased by 18 percentage points afterwards.
Durables recovered at the end of 2010. Government consumption increased at the beginning of
2009 by 5 percentage points and remained till the end of 2011 by 4 percentage points above its
trend. Non-durables were less than 2 percent below their trend at the end of 2009 and recovered
fast.
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3.3 Methods

3.3.1 The prototype economy
The prototype economy consists of an infinitely-lived household, a firm facing perfect competition,
and a government which finances its expenditures by levying taxes on labor, durables, and
investment. The model of Chari et al. (2007) is extended in three ways. First, we distinguish
between government spending and net exports and second, exclude durables from aggregated
investment goods. Both enable a deeper analysis of the stimulus program and the former allows
to account for the strong export-dependency of the German economy. Third, wedges consist of
a growth and a business cycle part. This allows separate procedures for growth and business
cycle accounting and ensures stationarity of the stochastic process. The model also accounts
for productive capital and durable consumption capital adjustment costs. Chang (2000) shows
that adjustment costs for capital goods in the market and at home solves problems with excess
volatility and negative co-movements, because adjustment costs lower the substitutability, which
is why we model this structural friction explicitly. The model is written in per capita terms.

3.3.1.1 Model

The per period utility of the representative household is parameterized as follows

u (Ct , Dt , Nt) =

(

φ ln(Ct) + (1−φ) ln(KDt) +ψ ln (1− Nt) for η= 1,
�

Cφt ·K1−φ
Dt ·(1−Nt )ψ

�1−η−1

1−η for η 6= 1,
(3.3.1)

where Ct denotes consumption of non-durable goods and Nt is the household’s labor supply.
The stock of durable consumption goods KDt accumulates according to

γn KDt+1 = (1−δD)KDt + Dt −ΘDt

�

Dt

KDt

�

KDt , ΘDt

�

Dt

KDt

�

=
aD

2

�

Dt

KDt
− bD

�2

, (3.3.2)

where γn denotes the population growth factor, Dt are investments in durable consumption
goods, and bD is the ratio of investment in durables to the stock of durables in the long run. The
household maximizes its expected life-time-utility

Ut = Et

∞
∑

s=0

(βγn)
su (Ct+s, KDt+s, Nt+s) (3.3.3)

subject to the budget constraint

Ct + (1+τI t)PI t It + (1+τDt)PDt Dt ≤ Rt KI t + (1−τN t)Wt Nt + Tt − PEt Et , (3.3.4)

where KI t denotes the productive capital stock (capital stock hereafter), It investment in capital,
Tt lump-sum transfers, Et net exports, Rt the rental rate on capital, and Wt the real wage. The
tax rates τN t , τI t and τDt are used to model wedges in the labor, investment and durables
market. PEt , PI t and PDt are the relative prices for net exports, investment, and durable goods
and reflects the wedges’ long-run element. The consumption good is the numeraire. The capital
stock follows the law-of-motion

γn KI t+1 = (1−δI)KI t + It −ΘI t

�

It

KI t

�

KI t , ΘI t

�

It

KI t

�

=
aI

2

�

It

KI t
− bI

�2

, (3.3.5)
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with bI as the investment-to-capital ratio in the long run.
The representative firm produces its output good Yt with the Cobb-Douglas technology

Yt = KαI t(γ
t
z Zt Nt)

1−α (3.3.6)

and faces perfect competition. The parameter γz denotes the growth factor of labor augmenting
technical progress and Zt the efficiency wedge.

The government expenditures Gt are exogenous and the government chooses lump-sum
transfers Tt , so that its budget constraint

PGt Gt + Tt ≤ τN tWt Nt +τI t PI t It +τDt PDt Dt (3.3.7)

always binds. Thereby, the resource constraint of the economy is

Yt = Ct + PI t It + PDt Dt + PGt Gt + PEt Et . (3.3.8)

Growth component: As already mentioned, the population grows with γn and technical progress
with γz. Furthermore, the wedges evolve differently. The relative prices reflect this. In the long
run PX t ∈ {PI t , PDt , PGt , PEt} evolves with PX t = gPX

PX t−1. The ensuing trend growth factors of
different variables X t are described in Table 3.3. These variables are scaled by x t =

X t
g t

X
and are

thus stationary variables.

Table 3.3: Growth factors

X t Yt Ct Wt Tt It KI t Rt Dt KDt Gt Et γz Nt PX t

gX gY gY gY gY gI gI gY /gI gD gD gG gE g
1

1−α
Y g

α
α−1
I 1 gPX

= gY
gX

Business cycle component: The VAR(1)-process

st+1 = Πst + εt+1, εt ∼N (0,Σ), (3.3.9)

drives the fluctuation of the model, where

st =
�

ln(sAt) sN t sI t sDt sEt ln(sGt)
�T

,

εt =
�

εAt εN t εI t εDt εEt εGt

�T
.

The stochastic process affects the wedges as follows

Zt = A∗ · sAt , τN t = τ
∗
N + sN t , τI t = τ

∗
I + sI t ,

τDt = τ
∗
D + sDt , et = e∗ + sEt , gt = g∗ · sGt ,

where A∗, τ∗N , τ∗I , τ
∗
D, e∗ and g∗ are the corresponding steady-state component of the different

distortions. Similar to Chari et al. (2007), we define the six wedges as follows: The efficiency
wedge Zt , the net export wedge et , the government spending wedge gt , the labor wedge 1−τN t ,
the investment wedge 1

1+τI t
, and the durables wedge 1

1+τDt
. The latter two are defined so that,

similar to the labor market wedge, increases act like subsidies and decreases like taxes in
comparison to the steady-state value. Since the cyclical component includes the steady-state
component, detrended prices pEt , pGt , pI t , pDt are normed to one. We present in Appendix 3.A
the full dynamic equilibrium of the model with stationary variables.
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Solution: To derive the model’s decision rules, we use a linear perturbation method. In detail,
we apply the method of undetermined coefficients as Uhlig (2001) and Christiano (2002)
describe to solve the log-linearized model. The solved model then can be written as

yt = Ly
x · xt + Ly

s · st, (3.3.10)

ct = Lc
x · xt + Lc

s · st, (3.3.11)

xt+1 = Lx
x · xt + Lx

s · st, (3.3.12)

where the matrices L·xcharacterize the policy function of the deterministic part of the model’s
solution, while L·s describe the policy function of the stochastic part. With x̂ t = ln(x t)− ln(x) as
the approximation of the relative deviation of a variable x t from its steady state value x , the

vector of observables is yt =
�

ŷt N̂t ît d̂t ĝt
Ò

et
yt

�T
, while ct denotes the vector of unobserved

control variables and xt =
�

k̂I t k̂Dt

�T
the vector of endogenous states.6

3.3.1.2 Mapping

Chari et al. (2007), Brinca et al. (2016), and various other authors map structural models into
their prototype economy. Nutahara and Inaba (2012) apply BCA for misspecified wedges and
find they are able to approximate the true wedges and the corresponding response of the agents
adequately. We show first how to map the stimulus program to the prototype economy. Since the
wedges’ drivers are modeled as taxes, this is straightforward for most of the measures. Secondly,
we reflect monetary policy.

Mapping the stimulus program
Government Wedge: We assign total government spending to the government spending wedge.
These are mainly investments in infrastructure and financial support for local and state authority
spending. Hence, the stimulus program increases the government wedge directly.
Durables Wedge: The two measures concerning new cars affect the durables wedge. For a
given producer price, both measures reduce the absolute tax or the relative price of durables
from the households perspective. Hence, they increase the durables wedge.
Investment Wedge: The first part of the stimulus program which affects the investment wedge
are subsidies for investments in innovations. The second are increased tax deductions by allowing
for a reducing-balance method. For given producer prices, absolute taxes or the relative price of
investment decreases and thus the investment wedge increases.

Chari et al. (2007) show how to map financial frictions in terms of a financial accelerator
and Brinca et al. (2016) show how to map financial frictions in terms of collateral constraints
into a prototype economy with an investment wedge. The loan and guarantee program lowers
financial frictions, in particular they mitigate the banks’ collateral constraints. Following this,
the loan and guarantee program also raises the investment wedge.
Labor Wedge: The stimulus program loweres income tax and social contribution, this increases
the labor wedge in general.

Brinca et al. (2016) show the link between a prototype economy with efficiency and labor
wedges and an economy with search and matching frictions. The mentioned labor market actions,
e.g. expanded short-time work, reduce such frictions and thus, increase the labor market wedge.
The effects should be delayed in time due to lower hiring frictions in the aftermath of the crisis.
Efficiency Wedge: Due to the labor market actions in the previous paragraph, the efficiency
wedge increases also due to a better matching. Further, the expanded short-time work possi-
bilities reduce labor hoarding, since the firm can both retain employees to lower future hiring

6The use of Òet
yt

instead of êt is discussed in 3.3.2.2.
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frictions and adjust hours worked. As a consequence, the efficiency wedge increases.
As shown by Chari et al. (2007), input-financing frictions are associated with efficiency wedges.

These frictions appear when firms must borrow for an input good and some firms are financially
more constrained than others. Such firms have to pay higher interest rates. The loan and
guarantee program lowers financial constraints and thus increases the efficiency wedge.
Net exports: The increase in Hermes coverage advances the conditions for exports. Neverthe-
less, the effects are probably only rather small.

Mapping monetary policy
Government Wedge: Purchasing bonds lowers the bonds’ interest rates and this lowers the
costs of debt-financed government spending, which may indirectly increase the government
wedge.
Durables Wedge: Since refinancing is cheaper, for a given real rate of return, investment
increases. Hence, monetary policy changes the intertemporal decision of a household, which
is reflected in a higher durables wedge. Furthermore, provision of liquidity also changes the
intertemporal decisions of liquidity constrained households, which also reflects in a higher
durables wedge.
Investment Wedge: Both mentioned effects of the durables wedge have the same effect on the
investment wedge. The provision of liquidity and cheaper refinancing lowers frictions in the
investment market.

As already mentioned, Brinca et al. (2016) show how to map an economy with a collateral
constrained bank into a the prototype economy with an investment wedge. Lower collateral
constraints lower frictions in the investment market. Thus, the slacked collateral requirements
by the ECB increase the investment wedge.
Efficiency Wedge: As mentioned above, input-financing frictions are associated with efficiency
wedges (see Chari et al., 2007). The friction appears when firms must borrow for input goods
and some firms are financially more constrained than others. Those firms have to pay higher
interest rates. The Security Markets Program can lower these frictions and thus, increases the
efficiency.

3.3.1.3 Calibration

We estimate the elasticity, ηI =
I

KI
Φ′′I , of the price of capital with respect to the investment to

capital ratio as well as the elasticity, ηD =
D

KD
Φ′′D, of the price of the stock of durables with respect

to the new durables to stock of durables ratio in addition to the parameters that characterize
the stochastic process st. The remaining parameters are calibrated as follows:

The capital elasticity α is set to 0.34. Flor (2014) calculates this as the German capital share
from 1991 to 2012. In line with Heer and Maussner (2009, Chapter 1.5), Flor (2014) also
provides the discount parameter β = 0.994 for the German economy. We pin down the annual
rate of capital depreciation at the average ratio of gross fixed capital formation and the net stock
of fixed assets. The average quarterly capital depreciation rate arises from δI = 1−(1−δI ,annual)

1
4 .

In the same manner the rate of durables depreciation δD is computed.
The choice ofψ,φ and η, which characterize the household’s preferences, is more problematic.

For ψ and η we follow the baseline calibration from Chari et al. (2007) and fix ψ at 2.24 and η
at 1. We calibrate the preference weight of durables φ by matching the durable to non-durable
consumption ratio with the long-run marginal rate of substitution between consumption and
durables. We do not estimate the steady-state values of the different wedges. Instead, we
compute them from the model’s static equilibrium equations in line with Lama (2011). We fix
the steady-state values of output, government consumption, investment in capital as well as
in durables to their average shares of output (see Table 3.2). The steady-state labor supply N
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is 0.122, which equals the average share of hours worked on the available time budget of a
household.7 Our calibration exercises are summarized in Table 3.4.

Table 3.4: Calibration of the model

Parameter Description Value

α capital share 0.34
β discount factor 0.994
δI rate of capital depreciation 0.017
δD rate of durables depreciation 0.045
ψ preference weight of labor 2.24
φ preference weight of consumption 0.879
η risk aversion 1

3.3.1.4 Identification

We check our prototype economy for strict local identification following Iskrev (2010), who
shows that a linearized DSGE model with normally distributed shocks is locally identified for a
given set of parameters, if the Jacobian matrix of theoretical first and second moments with
respect to these parameters has full rank. To check the identifiability over a sufficiently large
parameter space we draw 1,000,000 times from the following distributions for the elasticities of
the adjustment costs ηD, ηI , for the the off-diagonals πi j, i 6= j of Π, for the diagonals πii of Π,
and the elements bi j, i ≤ j of the lower triangular matrix B with Σ= BBT :

ηD,ηI ∼ U(0, 4), πi j ∼N (0, 0.1), πii ∼N (0.8, 0.1), bi j ∼ U(−0.05, 0.05).

The Jacobian of the first and second moments (up to two lags) has full rank at approximately
99.9 percent of the draws. Thus, the model is virtually identifiable in the chosen parameter
space.8

Brinca et al. (2018) provide and apply strategies for identification strength. They show that
weak identification of the stochastic process’ parameters is secondary, but this does not hold for
structural ones. To address this problem, we compute the likelihood surface of the uncertain
deep parameters ηD and ηI to detect a global maximum as well as the likelihood’s curvature
and execute robustness checks in section 3.4.

3.3.2 The business cycle accounting procedure
The BCA procedure is divided into three separate steps: The estimation of the parameters, the
identification of the wedge states, and the assessment of the contribution of a single wedges
towards the business cycle.

MLE determines the matrices Π and Σ that characterize the stochastic process st as well
as the elasticities ηI and ηD that define the level of adjustment costs. Full-information esti-
mation of DSGE models is typically done with Bayesian methods, although MLE involves less
assumptions. Applying Bayesian estimation is usually meaningful, since the researcher has a
structural parametrization in mind and, by association, an idea of probable parameter values.

7Here we follow (Heer and Maussner, 2009, Chapter 1.5), who assume that the household’s maximum working
hours amount to 1, 440= 16 hours per day×90 days per quarter.

8In comparison, we proceed similarly for the benchmark economy of Chari et al. (2007) presented in Appendix
3.B. The Jacobian of the first and second moments (up to two lags) has no full rank at 26 parameter draws
from 1,000,000.
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We would like to stress that the application of BCA requires MLE and any restrictions like the
Bayesian approaches, such as Otsu (2010), Chakraborty and Otsu (2013) or Plotnikov (2017) are
questionable. The wedges are superpositions and interactions of a variety of market distortions
with an underlying reduced-form stochastic process, which complicates the interpretation of
the Markov transitions. Furthermore, recall the findings of Nutahara and Inaba (2012) that the
VAR(1) strips a potentially more sophisticated stochastic process down. Thus, the estimated
parameters are only pseudo-true for the real model. As a consequence, in general the values of
the process’ parameters cannot be interpreted, and a-priori assumptions of them are meaningless,
and even more seriously, may restrict the set of mappable models. Thus, we make a point for
MLE and let the data speak through an unrestricted VAR.9

After all parameters are pinned down, either by calibration or MLE, we use a state-smoothing
algorithm as described in Durbin and Koopman (2012, Chapter 4.4) to predict the wedge’s
states st.

In a last step, in line with Chari et al. (2007), we feed the wedges separately back into the
model, while others are set constant, to assess the contribution of each wedge to the quantities
of interest.10

3.3.2.1 Maximum-likelihood estimation

To evaluate the likelihood function of the linear state-space model (3.3.9)–(3.3.12), most of the
literature uses a Kalman-recursion initialized at the unconditional mean and variance of the state
vector [xT

0 sT
0]

T (see e.g. DeJong and Dave, 2011, Chapter 8.4)). However, for an asymptotic
stable state-space model, the mean squared error (MSE) Pt|t of the point estimate for [xT

t sT
t ]

T

conditional on a observed set of data {y1, . . . ,yt} converges to a matrix P, the steady-state MSE,
as t goes to infinity.11 Exploiting this property, Chari et al. (2007) use the steady-state MSE
P instead of the unconditional variance to initialize their Kalman-recursion. Further, it can
be shown that the steady-state MSE P is equal zero in BCA prototypes economies like the one
presented here.12 To get the intuition behind the result and for the sake of simplicity, let us
consider the case without growth and with zero adjustment costs. In this case, equations (3.3.2)
and (3.3.5) rewrite to

KX t+1 = X t + (1−δX )KX t

=
t−1
∑

i=0

(1−δX )
iX t−i + (1−δX )

t KX1, X ∈ {I , D}.

