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Abstract

In this thesis, we first consider the periodic homogenization of the linearized elasticity equation

with slip-displacement conditions of a two-scale composite of two solids. The jump conditions

are motivated by fibre-reinforced materials, which are often modelled by perfect bonding be-

tween fibre and matrix, which may not be true in practice. We are interested in the impact

of the interface jumps in displacement on the (upscaled) partial differential equations and

distinguish three different cases. While one material is connected, the other one is either

disconnected, globally connected or unidirectionally connected. In all three cases, we show

the existence and uniqueness of the solution and prove some general compactness and conver-

gence results, whereby we apply the method of periodic unfolding. In the end, we derive the

homogenized problem.

In the second part of the thesis, we combine the methods of homogenization and parameter

identification. We consider the homogenized linear elasticity problem, whereby we assume

perfect bonding on the interface of the two-scale composite, and want to deduce from measure-

ments of the deformation on the boundary of a body the structure of the periodicity cell, which

can be parametrized by finite real vector. After proving some general properties of the homog-

enized tensor, which describes the stiffness of the homogenized material, we show that there

exists at least one solution of the minimization problem, which minimizes the L2-difference of

the measured deformation and the computed deformation for some given structure of the peri-

odicity cell. Using shape optimization, in particular the Lagrangian method of Céa, we derive

the Gâteaux derivative of the homogenized tensor, which we need to compute the Gâteaux

derivative of the target functional. Finally, we use these results to apply gradient-based algo-

rithms for some numerical simulations in the steady-state and time-dependent case.
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1. Introduction

1.1. Motivation

Composite materials are made of two or more materials, which have different physical properties

for each single component. The aim of considering such new materials is to improve certain

properties such as strength, stiffness or density. For example, carbon fibres embedded in

a matrix of concrete improve the flexural strength (cf. [Hambach et al., 2016, Lauff et al.,

2019,Rutzen et al., 2019]) and so this composite material may be used in future for lighter and

more resource-saving structures. Before the impact of length, orientation or other materials

of the fibres can be investigated by simulation, we need an appropriate model describing the

physical behaviour. In application, perfect bonding between fibres and matrix is assumed to

simplify the problem but this is in general not true. So we are interested in the impact of

interface jumps in normal and tangential direction in displacement on the weak form of the

partial differential equation. Furthermore, since the fibres are often of short length compared

to the whole body, we have to take the micro- and macroscale into consideration. To resolve

the whole body is numerically to expensive, so we need an efficient model for simulations,

which can be derived by homogenization methods.

Once we have an appropriate model, there are several things that can be investigated. In the

research field of shape optimization the aim is to optimize certain quantities by finding the

optimal shape of the fibres. But if the structure such as a bridge is already given, it would

be of interest to know the fatigue behaviour in the interior of the structure like (microscopic)

cracks or holes after it is built. Typical measurement methods without destroying the structure

like computer tomography scans can not be easily applied in practice. In this case, the idea

is to use measured data on the boundary of the structure to obtain by numerical calculations

a better understanding of the behaviour inside. So we are interested in identifying certain

parameters which describe, for example, areas of weak material.

1.2. Outline of the thesis

The thesis is organized as follows. In chapter 2 we introduce the equation of elasticity. In

section 2.1, we formulate the linear elasticity equation, which describes the deformation of

solids. In section 2.2, we state several Korn-type inequalities, which we need in the subsequent

chapters to prove the existence and boundedness of the solutions. In chapter 3, we give the

general idea of periodic homogenization and state briefly the different (analytical) methods

1



1. Introduction

developed so far. Since we use the periodic unfolding method in this work, we give a short

overview over some general known results in section 3.2. The rest of the thesis is divided into

two parts, which are closely related but independent of each other.

As motivated in the beginning, Part I is concerned with the derivation of the homogenized

problem of the linear elasticity equation with slip-displacement conditions, i.e. we allow jumps

in displacement in normal and tangential direction at the interface of the composite. We show

the existence and uniqueness of the solution, prove some compactness results and derive the

upscaled problem in three different cases depending on the connectedness of materials of the

composite. One material – the matrix – is connected, whereas the other material – the fibres

– are disconnected, globally connected or unidirectionally connected.

In Part II we want to identify the structure of the periodicity cell of the homogenized problem

of the (time-dependent) elasticity equation, where we assume perfect bonding of the composite

material. After formulation of the direct problem and proving some properties of the homoge-

nized tensor, we consider the inverse problem. We show that there exists at least one solution

of the minimization problem. To be able to apply gradient-based algorithms, we derive the

Gâteaux derivatives of the homogenized tensor and the target functional. At the end, we

present some simulations to show the functioning of the method.

First steps towards the disconnected case in Part I can be found in my master thesis ’Ho-

mogenisierung linearer Elastizität mit Sprungbedingungen’ [Wolfer, 2018] and the published

paper in Journal of Mathematical Analysis and Applications [Lochner and Peter, 2020]. The

main drawback of the first one is that we could not rewrite the homogenized problem into a

cell problem and macroscopic problem. So we have chosen for the second work another solu-

tion space, where we do not allow any rigid displacement of the material in the ’holes’. This

assumption might be too strong in the case that we allow jump conditions at the interface.

So in this thesis we make no assumptions about the rigid displacement and prove some new

compactness results. The results in the connected case have also been published in the Jour-

nal of Mathematical Analysis and Applications [Lochner and Peter, 2020]. The results of the

parameter identification for the steady-state linear elasticity problem in chapter 9 have been

published in the journal Mathematical Methods in the Applied Sciences [Lochner and Peter,

2022].

2



2. Equation of elasticity

The aim of the theory of elasticity is to compute the deformation of solids under forces, which

is reversible when no forces are applied anymore. As we only consider small deformation, we

can use the linear elasticity equation as introduced in section 2.1 to model this behaviour. In

section 2.2, we state different Korn-type inequalities, which allow us to estimate the gradient

of a function by its symmetric gradient. These inequalities are needed to prove the existence

of solutions of the linear elasticity equation.

2.1. Linear elasticity

In solid mechanics, we are interested in modelling the deformation of solids under forces. If

we assume that the acting forces are not so great as to cause permanent deformation or cracks

and fractures and induce only small deformations, we can model the behaviour using the linear

elasticity equation. Referring to [Ciarlet, 1988, Slaughter, 2002, Eck et al., 2017, Schweizer,

2018], we give a brief summary about the derivation of the linear elasticity equation.

Let the solid be of the form Ω ⊂ R3, when no forces are applied. If forces, which satisfy

the above assumptions, act on the body, the current configuration can be described by the

displacement field

u : [0, T )× Ω→ R3.

Meaning, a material point at position x in Ω is at time t at position x+ u(t, x). A measure of

how much a body is deformed is the Green strain tensor also called Green–St. Venant strain

tensor

G :=
1

2
(∇u+ (∇u)T + (∇u)T∇u).

Due the assumption of only small strains, the third summand can be neglected and we can

use in the following the linearized Green strain tensor, i.e. the symmetric gradient of the

displacement field

G ≈ e(u) :=
1

2
(∇u+ (∇u)T ).

The internal force that material particles exert on each other in the deformed configuration is

described by the stress tensor σ. It is called first Piola–Kirchhoff stress tensor in Lagrangian

coordinates and Cauchy stress tensor in Eulerian coordinates. Using the conservation of mo-

mentum, we get the elasticity equation

∂t(%∂tu)−∇ · σ = f in (0, T )× Ω, (2.1.1)

3



2. Equation of elasticity

where ∇· is the divergence operator, f is the density of volume force and % is the density

of the material, which is time-independent since we consider the equation in the reference

configuration. In the steady-state case, we can drop the first term in (2.1.1) and get

−∇ · σ = f in Ω.

In the linear setting, Hooke’s law specifies the connection between the stress tensor σ =

(σij)1≤i,j≤3 and linear strain tensor e(u) = (eij(u))1≤i,j≤3

σij = (Ae(u))ij =

3∑
k,l=1

aijklekl(u) =

3∑
k,l=1

aijkl
1

2
(∂kul + ∂luk),

where A = (aijkl)1≤i,j,k,l≤3 is the elasticity tensor of fourth order, whose entries describe the

stiffness of the material. In this thesis, we assume that the elasticity tensor A is an element of

the set M (α, β,O) for some open set O ⊂ R3, which is no restriction in the application.

Definition 2.1.1. Let α, β ∈ R with 0 < α < β and let O be an open set in R3. We denote

by M (α, β,O) the set of all tensors B = (bijkl)1≤i,j,k,l≤3 such that

(i) bijkl ∈ L∞ (O) for all i, j, k, l ∈ {1, 2, 3},

(ii) bijkl = bjikl = bklij for all i, j, k, l ∈ {1, 2, 3},

(iii) α|m|2 ≤ Bmm for all symmetric matrices m,

(iv) |B(x)m| ≤ β|m| for all matrices m

a.e. in O, where

Bm :=
(

(Bm)ij

)
1≤i,j≤3

=

 3∑
k,l=1

bijklmkl


ij


1≤i,j≤3

,

Bmm̃ :=

3∑
i,j,k,l=1

bijklmijm̃kl,

|m| :=

 3∑
i,j=1

m2
ij

 1
2

,

for quadratic matrices m = (mij)1≤i,j≤3 and m̃ = (m̃ij)1≤i,j≤3.

2.2. Korn-type inequalities

To prove the existence and boundedness of solutions of the linear elasticity equation, we need

different Korn-type inequalities, which we introduce in this section. All the definitions and

results are taken from chapters 3, 10 and 25 of [Schweizer, 2018] unless otherwise stated. As

4



2.2. Korn-type inequalities

we have to evaluate Sobolev functions on the boundary, the following theorem describes in

what sense these values exist.

Theorem 2.2.1 (Trace operator). Let Ω ⊂ R3 be a bounded domain with Lipschitz-boundary.

Then, the Sobolev functions u ∈ H1(Ω) have boundary values in the following sense. There

exists a unique continuous linear operator

γ̃ : H1(Ω)→ L2(∂Ω),

which coincides with the classical trace u 7→ u|∂Ω for all u ∈ C1(Ω̄).

We define the trace operator for vector-valued functions by applying the operator from Theo-

rem 2.2.1 to every component

γ : [H1(Ω)]3 → [L2(∂Ω)]3, γ(u) =

γ̃(u1)

γ̃(u2)

γ̃(u3)

 .

Thus, γ is a linear continuous operator. In the following, we write u instead of γ(u) for some

function u, if it is clear that we evaluate the function on the boundary resp. interface. The

trace operator with respect to time is defined for functions in Bochner spaces.

Theorem 2.2.2 (Trace operator in Bochner space). Let X be a Banach space, S := (0, T ) and

t0 ∈ [0, T ). The evaluation of u at time t0 is defined by the continuous linear operator

γt0 : H1(S;X)→ X, u 7→ −
∫ T

t0

u(t)∂tφ(t)dt−
∫ T

t0

∂tu(t)φ(t)dt,

where φ ∈ C∞c ([t0, T ),R) with φ(t0) = 1 can be chosen arbitrarily. Then, there holds for a

function u ∈ H1(S;X) the identity u(t) = γt(u) for almost all t ∈ [0, T ].

There exist different types of Korn’s inequalities, all having in common that they seek to

estimate the gradient by the symmetric gradient. Depending on the assumptions, different

additional terms appear in the inequality. In the following theorem, often referred to as the

second Korn’s inequality, the extra term is the L2-norm of the function itself.

Theorem 2.2.3 (Korn’s inequality). Let Ω ⊂ R3 a bounded domain with Lipschitz-boundary.

Then, there holds for all u ∈ [H1(Ω)]3

‖∇u‖[L2(Ω)]3×3 ≤ C
(
‖e(u)‖[L2(Ω)]3×3 + ‖u‖[L2(Ω)]3

)
for some constant C > 0.

In Corollary 5.8 from [Alessandrini et al., 2008] a similar estimate is proven with the L2-norm

on the boundary of the domain instead of the L2-norm on the whole domain.

5



2. Equation of elasticity

Theorem 2.2.4 (Korn’s inequality with control of boundary values). Let Ω ⊂ R3 a bounded

domain with Lipschitz-boundary and Γ ⊂ ∂Ω open with |Γ| > 0. Then, there holds for all

u ∈ [H1(Ω)]3

‖u‖[H1(Ω)]3 ≤ C
(
‖e(u)‖[L2(Ω)]3×3 + ‖u‖[L2(Γ)]3

)
for constants C > 0 depending only on Ω and Γ.

Under additional assumption on the function space, namely zero value on part of the boundary,

we can estimate the gradient by the symmetric one without any additional terms.

Theorem 2.2.5 (Korn’s inequality with zero value on part of the boundary). Let Ω ⊂ R3

a bounded domain with Lipschitz-boundary and ΓD ⊂ ∂Ω with two-dimensional Hausdorff-

measure |ΓD| > 0. Then, there holds for all u ∈ H1
ΓD

(Ω) := {v ∈ [H1(Ω)]3 : v = 0 on ΓD}

‖∇u‖[L2(Ω)]3×3 ≤ C‖e(u)‖[L2(Ω)]3×3

for some constant C > 0.