Imagine we observe the investment X i ∈ {I , D} in capital and in durables for all i = 1, . . . , t.
Assuming that KX1 is normally distributed with variance σ2

X , the variance of KX t+1 conditional on
{X1, . . . , X t} yields (1−δX )2tσ2

X . Since δI ,δD ∈ (0, 1], it is straightforward that the uncertainty
regarding the endogenous states xt disappears as t goes to infinity. Furthermore, assuming Ly

s is

9We would like to point out two technical issues regarding Bayesian methods and BCA. First, to the best of our
knowledge, there is no prior that includes all combination parameter values that generate eigenvalues of Π
less than one and excludes all combinations that do not have these properties. Second, the posteriors of a
VAR-driven DSGE model can be multi-modal. This makes the commonly used RWMH algorithms unsuitable.
For a deeper discussion and solution for the latter issue, see Herbst and Schorfheide (2016, Chapter 5, 6.1)

10See the technical appendix by Chari et al. (2007) for more details.
11For a formal proof, see e.g. Hamilton (1994, Chapter 13).
12Fehrle and Huber (2022) show that if Ly

s is non-singular and 1−δD
γn·gD

, 1−δI
γn·gI

∈ [0,1) the matrix P = 0 reflects the
unique and stabilizing solution to the Riccati difference equation that determines the law of motion of the
sequence

�

Pt|t
	N

t=0.
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non-singular,13 it follows that

st =
�

Ly
s

�−1 �
yt − Ly

x · xt

�

. (3.3.13)

Thus, as the uncertainty of the endogenous states xt disappears as t goes to infinity, the uncer-
tainty over the exogenous states st disappears as well. Using a Kalman-recursion initialized at
the steady-state, with the steady-state MSE P is therefore equivalent to the assumption that the
initial state vector is fixed and known, [xT

0 sT
0]

T = 0nx+ns×1. There are two major advantages of a
fixed and known initialization at the long-run equilibrium. First, the likelihood evaluation can
be vectorized and more important, it provides an analytical solution of the MLE for Σ since we
can observe the residuals εt independently of Σ.14 The solution of the MLE for Σ for a given Π is

Σ̂=
1
N

N
∑

t=1

�

(st −Π · st−1) · (st −Π · st−1)
T
�

, s0 = 0ns×1. (3.3.14)

The estimates of a standard Kalman-recursion, which is initialized at the unconditional first
and second moments, are more natural, since the initial states are usually unknown. However,
note that although the log-likelihood calculated on the basis of a steady-state Kalman-recursion
does not reflect the exact or unconditional log-likelihood, the determined maximum-likelihood
estimator may (under certain preconditions, see e.g., (Harvey, 1990, pp. 119, 129) have the
same large-sample properties as the unconditional maximum-likelihood estimator. Therefore,
we use the estimates of the steady-state Kalman-recursion as the initial guess for a second
estimation, where we initialize the Kalman-recursion with the unconditional first and second
moments.

3.3.2.2 Datamanipulation

The observables are GDP, investment, durables, government expenditures, net exports to GDP,
and hours worked. Regressions with the logarithm of the first four observables as dependent
variable and time as independent variable provide necessary components. The coefficient
estimates determine the growth rates and the residuals the relative deviation from the particular
growth path. Negative values for net exports prevent logarithmization. A regression with
net exports relative to GDP as dependent variable and time as independent variable provides
auxiliary variables. The coefficient is the excess growth rate of net exports compared to GDP
growth. The residuals are the deviation from the long-run net exports to GDP rate, which
is computable in the model. The residuals of these regressions are used for business cycle
accounting, the coefficients for growth accounting.

Since hours worked per capita do not include a trend, the relative deviations from the long-run
average are used for business cycle accounting. Whereas growth accounting is of course not
applicable in this manner.

For a detailed data source, see Appendix 3.C.

13Note that for a singular matrix Ly
s it is not possible to obtain the wedges’ states. For a discussion under which

circumstances Ly
s may be singular see Huber (2022). However, this case never occurred in our analysis.

14For more details see also Fehrle and Huber (2022).



CHAPTER 3 BUSINESS CYCLE ACCOUNTING FOR THE GERMAN FISCAL STIMULUS PROGRAM DURING THE GREAT

RECESSION
80

3.4 Results

3.4.1 Growth accounting
Table 3.5 presents the growth rates of the observables. The GDP annual trend growth rate is
1.32 percent. The amount of durables and investment goods grows slower than GDP, while net
exports grow faster. Government consumption grows similar to GDP.

Table 3.5: Growth accounting

Parameter Description Value

ln(γ4
n) annual growth rate of population 0.03%

ln(g4
Y ) annual growth rate of GDP 1.32%

ln(g4
I ) annual growth rate of investment 0.93%

ln(g4
D) annual growth rate of durables 0.35%

ln(g4
G) annual growth rate of gov. cons. 1.40%

ln(g4
E) annual growth rate of net exports 1.65%

Similar to the shocks which drive the business cycle, the long-run components of the wedges
Px t and γz are reduced-form. Since we focus on the business cycle, we discuss only briefly
potential causes for different growth rates. Differences in the long-run component of the durables
and the investment wedge (PDt , PI t) may occur due to investment-specific technological change
as described by Greenwood et al. (1997). The increase in German net exports since the launch
of the Euro is investigated by Kollmann et al. (2014). The most important factors, summed up
in PEt , are: A higher German savings rate, positive supply shocks, especially due to labor market
reforms, as well as a higher demand for German goods of non Euro area members.

Figure 3.4: Maximum-likelihood estimation
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Table 3.6: Estimation of exogenous shock process

Autoregressive Matrix
Π ln(sA) sN sI sD sE ln(sG)
ln(sA) 0.90 0.41 0.00 0.07 -0.21 -0.16
sN 0.01 0.83 0.01 -0.02 -0.12 -.01
sI 0.70 -1.71 0.96 -0.52 1.44 1.07
sD 0.27 -0.05 -0.00 0.66 0.16 -0.01
sE 0.06 -0.03 0.01 -0.05 0.62 -0.12
ln(sG) -0.05 0.17 -0.01 -0.05 -0.22 0.80

Correlation and standard errors
Corr(εi,ε j) εA εN εI εD εE εG 100 · StD(εi)
εA 1.00 0.94
εN 0.03 1.00 0.34
εI -0.49 -0.06 1.00 7.12
εD 0.27 -0.83 0.13 1.00 1.44
εE 0.31 0.70 -0.02 -0.36 1.00 0.59
εG -0.10 0.13 -0.19 -0.16 -0.13 1.00 0.80

3.4.2 Estimation
As already mentioned, the MLE includes Π, Σ, ηD and ηI . Panel 3.4(a) illustrates the likelihood
function with respect to ηD and ηI , while Π and Σ are the argument maximum of the function
for given ηI and ηD. The panel identifies two local maxima. The global is at ηD = 0.19 and
ηI = 3.00.

Table 3.6 presents the estimates for the autoregressive matrix Π as well as second moments
of the innovations εi. All wedges are highly autoregressive. The investment wedge depends
heavily on the other wedges with one lag. The innovations of the investment wedge have the
highest volatility and are negatively correlated with the efficiency wedge. There is also a strong
negative correlation between the innovations of the durables and the labor wedge. The net
export wedge’s innovation correlates with the labor wedge.

Panel 3.4(b) illustrates that the innovations of durables and investments are perfectly cor-
related in the absence of adjustment costs. Fehrle (2019) investigates different investment
goods, vector-autoregressive processes and adjustment costs in detail and argues that adjustment
costs can be viewed as a underpinning mechanism of reduced-form correlated shocks. Here,
e.g. the mentioned high substitutability between durables and investments is prevented either
by perfect correlated innovations, adjustment costs or a nest of them. Hence, it is useless to
separate investments and durables without adjustment costs, since the corresponding wedges
must co-move. Otherwise, as a result of Chang (2000), the high substitutability would lead to
an excessive volatility of durables and investments and negative co-movements between them.
However, this is contradicted by the data.

3.4.3 Business cycle accounting for the Great Recession and the German
fiscal stimulus program, 2008-Q1 – 2011-Q3

The graphical analysis of our BCA exercise is reported in Figure 3.5. In Panels 3.5(a) to 3.5(e)
we confront the observations of GDP, its subaggregates and hours worked with the model’s
prediction when only one wedge is allowed to fluctuate.

Panel 3.5(a) illustrates that the crisis was mainly driven by the efficiency wedge. The invest-
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ment and net exports wedge also contributed to the crisis. These three wedges together induced
the decrease in GDP. The labor wedge contributed to the crisis from 2009-Q2 to 2009-Q4.
Before, the wedge was counter-cyclical and afterwards it introduced the recovery. The durables
wedge and government consumption were anti-cyclical. Panel 3.5(b) illustrates that the in-
vestment wedge drove the decline in investment mostly, while the efficiency wedge mattered
little. The efficiency wedge influenced durables negatively as Panel 3.5(c) shows. The durables
wedge on its own increased durables up to almost 50 percent in 2009. Afterwards, the wedge
only had a slight impact. Panel 3.5(d) indicates that the efficiency wedge caused the decline in
non-durable consumption mostly and the labor wedge partly. The durables and government
consumption wedge had little impact on non-durable consumption. Panel 3.5(e) predicts the
decline in net exports to GDP and the investment wedge introduced the decline in hours worked.
The labor market wedge drove the decline between 2009-Q2 and 2009-Q4. Besides, the labor
wedge was counter-cyclical. The other wedges were counter-cyclical. Theory teaches us that
the wedges of both investment goods Dt and It react similar to monetary policy and financial
frictions in general.15 Thus, Chari et al. (2007) and many others aggregate them. The business
investment wedge drove the decline in business investment during the crisis. Financial frictions
and other distortions dominated the fiscal and monetary policy measures. This is not true for
durables. The only appreciable difference between the wedges during the crises were the car
subsidies. Further, the positive impact of the durables wedge occurred simultaneously with the
subsidies. The wedge began to stimulate the demand of durable goods with the introduction of
the tax exemption for new cars in 2008-Q4. In 2009-Q1 the cash for clunkers program started,
while the stimulating effect increased strongly. The stimulus disappeared between 2009-Q4 and
2010-Q1 while the last pay-off took place in 2009-Q4. Hence, we attribute the large increase
due to the durables wedge to the car subsidies and can map changes due to the durables as well
as government spending wedge to the fiscal stimulus program. The measures in other markets
are dominated by frictions. Thus, it is unfortunately impossible to give statements about the
measures with the chosen method.

With respect to GDP and hours, we find that the stimulus program due to the durables
subsidies and government consumption had a positive effect during the crisis. The model
predicts an approximately 2 percent bigger decline in GDP and an approximately 3.5 percent
bigger decline in hours without changes in those wedges during the peak of the crisis (2009-
Q2). Regarding non-durable consumption and investment the effect of the stimulus program is
negative. Nevertheless, during the crisis the stimulus of durables and government consumption
increased GDP and was not completely substituted by lower investments and non-durable
consumption. Intertemporal substitution of durables investment in the aftermath of the program
was small. The bust was driven by the efficiency wedge, which depressed durables over the
whole period. The durables wedge virtually did not influence GDP negatively from 2008-Q1 till
2011-Q3.

The labor market wedge mitigated the crisis at the beginning and the end of the crisis. In
particular at the end of the crisis, the model predicts an increase of more than 2 percent in GDP
and more than 3 percent in hours worked.

The measurement ωi quantifies the contribution of each wedge to GDP during the Great
Recession as

ωi =

∑

t( ŷ
GDP
t − ŷ i

t)
∑

j

∑

t( ŷ
GDP
t − ŷ j

t )
with i, j ∈ {sA, sN , sI , sD, sG, sE}, t ∈ [2008-Q1, ..., 2011-Q3],

15Gertler and Gilchrist (2018) report for the U.S. financial frictions during the Great Recession a big negative impact
on the durables market. Benmelech et al. (2016) explain one third of the decline in the U.S. car demand by
frictions on the asset-backed commercial paper market. The decline in U.S. house prices weakens the household
balance sheets, which also had a negative effect on the U.S. auto market, as shown by Mian et al. (2013).
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Figure 3.5: BCA - Results
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Notes: Dashed lines for GDP, investment, durables and hours are the data and the model’s outcome. Here they are
equivalent. The dashed lines for non-durable consumption is only the model’s outcome. The gray area indicates
the main effective period of the fiscal stimulus program 2008-Q4 – 2009-Q4.
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where ŷGDP
t is the GDP when all wedges are non-changing and ŷ i

t is the model outcome of
wedge i alone. Thus, the contribution of all wedges together sums to 1, while the sign of ωi

points out if wedge i has mitigated (−) or amplified (+) a crisis.
The efficiency wedge accounts for 62 percent of the decline in GDP during this period, net

exports for 26 percent, the investment wedge for 19 percent, and the labor market accounts
for 3 percent. Government consumption accounts for -5 percent and the durables wedge for -4
percent. Since the effect of the durables wedge during the durables subsidies was at least twice
as large as the effect of government consumption and effects throughout the whole crisis were
similar but expenditures for these subsidies only made up for about 25 percent of the increase
of government consumption, durables subsidies were more efficient to stimulate aggregated
demand than government consumption.

With the identifying assumption that the fiscal stimulus program together with monetary
policy were the only counter-cyclical distortions, our results represent a lower bound for the
impact of fiscal and monetary policy measures as well as for the pro-cyclical distortions.

3.4.4 Robustness and discussion
Robustness in parameters: The results depend potentially on the values of adjustment costs
ηI , ηD and on the intertemporal elasticity of substitution η. To evaluate the sensitivity, we
calculate ωi over a grid of the mentioned parameters. Therefore, we reestimate the (remaining)
uncertain parameters at each node of the parameter grid.

Figure 3.6 illustrates the contribution of the concerning wedges for different amounts of
adjustment costs. The efficiency wedge contributed the most to the decline in GDP, followed by
net export for the whole set of adjustment costs. The results for the labor market wedge and
government consumption are robust as well. The durables wedge mitigated the crisis for most of
the parameter combinations. The contribution would have been pro-cyclical without adjustment
costs. As mentioned above, in the absence of adjustment costs a separation of the durables and
investment wedge is meaningless. The investment wedge’s contribution to the crisis would have
been negative for ηI < 1/3 where the likelihood is the lowest (see Panel 3.4(a)) and positive
otherwise.

Subsidies in durables change the intertemporal rate of substitution. Hence, a robustness
check to the elasticity of the substitution rate is relevant. Figure 3.7 presents the contribution
to the decline in GDP over η. The contributions of the labor, investment, durables and the
government consumption wedge are nearly constant. The contribution of net exports declines
with a higher elasticity, nevertheless they contributed the second most over the whole domain.
The contribution of the efficiency wedge increases with η.

Robustness regarding the benchmark model: The assessment of the joint contribution of
the investment and durables wedge as well as the joint contribution of government consumption
and net exports maps our economy into the benchmark BCA economy ex post. The left panel
of Figure 3.8 illustrates these effects. The right panel plots the impact of the investment and
government spending wedge in the Chari et al. (2007) benchmark economy, where durables
and investment as well as government spending and net exports are aggregated ex ante.16 The
results are similar, except in the more detailed economy the investment wedge was slightly
counter-cyclical during the cash for clunkers program. Thus, the results of the detailed model
are not counterfactual to the benchmark BCA model, but provide deeper insights.

Although the impact of the composed investment wedge was negligible during the Great
Recession, our results suggest that the decomposed wedges were not. The pro-cyclical effect

16Appendix 3.B sketches the model and provides our estimation strategy and results for the Chari et al. (2007)
benchmark economy of the presented time series.
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Figure 3.6: Adjustment costs specific wedge contribution
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Figure 3.7: Inverse elasticity of intertemporal substitution specific wedge contribution
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of the investment wedge and the policy-driven counter-cyclical effect of durables wedge offset
each other. Hence, without our decomposition the importance of the investment wedge and, by
association, the importance of financial frictions during the Great Recession is underrated. For
example, the financial frictions of Carlstrom and Fuerst (1997), Kiyotaki and Moore (1997),
Bernanke et al. (1999), or Gertler and Kiyotaki (2010) are equivalent to the investment wedge.

Figure 3.8: Robustness to the Chari et al. (2007) benchmark economy
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Comparing two durables boom-bust cycles: As mentioned, there were two boom-bust cycles
in the durables market. We compare them in Figure 3.9. Panels 3.9(a) and 3.9(b) show the data
and the impact of the durables wedge on durables from 2008-Q1 to 2010-Q4 and from 2006-Q1
to 2007-Q4. The durables wedge accounts during the car subsidies programs for the boom, but
only marginally for the bust afterwards. During 2006 a VAT increase announcement passed the
institutions and at this time durables investments increased. The introduction of the increase
was in 2007-Q1, when the bust took place. The durables wedge caused the whole boom-bust
cycle and illustrates intratemporal substitution.
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Figure 3.9: The durables boom-bust cycles 2008-2010 and 2006-2007 in comparison
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3.5 Conclusion
We use the BCA analysis to investigate the impact of the German stimulus program during the
Great Recession from 2008-Q1 to 2011-Q3. We extended the prototype economy by two wedges.
Wedges correspond to the following variables: government consumption, durables, investment,
labor, net exports, and efficiency. To account for the fiscal stimulus we map fiscal and monetary
policy towards these wedges, thus enabling a policy evaluation.

We introduce two procedures that enable a fast and reliable MLE and the application of
tools which help to overcome problems of weak identification. The first procedure separates
between growth and business cycle accounting which ensures the stationarity of the underlying
stochastic process. The second procedure is a new strategy to find a good guess for the argument
maximum of the likelihood function. The applicability of MLE is crucial for, and one of the
major advantages of BCA at the same time. Since MLE is difficult, and so Bayesian methods or
other restrictions towards the stochastic process are used for BCA, we hope to give new impetus
to the use of MLE and BCA with both procedures.