The same inequality holds for periodic function with zero mean value. Let Y := (0, l1) ×
(0, l2) × (0, l3) with l1, l2, l3 > 0. An unbounded domain ω has Y -periodic structure, if it is

invariant under shifts by (c1l1, c2l2, c3l3) with c1, c2, c3 ∈ Z.

Corollary 2.2.6 (Korn’s inequality for periodic functions). Let Y := (0, l1) × (0, l2) × (0, l3)

with l1, l2, l3 > 0, ω be an unbounded domain with Y -periodic structure and ω ∩ Y a domain

with Lipschitz boundary. Then there holds for all u ∈ H1
per,0(ω) := {v ∈ [H1

per(ω ∩ Y )]3 :

Mω∩Y (v) = 0}, where Mω∩Y (v) = 1
|ω∩Y |

∫
ω∩Y v dx,

‖u‖[H1(ω∩Y )]3 ≤ C‖e(u)‖[L2(ω∩Y )]3×3

for constant C > 0 independent of u.

Proof. We follow the proof of Theorem 2.8 from [Oleinik et al., 1992], where the same result

is shown for the 1-periodic case. We notice that any Y -periodic rigid displacement, meaning

a vector-valued function of the form a + Ax with a ∈ R3 a constant vector and A ∈ R3×3 a

skew-symmetric matrix, is constant. Therefore, if u ∈ H1
per,0(ω) is a rigid displacement, u ≡ 0.

Then, the result follows from Theorem 2.5 of [Oleinik et al., 1992].

6



3. Periodic homogenization

The concept of homogenization treats problems involving periodically oscillating coefficients on

a small period or composite materials with periodic microstructure, whereby the macroscopic

lengthscale is far bigger than the characteristic lengthscale of the microstructure. Resolving

the microstructure would be in general numerically too costly and is therefore unfeasible for

simulations. To circumvent this problem, we analytically derive an effective model describing an

artificial (homogenous) material with the same macroscopic properties as the original problem.

In section 3.1, we explain this process on the basis of composite materials in more detail and

give a brief overview of the different methods used in literature to derive the homogenized

problem. We take a closer look at the periodic unfolding method in section 3.2, which is the

main method we use in this thesis.

3.1. General idea of homogenization

In view of applications studied in this thesis, we explain the homogenization process on the

basis of composite materials and the linear elasticity equation. Let Ω ⊂ Rn be a bounded

domain and Y = (0, l1)× . . .× (0, ln) ⊂ Rn the so-called reference or periodicity cell. We define

for some small scaling parameter ε > 0 the domain

Ωε :=
⋃
ξ∈Zn

ε(Y + ξ) ∩ Ω,

which is of εY -periodic structure (see Figure 3.1).

Ωε

Y

Figure 3.1.: domain Ωε with εY -periodic structure

7



3. Periodic homogenization

For every ε, we consider the linear elasticity problem

−∇ · (Aεe(uε)) = f in Ωε

with appropriate boundary conditions, whereby the coefficient Aε describes the material prop-

erties and f some volume force (for more details, see section 2.1). In periodic homogenization,

we are interested in what happens passing the scaling parameter to zero. Roughly speaking

with ε becoming smaller the composite material is getting more and more (macroscopically)

homogenous as illustrated in Figure 3.2.

ε smaller ε→ 0

Figure 3.2.: homogenization process

Using analytical homogenization techniques, we derive an effective partial differential equation

of the form

−∇ · (Ahome(u)) = f in Ω

with some effective coefficient Ahom describing the material property of the homogenous ma-

terial, which can often be easily computed by solving the so-called cell problems. The solution

u has the same behaviour as uε up to variations on a microscopic scale. The main advantage

is that we can use the effective partial differential equation for simulations, which significantly

reduces the computational effort since we do not have to resolve any microstructure.

There are several methods for obtaining the upscaled problem, briefly summarised in what

follows. If we use the method of two-scale asymptotic expansion, we assume that uε is of the

form

uε(x) = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ . . . ,

where ui(x, y) is Y -periodic in the second argument. We insert this representation in the partial

differential equation and compare the terms with the same power of ε. This leads to equations

for the ui. Resolving this we get the structure of the effective partial differential equation. The

main drawback is that it is just a formal ansatz, so we have to prove at the end the convergence

of uε to u0. For more details we refer to [Cioranescu and Donato, 1999] and the references

therein. A more general method is the method of oscillating test functions, also called energy

method, developed by Tartar [Tartar, 1978]. Its idea is to choose special test functions built

by solutions of the cell problems, which we have to guess first, and to use compactness results

to pass to limit in the weak form of the partial differential equation. The method of two-scale

convergence introduced by Nguetseng and Allaire [Nguetseng, 1989,Allaire, 1992] exploits the

8



3.2. Periodic unfolding method

periodic structure to a greater extent, which allows us to get the homogenized problem and

the convergence at once. A bounded sequence uε in L2(Ω) is said to two-scale converge to

u0 ∈ L2(Ω× Y ) if

lim
ε→0

∫
Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u0(x, y)ψ(x, y) dxdy

for any smooth function ψ, which is Y -periodic in the second argument. We use these kind of

admissible test functions in the weak form of the partial differential equation and compactness

results in the setting of two-scale convergence to pass to the limit ε → 0. For the periodic

unfolding method, which was introducted by Cioranescu, Damlamian and Griso [Cioranescu

et al., 2002], we define an operator, which seperates the micro- and macroscale by doubling

the dimension. This allows us to apply well-known weak convergence results. In particular,

the weak convergence of the unfolded sequence is equivalent to the two-scale convergence of

the sequence (see Theorem 3.2.3). But homogenization is not restricted to the case of periodic

domain or coefficients. We refer to the G-convergence introduced by Spagnolo [Spagnolo,

1968] for sequences of symmetric coefficients and to the H-convergence defined by Murat and

Tartar [Murat and Tartar, 1997] for sequences of non-symmetric coefficients, whereby also the

energy method is applicable in this setting. The more general convergence of functionals is the

Γ-convergence in the context of calculus of variations [Braides, 2002].

3.2. Periodic unfolding method

The periodic unfolding method was introduced by Doina Cioranescu, Alain Damlamian and

George Griso in 2002 [Cioranescu et al., 2002], formalising an idea of Todd Arbogast, Jim Dou-

glas and Ulrich Hornung [Arbogast et al., 1990]. The main idea is to define an operator, which

seperates the micro- and macroscale of a function. Although this doubles the dimension, the

seperation of scales makes it easier to work with perforated domains, whose structure changes

with ε. We refer to [Cioranescu et al., 2018] for the definitions and theorems in this section

and further results in the setting of periodic unfolding, whereby this book especially includes

the results of the papers [Cioranescu et al., 2008] and [Cioranescu et al., 2012]. The first paper

considers a fixed domain and the second a perforated domain with connected or disconnected

holes. For the first part of the thesis, we also need some results from [Donato et al., 2011],

which is in the setting of a perforated domain consisting of two components.

Let Ω ⊂ R3 be a open bounded domain with Lipschitz boundary and Y := (0, l1)×(0, l2)×(0, l3)

for some constants l1, l2, l3 > 0. Let x ∈ R3. We denote by [x] the unique linear combination

of the integers ξj ∈ Z and the periodicity vectors bj ∈ R3, i.e. [x] =
∑3
j=1 ξjbj , such that

{x} := x− [x] ∈ Y (see Figure 3.3). In this thesis, bj is of the form bj = ljej , where ej is the

j-th unit vector.
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3. Periodic homogenization

0

{x}

x

[x]

Y

Figure 3.3.: illustration of {x} and [x]

Ωε

Πε

Figure 3.4.: illustration of Ωε and Πε

Therefore, we can rewrite x ∈ R3 via x = ε
([
x
ε

]
+
{
x
ε

})
. We split the domain Ω in two disjoint

sets depending on ε > 0

Ωε := interior

 ⋃
ξ∈Λε

ε(Y + ξ)

 and Πε := Ω\Ωε,

where Λε := {ξ ∈ R3 : ε(Y + ξ) ⊂ Ω} (see Figure 3.4).

Definition 3.2.1. For a Lebesgue-measurable function φ on Ω, the periodic unfolding operator

T ε: Lp(Ω)→ Lp(Ω× Y ), p ∈ [1,∞), is defined as

T ε(φ)(x, y) =

φ(ε
[
x
ε

]
+ εy) for a.e. (x, y) ∈ Ωε × Y,

0 for a.e. (x, y) ∈ Πε × Y.

We summarise a number of well-known results for periodic unfolding, whereby we denote by

MO(φ) = 1
|O|
∫
O φ dy the mean value of a function φ over the domain O with O a set of finite

measure.

Proposition 3.2.2. Let p ∈ [1,∞). The operator T ε : Lp(Ω) → Lp(Ω × Y ) is linear and

continuous. Furthermore, there holds

(i) T ε(vw) = T ε(v)T ε(w) for all Lebesgue-measurable functions v, w in Ωε,

(ii)
1

|Y |

∫
Ω×Y

T ε(φ)(x, y) dxdy =

∫
Ωε
φ(x) dx for all φ ∈ L1(Ωε),

(iii) ‖T ε(φ)‖Lp(Ω×Y ) ≤ |Y |1/p‖φ‖Lp(Ω) for all φ ∈ Lp(Ω),

(iv) T ε(φ)→ φ strongly in Lp(Ω× Y ) for all φ ∈ Lp(Ω).

(v) If {φε} is a sequence in Lp(Ω) with φε → φ strongly in Lp(Ω), then T ε(φε)→ φ strongly

in Lp(Ω× Y ).

(vi) If φ ∈ Lp(Y ) Y -periodic and φε(x) = φ
(
x
ε

)
, then T ε(φε)→ φ strongly in Lp(Ω× Y ).

10



3.2. Periodic unfolding method

(vii) If φ ∈W 1,p(Ω), then ∇y [T ε(φ)] = εT ε(∇φ) and T ε(φ) ∈ Lp(Ω,W 1,p(Y )).

Suppose p ∈ (1,∞).

(viii) If φε ∈ Lp(Ω) with ‖φε‖Lp(Ω) ≤ C and T ε(φε) ⇀ φ weakly in Lp(Ω × Y ), then φε ⇀

MY (φ) weakly in Lp(Ω).

(ix) If φε ∈W 1,p(Ω) with φε ⇀ φ weakly in W 1,p(Ω), then T ε(φε) ⇀ φ weakly in Lp(Ω;W 1,p(Y ))

and for a subsequence, there exists φ̂ ∈ Lp(Ω;W 1,p
per,0(Y )) such that T ε(∇φε) ⇀ ∇φ+∇yφ̂

weakly in [Lp(Ω× Y )]
3
.

The next result shows the equivalence between the weak convergence of the unfolded sequence

and the two-scale convergence of the sequence. A general introduction to the two-scale con-

vergence method can be found in e.g. [Lukkassen et al., 2002].

Theorem 3.2.3. Suppose p ∈ (1,∞). Let {φε} be a bounded sequence in Lp(Ω). The following

assertions are equivalent:

(i) {T ε(φε)} converges weakly to φ in Lp(Ω× Y ),

(ii) {φε} two-scale converges to φ.

This theorem allows us to apply results of two-scale convergences also in the setting of periodic

unfolding. We use assertions (i) and (ii) of Theorem 3.2.3 synonymously without marking this

explicitly. For time-dependent cases, we define the partial periodic unfolding operator, which

is as the periodic unfolding operator from Definition 3.2.1 with the time variable considered as

a parameter.

Definition 3.2.4. For a Lebesgue-measurable function φ on S × Ω, the partial periodic un-

folding operator T εY : Lp(S × Ω)→ Lp(S × Ω× Y ), p ∈ [1,∞), is defined as

T εY (φ)(t, x, y) =

φ(t, ε
[
x
ε

]
+ εy) for a.e. (t, x, y) ∈ S × Ωε × Y,

0 for a.e. (t, x, y) ∈ S ×Πε × Y.

We summarise some results on partial periodic unfolding.

Proposition 3.2.5. There holds

(i)
1

|Y |

∫
S×Ω×Y

T εY (φ)(t, x, y) dxdydt =

∫
S×Ωε

φ(t, x) dxdt for all φ ∈ L1(S × Ω).

Suppose p ∈ [1,∞).

(ii) ‖T εY (w)‖Lp(S×Ω×Y ) ≤ |Y |1/p‖w‖Lp(S×Ω) for all w ∈ Lp(S × Ω).

(iii) If wε → w strongly in Lp(S × Ω), then T εY (wε)→ w strongly in Lp(S × Ω× Y ).

(iv) If wε → w strongly in Lp(Ω;W 1,p(S)), then T εY (wε)→ w strongly in Lp(Ω×Y ;W 1,p(S)).
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3. Periodic homogenization

Suppose p ∈ (1,∞).

(v) If T εY (wε) ⇀ ŵ weakly in Lp(S × Ω× Y ), then wε ⇀MY (ŵ) weakly in Lp(S × Ω).

(vi) If wε ⇀ w weakly in Lp(S;W 1,p(Ω)), then, up to a subsequence, there exists some ŵ ∈
Lp(S × Ω;W 1,p

per,0(Y )) such that T εY (∇xwε) ⇀ ∇xw +∇yŵ weakly in [Lp(S × Ω× Y )]
3
.

For transmission problems, we define the periodic unfolding operators for a two-component

domain, where one component is globally connected and the other one not. We suppose that

Y0 and Y1 are two open disjoint subsets of Y such that Y 0 ⊂ Y , Y1 is connected, Y = Y 0 ∪ Y1

and ΣY := ∂Y0 is Lipschitz continuous. Furthermore, let

Ωε0 :=
⋃
ξ∈Υε

ε (Y0 + ξ) , Υε := {ξ ∈ R3 : ε(Y 0 + ξ) ⊂ Ω}

be the Y -periodically extended domain Y0 scaled with ε, Ωε1 := Ω \ Ω
ε

0 and

Σε := ∂Ωε0 =
⋃
ξ∈Υε

ε (ΣY + ξ)

the Y -periodically extended interface ΣY scaled with ε. The following definition and proposi-

tion are from [Donato et al., 2011].

Definition 3.2.6. Let i ∈ {0, 1}. For a Lebesgue-measurable function φ on Ωεi , the periodic

unfolding operator T εi : Lp(Ωεi )→ Lp(Ω× Yi), p ∈ [1,∞), is defined as

T εi (φ)(x, y) :=

φ
(
ε
[
x
ε

]
+ εy

)
for a.e. (x, y) ∈ Ωε × Yi,

0 for a.e. (x, y) ∈ Πε × Yi.

We denote by f̃ the extension of the function f to Ω by zero. The unfolding operator for

transmission problems satisfies similar properties as in Proposition 3.2.2.

Proposition 3.2.7. Let p ∈ [1,∞). The operators T εi : Lp(Ωεi ) → Lp(Ω× Yi), i ∈ {0, 1}, are

linear and continuous. Furthermore,

(i) T εi (vw) = T εi (v)T εi (w) for all Lebesgue-measurable functions v, w on Ωεi ,

(ii) for all φ ∈ L1(Ωεi )

1

|Y |

∫
Ω×Yi

T εi (φ)(x, y) dxdy =

∫
Ωε∩Ωεi

φ(x) dx =

∫
Ωεi

φ(x) dx−
∫

Πε∩Ωεi

φ(x) dx,

(iii) ‖T εi (φ)‖Lp(Ω×Yi) ≤ |Y |1/p‖φ‖Lp(Ωεi )
for all φ ∈ Lp(Ωεi ),

(iv) T εi (φ)→ φ strongly in Lp(Ω× Yi) for all φ ∈ Lp(Ω).
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3.2. Periodic unfolding method

(v) If {φε} is a sequence in Lp(Ω) with φε → φ strongly in Lp(Ω), then T εi (φε)→ φ strongly

in Lp(Ω× Yi).

(vi) If φ ∈ Lp(Yi) Y -periodic and φε(x) = φ
(
x
ε

)
, then T εi (φε)→ φ strongly in Lp(Ω× Yi).

(vii) If φ ∈W 1,p(Ωεi ), then ∇y [T εi (φ)] = εT εi (∇φ) and T εi (φ) ∈ Lp(Ω,W 1,p(Yi)).

Suppose p ∈ (1,∞).

(viii) If φε ∈ Lp(Ωεi ) with ‖φε‖Lp(Ωεi )
≤ C and T εi (φε) ⇀ φ weakly in Lp(Ω × Yi), then

φ̃ε ⇀ |Yi|
|Y |MYi(φ) weakly in Lp(Ω).

Remark 3.2.8. With the same proof, the statements in Proposition 3.2.7 are also true in

the case where Y0 intersects the boundary ∂Y in a proper sense, i.e. Ωε0 and Ωε1 have to be

Lipschitz-domains.

The unfolding operator can also be defined on the interface Σε, which we will need in Part I.

Definition 3.2.9. For a Lebesgue-measurable function φ on Σε, the boundary unfolding oper-

ator T εb : Lp(Σε)→ Lp(Ω× ΣY ), p ∈ [1,∞), is defined as

T εb (φ)(x, y) :=

φ
(
ε
[
x
ε

]
+ εy

)
for a.e. (x, y) ∈ Ωε × ΣY ,

0 for a.e. (x, y) ∈ Πε × ΣY .

This operator has the following properties.

Proposition 3.2.10. For φ ∈ L1(Σε), there holds∫
Ωε∩Σε

φ(x) dS(x) =
1

ε|Y |

∫
Ω×ΣY

T εb (φ)(x, y) dxdS(y).

For φ ∈ Lp(Σε), p ∈ [1,∞),

‖T εb (φ)‖Lp(Ω×ΣY ) = ε1/p|Y |1/p‖φ‖Lp(Ωε∩Σε).

If φ belongs to W 1,p(Ωεi ), i ∈ {0, 1}, then T εb (φ) = T εi (φ)|Ω×ΣY .

Remark 3.2.11. All the results are still true for vector- and matrix-valued functions, if we use

the period unfolding operator for every component and the standard inner product for vectors

and the Frobenius inner product for matrices.

In this work, we only have the case p = 2.
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Part I.

Homogenization of linearized

elasticity in a two-component

medium with slip-displacement

conditions

15





The deformation of a two-scale composite of two materials under forces is often modelled by the

linear elasticity equation with Dirichlet and Neumann boundary conditions at separate parts

of the outer boundary and perfect bonding of the two components at the internal interface.

In practice the last assumption cannot always be justified. As studied in [Hambach et al.,

2016], [Lauff et al., 2019] and [Rutzen et al., 2019], the flexural strength of the concrete can be

improved, when it is reinforced with short carbon fibres. Although in these papers a perfect

bond is assumed, the bonding of the fibres to the concrete matrix (or to other materials like ce-

ramics) is rather weak. We address this problem by assuming general linear slip-displacement

conditions in normal and tangential direction at the interface of both materials. Since the

carbon fibres in this new material occur as single fibres and they are rather short (of the order

of 1 cm in length), the question arise which assumptions have to be made on the connectivity

in the context of homogenization. To investigate the impact of this choice, we consider three

different cases. While one of the components is globally connected, the other one is either

disconnected, globally connected or unidirectionally connected. At the end we derive three

different upscaled problems.

The periodic homogenization of problems with imperfect internal interfaces is studied by several

authors. E.g. in [Donato and Monsurrò, 2004], [Donato et al., 2011] and [Bunoiu and Tim-

ofte, 2018], thermal diffusion with homogeneous Dirichlet boundary conditions on the outer

boundary is considered, where one of the subdomains is assumed to be disconnected. Nonlinear

variants of these problems were treated more recently by [Donato and Nguyen, 2015], [Nguyen,

2015] and [Graf et al., 2014], whereby in the last two both components are assumed to be

connected. The (vector-valued) elasticity problem with Neumann boundary condition on a

part of the exterior boundary and prescribed jumps in displacements at the interface was

treated in [Orlik, 2011]. A related vector-valued problem with perfect bonding and domains

of tubular structure was considered by [Ptashnyk and Seguin, 2016]. The homogenization of

periodic media with imperfect contacts in the time-dependent setting was for example treated

in [Donato et al., 2007], where the same problem as in [Donato and Monsurrò, 2004] for the

time-dependent case was studied. In [Assier et al., 2020] they examine the elastic wave prop-

agation in one dimension with displacement and stress-discontinuity conditions at the edges

of the periodicity cell in the setting of high-frequency homogenization. For the case of long

wavelengths in a similar setting, we refer to [Bellis et al., 2021], where even non-linear imperfect

interface conditions are allowed.

The periodic homogenization of linearized elasticity for standard (external and internal) bound-

ary conditions is well studied, cf. e.g. [Oleinik et al., 1992] and [Cioranescu and Donato, 1999].

But since we assume slip-displacement conditions at the interface of both components, which

are modelled by Robin-type interface conditions, the difficulty is to show uniform a-priori esti-

mates of the gradient. We solve this problem in the disconnected case by neglecting rigid-body

motions in an appropriate sense and by using standard extension operators. In the connected

case, we apply extension operators from [Höpker, 2016], which allows us to handle the Dirichlet

boundary conditions at the external boundary. In unidirectionally connected case, where we

assume that the slices of the domain orthogonal to the direction of connectedness are always

17



the same, we cannot simply separate the relevant derivatives as is standard in a scalar-valued

case since we have to take shear forces into account. Therefore, we also neglect the rigid-body

motions in a proper sense.

Part I is structured as follows. In chapter 4, we introduce the general notation and assump-

tions used for all three kinds of microstructures and derive the weak formulation of the linear

elasticity problem with slip-displacement conditions. The subsequent three chapters are struc-

tured in the same way. After proving the existence and uniform boundedness of the solution

and several compactness results, we derive the homogenized problem, whereby in chapter 5 the

globally disconnected case is considered, in chapter 6 the connected case and in chapter 7 the

unidirectionally connected case. Chapter 8 concludes by summarising the findings of part I.
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4. Statement of the problem for a

composite with periodic microstructure

We study the upsacling of the linear elasticity equation in a composite of two materials with

periodic microstructure, assuming slip-displacement conditions in normal and tangential di-

rection at the microscopic interface. We distinguish three different microscopic structures. In

the disconnected case, we assume that one material is connected, whereas the other one is not

connected in any direction. In the globally connected case, the composite consists of two glob-

ally connected materials and in the unidirectionally connected case, one material is globally

connected and the other one only in one direction. In this chapter, we introduce the general

notation and assumptions, which are true for all three cases. The additional assumptions de-

pending on the case are explained in more detail in the respective chapters.

Let Ω ⊂ R3 be an open bounded connected Lipschitz-domain. We split the external boundary

of Ω into two parts ∂Ω = ΓD ∪ ΓN, where ΓD and ΓN are disjoint sets and ΓD has positive

two-dimensional Hausdorff measure. To describe the periodic microstructure, we consider the

reference cell Y = (0, 1)3 ⊂ R3 and two disjoint open subsets Y0, Y1 ⊂ Y such that ΣY := Y0∩Y1

Lipschitz-continuous and Y = interior (Y0 ∪ ΣY ∪ Y1) (see Figure 4.1).

Y

Y0

Y1

ΣY

Figure 4.1.: reference cell Y

Ωε0Ωε1

Figure 4.2.: domain Ω

We define the subset of Ω of all completely contained ε-scaled and translated periodicity cells

Y as

Ωε := interior

 ⋃
ξ∈Λε

ε(Y + ξ)

 , Λε = {ξ ∈ Z3 : ε (Y + ξ) ⊂ Ω},
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4. Statement of the problem for a composite with periodic microstructure

and the rest of the domain as Πε := Ω\Ωε. Furthermore, let

Ωε0 := interior

 ⋃
ξ∈Λε

ε
(
Y0 + ξ

)
the Y -periodically extended domain Y0 scaled with ε and intersected with Ωε (see Figure 4.2),

Ωε1 := Ω \ Ω
ε

0 and

Σε := ∂Ωε0 =
⋃
ξ∈Λε

ε (ΣY + ξ)

the Y -periodically extended interface ΣY scaled with ε and intersected with Ωε. The idea is

that Ωε0 represents one material in the composite and Ωε1 the other one.

We consider the linear elasticity equation in the steady-state case as introduced in section 2.1

with Dirichlet and Neumann boundary conditions on the outer boundary
−∇ · σε = fε in Ωε0 ∪ Ωε1,

uε = 0 on ΓD,

σεν = g on ΓN,

(4.0.1)

where fε is some given body force, which may depend on ε, g some surface force and ν the

outward-pointing normal to ΓN. The stress tensor σε = (σεij)1≤i,j≤3 is defined by

σεij =

3∑
k,l=1

aεijklekl(u
ε) =

3∑
k,l=1

aεijkl
1

2
(∂ku

ε
l + ∂lu

ε
k),

where uε : Ωε → R3 is the displacement field, e(uε) is the linear strain tensor and Aε =

(aεijkh)1≤i,j,k,h≤3 is a tensor of fourth order, which describes the stiffness of the materials of

the solid. We assume that Aε is of the form

Aε(x) = (aεijkh(x))1≤i,j,k,h≤3 :=
(
aijkh

(x
ε

))
1≤i,j,k,h≤3

= A
(x
ε

)
,

where A = (aijkh)1≤i,j,k,h≤3 ∈ M(α, β, Y ) (see Definition 2.1.1) and all components aijkh are

Y -periodic for all i, j, k, h ∈ {1, 2, 3}. Thus, Aε ∈M(α, β,Ω). Let n be the normal to Σε with

orientation from Ωε0 to Ωε1 and τ1, τ2 the tangential vectors of Σε such that n, τ1 are τ2 are

mutually orthogonal. We define

uεn := uε · n resp. uετ i := uε · τ i, i ∈ {1, 2},

the projection of the displacement field in normal resp. tangential direction of the interface,

σεn := (σεn) · n resp. σετ i := (σεn) · τ i, i ∈ {1, 2},
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the projection of the normal stress in normal resp. tangential direction of the interface and

[ϕ]Σε := (ϕ1 − ϕ0) |Σε

the jump on the interface for some function ϕ, where ϕκ := ϕ|Ωεκ is the restriction of ϕ to Ωεκ
and ϕκ|Σε is the trace of ϕκ (we just write ϕκ if it is clear) for κ ∈ {0, 1}. With this notation,

the slip-displacement conditions on the interface Σε are given by

ε [uεn]Σε =
1

KN
σΣε

n ,

ε [uετ i ]Σε =
1

KT
σΣε

τ i , i ∈ {1, 2},

[σεn]Σε = 0,

[σετ i ]Σε = 0, i ∈ {1, 2},

(4.0.2)

where the constants KN,KT ≥ 0 are the normal resp. tangential stiffness and σΣε is the stress

tensor of the interface. We refer to [Lombard and Piraux, 2006] for more details on the slip-

displacement conditions.