In our BCA analysis we find that the Great Recession in Germany was mainly driven by the
efficiency wedge, net exports, and the investment wedge. In contrast, the durables and the
government spending wedge acted counter-cyclical. We argue that the latter two collect parts of
the German stimulus. The labor market wedge was pro-cyclical between 2009Q2 and 2009-Q4,
besides it mitigated the crisis and especially induced the recovery. Due to higher expenditures
for government consumption and a similar impact compared to the cash for clunkers program,
subsidies for durable goods stimulated aggregated demand more efficiently. We check the
robustness of our results to different choices of parameters that determine the elasticity of
intertemporal substitution as well as capital and durables adjustment costs. We find that our
results are robust for all wedges except the investment wedge. However, the results indicate that
previous studies underrate the negative impact of the investment wedge and, as a consequence,
the role of investment wedge equivalent financial frictions. We have to mention that BCA is only
a first but useful step for the identification of market distortions, and thus we aim to motivate
further research on the efficiency of durable goods’ subsidies, the role of financial frictions
during the Great Recession and the labor market driven recovery in Germany.
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Appendix

3.A Model
The following equations determine the model with stationary variables

yt = kαI t (Zt Nt)
1−α , (3.A.1)

rt = α
yt

kI t
, (3.A.2)

wt = (1−α)
yt

Nt
, (3.A.3)

λt = φcφ(1−η)−1
t k(1−φ)(1−η)Dt (1− Nt)

ψ(1−η), (3.A.4)

(1−τN t) =
ψ

φ

ct

(1− Nt)wt
, (3.A.5)

yt = ct + it + dt + gt + et , (3.A.6)

µI t = λt
1+τI t

1−Θ′I t
, (3.A.7)

µDt = λt
1+τDt

1−Θ′Dt
, (3.A.8)

gI · γnkI t+1 = (1−δI)kI t + it −ΘI t · kI t , (3.A.9)

gD · γnkDt+1 = (1−δD)kDt + dt −ΘDt · kDt , (3.A.10)

µI t = β gMI
Et

�

µI t+1

�

1−δI −ΘI t+1 +
it+1

kI t+1
Θ′I t+1

�

+λt+1rt+1

�

, (3.A.11)

µDt = β gMD
Et

�

µDt+1

�

1−δD −ΘDt+1 +
dt+1

kDt+1
Θ′Dt+1

�

+λt+1
1−φ
φ

ct+1

kDt+1

�

, (3.A.12)

with

gMI
= gφ(1−η)Y · g(1−φ)(1−η)D · g−1

I , (3.A.13)

gMD
= gφ(1−η)Y · g(1−φ)(1−η)−1

D , (3.A.14)

ΘX t =
aX

2

�

x t

kX t
− bX

�2

, (3.A.15)

Θ′X t = aX

�

x t

kX t
− bX

�

, (3.A.16)

bX = x∗/k∗X , (3.A.17)
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with X ∈ {I , D}, x ∈ {i, d} and where ∗ indicates the steady-state value. The fluctuation in the
model is driven by the VAR(1)-process
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, εt ∼N (0,Σ).
(3.A.18)

The stochastic process affects the wedges as follows

Zt = A∗ · sAt , (3.A.19)

τN t = τ
∗
N + sN t , (3.A.20)

τI t = τ
∗
I + sI t , (3.A.21)

τDt = τ
∗
D + sDt , (3.A.22)

et = e∗ + sEt , (3.A.23)

gt = g∗ · sGt . (3.A.24)

3.B Chari et al. (2007) benchmark

3.B.1 Model

yt = kαt (Zt Nt)
1−α , (3.B.1)

rt = α
yt

kt
, (3.B.2)

wt = (1−α)
yt

Nt
, (3.B.3)

λt = c(1−η)−1
t (1− Nt)

ψ(1−η), (3.B.4)

(1−τN t) =ψ
ct

(1− Nt)wt
, (3.B.5)

yt = ct + it + gt , (3.B.6)

µI t = λt
1+τI t

1−Θ′I t
, (3.B.7)

gI · γnkt+1 = (1−δI)kt + it −ΘI t · kt , (3.B.8)

µI t = β gMI
Et

�

µI t+1

�

1−δI −ΘI t+1 +
it+1

kt+1
Θ′I t+1

�

+λt+1rt+1

�

, (3.B.9)

with

gMI
= g1−η

Y · g−1
I , (3.B.10)

ΘI t =
aI

2

�

it

kt
− bI

�2

, (3.B.11)

Θ′I t = aI

�

it

kt
− bI

�

, (3.B.12)

bI = i∗/k∗, (3.B.13)
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where ∗ indicates the steady-state value.
The fluctuation in the model is driven by the VAR(1)-process
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:=εt+1

, εt ∼N (0,Σ).
(3.B.14)

The stochastic process affects the wedges as follows

Zt = A∗ · sAt , (3.B.15)

τN t = τ
∗
N + sN t , (3.B.16)

τI t = τ
∗
I + sI t , (3.B.17)

gt = g∗ · sGt . (3.B.18)

3.B.2 Observables and datamanipulation

The vector of observables reads as follows yt =
�

ŷt N̂t ît ĝt

�T
. In contrast to our modified

model government consumption is the sum of government consumption and net exports and
investments are the sum of durables and investments.

3.B.3 Calibration and estimation
The calibration and estimation strategy is similar to our modified model. We estimate the
elasticity of the price of capital ηI as well as the parameters of the stochastic process. All other
parameters are calibrated and the long-run ratios are pined down to their long-run averages.
Tables 3.7 and 3.8 present all relevant parameters.

Table 3.7: Calibration and growth accounting for the Chari et al. (2007) economy

Parameter description Value

α capital share 0.34
β discount factor 0.994
δI rate of capital depreciation 0.0203
ψ preference weight of labor 2.24
η risk aversion 1
ηI elasticity of the price of capital 0.86

ln(γ4
n) annual growth rate of population 0.03%

ln(g4
Y ) annual growth rate of GDP 1.32%

ln(g4
I ) annual growth rate of investment 0.79%
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Table 3.8: Estimation of exogenous shock process of the Chari et al. (2007) economy

Autoregressive Matrix
Π ln(sA) sN sI ln(sG)
ln(sA) 0.93 0.09 0.05 −0.03
sN −0.01 0.73 0.04 −0.00
sI 0.03 2.03 0.67 −0.02
ln(sG) 0.09 −1.17 0.08 0.84

Correlation and standard errors
Corr(εi,ε j) εA εN εI εG 100 · StD(εi)
εA 1.00 0.94
εN 0.21 1.00 0.29
εI −0.27 −0.61 1.00 1.77
εG 0.43 0.77 −0.34 1.00 2.71

3.C Data
The data is taken from the Fachserie 18: National accounts, domestic product from the German
Federal Statistical Office.

• Pop: Total Population 1991:I-2018:I

Source: 2.1.7 Population and labour force participation 1; Seasonally adjusted quarterly
results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 - 1st Quarter 2018

• Hours: Hours worked by persons in employment 1991:I-2018:I

Source: 2.1.8 Persons in employment, employees and hours worked (domestic concept)
2; Seasonally adjusted quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie
18 Reihe 1.3 - 1st Quarter 2018

• GDP: 1991:I-2018:I

Nominal source: 2.3.1 Use of gross domestic product at current prices 2; Seasonally
adjusted quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 -
1st Quarter 2018

Real source: 2.3.2 Use of gross domestic product, price-adjusted 2; Seasonally adjusted
quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 - 1st Quarter
2018

• PCE: Private Consumption Expenditures of households 1991:I-2018:I

Nominal source: 2.3.3 Final consumption expenditure at current prices 3; Seasonally
adjusted quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 -
1st Quarter 2018

Real source: 2.3.4 Final consumption expenditure at , price-adjusted; Seasonally adjusted
quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 - 1st Quarter
2018

• Govern. Consumption: Government final consumption expenditure (domestic use)
1991:I-2018:I
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Nominal source: 2.3.3 Final consumption expenditure at current prices 3; Seasonally
adjusted quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 -
1st Quarter 2018

Real source: 2.3.4 Final consumption expenditure at , price-adjusted; Seasonally adjusted
quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 - 1st Quarter
2018

• Investment: Gross fixed capital formation 1991:I-2018:I

Nominal source: 2.3.1 gross fixed capital formation at current prices 2; Seasonally adjusted
quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 - 1st Quarter
2018

Real source: 2.3.2 gross fixed capital formation, price-adjusted 2; Seasonally adjusted
quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 - 1st Quarter
2018

• Net Exports: Balance of exports and imports 1991:I-2018:I

Nominal source: 2.3.1 Balance of exports and imports at current prices 2; Seasonally
adjusted quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 -
1st Quarter 2018

Real source: 2.3.2 Balance of exports and imports, price-adjusted 2; Seasonally adjusted
quarterly results using Census X-12-ARIMA and BV4.1 - Fachserie 18 Reihe 1.3 - 1st Quarter
2018

• Durables: Langlebige Güter (Durable Goods) 1991:I-2018:I

Nominal source: 2.14 Konsumausgaben der privaten Haushalte im Inland nach Dauer-
haftigkeit der Güter, Saison- und kalenderbereinigt in jeweiligen Preisen 4; Private Kon-
sumausgaben und Verfügbares Einkommen - 1. Vierteljahr 2018

Real source: 2.14 Konsumausgaben der privaten Haushalte im Inland nach Dauerhaftigkeit
der Güter, Saison- und kalenderbereinigt - preisbereinigt 4; Private Konsumausgaben und
Verfügbares Einkommen - 1. Vierteljahr 2018

(available in German only: Domestic consumer spending on durable goods, seasonally
and calendar adjusted 4; Private consumption expenditure and disposable income - 1st
quarter of 2018)



Chapter 4

Polynomial Chaos Expansion: E�icient Evaluation
and Estimation of Computational Models
— Daniel Fehrle, Christopher Heiberger and Johannes Huber —

4.1 Introduction
At an abstract level, computational economic models are mappings from inputs of the model
to outputs of the model. The former are the model’s parameters, the latter depend on the
research question and comprise, e.g., the policy functions of economic agents, the second-
moments of model generated time series, or the likelihood implied by a given set of observed
data. The model’s parameters are typically unknown and plausible values must be derived
from observed data, or are even treated as random variables from the Bayesian perspective.
Either way, the uncertainty of parameters translates into uncertainty regarding the model’s
outcomes. Estimation methods, as the generalized method of moments, the matching of impulse
responses, or likelihood based methods as well as a careful study of the sensitivity of the model’s
outcomes for a set of different parameter values requires numerous repeated solutions of the
model. Depending on the complexity of the model, estimation and sensitivity analysis can
become a time-consuming computational task or even excessive if the time factor is critical, as
in high-frequency real-time analyses. Polynomial chaos expansion (PCE), as employed in other
scientific disciplines, offers an elegant way to deal with this problem.1

PCE is a method that depicts arbitrary elements of a model’s solution, the quantity of inter-
est (QoI), in terms of a series expansion of the model’s parameters. Given the respective formulae,
repeated evaluations are inexpensive in terms of computational time instead of repeated, poten-
tially time-consuming, solutions of the entire model. The present paper provides a theoretical
and practical primer of PCE for economists. Without limiting the applicability for other purposes,
we focus on parameter estimation of dynamic stochastic general equilibrium (DSGE) models, as
we are familiar with the required methods. To the best of our knowledge, applications of PCE in
this context have not yet been studied in economic models.2

In its general form, the underlying theory of the method rests on the theory introduced by
Wiener (1938) and the Cameron and Martin (1947) theorem. Given a family of stochastically
independent and normally distributed random variables, which we call germs, the theorem
establishes the existence of an orthogonal decomposition—with identity in the L2 sense—of
any random variable with finite second moments and measurable with respect to the germs,
into Hermite polynomials in the germs. If we identify the germs with (transformations of) the
model’s unknown parameters, and if the model’s outcome satisfies the required conditions,
which apply to most computational economic models, the theory justifies an approximation of

1See e.g. Kaintura et al. (2018) for a review on the increasing application of PCE in electronics and electrics.
2Harenberg et al. (2019) is the only study we are aware of which has studied PCE in the context of economic

models so far. However, different from our work they focus on applications of PCE for structural sensitivity
analysis.
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the model’s outcome by a truncated series of polynomials in the unknown parameters. The
so-called truncated PCE can be constructed easily from a limited number of model evaluations,
and after construction of the PCE the model’s outcome can be obtained uncostly by evaluation
of the truncated series instead of repeated solutions of the model.

Ghanem and Spanos (1991) provide first applications of the theory to the problem of uncertain
model parametrization. In such applications, we can typically restrict attention to the far
easier case with a finite number of germs. In the one-dimensional case where parametrization
uncertainty is introduced by means of only one unknown parameter described by a random
variable θ with (Borel) probability measure Pθ , the existence of orthogonal decompositions is the
direct consequence of the property that the (orthogonal) polynomials with respect to the inner
product in L2(R,B(R), Pθ ) form a complete orthogonal system in L2. Moreover, the property
does not only hold for Hermite polynomials and probability measures of normally distributed
random variables but also extends to other commonly used distributions and the corresponding
orthogonal polynomials from the Askey scheme. This extension, initially proposed by Xiu and
Karniadakis (2002), is also known as generalized polynomial chaos expansion. For a finite
number of unknown and stochastically independent parameters θi, the property also extends
to tensor products of the polynomials and the product probability measure. In consequence,
any L2 mapping can be represented by a Fourier series in the orthogonal polynomials and any
random variable with finite second moments which is measurable with respect to the θi can be
written as a series of polynomials in the θi.

For the problem at hand, the L2 mapping for which the Fourier series must be constructed is
identified with the mapping from parameter values to the model’s outcome Y . Moreover, the
Fourier coefficients are defined by the inner product of this mapping with the orthogonal poly-
nomials. If the inner product cannot be computed analytically, numerical integration rules like
Gauss quadratures can be employed which, if the dimensionality of unknown parameters is not
too large, require only a comparably small number of model evaluations. As the dimensionality
of the problem becomes larger, sparse grid methods, such as Smolyak-Gauss quadrature can
help or, alternatively, the coefficients can be obtained from least squares.

After construction of the truncated PCE, it can be used for inexpensive evaluations of the
model outcome. First, statistical properties of the model outcome can be derived directly from
the PCE and the parameters’ distributions. The statistical properties can then be used to quantify
the effects of parameter uncertainty. For example, the variance of the model outcome can be
used as a first indicator for a sensitivity analysis. Moreover, Harenberg et al. (2019) propose a
sensitivity analysis on the basis of Sobol’ indices which can be obtained directly from the PCE.
The analysis additionally provides necessary conditions for parameter identification in structural
estimations. Second, the Fourier expansion can also be used as a point-wise approximation
for the mapping between parameters and the QoI. Thus, estimation methods which require
repeated recalculations of the model outcome can be sped up significantly. Since Bayesian
inference naturally combines the specification of a-priori parameter uncertainty in form of prior
distributions with the necessity for repeated model solutions, it provides an especially well-suited
setting for the implementation of PCE. The application of PCE in Bayesian inference was first
analyzed by Marzouk et al. (2007) in engineering but to the best of our knowledge the method
has not yet been studied in economic models.

We apply the method of PCE to the benchmark real business cycle (RBC) model, since this
model is suited as illustrative example due to its well-known and simplistic nature. We analyze
the convergence behaviour of the PCE—in the sense of the L2 norm of the approximation error
over the parameters’ support—as the degree of truncation is increased. Our analysis starts
with an example where three parameters are assumed unknown, namely the capital share in
production, the coefficient of relative risk aversion and the autocorrelation parameter of total
factor productivity, and considers the PCEs of various model outcomes including the model’s
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linear solution, a projection solution, the variables’ second moments and the impulse response
function. Although we assume rather ”loose” distributions for the unknown parameters, we
find linear convergence speed in all cases, and remarkably well approximations can be obtained
already with a rather small degree of truncation and a small number of model evaluations. If the
model outcome, e.g the linearized policy function, has to be evaluated for a sample of 100,000
parameter values, the PCE with truncation degree 7 provides an approximation with L2 error
of 10−3 while the computational time for construction and evaluation is lower by the factor 30
compared to repeated computations.

We extend our example to the higher-dimensional problem where all six model parameters
are assumed unknown. Compared to full-grid quadrature rules, sparse-grid quadrature rules
and least squares provide less accurate derivations of the PCE coefficients. In consequence,
the approximated PCEs require a higher degree of truncation in order to deliver the same
accuracy. However, they also require significantly less time for construction. A comparison of
computational time versus the approximation’s accuracy shows that the PCE constructed from
sparse-grid quadrature is most efficient followed by least squares. Yet, for higher degrees of
truncation, inaccuracies in the PCE coefficients derived from least squares eventually become
dominant and even reverse convergence.

Our analysis continues with Monte Carlo experiments as in Ruge-Murcia (2007) where
we gauge the quality of the model’s PCE when used for several empirical methods. More
specifically, we estimate the model’s parameters by generalized method of moments (GMM),
simulated method of moments (SMM), maximum-likelihood estimation (MLE) and Bayesian
estimation (BE) but use PCE to evaluate the QoI for different parameter values. Compared to the
benchmark procedure of repeated solutions, we find that the PCE based method is remarkably
efficient and accurate. Estimates deviate only negligibly from the benchmark procedure and
most notable, the computation time can be reduced by 99 percent for BE and by 50 percent for
GMM, SMM and MLE.

The remainder of the paper is structured as follows. First, we give a simple example to
outline the concept of PCE in section 4.2. In section 4.3 we review the basic theory for the
existence of polynomial chaos expansions and present the most common practical methods to
compute the PCE coefficients. Section 4.4 discusses different applications of the PCE, either
to evaluate statistical properties of the model outcome or for point-wise approximation of the
mapping from the parameters to the model outcome. We particularly highlight its application to
construct surrogates for the model’s linear solution or for projection solutions and to approximate
gradients. In section 4.5, we apply the method to the benchmark RBC model and discuss the
basic results and potential drawbacks. Section 4.6 concludes. More detailed derivations are
found in the appendix. MATLAB® code is available from the authors upon request.

4.2 A simple example
Before introducing the theoretical framework of PCE, we first want to outline the concept at
hand of a simple example. Since our numerical analysis focuses on discretely-timed models,
our example considers the following system of linear first-order difference equations in two
real-valued variables x1,t and x2,t ,

ϑx1,t+1 + x2,t+1 = x1,t ,

x1,t+1 + x2,t+1 = x2,t ,
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for all t ∈ N, and given x1,0 and x2,0. Moreover, ϑ ∈ (0, 1) is an unknown parameter. While the
variables’ explicit recursion can be derived straightforwardly here by

�

x1,t+1

x2,t+1

�

= H(ϑ)
�

x1,t

x2,t

�

, where H(ϑ) :=
�

h11(ϑ) h12(ϑ)
h21(ϑ) h22(ϑ)

�

=

� −1
1−ϑ

1
1−ϑ

1
1−ϑ

−ϑ
1−ϑ

�

,

the mapping ϑ 7→ H(ϑ) from the unknown parameter to the (linearized) policy can typically
not be derived analytically, but can only be computed numerically, if the system of difference
equations is non-linear and stochastic. In consequence, if H(ϑ) needs to be computed for
different parameter values, the underlying numerical methods must eventually be applied
repeatedly. PCE, on the other hand, aims to represent the mapping ϑ 7→ H(ϑ) as a truncation
from the Fourier series

hi j(ϑ) =
∞
∑

n=0

ĥ(n)i j qn(ψ
−1(ϑ)),

where qn is the n-th polynomial from a family of orthogonal polynomials, ψ−1(ϑ) is a trans-
formation of the parameter space into the space of the polynomial orthogonal counterpart’s
argument, and ĥ(n)i j is the corresponding Fourier coefficient of the polynomial. The truncated
series expansion is constructed from a limited number of numerical evaluations of the mapping
as follows.

First, the uncertainty about the parameter is taken into account by describing it by a random
variable θ with suitable probability distribution Pθ . For the present example, suppose that θ
is uniformly distributed over the interval (0, b), 0 < b ≤ 1. Second, the series expansion is
constructed in a well-known family of orthogonal polynomials, which satisfies orthogonality w.r.t.
some weighting function w. Thereby, the appropriate family of orthogonal polynomials is most
conveniently chosen in such a way that the weighting function w coincides with the probability
density function of the unknown parameter. However, in order to achieve conformity between
the weighting function and the density function, a (linear) transformation of the parameter
typically becomes necessary. In the present case, Legendre polynomials {Ln}n≥0 are orthogonal
w.r.t. the weighting function w(s) = 1(−1,1)(s), i.e. they satisfy

∫

R
Ln(s)Lm(s)w(s)ds =

¨

0, if n 6= m,

‖Ln‖2 := 2
2n+1 , if n= m.

Hence, transformation of the unknown parameter θ to the so-called germ ξ by

ξ :=ψ−1(θ ) := 2
θ

b
− 1 ⇔ θ =ψ(ξ) =

(ξ+ 1)b
2

,

yields the desired result, and Legendre polynomials are orthogonal w.r.t. the probability distri-
bution Pξ of ξ. Given that b < 1, the mapping s 7→ hi j(ψ(s)) for each entry hi j of the matrix H
is square integrable w.r.t. Pξ and can be represented by a Fourier series of the form3

hi j(ψ(s)) =
∞
∑

n=0

ĥ(n)i j Ln(s). (4.2.1)

3The details in which sense convergence of the series can be established are discussed in the next section.
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Moreover, orthogonality implies that the Fourier coefficients ĥ(n)i j satisfy

ĥ(n)i j = ‖Ln‖−2

∫ 1

−1

hi j(ψ(s))Ln(s)ds.

Finally, numerical integration methods are generally required to compute the coefficients ĥ(n)i j .
For example, using Gauss-Legendre-quadrature with M nodes si and weights ωi yields4

ĥ(n)i j ≈ ‖Ln‖−2
M
∑

i=1

hi j(ψ(si))Ln(si)ωi.

Table 4.1 shows for b = 0.9 and M = 5 the quadrature weights ωi, the nodes si, the
corresponding retransformed parameter values ϑi := ψ(si), and for the matrix entry h11 the
evaluation h11(ϑi) =

−1
1−ϑi

.

Table 4.1: Example

i ωi si ϑi h11(ϑi)

1 0.2369 −0.9062 0.0422 −1.0441
2 0.4786 −0.5385 0.2077 −1.2621
3 0.5689 0 0.4500 −1.8182
4 0.4786 0.5385 0.6923 −3.2500
5 0.2369 0.9062 0.8578 −7.0314

Together with L0(si) = 1, L1(si) = si,‖L0‖2 = 2, and ‖L1‖2 = 2
3 , one can therefore compute,

e.g.,5

ĥ(0)11 ≈
1
2

5
∑

i=1

h11(ϑi)ωi = −2.55 and ĥ(1)11 ≈
3
2

5
∑

i=1

h11(ϑi)siωi = −2.70.

In this case, the computation of the Fourier coefficients ĥ(n)11 requires M = 5 (numerical) evalua-
tions of the mapping ϑ 7→ h11(ϑ). After computation of the first N + 1 Fourier coefficients, one

4If we additionally write the transformationψ between parameter and germ in terms of the Legendre polynomials,
i.e.

ψ(s) =
b
2

︸︷︷︸

=:ϑ̂0

L0(s) +
b
2

︸︷︷︸

=:ϑ̂0

L1(s),

we equivalently arrive at

ĥ(n)i j ≈ ‖Ln‖−2
M
∑

i=1

hi j

�

ϑ̂0 L0(si) + ϑ̂1 L1(si)
�

Ln(si)ωi .

Note that this expression is identical to the more general form in (4.3.5).
5For comparison, exact integration yields

ĥ(0)11 =
1
2

∫ 1

−1

−1

1− (s+1)b
2

ds =
ln(1− b)

b
= −2.56, ĥ(1)11 =

3
2

∫ 1

−1

−s

1− (s+1)b
2

ds =
6− 3b

b2
ln(1− b) +

6
b
= −2.71.



CHAPTER 4 POLYNOMIAL CHAOS EXPANSION: EFFICIENT EVALUATION AND ESTIMATION OF COMPUTATIONAL

MODELS
102

0 0.2 0.4 0.6 0.8

−6

−4

−2

ϑ
h 1

1
(ϑ
)

exact PCE

Figure 4.1: Example: Exact evaluation and PCE (numerical integration)

can use the truncated series expansion of (4.2.1), i.e.

h11(ϑ)≈
N
∑

n=0

ĥ(n)11 Ln(ψ
−1(ϑ)),

in order to (approximately) evaluate h11(ϑ) for arbitrary parameter values without further need
of direct numerical evaluations.6 Figure 4.1 shows a comparison between exact evaluation of
h11(ϑ) and the truncated PCE with truncation level N = 5.

Finally, note already here that an important restriction of the methods is the requirement that
the mapping s 7→ hi j(ψ(s)) is square integrable w.r.t. Pξ, or equivalently w.r.t. the weighting
function w corresponding to the family of orthogonal polynomials. In the present example, this
condition is fulfilled for b < 1. Yet, if b = 1, the integrals from which the coefficients are defined
are not finite, e.g.,

ĥ(0)11 =
1
2

∫ 1

−1

−1

1− s+1
2

ds = −∞.

4.3 Generalized polynomial chaos expansions
We begin by reviewing the basic idea and theory behind the concept of PCE. While PCE proved
useful for a variety of applications, we focus on their implementation to efficiently evaluate
computationally expensive model outcomes when one or more of the model’s inputs, e.g. model
parameters, are uncertain.

Notation and preliminaries: We consider a computational economic model where ϑi ∈
Θi,Θi ⊂ R, i = 1, . . . , k, denotes an arbitrary selection of k ∈ N parameters of the model.
Moreover, we are interested in some model outcome(s) denoted by a vector y ∈ Rm, m ∈ N. The
relation between the input parameters ϑi and the model outcome(s) y is determined determin-
istically, i.e. repeated computation of y with the same inputs ϑi to the model produces the same
result.7 This mapping between the ϑi and y is described by

y = h(ϑ1, . . . ,ϑk)

6Of course, an appropriate choice of the number M of quadrature nodes and, therefore, of the number of numerical
evaluations is necessary in order to derive the Fourier coefficients depends on the truncation level N . More
details on this topic are provided in the next section.

7E.g., if y denotes some second moments of the model, these are derived either from available analytic formulae
from the (approximated) model solution or are computed from simulations with the same sample of shocks.
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where h: Θ → Rm,Θ =×k
i=1Θi ⊂ R. Without loss of generality we consider the case m = 1

in the following, and note that for m ≥ 2 all derivations can be applied separately to each
component yi of y , i = 1, . . . , m, in the same way.

Now further consider the case where the values ϑi of the model parameters are subject to
some uncertainty to the researcher. In order to account for this uncertainty, we switch from
the deterministic representation of the parameters to the perspective of describing them by
appropriately distributed random variables. Therefore, let (Ω,A , P) denote a sufficiently rich
probability space so that any uncertain model input parameter can be described by some real
valued random variable θi : Ω→ R, i = 1, . . . , k, where the real line is equipped with the Borel
sigma-algebra B(R). Moreover, let ξ1, . . . ,ξk denote a family of stochastically independent
random variables chosen by the researcher as a basis of the desired polynomial expansions, the
so-called germs. In applications, as will be described later, the germs are most commonly either
set equal to the uncertain model parameters θi or to some natural and convenient transformation
of them. We assume:

1. The germs ξ1, . . . ,ξk cover the same stochastic information as the uncertain model param-
eters, i.e.

σ(ξ1, . . . ,ξk) = σ(θ1, . . . ,θk),

where σ(·) denotes the sigma-algebra generated by the random variables.

2. All moments of each ξi exist, i.e. E[|ξi|n]<∞ for all i = 1, . . . , k and n ∈ N0.

Moreover, we write θ := (θ1, . . . ,θk): Ω → Rk and ξ := (ξ1, . . . ,ξk): Ω → Rk for the k-
dimensional random vector of the uncertain model parameters and for the random vector
of the germs, respectively, where Rk is also equipped with its Borel sigma-algebra B(Rk).
For each i = 1, . . . , k, let Pξi

:= P ◦ ξ−1
i denote the probability measure of ξi on (R,B(R))

and analogously let Pξ := P ◦ ξ−1 =
⊗k

i=1 Pξi
denote the product probability measure of ξ

on (Rk,B(Rk)). The Hilbert space (of equivalence classes) of square integrable real valued
functions on (R,B(R), Pξi

) is denoted by

L2
i := L2(R,B(R), dPξi

) :=

�

f : R→ R
�

� f is measurable and

∫

R
f 2 dPξi

<∞
�

,

where the inner product is defined by

〈 f , g〉L2
i

:=

∫

R
f g dPξi

= E[ f (ξi)g(ξi)] for f , g ∈ L2(R,B(R), Pξi
).

We use the notation ‖ · ‖L2
i

for the induced norm on L2
i . We introduce the analogous notation,

i.e. L2 := L2(Rk,B(Rk), dPξ), for the space of square integrable real valued functions on
(Rk,B(Rk), Pξ) and write 〈·, ·〉L2 and ‖·‖L2 for the inner product and for the induced norm on L2.
If the distributions of the random variables ξi possess probability density functions wi : R→ R+,
the inner products become

〈 f , g〉L2
i
=

∫

R
f (s)g(s)wi(s)ds,

and

〈 f , g〉L2 =

∫

R
. . .

∫

R
f (s1, . . . , sk)g(s1, . . . , sk)w1(s1) · . . . ·wk(sk)ds1 . . . dsk,
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so that L2
i = L2(R,B(R), wi(s)ds) and L2 = L2(Rk,B(Rk), w(s)ds) where w is the joint prob-

ability function w(s) :=
∏k

i=1 wi(si). Note that Assumption 2 is equivalent to the fact that for
each i = 1, . . . , k all univariate polynomials are included in L2

i or, again equivalently, that all
k-variate polynomials are included in L2.

Since, by Assumption 1, each θi is σ(ξ)-measurable, there exist measurable ψi : Rk → R
which satisfy

θi =ψi ◦ ξ.

We write ψ := (ψ1, . . . ,ψk): Rk→ Rk so that θ =ψ ◦ ξ. Moreover, note that σ(ξ) = σ(θ ) also
implies the existence of a measurable, inverse mapping ψ−1 with ψ ◦ψ−1 = ψ−1 ◦ψ = id. A
further assumption we make is that

3. the second moment of each model input parameter exists, i.e. E[θ 2
i ]<∞ for i = 1, . . . , k.

Equivalently, each ψi is square integrable on (Rk,B(Rk), Pξ), i.e. ψi ∈ L2 for all i =
1, . . . , k.8

Moreover, as the model input parameters θi are now treated as random, the model outcome
of interest is random. We therefore adapt its notation to Y : Ω→ R. Yet, given any elementary
event ω ∈ Ω and corresponding realization θi(ω), the mapping between the model parameters
and the model outcome is still determined deterministically by Y (ω) = h(θ1(ω), . . . ,θk(ω)), i.e.

Y = h ◦ θ = h ◦ψ ◦ ξ, for some h: Rk→ R.

The final assumption is that Y is a well-defined random variable with finite second moments, i.e.

4. h is measurable and h ◦ψ is square integrable on (Rk,B(Rk), Pξ), i.e. h ◦ψ ∈ L2.

4.3.1 Single uncertain parameter and germ (k=1)
We begin our description with the simplest case with only one single uncertain input parameter
θ and one single germ ξ, i.e. k = 1. In general, any arbitrary choice of the germ that satisfies
Assumption 2 implies that all polynomials are included in L2, and therefore allows the construc-
tion of an orthogonal system of polynomials {qn}n∈N0

⊂ L2, i.e. a family of polynomials where qn

is of (exact) degree n and

〈qn, qm〉L2 = ‖qn‖2
L2δm,n for all m, n ∈ N0,

where δm,n denotes the Knonecker delta. This can generally be achieved by applying, e.g., the
Gram-Schmidt process to the sequence of monomials.

In practice, the distribution of the uncertain input parameter is given and one is free to set the
germ. It is then convenient to define the germ in such way that i) an easy representation θ =ψ(ξ)
of the parameter in terms of the germ arises and ii) the family of orthogonal polynomials in L2

corresponds to some well-known class of polynomials. Table 4.2 summarizes the natural choice
of the germ and the corresponding family of orthogonal polynomials when the input parameter
is normal, uniform, Beta or (inverse) Gamma distributed. More details for these classes are
given in Appendix 4.A.

8Note that the third assumption is already implied by the second if the germs are set equal to (some polynomial
transformation of) the model input parameters.
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Table 4.2: Overview: Common distributions and corresponding germs and orthogonal polynomials on L2

Distribution of θ Germ Orthogonal polynomials
Family Parametric ξ ψ qn

Normal θ ∼ N(µ,σ2) ξ := θ−µp
2σ

ψ(s) = µ+
p

2σs (physicists) Hermite Hn

Uniform θ ∼ U(0, 1) ξ := 2θ − 1 ψ(s) = s+1
2 Legendre Ln

Beta θ ∼ Beta(α,β) ξ := 2θ − 1 ψ(s) = s+1
2 Jacobi J (β−1,α−1)

n

Gamma θ ∼ Gamma(α,β)a ξ := βθ ψ(s) = s
β General Laguerre La(α−1)

n

Inverse Gamma θ ∼ Inv-Gamma(α,β)a ξ := β
θ ψ(s) = β

s General Laguerre La(α−1)
n

a We use the scale-rate notation.

In all of the cases presented in Table 4.2 the respective families of orthogonal polynomi-
als {qn}n∈N0

form a complete orthogonal system, i.e. lie densely in L2 = L2(R,B(R), Pξ) =
L2(R,B(R), w(s)ds) where w is the corresponding probability density of ξ.9 More generally,
it follows from Riesz (1924) that {qn}n∈N0

is a complete orthogonal system in L2 if and only if
there exists no other measure µ on (R,B(R)) which generates the same moments as Pξ, i.e. if
and only if there is no other measure µ such that
∫

R
sn dµ=

∫

sn dPξ = E[ξn] for all n ∈ N0.

If completeness of {qn}n∈N0
in L2 can be established, then Assumptions 3 and 4 guarantee the

existence of Fourier series expansions of ψ and h ◦ψ in the orthogonal polynomials, i.e. there
are coefficients {ϑ̂n}n∈N0

and { ŷn}n∈N0
, ϑ̂n, ŷn ∈ R, so that

ψ=
∞
∑

n=0

ϑ̂nqn in L2 = L2(R,B(R), Pξ),

h ◦ψ=
∞
∑

n=0

ŷnqn in L2 = L2(R,B(R), Pξ).

Note that identity and convergence is understood in L2 which also implies point-wise convergence
a.e. for a subsequence but not point-wise convergence.10 Moreover, since Pθ = Pξ ◦ψ−1, also
h=

∑∞
n=0 ŷn(qn ◦ψ−1) in L2(R,B(R), Pθ ).

Hence, the uncertain model input parameter θ = ψ ◦ ξ as well as our model outcome
Y = h ◦ψ ◦ ξ can both be expanded exactly by a polynomial series in the germ, i.e. by

θ =ψ(ξ) =
∞
∑

n=0

ϑ̂nqn(ξ) in L2(Ω,A , P), (4.3.1)

Y = h(θ ) = h(ψ(ξ)) =
∞
∑

n=0

ŷnqn(ξ) in L2(Ω,A , P). (4.3.2)

9See Szegő (1939) for proofs of completeness.
10For conditions for point-wise convergence see e.g. Jackson (1941).
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These series expansions are called the polynomial chaos expansion (PCE) of θ and Y with
respect to the germ ξ. Moreover, orthogonality of {qn}n∈N0

implies that the Fourier coefficients
are determined by

ϑ̂n = ‖qn‖−2
L2 〈ψ, qn〉L2 = ‖qn‖−2

L2

∫

R
ψqn dPξ, (4.3.3)

ŷn = ‖qn‖−2
L2 〈h ◦ψ, qn〉L2 = ‖qn‖−2

L2

∫

R
(h ◦ψ)qn dPξ. (4.3.4)

Now in practice, equations (4.3.1)-(4.3.2) justify approximations of the uncertain model input
parameter θ as well as of the model outcome Y by their truncated PCE, i.e. by

SN (θ ) = SN (ψ ◦ ξ) :=
N
∑

n=0

ϑ̂nqn(ξ),

SN (Y ) = SN (h ◦ψ ◦ ξ) :=
N
∑

n=0

ŷnqn(ξ).