We test problem (4.0.1) with some sufficiently smooth function ϕ with ϕ = 0 on ΓD, use

integration by parts and the Dirichlet boundary conditions to compute∫
Ωε
fε · ϕdx =

∫
Ωε0

σε0 : ∇ϕ0 dx+

∫
Ωε1

σε1 : ∇ϕ1 dx−
∫

ΓN∩∂Ωε0

g · ϕ0 dS(x)

−
∫

ΓN∩∂Ωε1

g · ϕ1 dS(x) +

∫
Σε
σε1n · ϕ1 − σε0n · ϕ0 dS(x).

Since σε is symmetric and the jump of the normal stress on Σε is zero, meaning that σε0 = σε1
on Σε and thus σε0, σ

ε
1 coincide with σΣε on Σε, we get∫

Ωε
fε · ϕdx =

∫
Ωε0

σε0 : e(ϕ0) dx+

∫
Ωε1

σε1 : e(ϕ1) dx−
∫

ΓN∩∂Ωε0

g · ϕ0 dS(x)

−
∫

ΓN∩∂Ωε1

g · ϕ1 dS(x) +

∫
Σε

(
σΣεn

)
· (ϕ1 − ϕ0) dS(x).

We split up the normal stress of the interface in normal and tangential component and use the

conditions on the interface (4.0.2) to obtain the weak formulation∫
Ωε0

Aεe(uε0)e(ϕ0)dx+

∫
Ωε1

Aεe(uε1)e(ϕ1)dx

+ ε

∫
Σε

(
KN [uεn]Σε n+KT

2∑
i=1

[uετ i ]Σε τ
i

)
· (ϕ1 − ϕ0) dS(x)

=

∫
Ωε0

fε · ϕ0 dx+

∫
Ωε1

fε · ϕ1 dx+

∫
ΓN∩∂Ωε0

g · ϕ0 dS(x) +

∫
ΓN∩∂Ωε1

g · ϕ1 dS(x).

(4.0.3)
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4. Statement of the problem for a composite with periodic microstructure

To complete the weak formulation, we have to define appropriate function spaces, which de-

pend on the connectedness of Ωε0.

Throughout this thesis, unless otherwise stated, we denote by C a constant independent of ε

whose value may change from line to line. We define D(Ω) := C∞c (Ω) and H1
Γ(O) := {u ∈

[H1(O)]3 : u = 0 on Γ} for some open set O with Γ ⊂ ∂O.
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5. Disconnected case

In the disconnected case, we additionally require to the assumptions in chapter 4 that Y0 ⊂⊂ Y ,

i.e. Y0 is a relatively compact subset of Y . Thus, Ωε1 is globally connected and Ωε0 is the union

of disconnected domains (with volume of order ε−3|Ω|). Since ΓN ∩Ωε0 = ∅ and ΓN ∩Ωε1 = ΓN,

the third integral on the right-hand side in (4.0.3) vanishes.

We prove in section 5.1 the existence, uniqueness and uniform boundedness of the solution of

(4.0.3). In section 5.2, we derive the homogenized problem after proving several compactness

results.

5.1. Existence result in the disconnected case

As mentioned in the general introduction of the first part of the thesis, the difficulty is to show

uniform a-priori estimates of the first derivative of the solution of (4.0.3). For the connected

domain Ωε1, we can use well-known uniform extension operators to get H1-functions on the

whole domain Ω. This is in general not possible for the disconnected domain Ωε0 but we can

estimate the ε-scaled gradient. We define the solution space for the disconnected case as

Wε
d(Ω) = {u ∈

[
L2(Ω)

]3
: u1 = u|Ωε1 ∈ H

1
ΓD

(Ωε1), u0 = u|Ωε0 ∈
[
H1(Ωε0)

]3},
endowed with the norm

‖u‖2Wε
d(Ω) := ‖e(u0)‖2

[L2(Ωε0)]
3×3 + ‖e(u1)‖2

[L2(Ωε1)]
3×3 + ε‖ [u]Σε ‖

2
[L2(Σε)]3

for all u ∈ Wε
d(Ω).

Theorem 5.1.1.
(
Wε

d(Ω), ‖ · ‖Wε
d(Ω)

)
defines a Hilbert space.

Proof. Since ‖ · ‖2Wε
d(Ω) is defined as a sum over norms, the subadditivity and absolute ho-

mogeneity follows directly. We obtain the positive definiteness from the fact that u1 = 0 on

ΓD for u ∈ Wε
d(Ω) and Korn’s inequality from Theorem 2.2.5. Thus, ‖ · ‖Wε

d(Ω) defines a

norm on Wε
d(Ω). The trace operator and Korn’s inequalities for functions with zero trace on

part of the boundary for u1 (cf. Theorem 2.2.5) and with control of the boundary for u0 (cf.
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5. Disconnected case

Theorem 2.2.4) yield

c(ε)‖u‖2Wε
d(Ω) ≤

∑
ξ∈Λε

‖u0‖2[H1(ε(Y0+ξ))]3 + ‖u1‖2[H1(Ωε1)]
3

≤ C(ε)

∑
ξ∈Λε

‖e(u0)‖2
[L2(ε(Y0+ξ))]3×3 + ‖u0‖[L2(ε(ΣY +ξ))]3 + ‖e(u1)‖2

[L2(Ωε1)]
3×3


≤ C(ε)

∑
ξ∈Λε

‖e(u0)‖2
[L2(ε(Y0+ξ))]3×3 + ‖u1 − u0‖[L2(ε(ΣY +ξ))]3

+ ‖u1‖[H1(ε(Y1+ξ))]3 + ‖e(u1)‖2
[L2(Ωε1)]

3×3

)
≤ C(ε)‖u‖2Wε

d(Ω),

where the constants c and C may depend on ε. Since for every ε the set Λε is finite, the norms

are equivalent and thus, Wε
d(Ω) can be understood as the direct sum of Hilbert spaces[
H1

ΓD∩∂Ωε1
(Ωε1)

]3
×
∏
ξ∈Λε

[
H1(ε(Y0 + ξ))

]3
endowed with the standard H1-norms, which yields the desired result.

We prove some uniform estimates.

Lemma 5.1.2. For every v ∈ Wε
d(Ω), there holds

(i) ε‖v1‖2[L2(Σε)]3
≤ C

(
‖v1‖2[L2(Ωε1)]

3 + ε2‖∇v1‖2[L2(Ωε1)]
3×3

)
(ii) ‖v1‖2[H1(Ωε1)]

3 ≤ C‖e(v1)‖2
[L2(Ωε1)]

3×3

(iii) ‖v0‖2[L2(Ωε0)]
3 ≤ C

(
ε2‖e(v0)‖2

[L2(Ωε0)]
3×3 + ε‖v0‖2[L2(Σε)]3

)
for constants C > 0 independent of ε.

Proof. The first estimates follows by scaling and summation together with the continuity of

the trace operator

ε‖v1‖2[L2(Σε)]3 = ε3
∑
ξ∈Λε

∫
ΣY

|v1(εy + εξ)|2dS(y)

≤ ε3C
∑
ξ∈Λε

∫
Y1

|v1(εy + εξ)|2dy +

∫
Y1

|∇yv1(εy + εξ)|2dy

≤ C
(
‖v1‖2[L2(Ωε1)]

3 + ε2‖∇v1‖2[L2(Ωε1)]
3×3

)
.
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5.1. Existence result in the disconnected case

For the second inequality, we use the extension operator from Theorem 4.2 in [Oleinik et al.,

1992]. This operator extents vector-valued functions defined on perforated domains, where the

holes do not intersect the boundary of the reference cell or only in an appropriate way, to the

whole domain and satisfies some ε-independent estimates. More precisely, there exists a linear

extension operator Pε : [H1(Ωε1)]3 → [H1(Ω)]3 such that

‖Pεv‖[H1(Ω)]3 ≤ C‖v‖[H1(Ωε1)]
3 ,

‖Pεv‖[L2(Ω)]3 + ‖e(Pεv)‖[L2(Ω)]3×3 ≤ C
(
‖v‖[L2(Ωε1)]

3 + ‖e(v)‖[L2(Ωε1)]
3×3

)
,

‖e(Pεv)‖[L2(Ω)]3×3 ≤ C‖e(v)‖[L2(Ωε1)]
3×3

(5.1.1)

for all v ∈ [H1(Ωε1)]3. Together with Theorem 2.2.5, i.e. Korn’s inequality for functions with

zero trace on part of the boundary, we estimate

‖v1‖2[H1(Ωε1)]
3 ≤ ‖Pεv1‖2[H1(Ω)]3 ≤ C‖e(Pεv1)‖2

[L2(Ω)]3×3 ≤ C‖e(v1)‖2
[L2(Ωε1)]

3×3 .

Statement (iii) follows by scaling and summation together with Korn’s inequality from Theo-

rem 2.2.4, i.e. Korn’s inequality with control of boundary values,

‖v0‖2[L2(Ωε0)]
3 = ε3

∑
ξ∈Λε

∫
Y0

|v0(εy + εξ)|2dy

≤ ε3C
∑
ξ∈Λε

∫
Y0

|ey(v0(εy + εξ))|2dy +

∫
ΣY

|v0(εy + εξ)|2dS(y)

= C

(
ε2‖e(v0)‖2

[L2(Ωε0)]
3×3 + ε‖v0‖2[L2(Σε)]3

)
.

There exists a unique weak solution in the space Wε
d(Ω).

Theorem 5.1.3. Let fε ∈
[
L2(Ω)

]3
and g ∈

[
L2(ΓN)

]3
. Then, there exists a unique weak

solution u ∈ Wε
d(Ω) of (4.0.3) for all ϕ ∈ Wε

d(Ω).

Proof. Our aim is to apply the Lax–Milgram theorem. Let ε > 0. We denote the left-hand

side of (4.0.3) as a mapping a : Wε
d(Ω)×Wε

d(Ω)→ R,

a(u, v) =

∫
Ωε0

Aεe(u0)e(v0)dx+

∫
Ωε1

Aεe(u1)e(v1)dx

+ ε

∫
Σε

(
KN [un]Σε n+KT

2∑
i=1

[uτ i ]Σε τ
i

)
· (v1 − v0) dS(x)

(5.1.2)
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5. Disconnected case

and the right-hand side of (4.0.3) as a mapping F : Wε
d(Ω)→ R,

F (v) =

∫
Ω

fε · v dx+

∫
ΓN

g · v1 dS(x),

whereby we merged the first two terms of (4.0.3). This is feasible, since Σε is a Lebesgue null

set with respect to the three dimensional Lebesgue measure and Wε
d(Ω) ⊂ [L2(Ω)]3. We prove

that a is a continuous coercive bilinear form. The linearity in both components follows directly

from the linearity of the integrals. Let u, v ∈ Wε
d(Ω). With the properties of Aε ∈M(α, β,Ω)

and the splitting of u0 and u1 in normal and tangential part, we get

a(u, u) ≥ α
∫

Ωε0

|e(u0)|2dx+ α

∫
Ωε1

|e(u1)|2dx+ ε

∫
Σε
KN [un]

2
Σε +KT

2∑
i=1

[uτ i ]
2
Σε dS(x)

≥ α‖e(u0)‖2
[L2(Ωε0)]

3×3 + α‖e(u1)‖2
[L2(Ωε1)]

3×3 + min{KN,KT}ε‖ [u]Σε ‖
2
[L2(Σε)]3

≥ min{α,KN,KT}‖u‖2Wε
d(Ω),

which shows that a is coercive. Using the boundedness of Aε and Hölder’s inequality, we receive

the continuity of a

|a(u, v)| ≤ C
(
‖e(u0)‖[L2(Ωε0)]

3×3‖e(v0)‖[L2(Ωε0)]
3×3 + ‖e(u1)‖[L2(Ωε1)]

3×3‖e(v1)‖[L2(Ωε1)]
3×3

)
+ max{KN,KT}

√
ε‖[u]Σε‖[L2(Σε)]3

√
ε‖[v]Σε‖[L2(Σε)]3

≤ C‖u‖Wε
d(Ω)‖v‖Wε

d(Ω).