The approximations then converge to the true random variables, SN(θ)→ θ and SN(Y )→ Y
in L2 as N →∞. Yet, equations (4.3.3)-(4.3.4) from which the coefficients are defined can in
general not be evaluated analytically. This involves a second approximation for the coefficients
ϑ̂n and ŷn. The literature on PCE provides a variety of approaches for this task, from which we
want to review the most popular ones.

4.3.1.1 Polynomial chaos expansion of themodel parameters

Since the germ can be chosen in any desired way that satisfies Assumptions 1 and 2, the following
two opposing approaches can be pursued for its specification.

In the first approach, one directly fixes the transformation ψ between the uncertain model
parameter and the germ. The germ’s distribution then follows from the given distribution of the
uncertain input parameter and the chosen definition of ψ. In principal any choice of ψ which
satisfies Assumption 2 is possible. One could then construct the family of orthogonal polynomials
from the germ’s distribution and the expansion coefficients could be derived by numerical
integration of (4.3.3) up to any desired order. However, it is typically far more convenient to
choose ψ as a simple linear transformation between the uncertain model parameter and the
germ which results in a family of well-known orthogonal polynomials in L2, see e.g. Table 4.2.
In this case the expansion (4.3.1) collapses to

θ =ψ(ξ) = ϑ̂0 + ϑ̂1q1(ξ)

and the expansion coefficients ϑ̂0 and ϑ̂1 are already known exactly.
Conversely, the second approach fixes the distribution of the germ and constructs ψ in such

way that it is compatible to the given distribution of the uncertain parameter. This can be
achieved as follows. Let Fξ denote the desired (cumulative) distribution function of ξ and Fθ
the given distribution function of θ . Then setting the germ to11

ξ := F−1
ξ
◦ Fθ ◦ θ

11We denote by F−1 the quantile function.



CHAPTER 4 POLYNOMIAL CHAOS EXPANSION: EFFICIENT EVALUATION AND ESTIMATION OF COMPUTATIONAL

MODELS
107

yields the desired distribution for ξ. Conversely,

ψ= F−1
θ
◦ Fξ

and the expansion coefficients can again be computed from (4.3.3) by numerical integration.

4.3.1.2 Polynomial chaos expansion of themodel outcome

While the expansion of the model parameter can be directly controlled by the appropriate choice
of the germ, the expansion of the model outcome of interest requires some evaluations of the
model.

Spectral projection: The first approach derives the polynomial chaos coefficients ŷn by apply-
ing numerical integration methods to (4.3.4). For example, if ξ possesses a probability density
function w, then (4.3.4) becomes

ŷn = ‖qn‖−2
L2

∫

R
h(ψ(s))qn(s)w(s)ds.

Hence, a Gauss-quadrature with M nodes that corresponds to the weight function w and to the
orthogonal polynomials {qn}n∈N0

yields

ŷn ≈ ‖qn‖−2
L2

M
∑

i=1

h(ψ(si))qn(si)ωi ≈ ‖qn‖−2
L2

M
∑

i=1

h

�

N
∑

m=1

ϑ̂mqm(si)

�

qn(si)ωi, (4.3.5)

where si and ωi denote the quadrature’s nodes and weights, respectively. The Gauss-quadrature
rule with M nodes will require to evaluate the model outcome h(ψ(si))≈ h

�∑N
m=1 ϑ̂mqm(si))

�

at each of the M nodes. Since the quadrature rule with M nodes is exact for polynomials up
to degree 2M − 1, the number of nodes should be chosen appropriately. More specifically, if
h ◦ψ is assumed to be well approximated by its truncated partial sum SN(h ◦ψ) of degree N ,
the integrand, i.e. h(ψ(s))qn(s), is well approximated by polynomials of degree not larger than
2N for each n= 1, . . . , N . Hence, it should then hold that M ≥ N + 1.

Least-squares: The second approach treats the ignored higher terms ε :=
∑∞

n=N+1 ŷnqn(ξ) of
the truncated PCE as the residual in a linear regression

Y = h(ψ(ξ)) =
N
∑

n=0

ŷnqn(ξ) + ε.

One can then either draw M ∈ N i.i.d. sample points s j, j = 1, . . . , M , from the distribution Pξ or
select them according to regression design principles. After computing the corresponding model
outcomes Yj = h(ψ(s j))≈ h

�∑N
m=1 ϑ̂mqm(s j))

�

the expansion coefficients are determined from

( ŷ0, . . . , ŷn) = argmin
ŷ0,..., ŷN

M
∑

j=1

�

Yj −
N
∑

n=0

ŷnqn(s j)

�2

.

The number of sample (design) points is recommended to be set twice or three times as large as
the number of unknown PCE coefficients in the literature, i.e. to M = 2(N +1) or M = 3(N +1).

Stochastic galerkin: For both methods discussed in the preceding paragraphs, the computation
of the expansion coefficients is detached from the underlying procedure from which the model
outcome is computed. This is different for the third method. Instead of a more general discussion,
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we therefore only illustrate this method for the case where the PCE of a model’s policy function
is constructed. To simplify the notation, suppose that the equations defining the model’s solution
can be reduced to a sole Euler equation in a single variable. Let S ⊂ Rs denote the model’s
state-space and let g : S→ R denote the variable’s policy function. The Euler equation is typically
translated into a functional (integral) equation for g, say

R(g, x) = 0 for all x ∈ S.

If the functional equation can not be solved analytically, a common approach is to construct an
approximation ĝ from linear combinations of some basis functions12, say Φ j, j = 1, . . . , d, i.e.

ĝ(x) =
d
∑

j=1

y jΦ j(x).

In order to determine the coefficients y j in the approximation, which now serve as our model
outcome of interest and should not be confused with the Fourier coefficients of the PCE, one
can, for example, select d appropriate collocation points x1, . . . , xd ∈ S and solve the non-linear
system of equations given by

R

�

d
∑

j=1

y jΦ j, x i

�

= 0 for all i = 1, . . . , d

for y1, . . . , yd .
Now consider the case where one parameter is uncertain and hence described by the random

variable θ . If the model’s (reduced) Euler equation involves θ , then so does the functional
equation for g, i.e. we now write

R(g, x;θ ) = 0 for all x ∈ S.

Moreover, if one employs the above mentioned solution method, the coefficients y j will typically
also depend on θ , i.e. we have, in slight abuse of notation, Yj = h j(θ). In particular, the
mappings h j between the Yj and θ arise implicitly from the non-linear system of equations

R

�

d
∑

j=1

YjΦ j, x i;θ

�

= 0 for all i = 1, . . . , d. (4.3.6)

In order to avoid the necessity for repeated and potentially computational expensive solutions
of this system of equations for different values of θ , one may want to find for each Yj a PCE in
terms of some chosen germ ξ13

θ =ψ(ξ) =
∞
∑

n=0

ϑ̂nqn(ξ),

Yj = h j(θ ) = h j(ψ(ξ)) =
∞
∑

n=0

ŷ jnqn(ξ).

The PCE of the model’s (approximated) policy function with respect to the germ ξ is then given

12Most commonly these are selected either as (tensor products of) Chebyshev polynomials or as piecewise linear
or cubic polynomials.

13Note that in this case we have d model outcomes of interest, namely the coefficients Yj = h j(θ ) in ĝ.
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by

ĝ(x;ξ) =
d
∑

j=1

YjΦ j(x) =
d
∑

j=1

∞
∑

n=0

ŷ jnqn(ξ)Φ j(x).

Moreover, the Fourier coefficients ŷ jn in the PCE can be derived by a Galerkin method if we sub-
stitute the Yj in their implicit definition in (4.3.6) with their PCE and impute the corresponding
conditions

R

�

d
∑

j=1

∞
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

= 0 in L2 for all i = 1, . . . , d

⇔
�

R

�

d
∑

j=1

∞
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

, qm(ξ)

�

L2

= 0 for all i = 1, . . . , d and all m ∈ N0.

Hence, we can solve for the d(N + 1) unknown coefficients ŷ jn in the truncated PCE Yj ≈
∑N

n=0 ŷ jnqn(ξ) from the system of equations

0≈
�

R

�

d
∑

j=1

N
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

, qm(θ )

�

L2

=

=

∫

R
R

�

d
∑

j=1

N
∑

n=0

ŷ jnqn(ξ)Φ j, x i;ψ(ξ)

�

qm(ξ)dPξ(ξ)

for i = 1, . . . , d and m = 0, . . . , N . The integral is computed numerically, either from Monte-
Carlo draws or from an appropriate Gauss quadrature. Moreover, ψ(ξ) can be substituted by its
truncated series expansion as previously described in subsection 4.3.1.1.

4.3.2 Multiple uncertain input parameters (k ≥ 2)
We now turn to the case where more than one input parameter is uncertain and where more
than one germ is used in the polynomial expansions. In brief, the stochastic independence of
the germs allows us to apply the procedure from the one-dimensional case to each of the finitely
many dimensions.

Since Assumption 2 guarantees that all polynomials are included in each L2
i , one can again

apply the Gram-Schmidt process to the sequence of monomials and construct for each i = 1, . . . , k
an orthogonal system of polynomials {qin}n∈N0

⊂ L2
i where qin is a polynomial of (exact) degree

n and

〈qin, qim〉L2
i
= ‖qin‖2

L2
i
δm,n for all m, n ∈ N0.

For any multi-index α= (α1, . . . ,αk) ∈ Nk
0 we define the multivariate polynomial

qα(ξ) :=
k
∏

i=1

qiαi
(ξi).

Since stochastic independence of the ξi implies that Pξ = ⊗k
i=1Pξi

, the family of multivariate
polynomials {qα}α∈Nk

0
then forms an orthogonal system in L2. Moreover, if for each i = 1, . . . , k

the orthogonal system {qin}n∈N0
is complete in L2

i , then {qα}α∈Nk
0

is also complete in L2. In
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particular, this is satisfied if each θi is distributed according to one of the distributions specified
in Table 4.2 and if the germs ξi are set accordingly. Then, since ψi ∈ L2 (Assumption 3) and
h ◦ψ ∈ L2 (Assumption 4), there exist coefficients {ϑ̂iα}α∈Nk

0
⊂ R, i = 1, . . . , k, and { ŷα}α∈Nk

0
⊂ R

such that

ψi =
∑

α∈Nk
0

ϑ̂iαqn in L2 = L2(Rk,B(Rk), Pξ), (4.3.7)

h ◦ψ=
∑

α∈Nk
0

ŷαqα in L2 = L2(Rk,B(Rk), Pξ). (4.3.8)

The second expansion can again be written equivalently as

h=
∑

α∈Nk
0

ŷα(qα ◦ψ−1) in L2(Rk,B(Rk), Pθ ).

Therefore, the parameters θi and the model outcome Y are again representable in L2 by a PCE
in the germs ξ through

θi =ψi ◦ ξ=
∑

α∈Nk
0

ϑ̂iαqα(ξ) in L2(Ω,A , P), (4.3.9)

Y = h ◦ θ = h ◦ψ ◦ ξ=
∑

α∈Nk
0

ŷαqα(ξ) in L2(Ω,A , P). (4.3.10)

Moreover, the expansion coefficients are determined by

ϑ̂iα = ‖qα‖−2
L2 〈ψi, qα〉L2 = ‖qα‖−2

L2

∫

Rk

ψiqα dPξ, (4.3.11)

ŷα = ‖qα‖−2
L2 〈h ◦ψ, qα〉L2 = ‖qα‖−2

L2

∫

Rk

(h ◦ψ)qα dPξ, (4.3.12)

where Pξ = ⊗k
i=1Pξi

implies that ‖qα‖L2 =
∏k

i=1 ‖qiαi
‖L2

i
.

Equations (4.3.11)-(4.3.12) guarantee that if the parameters θi and the model outcome Y are
approximated by their truncated PCE, the approximations converge to the true random variables
in L2 as the degree of the partial sums is increased. The truncation is typically introduced either
by limiting the total degree of the multivariate polynomials

Stot
N (θi) = Stot

N (ψi ◦ ξ) :=
∑

α∈Nk
0,|α|≤N

ϑ̂iαqα(ξ),

Stot
N (Y ) = Stot

N (h ◦ψ ◦ ξ) :=
∑

α∈Nk
0,|α|≤N

ŷαqα(ξ),

where |α| :=∑k
i=1αi, or by limiting the maximal degree in each component

Smax
N (θi) = Smax

N (ψi ◦ ξ) :=
∑

α∈Nk
0,‖α‖∞≤N

ϑ̂iαqα(ξ),

Smax
N (Y ) = Smax

N (h ◦ψ ◦ ξ) :=
∑

α∈Nk
0,‖α‖∞≤N

ŷαqα(ξ),

where ‖α‖∞ :=maxi=1,...,k αi.
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In order to compute the expansion coefficients from their defining equations (4.3.11)-(4.3.12),
it is straightforward to adapt the methods from section 4.3.1.2 to the multidimensional case.
However, this typically introduces the curse of dimensionality.

First, this issue becomes particularly problematic if the integrals are computed by Gauss-
quadrature rules. If the mapping h ◦ ψ can be well approximated by its truncated series
expansion SN , then the integrands (h◦ψ)qα in (4.3.12) can be well approximated by multivariate
polynomials which rise up to degree 2N in each component, indifferent from the fact whether
|α| ≤ N or ‖α‖∞ ≤ N is assumed. Since one-dimensional Gauss-quadrature rules with M
nodes provide exact integration rules for polynomials up to degree 2M − 1, it is required to
compute (4.3.12) by quadrature rules with M = N + 1 nodes in each of the k dimensions.
Hence, the model outcome must be evaluated for a total of (N + 1)k parameter combinations
and the procedure becomes quickly inefficient as k rises. However, sparse grid methods, as e.g.
Smolyak-Gauss quadrature which is illustrated in Appendix 4.B and analyzed in the numerical
example in section 4.5, can help to reduce the computational effort that is required for similar
integration quality.

Second, the burden of higher-dimensional parameter vectors also appears in similar form if
the PCE coefficients are determined by least squares. However, while the number of coefficients
which must be computed equals (N+1)k in Smax

N , the number of coefficients grows less extremely
in Stot

N where it is given by
�N+k

k

�

. Following the recommendation that the number of sample
points should be twice or three times as large as the number of unknown coefficients, the model
must be evaluated for 2

�N+k
k

�

or 3
�N+k

k

�

parameter combinations in the latter case.

4.4 Applications of generalized polynomial chaos expansions
After its construction, the PCE of the model outcome can be used for computational inexpensive
evaluations of the model. On the one hand, statistical properties of the model outcome, as
induced by the predefined distribution of the uncertain input parameters, can be derived directly
from the PCE. On the other hand, the expansion can also be used as a point-wise approximation
of the model outcome for different parameter values.

Evaluation of statistical properties: Convergence in L2(Ω,A , P) of the series expansion in
(4.3.10) implies that the distribution of the model outcome Y can be equivalently characterized
by its polynomial expansion. In particular, the mean and variance of Y follow directly from
the fact that convergence in L2 also implies convergence of the mean and variance so that
orthogonality of the polynomials (and q0 = 1 for 0 := (0, . . . , 0) ∈ Nk

0) yields

E[Y ] =
∑

α∈Nk
0

ŷα E[qα(ξ)] =
∑

α∈Nk
0

ŷα E[qα(ξ)q0(ξ)] =
∑

α∈Nk
0

ŷα〈qα, q0〉L2 = ŷ0,

and

Var[Y ] = E









∑

α∈Nk
0

ŷαqα(ξ)− ŷ0





2

= E









∑

α∈Nk
0\{0}

ŷαqα(ξ)





2

=

=
∑

α,β∈Nk
0\{0}

ŷα ŷβ〈qα, qβ〉L2 =
∑

α∈Nk
0\{0}

ŷ2
α
‖qα‖2

L2 .

Moreover, other statistical properties can be computed by Monte-Carlo methods. Large samples
of Y can be efficiently constructed by drawing from the germ’s distribution and inserting the
sample into the expansion of Y . Compared to traditional methods, repeated and costly model
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evaluations can thus be avoided.

Using the expansion as point-wise approximation for the model outcome: A truncated
version of the Fourier series expansion (4.3.8) can also be used as a point-wise approximation
for the mapping h between model input parameters and model outcome

h(ϑ)≈ SN (h ◦ψ)(ψ−1(ϑ)) =
∑

α∈Nk
0,|α|≤N

ŷαqα(ψ
−1(ϑ)). (4.4.1)

Note however that convergence of the series in L2 as N → ∞ does not imply point-wise
convergence on the support of Pξ but only point-wise convergence a.e. for a subsequence.

The partial sum SN (h◦ψ) is the orthogonal projection of h◦ψ onto the subspace of L2(Rk,B(Rk), Pξ)
spanned by multivariate polynomials of total degree less or equal to N . If the transformation ψ
between germs and parameters is chosen linear, SN (h◦ψ)◦ψ−1 is also the orthogonal projection
of h onto this subspace in L2(Rk,B(Rk), Pθ ).14 In the sense of the induced metric, it is therefore
the best approximation of h by multivariate polynomials of total degree up to N , i.e. it minimizes
the mean-squared error over the support of Pθ .