It remains to prove that F is linear and continuous. The linearity is clear. Let v ∈ Wε
d(Ω). By

Hölder’s inequality

|F (v)| ≤ C‖fε‖[L2(Ω)]3‖v‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3‖v1‖[L2(ΓN)]3 .

We have to estimate the terms ‖v‖[L2(Ω)]3 and ‖v1‖[L2(ΓN)]3 by the norm ‖v‖Wε
d(Ω). Using

Lemma 5.1.2 (i)–(iii),

‖v0‖2[L2(Ωε0)]
3 ≤ C

(
ε2‖e(v0)‖2

[L2(Ωε0)]
3×3 + ε‖[v]Σε‖2[L2(Σε)]3 + ε‖v1‖2[L2(Σε)]3

)
≤ C‖v‖2Wε

d(Ω)

(5.1.3)

and

‖v1‖[L2(Ωε1)]
3 ≤ C‖e(v1)‖[L2(Ωε1)]

3×3 ≤ C‖v‖Wε
d(Ω). (5.1.4)

Again by the extension operator Pε from (5.1.1), the trace operator and Lemma 5.1.2 (ii), we

receive

‖v1‖[L2(ΓN)]3 ≤ C‖Pεv1‖[H1(Ω)]3 ≤ C‖v1‖[H1(Ωε1)]
3 ≤ C‖e(v1)‖[L2(Ωε1)]

3×3 ≤ C‖v‖Wε
d(Ω).
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5.1. Existence result in the disconnected case

Thus,

|F (v)| ≤ C
(
‖fε‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
‖v‖Wε

d(Ω).

So all assumptions of the Lax–Milgram theorem are fulfilled and we get the existence and

uniqueness of the solution.

In [Donato and Monsurrò, 2004] and [Monsurrò, 2003], a similar approach to the proof of

existence of solutions was chosen in the scalar case, where Poincaré’s inequality instead of

Korn’s inequality is used. Under the additional assumption of uniform boundedness of fε the

weak solution uε is uniformly bounded.

Theorem 5.1.4. Let uε ∈ Wε
d(Ω) be the weak solution of (4.0.3) and fε bounded independent

of ε in
[
L2(Ω)

]3
. Then, there exists an ε-independent constant C with

‖uε‖Wε
d(Ω) ≤ C.

Proof. Using the same estimates as in the proof of Theorem 5.1.3 with v = uε, we get

min{α,KN,KT}‖uε‖2Wε
d(Ω) ≤ a(uε, uε) = F (uε) ≤ C

(
‖fε‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
‖uε‖Wε

d(Ω),

which shows the uniform boundedness of ‖uε‖Wε
d(Ω).

In scalar-valued cases the uniform boundedness of the gradient is directly obtained but in our

case we first can only estimate the symmetric gradient uniformly. Therefore, we have the study

the rigid-body motions more closely. For uε1 we can use the fact that uε1 = 0 on ΓD to estimate

the full gradient. Since the ε-scaled jumps at the interface are bounded uniformly, i.e. we have

a weak bonding of the materials, uε0 satisfies a (weaker) boundary condition at each connected

subset of Ωε0, which allows us to estimate the ε-scaled gradient of uε0 uniformly.

Theorem 5.1.5. Let uε ∈ Wε
d(Ω) with ‖uε‖Wε

d(Ω) ≤ C for an ε-independent constant C.

Then, the following quantities are bounded uniformly in ε

‖uε‖[L2(Ω)]3 , ε‖∇uε0‖[L2(Ωε0)]
3×3 , ‖∇uε1‖[L2(Ωε1)]

3×3 .

Proof. If we choose v = uε in the estimates (5.1.3) and (5.1.4) and note that the constants

there are independent of ε, we get, together with the uniform boundedness of uε in Wε
d(Ω),

that

‖uε‖[L2(Ω)]3 ≤ C.

The uniform boundedness of ‖∇uε1‖[L2(Ωε1)]
3×3 follows directly from Lemma 5.1.2 (ii). As in the

proof of Lemma 5.1.2 (iii) we obtain by scaling and summation together with Korn’s inequality

27



5. Disconnected case

from Theorem 2.2.4

ε2‖∇uε0‖2[L2(Ωε0)]
3×3 = ε5

∑
ξ∈Λε

∫
Y0

|∇uε0(εy + εξ)|2dy

≤ ε3C
∑
ξ∈Λε

∫
Y0

|ey(uε0(εy + εξ))|2dy +

∫
ΣY

|uε0(εy + εξ)|2dS(y)

= C

(
ε2‖e(uε0)‖2

[L2(Ωε0)]
3×3 + ε‖uε0‖2[L2(Σε)]3

)
= C

(
ε2‖e(uε0)‖2

[L2(Ωε0)]
3×3 + ε‖[u]Σε‖2[L2(Σε)]3 + ε‖u1‖2[L2(Σε)]3

)
,

which together with Lemma 5.1.2 (i) yields the uniform boundedness.

5.2. Homogenization in the disconnected case

First, we prove in subsection 5.2.1 some general compactness results via the periodic unfolding

method, which we apply subsequently in subsection 5.2.2 to derive the homogenized problem.

Due to the structure of the domain, we need the periodic unfolding operator for imperfect

transmission problems stated in Definition 3.2.6.

5.2.1. Compactness results in the disconnected case

Since Ωε1 can be seen as a perforated domain, the weak convergence of the unfolded sequence

{T ε1 (uε1)} with uε1 ∈ H1
ΓD

(Ωε1) can be easily proven by using well-known convergence result for

perforated domains. We define the Hilbert space[
L2(Ω, H1

per,0(Y1))
]3

:= {u ∈
[
L2(Ω, H1

per(Y1))
]3

:MY1(u) = 0}.

Theorem 5.2.1. Let {uε1} be a sequence with uε1 ∈ H1
ΓD

(Ωε1) and

‖uε1‖[L2(Ωε1)]
3 + ‖e(uε1)‖[L2(Ωε1)]

3×3 ≤ C (5.2.1)

for a constant C independent of ε. Then, there exists a subsequence (again denoted by {uε1}),

u1 ∈ H1
ΓD

(Ω) and û1 ∈
[
L2(Ω, H1

per,0(Y1))
]3

such that

T ε1 (uε1) ⇀ u1 weakly in
[
L2(Ω, H1(Y1))

]3
,

T ε1 (e(uε1)) ⇀ e(u1) + ey(û1) weakly in
[
L2(Ω× Y1)

]3×3
.

Proof. Let {uε1} be a sequence with uε1 ∈ H1
ΓD

(Ωε1), for which (5.2.1) holds. By Theorem 5.1.5,

every function uε1 is bounded independent of ε in
[
H1(Ωε1)

]3
. Since the domain Ωε1 is connected,
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5.2. Homogenization in the disconnected case

we can apply Theorem 4.43 from [Cioranescu et al., 2018] to obtain, up to a subsequence,

T ε1 (uε1) ⇀ u1 weakly in
[
L2(Ω, H1(Y1))

]3
,

T ε1 (∇uε1) ⇀ ∇u1 +∇yû1 weakly in
[
L2(Ω× Y1)

]3×3

for some u1 ∈ H1
ΓD

(Ω) and û1 ∈
[
L2(Ω, H1

per,0(Y1))
]3

. The linearity of T ε1 and the definition

of the linear strain tensor e(uε1) = 1
2

(
∇uε1 + (∇uε1)T

)
directly yield

T ε1 (e(uε1)) ⇀ e(u1) + ey(û1) weakly in
[
L2(Ω× Y1)

]3×3
.

The next lemma states the connection between the symmetric gradient of a function φ and of

the unfolded function T εκ (φ).

Lemma 5.2.2. Let κ ∈ {0, 1} and φ ∈
[
H1(Ωεκ)

]3
. Then, there holds

ey(T εκ (φ)) = εT εκ (e(φ)).

Proof. Let κ ∈ {0, 1} and φ ∈
[
H1(Ωεκ)

]3
. Using Proposition 3.2.7 (vii) and the linearity of

T εκ , we compute

[ey(T εκ (φ))]ij =
1

2

[
∂yiT εκ (φj) + ∂yjT εκ (φi)

]
=

1

2
ε
[
T εκ (∂xiφj) + T εκ (∂xjφi)

]
= εT εκ (eij(φ))

for i, j ∈ {1, 2, 3}.

The ansatz of perforated domain can not be applied to Ωε0 since it consists of a union of

disconnected domains. So we have to prove further compactness results.

Theorem 5.2.3. Let {uε0} be a sequence with uε0 ∈
[
H1(Ωε0)

]3
satisfying

‖uε0‖[L2(Ωε0)]
3 + ε‖∇uε0‖[L2(Ωε0)]

3×3 ≤ C and ‖e(uε0)‖[L2(Ωε0)]
3×3 ≤ C (5.2.2)

for a constant C independent of ε. Then, there exists a subsequence (again denoted by {uε0})
and u0 ∈

[
L2(Ω, H1(Y0))

]3
such that

T ε0 (uε0) ⇀ u0 weakly in
[
L2(Ω, H1(Y0))

]3
,

εT ε0 (∇uε0) ⇀ ∇yu0 weakly in
[
L2(Ω× Y0)

]3×3
,

εT ε0 (e(uε0))→ 0 strongly in
[
L2(Ω× Y0)

]3×3
.

Furthermore, the limit function satisfies u0 = B(x)y + c(x) for some skew-symmetric matrix

B(x) ∈ R3×3 and some appropriate function c.
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5. Disconnected case

Proof. Let {uε0} be a sequence satisfying uε0 ∈
[
H1(Ωε0)

]3
and (5.2.2). We estimate with

Proposition 3.2.7 (iii) and (vii)

‖T ε0 (uε0)‖[L2(Ω×Y0)]3 ≤ |Y |
1
2 ‖uε0‖[L2(Ωε0)]

3 ≤ C,

‖∇yT ε0 (uε0)‖[L2(Ω×Y0)]3×3 = ε‖T ε0 (∇uε0)‖[L2(Ω×Y0)]3×3 ≤ ε|Y | 12 ‖∇uε0‖[L2(Ωε0)]
3×3 ≤ C,

which shows that T ε0 (uε0) is bounded in
[
L2(Ω, H1(Y0))

]3
. Since

[
L2(Ω, H1(Y0))

]3
is a Hilbert

space, there exists a subsequence (again denoted by {uε0}) and u0 ∈
[
L2(Ω, H1(Y0)

]3
such that

T ε0 (uε0) ⇀ u0 weakly in
[
L2(Ω× Y0)

]3
,

∇y(T ε0 (uε0)) ⇀ ∇yu0 weakly in
[
L2(Ω× Y0)

]3×3
.

Because

‖ey(T ε0 (uε0))‖[L2(Ω×Y0)]3×3 = ε‖T ε0 (e(uε0))‖[L2(Ω×Y0)]3×3 ≤ ε|Y | 12 ‖e(uε0)‖[L2(Ωε0)]
3×3 ≤ εC

the symmetric gradient of u0 is zero, i.e. ey(u0) = 0. Thus, u0 only allows rigid-body motions

with respect to y, i.e.

u0 = B(x)y + c(x)

for some skew-symmetric matrix B(x) ∈ R3×3 and some appropriate function c. Clearly,

B ∈
[
L2(Ω)

]3×3
and c ∈

[
L2(Ω)

]3
.

To prove the next theorem, we define an appropriate sequence neglecting rigid-body motions

to obtain the weak convergence of the unfolded symmetric gradient of uε0.

Theorem 5.2.4. Let {uε0} be a sequence with uε0 ∈
[
H1(Ωε0)

]3
and

‖uε0‖[L2(Ωε0)]
3 + ‖e(uε0)‖[L2(Ωε0)]

3×3 ≤ C

for a constant C independent of ε. Then, there exists a function û0 ∈
[
L2(Ω, H1(Y0))

]3
such

that up to a subsequence

Zε0 :=
1

ε
[T ε0 (uε0)− rε] ⇀ û0 weakly in

[
L2(Ω, H1(Y0))

]3
,

T ε0 (e(uε0)) ⇀ ey(û0) weakly in
[
L2(Ω× Y0)

]3×3
,

where rε(x, y) = Rε(x)y + cε(x) with skew-symmetric matrix

Rε(x) =MY0
(∇yT ε0 (uε0)(x, y)− ey(T ε0 (uε0)(x, y)))

and

cε(x) =MY0(T ε0 (uε0)(x, y)−Rε(x)y).
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5.2. Homogenization in the disconnected case

for (x, y) ∈ Ω× Y0. Furthermore, there holds MY0
(û0) = 0.

Proof. Let {uε0} be a bounded sequence as in the assumption. By definition rε is piecewise

constant in x. If we apply the Poincaré–Wirtinger inequality in H1(Y0), Korn’s inequality (cf.

Theorem 25.4 from [Schweizer, 2018]) and Proposition 3.2.7 (iii) and (vii), we receive

‖Zε0‖[L2(Ω,H1(Y0))]3 ≤
C

ε
‖∇yT ε0 (uε0)−Rε‖[L2(Ω×Y0)]3×3 ≤ C

ε
‖ey(T ε0 (uε0))‖[L2(Ω×Y0)]3×3

= C‖T ε0 (e(uε0))‖[L2(Ω×Y0)]3×3 ≤ C|Y | 12 ‖e(uε0)‖[L2(Ωε0)]
3×3 ≤ C

Thus, the sequence {Zε0} is bounded in the Hilbert space
[
L2(Ω, H1(Y0))

]3
and, therefore,

there exists a function û0 ∈
[
L2(Ω, H1(Y0))

]3
such that up to a subsequence

Zε0 ⇀ û0 weakly in
[
L2(Ω, H1(Y0))

]3
.

Using the skew-symmetry of Rε,

T ε0 (e(uε0)) = T ε0 (e(uε0))− 1

2ε
(Rε + (Rε)T ) = ey(Zε0) ⇀ ey(û0) weakly in

[
L2(Ω× Y0)

]3×3
.

Since

MY0(Zε0) =
1

ε
[MY0(T ε0 (uε0))−MY0(rε)] = 0

for all ε, we receive MY0
(û0) = 0.

Due to Proposition 3.2.7 (vii), there exists the trace of the unfolding operator with respect to

y and we can prove the following result.

Theorem 5.2.5. Let uε, ϕ ∈ Wε
d(Ω). Then, there holds

1

ε|Y |

∫
Ω

∫
ΣY

(T ε1 (uε1)− T ε0 (uε0)) · (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx

=

∫
Σε

(uε1 − uε0) · (ϕ1 − ϕ0) dS(x).

Proof. Since (uε1 − uε0) · (ϕ1 − ϕ0) ∈ L1(Σε), we can use Proposition 3.2.10 to obtain∫
Σε∩Ωε

(uε1 − uε0) · (ϕ1 − ϕ0) dS(x)

=
1

ε|Y |

∫
Ω

∫
ΣY

T εb ((uε1 − uε0) · (ϕ1 − ϕ0)) dS(y) dx

=
1

ε|Y |

∫
Ω

∫
ΣY

(T ε1 (uε1)− T ε0 (uε0)) · (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx.

This shows the result because Σε ∩ Ωε = Σε.

If we choose ϕ = uε in Theorem 5.2.5, we get the following result.
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5. Disconnected case

Corollary 5.2.6. Let uε ∈ Wε
d(Ω). Then, there holds

1

ε|Y |

∫
Ω

∫
ΣY

|T ε1 (uε1)− T ε0 (uε0)|2dS(y) dx =

∫
Σε
|uε1 − uε0|2dS(x).

5.2.2. Passage to the limit in the disconnected case

With the compactness results from the subsection before, we derive the homogenized problem,

which we rewrite afterwards with the help of cell problems as a microscopic and macroscopic

problem.

Theorem 5.2.7. Let {uε} be a sequence of weak solutions of the problem (4.0.3) with uε ∈
Wε

d(Ω) and {fε} a bounded sequence in
[
L2(Ω)

]3
such that

T εκ (fε) ⇀ f |Ω×Yκ weakly in
[
L2(Ω× Yκ)

]3
for some f ∈

[
L2(Ω× Y )

]3
and κ ∈ {0, 1}. Then,

T ε1 (uε1) ⇀ u1 weakly in
[
L2(Ω, H1(Y1))

]3
,

T ε1 (e(uε1)) ⇀ e(u1) + ey(û1) weakly in
[
L2(Ω× Y1)

]3×3
,

T ε0 (uε0) ⇀ u0 weakly in
[
L2(Ω, H1(Y0))

]3
,

T ε0 (e(uε0)) ⇀ ey(û0) weakly in
[
L2(Ω× Y0)

]3×3
,

(5.2.3)

with

u = (u1, û1, u0) ∈ H1
ΓD

(Ω)×
[
L2(Ω, H1

per,0(Y1))
]3 × [L2(Ω, H1(Y0))

]3
,

where

u0 = B(x)y + c(x)

with B ∈ [L2(Ω)]3×3 skew-symmetric and c ∈ [L2(Ω)]3, and û0 ∈
[
L2(Ω, H1(Y0))

]3
with

MY0(û0) = 0. Furthermore, u is the solution of the problem∫
Ω

∫
Y1

A(y)(e(u1) + ey(û1))(e(v1) + ey(v̂1)) dydx

+

∫
Ω

∫
ΣY

(
KN [u1 · n− u0 · n]n+KT

2∑
i=1

[
u1 · τ i − u0 · τ i

]
τ i

)
· (v1 − v0) dS(y) dx

=

∫
Ω

∫
Y1

f dy · v1 dx+

∫
Ω

∫
Y0

f · v0 dydx+

∫
ΓN

g · v1 dS(x) (5.2.4)

for all v = (v1, v̂1, v0) ∈ H1
ΓD

(Ω)×
[
L2(Ω, H1

per,0(Y1))
]3× [L2(Ω, H1(Y0))

]3
with v0 = B̃(x)y+

c̃(x), B̃ ∈ [L2(Ω)]3×3 skew-symmetric and c̃ ∈ [L2(Ω)]3.

Proof. Let {uε} be a sequence of weak solutions of problem (4.0.3) with uε ∈ Wε
d(Ω). From
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5.2. Homogenization in the disconnected case

Theorem 5.1.4 and Theorem 5.1.5, we get the uniform boundedness of the following quantities

‖uε‖Wε
d(Ω), ‖uε‖[L2(Ω)]3 , ε‖∇uε0‖[L2(Ωε0)]

3×3 , ‖∇uε1‖[L2(Ωε1)]
3×3 .

Then, the convergences (5.2.3) follow directly from Theorems 5.2.1, 5.2.3 and 5.2.4. We rewrite

the weak formulation of problem (4.0.3) using Theorem 5.2.5 and Proposition 3.2.7 (i) and (ii)

to receive the unfolded problem∫
Ω

∫
Y1

T ε1 (Aε)T ε1 (e(uε1))T ε1 (e(ϕ1)) dydx+

∫
Πε∩Ωε1

Aεe(uε1)e(ϕ1)dx

+

∫
Ω

∫
Y0

T ε0 (Aε)T ε0 (e(uε0))T ε0 (e(ϕ0)) dydx

+

∫
Ω

∫
ΣY

(KN [T ε1 (uε1 · n)− T ε0 (uε0 · n)]n) · (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx

+

∫
Ω

∫
ΣY

(
KT

2∑
i=1

[
T ε1 (uε1 · τ i)− T ε0 (uε0 · τ i)

]
τ i

)
· (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx

=

∫
Ω

∫
Y1

T ε1 (fε) · T ε1 (ϕ1) dydx+

∫
Πε∩Ωε1

fε · ϕ1 dx+

∫
Ω

∫
Y0

T ε0 (fε) · T ε0 (ϕ0) dydx

+

∫
ΓN

g · ϕ1 dS(x).

(5.2.5)

Let v1 be an element of

DΓD
(Ω) := {φ ∈ [C∞(Ω)]

3
: v is equal to 0 in a neighbourhood of ΓD},

v0, w0, w1 ∈ [D(Ω)]
3

and

ψε0(x) := ψ0

(x
ε

)
and ψε1(x) := ψ1

(x
ε

)
with ψ0 ∈

[
H1(Y0)

]3
and ψ1 ∈

[
H1

per,0(Y1)
]3

Y -periodically extended. We define the test

functions as

ϕ0 = ϕε0 := v0 + εv̂ε0 and ϕ1 = ϕε1 := v1 + εv̂ε1

with v̂ε0(x) = v̂0(x, xε ) and v̂ε1(x) = v̂1(x, xε ), where

v̂0(x, y) = ((w0)i(x)(ψ0)i(y))1≤i≤3 and v̂1(x, y) = ((w1)i(x)(ψ1)i(y))1≤i≤3 .

Then, ϕε ∈ Wε
d(Ω),

T ε0 (ϕε0) ∈
[
L2(Ω, H1(Y0))

]3
and T ε1 (ϕε1) ∈

[
L2(Ω, H1(Y1))

]3
.
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5. Disconnected case

Let κ ∈ {0, 1} and i ∈ {1, 2, 3}. With Proposition 3.2.7 (i) we estimate

‖ (T εκ (v̂εκ)− v̂κ)i ‖L2(Ω×Yκ) = ‖T εκ (wκ)iT εκ (ψεκ)i − (wκ)i(ψκ)i‖L2(Ω×Yκ)

≤ ‖T εκ (wκ)i (T εκ (ψεκ)i − (ψκ)i) ‖L2(Ω×Yκ) + ‖ (T εκ (wκ)i − (wκ)i) (ψκ)i‖L2(Ω×Yκ)

≤ C‖T εκ (ψεκ)i − (ψκ)i‖L2(Ω×Yκ) + C‖T εκ (wκ)i − (wκ)i‖L∞(Ω×Yκ).

Because of the compact support of wκ, T εκ (wκ) and wκ vanish in Πε × Yκ for ε small enough,

wherefore

‖T εκ (wκ)i − (wκ)i‖L∞(Ω×Yκ) ≤ Cεdiameter(Yκ)

for ε small enough. From Proposition 3.2.7 (vi), we obtain that

T εκ (ψεκ)→ ψκ strongly in
[
L2(Ω× Yκ)

]3
.

Summing up, the right-hand side of the above inequality converges to zero as ε→ 0, i.e.

T εκ (v̂εκ)→ v̂κ strongly in
[
L2(Ω× Yκ)

]3
.

By Proposition 3.2.7 (iv),

T εκ (vκ)→ vκ strongly in
[
L2(Ω× Yκ)

]3
.

Thus, there holds

T εκ (ϕεκ)→ vκ strongly in
[
L2(Ω× Yκ)

]3
.

Every component of the symmetric gradient of ϕεκ satisfies

eij(ϕ
ε
κ)(x) = eij(vκ)(x) +

1

2

[
ε∂xi(wκ)j(x)(ψκ)j

(x
ε

)
+ (wκ)j(x)∂yi(ψκ)j

(x
ε

)
+ε∂xj (wκ)i(x)(ψκ)i

(x
ε

)
+ (wκ)i(x)∂yj (ψκ)i

(x
ε

)]
,

i, j ∈ {1, 2, 3}. If we apply the periodic unfolding operator to eij(ϕ
ε
κ) and use the properties

from Proposition 3.2.7,

T εκ (eij(ϕ
ε
κ))→ eij(vκ) +

1

2

[
(wκ)j∂yi(ψκ)j + (wκ)i∂yj (ψκ)i

]
= eij(vκ) + (ey(v̂κ))ij

strongly in L2(Ω× Yκ). Thus,

T εκ (e(ϕεκ))→ e(vκ) + ey(v̂κ) strongly in
[
L2(Ω× Yκ)

]3×3
.

The integrals ∫
Πε∩Ωε1

Aεe(uε1)e(ϕε1)dx and

∫
Πε∩Ωε1

fε · ϕε1 dx
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5.2. Homogenization in the disconnected case

vanish for ε small enough because v̂ε1 has compact support in Ω and for the terms with v1 we

can estimate the integrals by

Cβ|Πε ∩ Ωε1|‖e(uε1)‖2
[L2(Ωε1)]

3×3 resp. C|Πε ∩ Ωε1|‖fε‖[L2(Ω)]3 ,

which converge to zero as ε → 0. We estimate the interface term with respect to the normal

direction using Hölder’s inequality, Corollary 5.2.6 and boundedness of the solution∫
Ω

∫
ΣY

(KN [T ε1 (uε1 · n)− T ε0 (uε0 · n)]n) · T εκ (εv̂εκ) dS(y) dx

≤ KN

(∫
Ω

∫
ΣY

| [T ε1 (uε1)− T ε0 (uε0)] · n|2dS(y) dx

) 1
2

‖T εκ (εv̂εκ)‖[L2(Ω×ΣY )]3

≤ Cε 1
2 ‖[uε]Σε‖[L2(Σε)]3 ε‖(T εκ ((wκ)i)(ψκ)i)1≤i≤3‖[L2(Ω×ΣY )]3

≤ Cε.

Therefore, this integral converges to zero. The analogous result holds for the terms with τi,

i ∈ {1, 2}, instead of n. Due to Proposition 3.2.7 (iv)

T εκ (vκ)→ vκ strongly in
[
L2(Ω× Yκ)

]3
,

T εκ (∇vκ)→ ∇vκ strongly in
[
L2(Ω× Yκ)

]3×3
,

which yields that ∇y(T ε0 (vκ))→ 0 strongly in
[
L2(Ω× Yκ)

]3×3
and thus

T εκ (vκ)→ vκ strongly in
[
L2(Ω, H1(Yκ))

]3
.