Special case: Surrogate of model solution: Consider a discretely-timed model where in any
period t ∈ N the vector x t ∈ S ⊂ Rnx denotes the predetermined variables from the state-space
S and yt ∈ Rny is a vector of the non-predetermined variables of the model. Suppose that θ is a
random vector of unknown parameters of the model, and for any possible realization ϑ ∈ Θ the
model solution is computed in terms of a policy function g(.;ϑ): S→ Rnx+ny so that

�

x t+1

yt

�

= g(x t;ϑ).

If, for any arbitrary x ∈ S and for a suitable transformation ψ between parameters and germs,
the mapping ϑ 7→ g(x;ϑ) satisfies the sufficient condition in assumption 4, then there exists a
series expansion by orthogonal polynomials {qα} of the form

g(x ,ϑ) =
∑

α∈Nk
0

ĝα(x)qα(ψ
−1(ϑ)) in L2(Rk,B(Rk), Pθ ),

ĝα(x) = ‖qα‖−2
L2

∫

Rk

g(x ,ψ(s))qα(s)dPξ(s).

Perhaps the most prevalent approach in the literature to determine the model’s policy function
is to compute g from a linearized version of the model. In this case

g(x;ϑ) = A(ϑ)x ,

and numeric implementation of the methods proposed by Blanchard and Kahn (1980), Klein
(2000) or Sims (2002) allows to solve for the matrix A(ϑ) ∈ Rnx×(nx+ny ) given any arbitrary but
fixed ϑ ∈ Θ. Since the coefficients in the policy’s PCE are here determined by

ĝα(x) =

�

‖qα‖−2
L2

∫

Rk

qα(s)A(ψ(s))dPξ(s)

�

x =: Âαx ,

14Otherwise it is the orthogonal projection of h onto the subspace in L2(Rk,B(Rk), Pθ ) spanned by multivariate
polynomials in ψ−1 of total degree less or equal to N .
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the series expansion of the linear policy function can be written as

g(x ,ϑ) =
∑

α∈Nk
0

ĝα(x)qα(ψ
−1(ϑ)) =





∑

α∈Nk
0

Âαqα(ψ
−1(ϑ))



 x .

Moreover, the Âα coincide with the expansion coefficients from the PCE of the model outcome
A(ϑ). Hence, the PCE of a linear policy is again linear and is represented by the polynomial
expansion of the matrix-valued function ϑ 7→ A(ϑ).

A second popular approach to compute the model’s policy function are projection methods.15

In this approach g is constructed as a linear combination of some suitable basis functions Φi by

g(x;ϑ) =
d
∑

i=1

ci(ϑ)Φi(x).

The coefficients in the PCE of g with respect to ϑ then satisfy

ĝα(x) =
d
∑

i=1

�

‖qα‖−2
L2

∫

Rk

qα(s) (ci(ψ(s)))dPξ(s)

�

Φi(x) =:
d
∑

i=1

ĉiαΦ(x),

and the expansion of g can therefore be written as

g(x ,ϑ) =
∑

α∈Nk
0

ĝα(x)qα(ψ
−1(ϑ)) =

d
∑

i=1





∑

α∈Nk
0

ĉiαqα(ψ
−1(ϑ))



Φ(x),

Now observe that the ĉiα coincide with the coefficients in the polynomial expansion of the
model outcome ci(ϑ), i.e. with the coefficients in the PCE of the coefficients of the projection
solution. Consequently, the PCE of g is again a linear combination of the basis functions Φi and
the coefficients are represented by the polynomial expansion of ϑ 7→ ci(ϑ).

Surrogate for gradients: The truncated PCE in (4.4.1) may also be used to approximate the
derivatives of the mapping h between parameter values and model outcomes. More specifically,
the PCE provides the approximation

∂ h
∂ ϑi
(ϑ)≈

∑

α∈Nk
0,|α|≤N

ŷα

k
∑

j=1

∂ qα
∂ sk
(ψ−1(ϑ))

∂ψ−1
j

∂ ϑi
(ϑ).

This approximation can be useful if such derivatives must be evaluated at a potential large
number of points. One example may be the method proposed by Iskrev (2010) for conducting
local identification analysis which requires differentiation of the linearized policy function with
respect to the parameters.

4.5 Numerical analysis
In this section we present the numerical implementation of a PCE for a benchmark RBC model.
First, we analyze the convergence behaviour of the series expansion for different model outcomes

15See, for instance Judd (1996), Chapter 11, Heer and Maussner (2009), Chapter 6, Judd (1992) or McGrattan
(1999).
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of interest. More specifically, the model outcomes considered include the linear solution, the
second moments and the impulse response functions of the model’s variables to a one time
shock—both computed from the model’s linear policy—as well as a global projection solution.
Moreover, we compare different methods to compute the PCE coefficients in terms of accuracy
and efficiency. Finally, we perform Monte-Carlo experiments where we evaluate the performance
of the PCE for empirical applications as matching moments and likelihood-based approaches.

4.5.1 Themodel
We consider a benchmark RBC model where the social planner solves the following maximization
problem

max
Yt ,Ct ,Nt ,It ,Kt+1

U0 := E0

�∞
∑

t=0

β t C1−η
t (1− Nt)γ(1−η)

1−η

�

,

s.t. Yt = Ct + It ,

Yt = ezt Kζt N 1−ζ
t ,

Kt+1 = (1−δ)Kt + It ,

given K0, z0,

where Yt , Ct , Nt , It and Kt denote output, consumption, working hours, investment and the
capital stock, respectively. Moreover, the log of total factor productivity, zt , evolves according to
the AR(1) process

zt+1 = ρzt + εt+1, εt ∼ iidN(0,σ2).

The predetermined state variables x t and the non-predetermined control variables yt are

x t :=
�

Kt

zt

�

and yt :=







Yt

Ct

Nt

It






.

4.5.2 Convergence behaviour
First, in order to study the basic convergence behaviour of the PCE for various model outcomes
in the benchmark RBC model, we consider an example where we set the uncertain parame-
ters to θ :=

�

ζ η ρ
�

. Moreover, we assume the following probability distributions for the
(stochastically independent) unknown parameters

ζ∼ 0.15+ 0.3 · Beta(5,7), η∼ 1+ 7 · Beta(3,7), ρ ∼ 0.85+ 0.14 · U(0,1).

The probability density functions with support Θ := [0.15;0.45] × [1;8] × [0.85;0.99] are
illustrated in Figure 4.2. The transformations ψi between unknown parameters and germs are
fixed as in Table 4.2 and the remaining parameters are calibrated as summarized in Table 4.3.
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Figure 4.2: Distributions of uncertain parameters

Table 4.3: Calibration I

Parameter Description Value

β Discount factor 0.994
δ Rate of capital depreciation 0.014
N Steady-state labor supply 0.3
σ Standard deviation 0.01

Linear policy function: The first model outcome which we consider is the model’s linear
solution which is of the form
�

x t+1

yt

�

= A(ϑ)x t .

Given any parameter values ϑ ∈ Θ the matrix A(ϑ) =
�

ai j(ϑ)
�

i=1,...,6
j=1,2

∈ R6×2 can be easily

computed numerically from available methods. As described in section 4.4, the expansion of the
linear policy function is again linear and is represented by the polynomial expansion of A(ϑ).
Hence, our task is to construct for each mapping ai j : ϑ 7→ ai j(ϑ) the truncated PCE16

a(N)i j (ϑ) := Stot
N (ai j ◦ψ)(ψ−1(ϑ)) =

∑

α∈N3
0,|α|≤N

âi jαqα(ψ
−1(ϑ)). (4.5.1)

Moreover, we first want to abstract from errors in the computation of the expansion coefficients
âi jα and to focus on the convergence behaviour of a(N)i j → ai j in L2 as N →∞. Therefore, we
compute the coefficients from full-grid Gauss-quadrature rules with a sufficiently large number
of nodes which should guarantee that integration errors in (4.3.10) (where now h = ai j) remain
insignificant. More concretely, we apply N + 5 nodes in each of the three one-dimensional
quadrature rules. We compute the coefficients from the quadrature rules and determine the L2

error from

‖a(N)i j − ai j‖L2 =

�∫

R3

�

a(N)i j (ϑ)− ai j(ϑ)
�2

dPθ

�1/2

≈
�

1
M

M
∑

i=1

�

a(N)i j (ϑ
(i))− ai j(ϑ

(i))
�2
�1/2

(4.5.2)

where we draw M = 105 iid sample points ϑ(i) from the distribution of θ . The results are
presented in Figure 4.2(a) in log10-base for N = 1 to N = 19 and suggest linear convergence
of the series expansions for each ai j. The L2 error for all components of the matrix already

16We only discuss the mappings ϑ 7→ ai j(ϑ) for i = 1,3, . . . , 6 and j = 1,2 since the expansion of the exogenous
AR(1)-process (i = 2) w.r.t. ρ is trivial.
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Figure 4.3: L2 convergence of PCE and computation time on an Intel® Core™i7-7700 CPU @ 3.60GHz
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falls to the order of magnitude of −3 for N = 7 and is as low as −6 for N = 19. Moreover,
Figure 4.2(b) also shows the time needed for all computations. In case of the PCE, the total time
reported includes i) the computation of expansion coefficients âi jα from the full-grid quadrature
rules which require (N + 5)3 model evaluations and ii) the subsequent (trivial) evaluation of
the truncated PCE a(N)i j (ϑ

(i)) at the 100,000 sample points. For comparison, we also show the
computational time which is required to determine the model solution ai j(ϑ(i)) repeatedly at
all 100,000 sample points. Most importantly, since even for N = 19 the number of model
evaluations for the construction of the PCE is significantly smaller at 13824 than the number of
evaluation points, the time required by the PCE remains less than one-third of the time needed
for repeatedly solving the model.

Second moments: The second model outcome we consider are the model’s second moments.
More specifically, we consider the variables’ standard deviations and the correlations obtained
from the model’s linear policy. Instead of relying on simulations, we employ available formulae
for moments of first-order autoregressive processes to the linear solution. We proceed the same
way as in the preceding paragraph and compute for each moment, say x , a series expansion
x (N) :=

∑

α∈N3
0,|α|≤N x̂αqα(ψ−1(ϑ)). Importantly, note that we directly construct the PCE of the

second moments, i.e. of the mapping ϑ 7→ x(ϑ). An alternative approach to employ PCE for the
second moments would be to first construct the PCE of the linear policy and to subsequently
use this PCE of the linear policy to compute the second moments.

Figure 4.2(c) again shows linear convergence of the PCEs for each second moment. The L2

error in the approximation of the model’s moments has fallen to the order of magnitude of −3
by N = 7 and further declines to −6 by N = 19. Moreover, the computation time of the PCE
versus the time for repeated computations the model’s moments is illustrated in Figure 4.2(d).
For the same reasons as before, the time needed by the PCE remains throughout significantly
lower than the time required for repeated calculations.

Impulse response function: The next model outcome we discuss are the variables’ impulse
response functions in response to a one time shock to total factor productivity by one conditional
standard deviation. For the sake of exposition, we only consider the variables’ outcomes for the
next four periods after the shock hits the economy and add the remark that the series expansions
become more trivial for later periods where the variables converge back to their stationary
values. Hence, we construct PCEs for all variables’ outcomes, say X t+s, for periods s = 0, . . . , 4.
Note again that the PCE is constructed directly for each mapping ϑ 7→ X t+s(ϑ).

We show the L2 errors over the unknown parameters’ support in Figure 4.2(e). Convergence
is again linear as N → ∞ and the L2 errors for all variables’ outcomes fall to the order of
magnitude of −5 by N = 19. Furthermore, the computation time of the PCE remains throughout
far below the time required for repeated computations of the model’s impulse response functions.

Projection solution: The last model outcome for which we want to illustrate the convergence
behavior is the model’s projection solution computed from Chebyshev polynomials as basis
functions. More specifically, we define kt := ln(Kt/K

?(ϑ)) where K?(ϑ) is the capital stock’s
stationary solution and approximate the policy function for working hours by

nt = g(kt , zt;ϑ) =
∑

i+ j≤4

ci, j(ϑ)Ti

�

2
kt − k

k̄− k
− 1

�

T j

�

2
zt − z

z̄ − z
− 1

�

,

where we further introduce the transformation nt := ln(Nt/(1− Nt)). The Ti are Chebyshev
polynomials of degree i and [k; k̄] × [z; z̄] = [ln(0.8);− ln(0.8)] × [−3 σp

1−ρ2
; 3 σp

1−ρ2
] is the

domain of the approximation g. The remaining variables are computed analytically from kt , nt

and zt and the coefficients ci, j(ϑ) are determined such way that the model’s Euler equation holds
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exactly at 13 appropriately selected collocation points.17

We discussed in section 4.4 that the expansion of the projection solution is again a linear
combination of the same basis functions, i.e. of Ti1 Ti2 with i1 + i2 ≤ 4, and the coefficients are
given by the series expansions of the mappings ϑ 7→ ci, j(ϑ). Hence, we construct truncated
PCEs, c(N)i, j :=

∑

α∈N3
0,|α|≤N ĉi jαqα(ψ−1(ϑ)) from full-grid quadrature rules with N+5 nodes in each

dimension. The L2 error, ‖c(N)i, j − ci j‖L2 , in log10-basis is again decreasing linearly as N →∞ as
displayed in Figure 4.2(g) and the time for construction and evaluation of the PCEs in Figure
4.2(h) remains throughout significantly smaller than the time for repeated computations of the
global solution.

4.5.3 Computation of the polynomial chaos expansion coe�icients
In the previous subsection our focus was on the convergence behavior of the PCE when the
degree of truncation N was increased. We therefore abstracted from possible errors in the
computation of the PCE coefficients and employed a full-grid quadrature rule with sufficiently
many nodes. While full-grid quadrature rules have the favorable property that the number of
nodes can be easily chosen in such way that they provide exact integration rules for polynomials
up to the desired degree, the number of nodes grows exponentially in the dimension of the
parameter vector. Hence, they may provide the most convenient way for computation of the
PCE coefficients when the number of unknown parameters is not too large, but they become
quickly ineffective in higher dimensional problems. If the PCE coefficients are determined from
alternative methods, the approximation error of the feasible PCE does not only include the
error from truncation of the series expansion but additionally from a potentially less accurate
approximation of the PCE coefficients that becomes necessary.

In this section we now switch perspective and analyze the convergence behavior of the PCE
when its coefficients are computed from different methods. Next to the benchmark full-grid
quadrature rule, the PCE coefficients are additionally approximated by a sparse-grid Smolyak
quadrature rule and by least squares. Sparse-grid methods as well as least squares give funda-
mentals for a rising number of more efficient alternatives. Kaintura et al. (2018) and Harenberg
et al. (2019) give a short discussion.

We apply our analysis to the PCE of the model’s linear solution but now consider a higher
dimensional problem. The vector of unknown parameters expands to θ :=

�

ζ η ρ β δ γ
�

.18

The assumed distributions for ζ,η and ρ remain as before in Figure 4.2 and the distributions of
the additional unknown parameters are chosen as

β ∼ 0.9+ 0.09 · Beta(7,4), δ ∼ 0.01+ 0.01 · Beta(3,3), γ∼ 1.5+ 1 · Beta(5,4).

The probability densities for β ,δ and γ are visualized in Figure 4.4.
We compute the truncated PCE (4.5.1) for each mapping ai j : ϑ 7→ ai j(ϑ) in the linear policy

A(ϑ) =
�

ai j(ϑ)
�

i=1,...,6
j=1,2

∈ R6×2. The PCE coefficients are now determined either by i) a full-

grid Gauss quadrature rule with N + 1 nodes for each parameter (FGQ), ii) a sparse-grid
Smolyak-Gauss quadrature rule with linear growth where the level is set such way that the
one-dimensional quadrature rules include the nodes up to degree N +1 (SGQ), iii) least squares
where the number of sample point is set either twice (LSMC1) or iv) three times as large as the
number of unknown PCE coefficients (LSMC2). After construction of the truncated PCE by each
of the four methods, we compute the PCE’s L2 error as in (4.5.2) from a draw of M = 105 iid

17The collocation points are combinations of the zeros of the Chebyshev polynomials in the approximation.
18These are all of the model’s parameters except the standard deviation σ which does not affect the model’s linear

policy.
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Figure 4.4: Distributions of uncertain parameters

sample points from the parameter’s distribution.
Figure 4.5 shows the convergence of the truncated (approximated) PCEs with approximated

coefficients for increasing N . As expected, the PCE constructed from a full-grid quadrature rule,
which should provide the most accurate determination of the coefficients, also shows the fastest
convergence. It is followed by the PCE constructed from the sparse-grid Smolyak quadrature
rule while the PCEs where the coefficients are computed by least squares perform worst. In fact,
since inaccuracies in the coefficients of higher degree polynomials may have large impact on the
L2 error of the PCE,19 the PCEs computed from least squares even show increasing errors for
larger N . Yet, the necessary computations for the full-grid quadrature method also require by far
the most time. Figure 4.4(k) shows that by N = 5 the construction and evaluation of the PCE
already consumes more time than 100,000 repeated computations of the model solution. In
comparison, the sparse-grid quadrature rule is already significantly less computationally costly
while the least-squares methods are least expensive to compute and remain less time-consuming
than repeated computations of the model solution up to N = 10.

Finally, Figure 4.6 provides a more convenient illustration of the different methods’ efficiency
and plots the PCEs’ L2 error versus the required computation time, both in log10-basis. According
to this metric the full-grid quadrature method already performs worst and requires the most
computation time to reach the same quality of approximation as the other methods. The
most efficient method is the sparse-grid Smolyak quadrature rule. In the present case with
six unknown parameters, it reaches an approximation with L2 error of order of magnitude of
−4 before the required time for the PCE’s construction exceeds the time for 100,000 repeated
computations of the model solution.