So we even get the convergence of the traces of T εκ (vκ) with respect to y. If we plug in the test

function in (5.2.5) and pass to the limit, we get∫
Ω

∫
Y1

A(y)(e(u1) + ey(û1))(e(v1) + ey(v̂1)) dydx

+

∫
Ω

∫
Y0

A(y)ey(û0)(e(v0) + ey(v̂0)) dydx (5.2.6)

+

∫
Ω

∫
ΣY

(
KN [u1 · n− u0 · n]n+KT

2∑
i=1

[
u1 · τ i − u0 · τ i

]
τ i

)
· (v1 − v0) dS(y) dx

=

∫
Ω

∫
Y1

f dy · v1 dx+

∫
Ω

∫
Y0

f dy · v0 dx+

∫
ΓN

g · v1 dS(x).

Since D(Ω) × H1(Y0) is dense in L2(Ω, H1(Y0)), we can choose as a test function v1 = v̂1 =

v0 = 0 and v̂0 = û0 to obtain ∫
Ω

∫
Y0

A(y)ey(û0)ey(û0) dydx = 0.
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5. Disconnected case

Using the coercivity of A we get that ey(û0) ≡ 0 and the second integral in (5.2.6) vanishes.

Since DΓD(Ω̄) is dense in H1
ΓD

(Ω) (cf. Theorem 3.1 from [Bernard, 2011]), D(Ω)×H1
per,0(Y1)

is dense in L2(Ω, H1
per,0(Y1)) and D(Ω) is dense in L2(Ω), the homogenized problem (5.2.6) is

true for all v1 ∈ H1
ΓD

(Ω), v̂1 ∈
[
L2(Ω, H1

per,0(Y1))
]3

and v0 ∈ [L2(Ω)]3. We now consider test

functions ϕε1 = 0 and ϕε0(x) = r0(x, xε ), where r0(x, y) = B̃(x)y is Y -periodic extended with

B̃ ∈ [C∞c (Ω)]
3×3

skew-symmetric. Thus, ϕε0 ∈
[
H1(Ωε0)

]3
and

T ε0 (ϕε0)→ r0 strongly in
[
L2(Ω× Y0)

]3
with the same proof as above. For ε small enough, using the skew-symmetry of B̃

T ε0 (e11(ϕε0)) = T ε0 (∂x1
b̃12)y2 + T ε0 (∂x1

b̃13)y3,

T ε0 (e12(ϕε0)) =
1

2

(
−T ε0 (∂x1

b̃12)y1 − T ε0 (b̃12)
1

ε
+ T ε0 (∂x1

b̃23)y3 + T ε0 (∂x2
b̃12)y2

+T ε0 (b̃12)
1

ε
+ T ε0 (∂x2 b̃13)y3

)
=

1

2

(
−T ε0 (∂x1 b̃12)y1 + T ε0 (∂x1 b̃23)y3 + T ε0 (∂x2 b̃12)y2 + T ε0 (∂x2 b̃13)y3

)
,

T ε0 (e13(ϕε0)) =
1

2

(
−T ε0 (∂x1 b̃13)y1 − T ε0 (∂x1 b̃23)y2 + T ε0 (∂x3 b̃12)y2 + T ε0 (∂x3 b̃13)y3

)
,

T ε0 (e22(ϕε0)) = −T ε0 (∂x2
b̃12)y1 + T ε0 (∂x2

b̃23)y3,

T ε0 (e23(ϕε0)) =
1

2

(
−T ε0 (∂x2

b̃13)y1 − T ε0 (∂x2
b̃23)y2 − T ε0 (∂x3

b̃12)y1 + T ε0 (∂x3
b̃23)y3

)
,

T ε0 (e33(ϕε0)) = −T ε0 (∂x3
b̃13)y1 − T ε0 (∂x3

b̃23)y2.

With the same arguments as before

T ε0 (e(ϕε0))→ e(r0) strongly in
[
L2(Ω× Y0)

]3×3
.

Passing to the limit in (5.2.5) and use the fact that ey(û0) ≡ 0, we obtain

−
∫

Ω

∫
ΣY

(
KN [u1 · n− u0 · n]n+KT

2∑
i=1

[
u1 · τ i − u0 · τ i

]
τ i

)
· r0 dS(y) dx

=

∫
Ω

∫
Y0

f · r0 dy dx.

Since [C∞c (Ω)]
3×3

is dense in
[
L2(Ω)

]3×3
, the equality is true for all r0(x, y) = B̃(x)y with B̃ ∈[

L2(Ω)
]3×3

. Summing up, we get the desired result. Using the uniqueness of the solution, which

we prove in Theorem 5.2.9, all the convergences above hold true for the whole sequence.

In the next theorem, we rewrite the homogenized problem from Theorem 5.2.7 with the help of

auxiliary cell problems as a macroscopic problem. The steps of the proof of the next theorem

follow [Höpker, 2016].
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5.2. Homogenization in the disconnected case

Theorem 5.2.8. Let the sequence {uε} be as in Theorem 5.2.7. We can reformulate the

homogenized problem (5.2.4) as follows: Find u1 ∈ H1
ΓD

(Ω), u0 ∈
[
L2(Ω, H1(Y0))

]3
, where

u0 = B(x)y + c(x) with B ∈ [L2(Ω)]3×3 skew-symmetric and c ∈ [L2(Ω)]3, such that∫
Ω

Ahom
1 e(u1)e(v1) dx

+

∫
Ω

∫
ΣY

(
KN(u1 · n− u0 · n)n+KT

2∑
i=1

(u1 · τ i − u0 · τ i)τ i
)
· (v1 − v0) dS(y)dx

=

∫
Ω

∫
Y1

f dy · v1 dx+

∫
Ω

∫
Y0

f · v0 dydx+

∫
ΓN

g · v1 dS(x) (5.2.7)

where

(Ahom
1 )ijkh =

∫
Y1

aijkh(y)−
3∑

l,m=1

aijlm
(
ey(χkh1 )

)
lm

dy

and χlm1 ∈
[
H1

per,0(Y1)
]3

, l,m ∈ {1, 2, 3}, is the unique solution of

− 3∑
j=1

∂

∂yj

[(
Aey(χlm1 )

)
ij
− aijlm

]
1≤i≤3

= 0 in Y1,− 3∑
j=1

[(
Aey(χlm1 )

)
ij
− aijlm

]
nj


1≤i≤3

= 0 on ΣY .

(5.2.8)

Proof. Choosing v0 = v1 = 0 in (5.2.4), we get for all v̂1 ∈
[
L2(Ω, H1

per,0(Y1))
]3

∫
Ω

∫
Y1

A (e(u1) + ey(û1)) ey(v̂1) dydx = 0.

Thus, ∫
Y1

A(y) (e(u1)(x) + ey(û1)(x, y)) ey(v̂1)(y) dy = 0

for a.e. x ∈ Ω and v̂1 ∈
[
H1

per,0(Y1)
]3

. Due to Korn’s inequality for periodic functions with

mean value zero, there exists a unique solution ϕ ∈
[
H1

per,0(Y1)
]3

of∫
Y1

A(y) (e(u1)(x) + ey(ϕ)(y)) ey(v̂1)(y) dy = 0 (5.2.9)

for all v̂1 ∈
[
H1

per,0(Y )
]3

and a.e. x ∈ Ω. We consider the cell problems: Find the weak solution

χlm1 ∈
[
H1

per,0(Y1)
]3

, l,m ∈ {1, 2, 3}, of the problem (5.2.8). Using the symmetry of A, the

weak formulation is ∫
Y1

Aey(χlm1 )ey(v̂1)− (Aey(v̂1))lmdy = 0

for all v̂1 ∈
[
H1

per,0(Y1)
]3

. Using Korn’s inequality for periodic functions with zero mean value,
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5. Disconnected case

it follows from Lax–Milgram’s theorem that there exists a unique solution χlm1 of the cell

problem. If we plug in −
∑3
l,m=1 elm(u1)(x)χlm1 (y) for ϕ in (5.2.9), we receive

∫
Y1

A(y) [e(u1) + ey(ϕ)] ey(v̂1)dy =

∫
Y1

A(y)e(u1)−
3∑

l,m=1

elm(u1)A(y)ey(χlm1 )

 ey(v̂1)dy

=

∫
Y1

A(y)e(u1)ey(v̂1)−A(y)e(u1)ey(v̂1)dy = 0.

Hence −
∑3
l,m=1 elm(u1)χlm1 is the unique solution of the problem (5.2.9) and thus,

û1(x, y) = −
3∑

l,m=1

elm(u1)(x)χlm1 (y).

Using this equality in (5.2.4), we receive∫
Ω

∫
Y1

A(y) [e(u1) + ey(û1)] [e(v1) + ey(v̂1)] dydx

=

∫
Ω

∫
Y1

A(y)

e(u1)−
3∑

l,m=1

elm(u1)ey(χlm1 )

 e(v1)dydx

=

∫
Ω

3∑
i,j,k,h=1

(∫
Y1

aijkh(y)dy

)
ekh(u1)eij(v1)

−
3∑

i,j,l,m=1

∫
Y1

3∑
k,h=1

aijkh(y)
(
ey(χlm1 )

)
kh

dy

 elm(u1)eij(v1)dx.

So the homogenized tensor Ahom
1 on Ω× Y1 is given by

(Ahom
1 )ijkh =

∫
Y1

aijkh(y)−
3∑

l,m=1

aijlm
(
ey(χkh1 )

)
lm

dy,

and the homogenized problem (5.2.4) can be reformulated as the macroscopic problem (5.2.7).

Similar as in Theorem II.1.1 from [Oleinik et al., 1992], it can be proven that there exist

constants αhom, βhom ∈ R with 0 < αhom < βhom such that Ahom
1 ∈M(αhom, βhom,Ω). We use

this property to prove the uniqueness of the solution of (5.2.7).

Theorem 5.2.9. The solutions u1 ∈ H1
ΓD

(Ω) and u0 ∈
[
L2(Ω, H1(Y0))

]3
, where u0 = B(x)y+

c(x) with B ∈ [L2(Ω)]3×3 skew-symmetric and c ∈ [L2(Ω)]3, of the macroscopic problem (5.2.7)

are unique.

Proof. Let u = (u1, u0), w = (w1, w0) ∈ H1
ΓD

(Ω) ×
[
L2(Ω, H1(Y0))

]3
be two solutions of the
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5.2. Homogenization in the disconnected case

problem (5.2.7), where u0 = B(x)y + c(x) and w0 = B̃(x)y + c̃(x) with B, B̃ ∈ [L2(Ω)]3×3

skew-symmetric and c, c̃ ∈ [L2(Ω)]3. Then there holds

0 =

∫
Ω

Ahom
1 e(u1 − w1)e(v1) dx+

∫
Ω

∫
ΣY

(
KN[u1 − u0 − w1 + w0] · nn

+KT

2∑
i=1

[u1 − u0 − w1 + w0] · τ iτ i
)
· (v1 − v0) dS(y)dx.

If we choose as test function the difference of both solutions, i.e. v1 := u1−w1 and v0 := u0−w0,

we can estimate, using that Ahom
1 is coercive and Korn’s inequality for functions with zero on

part of the boundary,

0 =

∫
Ω

Ahom
1 e(u1 − w1)e(u1 − w1) dx+

∫
Ω

∫
ΣY

(
KN [u1 − u0 − w1 + w0] · nn

+KT

2∑
i=1

[u1 − u0 − w1 + w0] · τ iτ i
)
· (u1 − w1 − u0 + w0) dS(y) dx

≥αhomC‖u1 − w1‖2[H1(Ω)]3 + min{KN,KT}‖u1 − u0 − w1 + w0‖2[L2(Ω×ΣY )]3 .

Thus, u1 = w1, which yields together with ‖u1 − u0 − w1 + w0‖2[L2(Ω×ΣY )]3
= 0 that u0 = w0,

i.e.

(B(x)− B̃(x))y + (c(x)− c̃(x)) = 0

for a.e. (x, y) ∈ Ω×ΣY . Varying along y ∈ ΣY for fixed x ∈ Ω, we obtain B = B̃ and c = c̃.

A similar result holds for the case of a more general elasticity tensor Aε.