4.5.4 Monte Carlo experiments for empirical methods
Design: Our Monte Carlo study follows Ruge-Murcia (2007) and analyzes the performance
of PCE when applied to different estimation methods. We set the vector of uncertain pa-
rameters to θ := (β ,ρ,σ) and choose the following probability distributions with support
Θ := [0.97; 0.999]× [0.75;0.995]× [0.004;0.012] for the unknown parameters:

β ∼ 0.97+ 0.029 · Beta(2,2), ρ ∼ 0.75+ 0.245 · Beta(2,2), σ ∼ 0.004+ 0.008 · U(0, 1).

Figure 4.7 illustrates the uncertain parameters’ probability densities and the remaining pa-
rameters are calibrated as summarized in Table 4.4.
19Note that the norm of the orthogonal polynomials, ‖qα‖L2 , is increasing in |α|.
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Figure 4.5: L2 Convergence of PCE with approximated coefficients and computation time on an Intel® Core™i7-
7700 CPU @ 3.60GHz
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Figure 4.6: L2 Convergence of PCE with approximated coefficients and computation time on an Intel® Core™i7-
7700 CPU @ 3.60GHz
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Figure 4.7: Distributions of uncertain parameters

Table 4.4: Calibration II

Fixed Parameter Description Value

ζ Capital share 0.37
δ Rate of capital depreciation 0.014
N Steady-state labor supply 0.3
η Risk aversion 2

Uncertain Parameters Description Distribution

β Discount factor β ∼ 0.97+ 0.029 · Beta(2,2)
ρ Persistence ρ ∼ 0.75+ 0.245 · Beta(2,2)
σ Standard deviation σ ∼ 0.004+ 0.008 · U(0, 1)

Matching moments: To estimate the parameters by matching moments, we choose the fol-
lowing 5 targets: i) the variance of output and of working hours, ii) the autocovariance (lag
1) of output and of working hours, and iii) the covariance between output and working hours.
We draw a sample ϑ(i), i = 1, . . . , M , of size M = 1,000 from the distribution of the unknown
parameters. In a first step, we compute the linear approximation of the policy function and
the second moments for each ϑ(i) in the sample. Subsequently, we feed the computed second
moments as targets to an optimizer and (point) estimate the unknown parameters by the method
of matching moments. When minimizing the objective function, we distinguish the following
three cases in order to evaluate the model’s second moments for different parameter values: i)
repeatedly solving the model and computing the second moments (benchmark), ii) constructing
the PCE of the linear approximation of the policy function which we then evaluate and use
to compute the variables’ second moments or iii) constructing the PCE of the model’s second
moments which we then evaluate. We compute the second moments either from analytic formu-
lae for the linear solution (GMM) or from a simulation with T = 10,000 periods (SMM). We
adapt the truncation degree and quadrature level manually to achieve a sufficient accuracy to
demonstrate the capabilities.20 After obtaining the parameters’ estimate ϑ̂(i), we define the PCE
error by the deviation between the realized point estimate ϑ̂(i)PCE from a PCE based method and
the estimate ϑ̂(i)BM obtained from the benchmark method, i.e.

ε
(i)
j = 100

�

�ϑ̂
(i)
j,PCE − ϑ̂(i)j,BM

�

�

ϑ j,max − ϑ j,min
, j ∈ {β ,ρ,σ}, i = 1, ..., M ,

where j indicates the estimator of the particular parameter and ϑ j,max and ϑ j,min denote the
upper and lower bound of θ j ’s prior support.

20We discuss heuristics for the choice of the truncation level below.



CHAPTER 4 POLYNOMIAL CHAOS EXPANSION: EFFICIENT EVALUATION AND ESTIMATION OF COMPUTATIONAL

MODELS
123

Table 4.5: Monte Carlo results - GMM

Benchmark (repeated solution)

Total average
Time: 00:01.25

PCE policy function

Total average PCE Estimation average
Time: 00:00.5 00:00.05 00:00.45

j β ρ σ

ε̄ j 0.04 0.01 0.02
ε j,.05 0.00 0.00 0.00
ε j,.5 0.03 0.01 0.01
ε j,.95 0.11 0.03 0.06

PCE second moments

Total average PCE Estimation average
Time: 00:03.44 00:03.11 00:00.33

j β ρ σ

ε̄ j 0.16 0.02 0.02
ε j,.05 0.02 0.00 0.00
ε j,.5 0.13 0.02 0.01
ε j,.95 0.43 0.06 0.09

Notes: Observable moments: variance of output, variance of hours, covariance between output and hours,
autocovariance of output (lag 1), autocovariance of hours (lag 1). ε̄ j: mean error, ε j,.05: 5 percentile of error, ε j,.5:
median of error, ε j,.95: 95 percentile of error. Errors of PCE based methods are expressed as deviations from the
benchmark method of repeatedly solving the policy function in percent of the range of the parameter’s distribution.
Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the
expanded policy function is 9 and of the second moments 19.
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Table 4.6: Monte Carlo results - SMM

Benchmark (repeated solution)

Total average
Time: 01:12.82

PCE policy function

Total average PCE Estimation average
Time: 00:34.67 00:00.03 00:34.63

j β ρ σ

ε̄ j 0.10 0.02 0.03
ε j,.05 0.01 0.00 0.00
ε j,.5 0.08 0.01 0.01
ε j,.95 0.25 0.04 0.16

PCE second moments

Total average PCE Estimation average
Time: 00:58.03 00:57.73 00:00.31

j β ρ σ

ε̄ j 1.01 0.13 0.10
ε j,.05 0.10 0.01 0.01
ε j,.5 0.78 0.09 0.06
ε j,.95 2.62 0.35 0.30

Notes: Observable moments: variance of output, variance of hours, covariance between output and hours,
autocovariance of output (lag 1), autocovariance of hours (lag 1). ε̄ j: mean error, ε j,.05: 5 percentile of error, ε j,.5:
median of error, ε j,.95: 95 percentile of error. Errors of PCE based methods are expressed as deviations from the
benchmark method of repeatedly solving the policy function in percent of the range of the parameter’s distribution.
Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadratur level of the
expanded policy function is 7 and of the second moments 13.

Table 4.5 presents the results for GMM. We provide the computation time, the mean, the
median, the 5 percentile and the 95 percentile of the PCE error ε j from M = 1, 000 estimations.
We find that the policy function’s PCE provides a remarkably well approximation which results
in deviations from the benchmark mostly smaller than one permille in comparison to the range
of the parameter’s distribution. Estimation errors rise if the model’s second moments are directly
approximated by PCE. However, the average relative errors remain below two permille for
all parameters and is almost always less than half a percent, again relative to the parameter’s
range. Using the PCE of the policy function reduces the computation time on average by 60
percent while the PCE of the second moments is more time consuming than the benchmark.
Nevertheless, the pure estimation procedure of the second moments’ PCE is on average more
than 25 percent faster than the estimation procedure of policy function’s PCE.

Since analytic formulae for the model’s moments are only available for the linear solution,
GMM can only be employed for a linear approximation where computation time is rarely a
limiting factor. If the model demands non-linear solutions, one has to resort to simulations in
order to derive the model’s moments. However, the computation of non-linear solutions and the
simulation of model outcomes increase the computational effort significantly. Working with the
PCE of the policy function reduces the former burden while working with the PCE of the second
moments helps to reduce both burdens. The results for our Monte-Carlo experiment with SMM
are summarized in Table 4.6.

We find again that the policy function’s PCE provides a remarkably well approximation
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which results in errors mostly smaller than 2.5 permille in comparison to the range of the
parameter’s distribution. Similar to GMM, errors rise if the model’s second moments are directly
approximated by PCE. However, the average relative errors remain around or below one percent
for all parameters and are almost always less than 2.5 percent. Using the PCE of the policy
function reduces the computation time on average by 50 percent while the PCE of the second
moments reduces them only by 20 percent. However, the pure estimation procedure of the
second moments’ PCE is on average more than 99 percent faster than the estimation procedure
of policy function’s PCE. This illustrates the efficiency of PCE once the expansion of the QoI is
calculated.

Likelihood-based estimation: We proceed to analyze the performance of PCE in MLE and
in BE. More precisely, we now draw a sample of size M = 500 from the distribution of the
unknown parameters. We approximate linearly the policy function and simulate a time-series of
output Yt for T = 200 periods for each ϑ(i) in the sample.21 We treat the simulated time-series
as observations from which we either (point) estimate the parameters by MLE or conduct BE.

In the case of MLE we distinguish the following three methods to evaluate the observations’
likelihood for different parameter values: i) repeatedly solving the model and computing the
likelihood (benchmark), ii) constructing the PCE of the linear approximation of the policy
function which we then evaluate and use to compute the likelihood or iii) constructing the PCE
of the likelihood which we then evaluate. In order to avoid problems with weak identification
and in order to focus on the quality of PCE in the estimation procedure, MLE is unusually applied
to data in levels instead of the relative deviation from steady-state.

For BE the priors remain the same as in Table 4.4. Moreover, we again consider three methods
to evaluate the posterior where the first two are analogous to i) and ii) above while iii) now
involves constructing the PCE of the posterior’s kernel. For each of the three methods we derive
the posterior’s mean as well as several quantiles of the posterior distribution from a standard
random walk Metropolis-Hasting (RWMH) algorithm with 100,000 draws from the posterior
kernel.22 We measure the accuracy of the PCE based methods for each statistic of the posterior,
say x , by computing the deviation between the statistic x̂ (i)j,PCE obtained from the PCE based

method and the statistic x̂ (i)j,BM from the benchmark method by

ε
(i)
j,PCE(x) = 100

�

� x̂ (i)j,PCE − x̂ (i)j,BM

�

�

ϑ j,max − ϑ j,min
.

Again, we adapt the truncation degree and quadrature level manually to achieve a sufficient
accuracy.

21More precisely, we generate a sample of size T = 300 and burn the first 100 observations.
22For the results we burn the first 50,000 draws.
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Table 4.7: Monte Carlo results - Maximum-likelihood estimation

Benchmark (repeated solution)

Total average
Time: 00:20.60

PCE policy function

Total average PCE Estimation average
Time: 00:18.79 00:00.20 00:18.59

j β ρ σ

ε̄ j 0.07 0.08 0.01
ε j,.05 0.00 0.00 0.00
ε j,.5 0.00 0.00 0.00
ε j,.95 0.00 0.01 0.02

PCE likelihood function

Total average PCE Estimation average
Time: 00:10.81 00:10.36 00:00.44

j β ρ σ

ε̄ j 0.08 0.40 0.05
ε j,.05 0.00 0.00 0.00
ε j,.5 0.00 0.08 0.01
ε j,.95 0.03 0.75 0.09

Notes: Observable: Output Yt . ε̄ j: mean error, ε j,.05: 5 percentile of error, ε j,.5: median of error, ε j,.95: 95
percentile of error. Errors of PCE based methods are expressed as deviations from the benchmark method of
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time: mm:ss.f on
an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the expanded policy
function is 9 and of the likelihood-function 13.

Table 4.7 displays the results from MLE. First, deviations between the estimates from the
method based on the policy function’s PCE, the likelihood function’s PCE, and from the bench-
mark version remain remarkably small. The average error concerning the policy function’s
PCE estimation is smaller than one permille in comparison to the benchmark and relative to
the range of the parameter. Furthermore, as the 95 percentile is smaller than the average, the
error is mostly smaller than the average. The same holds for the estimation with the likelihood
function’s PCE. The average error is less than a half percent and the median is less than one
permille. Using the PCE of the policy function does not reduce the computation time significantly,
because the evaluation of the likelihood-function is the time consuming part. For this reason,
using the PCE of the likelihood-function is much more efficient. The total procedure is about 50
percent faster than the benchmark on average and the pure maximization procedure takes less
than half a second on average.

Finally, Table 4.8 summarizes the results from the PCE based methods—approximation of
the policy function or of the kernel of the posterior—in BE. First, the errors between the two
approximations are virtually the same. The average errors of the means and the medians are
less than or equal to one fourth of a percent. While deviations slightly increase for estimates of
the posterior’s lower and upper quantiles, they remain almost always less then 1.25 percent.
Recognizing the fact that errors may be partly caused by the RWMH algorithm itself, the
deviations between the methods are negligible. Using the PCE of the policy function does not
reduce the computation time significantly, because the evaluation of the likelihood-function is
likewise the time consuming part. For this reason, the PCE of the likelihood-function is much
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more efficient and nearly 99 percent faster than the benchmark.23

Table 4.8: Monte Carlo results - Bayesian estimation

Benchmark (repeated solution)

Total average
Time: 08:36.11

PCE policy function

Total average PCE Estimation average
Time: 07:56.38 00:00.05 07:56.33

j x: Mean:
Quantile:

5% 10% 25% 50% 75% 90% 95%

β

ε̄ j(x) 0.05 0.12 0.08 0.05 0.04 0.05 0.07 0.10
ε j(x).05 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
ε j(x).5 0.04 0.09 0.05 0.03 0.03 0.04 0.05 0.06
ε j(x).95 0.15 0.33 0.23 0.15 0.15 0.14 0.22 0.33

ρ

ε̄ j(x) 0.23 0.32 0.28 0.25 0.25 0.30 0.37 0.45
ε j(x).05 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03
ε j(x).5 0.19 0.24 0.24 0.20 0.21 0.25 0.30 0.35
ε j(x).95 0.59 0.87 0.71 0.64 0.63 0.77 0.99 1.22

σ

ε̄ j(x) 0.09 0.11 0.10 0.09 0.09 0.11 0.15 0.20
ε j(x).05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ε j(x).5 0.07 0.09 0.08 0.07 0.07 0.09 0.12 0.15
ε j(x).95 0.24 0.24 0.29 0.25 0.26 0.28 0.41 0.59

PCE posterior-kernel

Total average PCE Estimation average
Time: 00:16.82 00:11.00 00:05.82

j x: Mean:
Quantile:

5% 10% 25% 50% 75% 90% 95%

β

ε̄ j(x) 0.05 0.13 0.09 0.05 0.04 0.05 0.07 0.09
ε j(x).05 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
ε j(x).5 0.04 0.08 0.06 0.03 0.03 0.03 0.04 0.06
ε j(x).95 0.16 0.40 0.25 0.15 0.13 0.14 0.19 0.30

ρ

ε̄ j(x) 0.21 0.32 0.27 0.24 0.24 0.27 0.36 0.44
ε j(x).05 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.03
ε j(x).5 0.16 0.25 0.21 0.20 0.19 0.20 0.27 0.33
ε j(x).95 0.59 0.86 0.69 0.59 0.60 0.72 1.01 1.19

σ

ε̄ j(x) 0.09 0.12 0.11 0.09 0.09 0.11 0.15 0.19
ε j(x).05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ε j(x).5 0.07 0.09 0.08 0.07 0.07 0.09 0.12 0.13
ε j(x).95 0.24 0.32 0.30 0.25 0.24 0.29 0.42 0.55

Notes: Observable: Output Yt . ε̄ j: mean error, ε j,.05: 5 percentile of error, ε j,.5: median of error, ε j,.95: 95
percentile of error. Errors of PCE based methods are expressed as deviations from the benchmark method of
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time: mm:ss.f on an
Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadratur level of the expanded policy function
is 9 and of the second moments 13.

23It must be mentioned that a higher number of parameters leads to a decrease in efficiency.
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Discussion: Our study of PCE in estimation of a standard RBC model shows that the PCE based
methods can accurately reproduce the same results as the benchmark method of repeatedly
solving the model. Gains in efficiency are larger than 50 percent for matching moments if the
PCE of the policy function is used and for MLE if the PCE of the likelihood-function is used.
Additionally, we show the gains in efficiency are almost 99 percent for BE with the chosen
numbers of parameters, truncation degree, and quadrature level if the PCE of the posterior’s
kernel is used.

In our specification of the prior distributions we shape and shift the distributions in order to
achieve compactness of the support. This procedure is unconventional in BE of DSGE models
but helps for PCE. First and foremost, compactness of the support helps to create a setting
where the mapping from parameters to the model outcome is square-integrable. Second, it is
indispensable for the construction of the PCE coefficients that the model outcome is well-defined
and can be computed in a numerically stable way at all nodes of the quadrature rules.24

In non-Bayesian approaches, the application of PCE demands the otherwise not necessary
specification of prior distributions. Moreover, L2 convergence of the series expansion is achieved
w.r.t. this prior distribution of the parameters. Estimation fails if the true parameter value is at
odds to the choice of priors.

Similarly, Lu et al. (2015) show that the use of PCE for BE may be inaccurate in two cases.
First, the QoI is represented poorly by a low-order polynomial. Second, the posterior mass is in
other regions than the prior mass. To solve these problems, they suggest an adaptive increasing
polynomial order by verifying the accuracy at the next evaluation point. As our manual adaption
is usually not feasible as it requires the benchmark results, this is also a practical method for
determining the truncation level in general. In addition, a small magnitude of the N th Fourier
coefficient is an indicator for a sufficient high truncation level.

Finally, the success of PCE is determined by the ratio of the number of model evaluations
necessary in order to compute the coefficients and the number of model evaluations in the
estimation method. Hence, PCE works best in cases with a small number of unknown param-
eters where estimation demands many model evaluations, but PCE loses efficiency in higher
dimensional problems.

4.6 Conclusion
The present article discusses the suitability of PCE for computational models in economics. For
this purpose, we first provide the theoretical framework for PCE, review the basic theory, and
give an overview of common distributions and corresponding orthogonal polynomials. We show
how to evaluate statistical properties of the QoI from the PCE and how to use the expansion as a
point-wise approximation for the QoI. Further, surrogates for a linearized policy function, for a
policy function based on projection methods, and for gradients of the model’s QoI are presented.

Second, we analyze PCE when applied to a standard RBC model and provide practical insights.
We study convergence behavior for various QoIs and compare the most common methods to
compute the PCE coefficients for a lower dimensional and a higher dimensional problem. For the
higher dimensional problem with six unknown parameters, sparse-grid quadrature is the most
efficient method compared to least squares and a full-grid quadrature. Monte Carlo experiments
for different empirical methods show that the PCE based methods can accurately reproduce the
same results as the benchmark method of repeatedly solving the model. Gains in efficiency are
large, especially for Bayesian inference.

Our discussion addresses potential drawbacks of the method. First, the efficiency of PCE

24For example, larger values of the capital share quickly result in numerical problems for the computation of the
linear approximation of policy function.
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critically suffers from the curse of dimensions in problems with a large number of unknown
parameters. Further, poorly chosen priors may affect the accuracy of the estimates.

Despite of these potential drawbacks, PCE is a powerful tool for a broad set of applications. We
hope that the article can encourage applications of PCE in economics, especially for parameter
inference in complex models where standard techniques are infeasible. Another possible use is
real-time analysis of high-frequency data.
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Appendix

4.A Orthogonal polynomials
We give a short overview for the families of orthogonal polynomials summarized in Table 4.2.
More details, in particular regarding their completeness in the respective Hilbert spaces L2 of
square integrable functions, can be found in Szegő (1939).

4.A.1 Hermite polynomials
Hermite polynomials are defined by the recurrence relation

H0(x) = 1, H1(x) = 2x , Hn+1(x) = 2x Pn(x)− 2nPn−1(x), n≥ 2

and form a complete orthogonal system on L2(R,B(R), w̃(x)dx) with weighting function

w̃(x) := e−x2
.

More specifically,
∫

R
Hn(x)Hm(x)w̃(x)dx = 2n(n!)

p
πδn,m

The probability density function of a normal distributed random variable θ ∼ N(µ,σ2) with
mean µ and variance σ2 is given by

fθ (ϑ) =
1p

2πσ
e−

(ϑ−µ)2
2σ2 .

Fixing the transformation between the germ and θ in this case to

ψ(s) := µ+
p

2σs

so that the germ ξ is defined by

ξ :=ψ−1(θ ) =
θ −µp

2σ

implies that ξ has probability density function

w(s) = fθ (ψ(s))ψ
′(s) =

1p
π

e−s2
=

1p
π

w̃(s).
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Since w differs from w̃ only by a constant factor, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s)ds) = L2(R,B(R), w̃(s)ds),

and that Hermite polynomials also form a complete orthogonal system in L2(R,B(R), dPξ) with

∫

R
Hn(s)Hm(s)dPξ(s) =

∫

R
Hn(s)Hm(s)w(s)ds =

1p
π

∫

R
Hn(s)Hm(s)w̃(s)ds = 2n(n!)δn,m.

Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Hermite-quadrature rule
for weighting function w̃, the Gauss-quadrature rule in terms of weighting function w has the
same nodes while the weights are scaled by ω j =

ω̃ jp
π

.

4.A.2 Legendre polynomials
Legendre polynomials are defined by the recurrence relation

L0(x) = 1, L1(x) = 2x , (n+ 1)Ln+1(x) = (2n+ 1)x Ln(x)− nLn−1(x), n≥ 2

and form a complete orthogonal system in L2([−1, 1],B([−1,1]), dx), i.e.

∫ 1

−1

Ln(x)Lm(x)dx =
2

2n+ 1
δn,m.

The probability density function of an uniformly distributed random variable θ ∼ U[0, 1] over
[0,1] is given by

fθ (ϑ) = 1[0,1](ϑ) :=

¨

1, if ϑ ∈ [0,1]
0, if ϑ ∈ R \ [0,1]

Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s+ 1

2

so that the germ ξ is defined by

ξ :=ψ−1(θ ) = 2θ − 1

implies that ξ has probability density function

w(s) = fθ (ψ(s))ψ
′(s) =

1
2
1[−1,1](s).

Hence, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s)ds)' L2([−1,1],B([−1,1]), ds),

and consequently the Legendre polynomials also form a complete orthogonal system in L2(R,B(R), dPξ)
with
∫

R
Ln(s)Lm(s)dPξ(s) =

∫

R
Ln(s)Lm(s)w(s)ds =

1
2

∫ 1

−1

Ln(s)Lm(s)ds =
1

2n+ 1
δn,m.
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Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Legendre quadrature rule
for weighting function w̃, the Gauss-quadrature rule in terms of weighting function w has the
same nodes while the weights are scaled by ω j =

ω̃ j

2 .

4.A.3 Jacobi polynomials
Jacobi polynomials are defined by the recurrence relation

J (α,β)
0 (x) = 1,

J (α,β)
1 (x) =

1
2
(α− β + (α+ β + 2)x),

a1,nJ (α,β)
n+1 (x) = (a2,n + a3,n x)J (α,β)

n (x)− a4,nJ (α,β)
n−1 (x), n≥ 2

where

a1,n = 2(n+ 1)(n+α+ β + 1)(2n+α+ β),

a2,n = (2n+α+ β + 1)(α2 − β2),
a3,n = (2n+α+ β)(2n+α+ β + 1)(2n+α+ β + 2),
a4,n = 2(n+α)(n+ β)(2n+α+ β + 2).

They form a complete orthogonal system on L2([−1,1],B([−1,1]), w̃(x)dx) with weighting
function

w̃(x;α,β) := (1− x)α(1+ x)β .

More specifically,

∫ 1

−1

J (α,β)
n (x)J (α,β)

m (x)w̃(x;α,β)dx =
2α+β+1

2n+α+ β + 1
Γ (n+α+ 1)Γ (n+ β + 1)
Γ (n+α+ β + 1)n!

δnm.

The probability density function of a Beta-distributed random variable θ ∼ Beta(α,β) with
shape parameters α and β is given by

fθ (ϑ;α,β) =
1

B(α,β)
ϑα−1(1− ϑ)β−1

1[0,1](ϑ).25

Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s+ 1

2

so that the germ ξ is defined by

ξ :=ψ−1(θ ) = 2θ − 1

implies that ξ has probability density function

w(s;α,β) = fθ (ψ(s);α,β)ψ′(s) =
1

B(α,β)

�

s+ 1
2

�α−1�

1− s+ 1
2

�β−1 1
2
1[−1,1](s)

25We denote by B(x , y) the beta function.
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=
21−α−β

B(α,β)
(s+ 1)α−1(1− s)β−1

1[−1,1](s) =
21−α−β

B(α,β)
w̃(s;β − 1,α− 1)1[−1,1](s).

Since w(s;α,β) differs from w̃(s;β − 1,α− 1) only by a constant factor, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s;α,β)ds)'
' L2([−1,1],B([−1,1]), w̃(s;β − 1,α− 1)ds),

and that the Jacobi polynomials {J (β−1,α−1)
n }n∈N0

also form a complete orthogonal system in
L2(R,B(R), dPξ) with

∫

R
J (β−1,α−1)

n (s)J (β−1,α−1)
m (s)dPξ(s) =

∫

R
J (β−1,α−1)

n (s)J (β−1,α−1)
m (s)w(s;α,β)ds =

=
21−α−β

B(α,β)

∫ 1

−1

J (β−1,α−1)
n (s)J (β−1,α−1)

m (s)w̃(s;β − 1,α− 1)ds =

=
1

B(α,β)(2n+α+ β − 1)
Γ (n+ β)Γ (n+α)
Γ (n+α+ β − 1)n!

δnm.

Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Jacobi-quadrature rule for
weighting function w̃(.,β − 1,α− 1), the Gauss-quadrature rule in terms of weighting function
w(.,α,β) has the same nodes while the weights are scaled by ω j =

21−α−β
B(α,β) ω̃ j.

4.A.4 Generalized Laguerre polynomials
Generalized Laguerre polynomials are defined by the recurrence relation

La(α)0 (x) = 1,

La(α)1 (x) = 1+α− x ,

(n+ 1)La(α)n+1(x) = (2n+ 1+α− x)La(α)n (x)− (n+α)La(α)n−1(x), n≥ 2

They form a complete orthogonal system on L2([0,∞),B([0,∞)), w̃(x)dx) with weighting
function

w̃(x;α) := xαe−x .

More specifically,
∫ ∞

0

La(α)n (x)La(α)m (x)w̃(x;α)dx =
Γ (n+α+ 1)

n!
δnm.

The probability density function of a Gamma-distributed random variable, denoted by θ ∼
Gamma(α,β), with shape parameter α and rate parameter β is given by

fθ (ϑ;α,β) :=
βα

Γ (α)
ϑα−1e−βϑ1[0,∞)(ϑ).26
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Fixing the transformation between the germ and θ in this case to

ψ(s) :=
s
β

so that the germ ξ is defined by

ξ :=ψ−1(θ ) = βθ

implies that ξ has probability density function

w(s;α,β) = fθ (ψ(s);α,β)ψ′(s) =
βα

Γ (α)

�

s
β

�α−1

e−s 1
β
1[0,∞)(s) =

=
1
Γ (α)

w̃(s;α− 1)1[0,∞)(s).

Since w(s;α,β) differs from w̃(s;α− 1) only by a constant factor, it follows that

L2(R,B(R), dPξ) = L2(R,B(R), w(s;α,β)ds)' L2([0,∞),B([0,∞)), w̃(s;α− 1)ds),

and that the generalized Laguerre polynomials {La(α−1)
n }n∈N0

also form a complete orthogonal
system in L2(R,B(R), dPξ) with

∫

R
La(α−1)

n (s)La(α−1)
m (s)dPξ(s) =

∫

R
Laα−1)

n (s)J (α−1)
m (s)w(s;α,β)ds

=
1
Γ (α)

∫ ∞

0

La(α−1)
n (s)La(α− 1)m(s)w̃(s;α− 1)ds

=
Γ (n+α)
Γ (α)n!

δnm.

Moreover, given the nodes s j and weights ω̃ j from the common Gauss-Laguerre-quadrature rule
for weighting function w̃(.,α− 1), the Gauss-quadrature rule in terms of weighting function
w(.,α,β) has the same nodes while the weights are scaled by ω j =

ω̃ j

Γ (α) .

4.B Smolyak-Gauss-quadrature
Suppose that for every i = 1, . . . , k the distribution Pξi

of ξi possesses a probability density

function wi, so that w :=
∏k

i=1 wi is the probability density of Pξ. Then (4.3.12) becomes

ŷα = ‖qα‖−2
L2

∫

R
. . .

∫

R
h(ψ(s1, . . . , sk))q1α1

(s1) . . . qkαk
(sk)w1(s1) . . . wk(sk)ds1 . . . dsk. (4.B.1)

Further suppose that one-dimensional Gauss-quadrature rules corresponding to weighting
functions wi and orthogonal polynomials {qin}n∈N0

are available. For i = 1, . . . , k let Q i(Mi)
denote this one-dimensional Gauss-quadrature rule with Mi nodes {s( j)i,Mi

} j=1,...,Mi
and weights

26We denote by Γ (x) the gamma function.
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{ω( j)i,Mi
} j=1,...,Mi

, i.e.

Q i(Mi)g :=
Mi
∑

j=1

ω
( j)
i,Mi

g(s( j)i,Mi
) for g ∈ L2

i .

Then choose for each i = 1, . . . , k an increasing sequence of natural numbers {Mi j} j∈N ⊂
N, Mi j+1 > Mi j and define the difference operator by

∆i1 :=Q i(Mi1) and ∆i j :=Q i(Mi j)−Q i(Mi j−1), j ≥ 2.

The Smolyak-Gauss-quadrature rule of order l ∈ N and with growth rules given by {Mi j} j∈N is
defined by

Q l :=
∑

ν∈Nk

|ν|≤k+l

k
⊗

i=1

∆iνi
.

or equivalently taking care of duplicate terms in the difference operators

Q l =
∑

ν∈Nk

max{k,l+1}≤|ν|≤k+l

(−1)k+l−1
�

k− 1
k+ l − |ν|

� k
⊗

i=1

Q i(Miνi
).

Applying the Smolyak-Gauss-quadrature rule to (4.B.1) in particular yields the approximation

ŷα ≈
�

k
∏

i=1

‖qiαi
‖2

L2
i

�−1
∑

ν∈Nk

max{k,l+1}≤|ν|≤k+l

(−1)k+l−1
�

k− 1
k+ l − |ν|

�

M1,ν1
∑

j1=1

. . .

Mk,νk
∑

jk=1

ω
( j1)
1,M1,ν1

. . .ω( jk)k,Mk,νk
h
�

ψ
�

s( j1)1,M1,ν1
. . . s( jk)k,Mk,νk

��

q1α1

�

s( j1)1,M1,ν1

�

. . . qkαk

�

s( jk)k,Mk,νk

�

.

This procedure requires to evaluate the model outcome of interest h
�

ψ
�

s( j1)1,M1,ν1
. . . s( jk)k,Mk,νk

��

at
all sparse-grid points.



Chapter 5

Conclusion

All three essays in this thesis analyze techniques to efficiently evaluate and estimate dynamic
stochastic general equilibrium (DSGE) models. We first consider the likelihood-based estimation
of (log-) linearized DSGE models. Chapter 2 proposes a modified version of the Kalman filter as
a fast option to evaluate the likelihood of these models. In Chapter 3, we provide a two-step
procedure for the maximum-likelihood estimation of business cycle accounting (BCA) prototype
economies. Investigating the suitability of the generalized polynomial chaos expansion (PCE) in
the context of DSGE modeling, Chapter 4 extends the analysis to non-linear and global solution
techniques and limited-information estimation methods.

In Huber (2022) (Chapter 2), we propose the augmented steady-state Kalman filter (ASKF) as
an efficient algorithm to evaluate the unconditional likelihood of (log-) linearized DSGE models.
We find evidence that the ASKF performs well regardless of whether the number of observable
time series exceeds the number of states or vice versa. The performance of the ASKF essentially
depends on two factors: i) the length of the filtering period and ii) the time needed to determine
the equilibrium variance matrix of the model’s states. The larger the filtering period, the less the
additional computational effort to solve for the equilibrium variance matrix of the model’s states
will weight compared to the total filtering time.1 To increase the efficiency of the ASKF for DSGE
models without measurement error, we provide conditions under which we may determine
the states’ equilibrium variance matrix analytically. We compare the performance of the ASKF
in terms of an efficient likelihood evaluation to three other variants of the Kalman filter (KF):
A textbook version of the KF, the Chandrasekhar recursion (CR) suggested by Herbst (2015),
and a filter proposed by Koopman and Durbin (2000) that bases on a univariate treatment of
multivariate observation vectors (UKF). Tests in MATLAB® and FORTRAN using a medium-scale
DSGE model, namely the model introduced by Smets and Wouters (2007), show that the ASKF
is up to three times faster than the CR. Compared to the regular KF and the UKF, the ASKF
reduces the computational burden by 60 to 80 percent. Consequently, we consider the ASKF a
valid option to reduce the computational burden when evaluating the likelihood of medium- to
large-scale DSGE models.

In Fehrle and Huber (2022) (Chapter 3), we perform a BCA analysis for the Great Recession
in Germany and the subsequent stimulus measures. To adjust our analysis to the German case,
we extend the benchmark prototype economy of Chari et al. (2007) in three ways: First, the
wedges include a long- and a short-run component, which allows us to differentiate between
growth and business cycle accounting. Second, we distinguish between government spending
and net exports, which enables a government spending analysis and accounts for the fact that
the German industry strongly depends on foreign trade. Third, we exclude durable consumption
goods from aggregated investment in order to consider the cash for clunkers program separately.
The resulting prototype economy includes six wedges: a government consumption wedge, a

1Note that the filtering period equals either the number of observations or the required periods until it becomes
possible to switch to a steady-state Kalman filter (SKF)
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durables wedge, an investment wedge, a labor wedge, a net exports wedge, and an efficiency
wedge. To estimate the 57 parameters of the wedges’ underlying VAR process as well as two
structural parameters of our prototype economy, we introduce a reliable and quick procedure to
locate the maximum of the likelihood function. Applying this two-step maximum-likelihood
estimation (MLE) procedure, we detect two local maxima concerning the estimated structural
parameters and identify the global one, for which we illustrate and discuss the results. We
find that the efficiency wedge mainly drove the crises, followed by the net exports and the
investment wedge. While the labor wedge slightly contributed to the crisis, it also induced a fast
recovery. The government consumption wedge and the durables wedge acted counter-cyclically.
Discussing our results against different market interventions, we attribute the counter-cyclicality
of the government consumption and the durables wedge to measures of the German stimulus
program, such as the higher expenditures for government consumption or the cash for clunkers
program.

In Fehrle, Heiberger, and Huber (2022) (Chapter 4), we review the method of generalized
PCE and its applicability to computational economics and, in particular, DSGE models. As
the parameters of those models are typically unknown, one must either assess the effects of
the parameter uncertainty on the model’s quantity of interest (QoI) (sensitivity/robustness
evaluation) or infer plausible values from empirical data (estimation). The required methods are
computationally cumbersome since they mostly rely on the repeated computation of the model’s
solution. PCE offers a promising alternative and has found its way into computational modeling
in many disciplines outside of economics. We review the basic theory underlying the PCE and
the methods of its practical implementation. At the example of the benchmark real business
cycle (RBC) model, we show how to (point-wise) approximate the model’s QoIs by a PCE of
its parameters. While determining the coefficients of this series expansion requires to evaluate
the model’s QoI for different parameter values, given the respective formulae, the repeated
evaluation of the model’s QoI becomes inexpensive in terms of computational time required. We
find that the method of generalized PCE particularly suits models with a manageable number of
parameters, which are time-consuming to solve but at the same time require frequent evaluation.
This is confirmed by our numerical analysis, where we analyze the efficiency of PCE to evaluate
and estimate the benchmark RBC model.
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