Remark 5.2.10. We consider the general elasticity tensor Aε ∈ M(α, β,Ω) instead of Aε =

A( ·ε ) ∈ M(α, β,Ω). If we additional assume that T ε(Aε) → C a.e. in Ω × Y , then, C ∈
M(α, β,Ω × Y ), which can be shown as in the beginning of the proof of Theorem 9.1.2, and

the homogenized problem is of the form: Find the unique weak solutions u1 ∈ H1
ΓD

(Ω), u0 ∈[
L2(Ω, H1(Y0))

]3
, where u0 = B(x)y + c(x) with B ∈ [L2(Ω)]3×3 skew-symmetric and c ∈

[L2(Ω)]3, such that∫
Ω

Chom
1 e(u1)e(v1) dx

+

∫
Ω

∫
ΣY

(
KN(u1 − u0) · nn+KT

2∑
i=1

(u1 − u0) · τ iτ i
)
· (v1 − v0) dS(y)dx

=

∫
Ω

∫
Y1

f dy · v1 dx+

∫
Ω

∫
Y0

f · v0 dy dx+

∫
ΓN

g · v1 dS(x)

with

(Chom
1 )ijkh(x) =

∫
Y1

cijkh(x, y)−
3∑

l,m=1

cijlm(x, y)
(
ey(χkh1 )

)
lm

(x, y)dy
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5. Disconnected case

and χlm1 ∈
[
L∞(Ω, H1

per,0(Y1))
]3

, l,m ∈ {1, 2, 3}, is the unique solution of∫
Y1

C(x, y)ey(χlm1 )(x, y)ey(v̂1)(y)− (C(x, y)ey(v̂1)(y))lmdy = 0

for all v̂1 ∈
[
H1

per,0(Y1)
]3

and a.e. x ∈ Ω.

If we assume that the normal and tangential stiffness KN and KT are the same, the problem

(5.2.7) can be simplified.

Remark 5.2.11. In the case where KN = KT the solution u0 can be expressed by u1 and the

volume force f , more precisely∫
ΣY

u0 dS(y) = |ΣY |u1 + |Y0|MY0
(f),

i.e. the larger the Hausdorff measure of the interface ΣY is, the value of u0 is greater. Then,

problem (5.2.7) is of the form∫
Ω

Ahom
1 e(u1)e(v1) dx =

∫
Ω

|Y1|MY1(f) · v1 dx+

∫
ΓN

g · v1 dS(x),

which is the same weak form as in the case, where Y0 describes holes.
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6. Globally connected case

In the globally connected case, we additionally require to the assumptions in chapter 4 that Ω

can be represented as a union of axis-parallel cuboids with corner coordinates in Q3, which is

not a restriction since every Lipschitz-domain can be approximated by a domain of cuboidal

structure. Furthermore, we assume that the boundary ∂Y0 ∩ ∂Y resp. ∂Y1 ∩ ∂Y on opposite

faces of the periodicity cell Y is the same and Ωε0 and Ωε1 are two globally connected sets. We

allow the scaling factor ε to be only such that ε−1Ω can be represented as a finite union of

axis-parallel cuboids with corner coordinates in Z3. Thus, we can ensure that the domain Ω

can completely be filled up with scaled reference cells (see Figure 6.1).

Ωε0Ωε1

Figure 6.1.: domain Ω

This condition can be relaxed, but we impose it in what follows to avoid well-known techni-

calities induced by otherwise non-matching boundaries of Ω and its ε-periodic approximation.

Due to the choice of ε, there holds Ωε = Ω.

We prove the existence, uniqueness and uniform boundedness of the solution of (4.0.3) in sec-

tion 6.1 and derive the homogenized problem after proving a compactness result in section 6.2.

The results in this chapter have been published in the Journal of Mathematical Analysis and

Applications [Lochner and Peter, 2020].

6.1. Existence result in the connected case

Since ΓD ∩ ∂Ωε0 6= ∅ and ΓD ∩ ∂Ωε1 6= ∅, we can choose in the connected case the solution space

as the set of piecewise H1-functions with zero value on part of the boundary, i.e.

Wε
c (Ω) = {u ∈

[
L2(Ω)

]3
: u0 ∈ H1

ΓD∩∂Ωε0
(Ωε0), u1 ∈ H1

ΓD∩∂Ωε1
(Ωε1)},
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6. Globally connected case

endowed with the same norm as in the disconnected case, i.e.

‖u‖2Wε
c (Ω) := ‖e(u0)‖2

[L2(Ωε0)]
3×3 + ‖e(u1)‖2

[L2(Ωε1)]
3×3 + ε‖[u]Σε‖2[L2(Σε)]3 .

By the trace theorem and Korn’s inequality from Theorem 4.4 in [Höpker, 2016]

c

(
‖u0‖2[H1(Ωε0)]

3 + ‖u1‖2[H1(Ωε1)]
3

)
≤ ‖u‖2Wε

d(Ω) ≤ C
(
‖u0‖2[H1(Ωε0)]

3 + ‖u1‖2[H1(Ωε1)]
3

)
with constants c, C > 0 independent of ε. The equivalence of the norms implies that the space

Wε
c (Ω) defines a Hilbert space.

Theorem 6.1.1. Let fε ∈
[
L2(Ω)

]3
and g ∈

[
L2(ΓN)

]3
. Then, there exists a unique weak

solution uε ∈ Wε
c (Ω) of (4.0.3) for all ϕ ∈ Wε

c (Ω) and all admissible 0 < ε ≤ 1.

Proof. We prove this statement via Lax–Milgram theorem similar as in Theorem 5.1.3. Let

ε > 0. Since the left-hand side of (4.0.3) is of the same form as in the disconnected case and

the norms on Wε
d(Ω) and Wε

c (Ω) are identical, we obtain with the same estimates as in the

proof of Theorem 5.1.3 that mapping a : Wε
c (Ω) × Wε

c (Ω) → R, defined as in (5.1.2), is a

coercive continuous bilinear form. We denote the right-hand side of (4.0.3) as the mapping

F : Wε
c (Ω)→ R,

F (v) :=

∫
Ω

fε · v dx+

∫
ΓN∩∂Ωε0

g · v0 dS(x) +

∫
ΓN∩∂Ωε1

g · v1 dS(x), (6.1.1)

whereby we merged the first two terms of (4.0.3). This is feasible, since Σε is a Lebesgue null

set with respect to the three dimensional Lebesgue measure and Wε
c (Ω) ⊂ [L2(Ω)]3. We have

to prove that F is linear and continuous, i.e. F ∈ Wε
c (Ω)′. The linearity follows directly. Let

v ∈ Wε
c (Ω). Using Hölder’s inequality and Korn’s inequality from Theorem 4.4 in [Höpker,

2016] applied on the two connected domains Ωε0 resp. Ωε1, we obtain

∣∣∣∫
Ω

fε · v dx
∣∣∣ ≤ C‖fε‖[L2(Ω)]3

(
‖e(v0)‖2

[L2(Ωε0)]
3×3 + ‖e(v1)‖2

[L2(Ωε1)]
3×3

) 1
2

≤ C‖fε‖[L2(Ω)]3‖v‖Wε
c (Ω).

Let κ ∈ {0, 1}. By Hölder’s inequality we receive∣∣∣∫
ΓN∩∂Ωεκ

g · vκ dS(x)
∣∣∣≤ ‖g‖[L2(ΓN)]3‖vκ‖[L2(ΓN∩∂Ωεκ)]3 .

In order to estimate the term ‖vκ‖[L2(ΓN∩∂Ωεκ)]3 by ‖v‖Wε
c (Ω), we consider the extension operator

Lεκ : Ωεκ → Ω defined in Theorem 3.4 in [Höpker, 2016]. We apply the trace operator on Lεκvκ,

use the estimates of the trace operator and Korn’s inequality from Theorem 4.4. in [Höpker,
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6.2. Homogenization in the connected case

2016] to estimate

‖vκ‖[L2(ΓN∩∂Ωεκ)]3 ≤ C‖Lεκ(vκ)‖[H1(Ω)]3 ≤ C‖vκ‖[H1(Ωεκ)]3 ≤ C‖e(vκ)‖[L2(Ωεκ]3×3 . (6.1.2)

Summarising the previous estimates, we receive the continuity of the mapping F

|F (v)| ≤ C
(
‖fε‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
‖v‖Wε

c (Ω).

So all assumptions of the Lax–Milgram theorem are fulfilled, which guarantees the existence

and uniqueness of the solution.

Under the additional assumption of uniform boundedness of fε the weak solutions uε are

ε-independent bounded.

Theorem 6.1.2. Let uε ∈ Wε
c (Ω) be the weak solutions of (4.0.3) and fε bounded independent

of ε in
[
L2(Ω)

]3
. Then, there exists a constant C independent of ε such that

‖uε‖Wε
c (Ω) ≤ C

for all admissible 0 < ε ≤ 1.

Proof. Since all the constants in the estimates of the proof of Theorem 6.1.1 are independent

of ε, we get by choosing v = uε

min{α,KN,KT}‖uε‖2Wε
c (Ω) ≤ a(uε, uε) = F (uε) ≤ C

(
‖fε‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
‖uε‖Wε

c (Ω),

which shows the uniform boundedness of ‖uε‖Wε
c (Ω).

6.2. Homogenization in the connected case

First, we prove in subsection 6.2.1 a compactness result, for which we need the extension

operator from [Höpker, 2016] to treat the boundary conditions on the exterior boundary ΓD.

We apply this result afterwards in subsection 6.2.2 to derive the homogenized problem in the

connected case.

6.2.1. Compactness result in the connected case

The following theorem provides us with information about the weak convergence of the unfolded

extended solutions T ε(ũεκ), κ ∈ {0, 1}. We define the Hilbert space[
L2(Ω, H1

per,0(Y ))
]3

:= {u ∈
[
L2(Ω, H1

per(Y ))
]3

:MY (u) = 0}.

Theorem 6.2.1. For κ ∈ {0, 1}, let {uεκ} be a sequence with uεκ ∈ H1
ΓD∩∂Ωεκ

(Ωεκ) and

‖e(uεκ)‖[L2(Ωεκ)]3×3 ≤ C (6.2.1)
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6. Globally connected case

for a constant C independent of ε. Then, there exists, up to a subsequence, uκ ∈ H1
ΓD

(Ω) and

ūκ ∈
[
L2(Ω, H1

per,0(Y ))
]3

, such that

T ε(ũεκ) ⇀ uκ weakly in
[
L2(Ω, H1(Y ))

]3
,

T ε (e(ũεκ)) ⇀ e(uκ) + ey(ūκ) weakly in
[
L2(Ω× Y )

]3×3
,

where ·̃ is the extension to Ω defined in Theorem 3.5 in [Höpker, 2016] and T ε is the unfolding

operator from Definition 3.2.1.

Proof. Let {uεκ} be a bounded sequence as in (6.2.1) with uεκ ∈ H1
ΓD∩∂Ωεκ

(Ωεκ). The extension

operator Lε : H1
ΓD∩∂Ωεκ

(Ωεκ)→ H1
ΓD

(Ω), u 7→ ũ from Theorem 3.5 in [Höpker, 2016] satisfies

‖ũεκ‖[H1(Ω)]3 ≤ C‖uεκ‖[H1(Ωεκ)]3 .

By Korn’s inequality from Theorem 4.4 in [Höpker, 2016], we estimate

‖uεκ‖[L2(Ωεκ)]3 + ‖∇uεκ‖[L2(Ωεκ)]3×3 ≤ C‖e(uεκ)‖[L2(Ωεκ]3×3 ≤ C. (6.2.2)

Thus, the sequence of extended functions {ũεκ} is bounded in H1
ΓD

(Ω). Since H1
ΓD

(Ω) is a

Hilbert space, there exists, up to a subsequence, uκ ∈ H1
ΓD

(Ω) with

ũεκ ⇀ uκ weakly in H1
ΓD

(Ω).

So we can apply Proposition 3.2.2 (ix) to get

T ε(ũεκ) ⇀ uκ weakly in
[
L2(Ω, H1(Y ))

]3
and

T ε (∇ũεκ) ⇀ ∇uκ +∇yūκ weakly in
[
L2(Ω× Y )

]3×3
.

for some ūκ ∈
[
L2(Ω, H1

per,0(Y ))
]3

. The linearity of T ε and the definition of the linear strain

tensor e(ũεκ) = 1
2

(
∇ũεκ + (∇ũεκ)T

)
directly yield

T ε (e(ũεκ)) ⇀ e(uκ) + ey(ūκ) weakly in
[
L2(Ω× Y )

]3×3
.

If we restrict the unfolded sequence to Ω× Yκ, κ ∈ {0, 1}, we obtain the following lemma.

Theorem 6.2.2. For κ ∈ {0, 1}, let {uεκ} be a sequence with uεκ ∈ H1
ΓD∩∂Ωεκ

(Ωεκ) and

‖e(uεκ)‖[L2(Ωεκ)]3×3 ≤ C

for a constant C independent of ε. Then, there exists, up to a subsequence, uκ ∈ H1
ΓD

(Ω) and
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6.2. Homogenization in the connected case

ûκ ∈
[
L2(Ω, H1

per,0(Yκ))
]3

, such that

T εκ (uεκ) ⇀ uκ weakly in
[
L2(Ω, H1(Yκ))

]3
,

T εκ (e(uεκ)) ⇀ e(uκ) + ey(ûκ) weakly in
[
L2(Ω× Yκ)

]3×3
.

(6.2.3)

Proof. Let κ ∈ {0, 1} and {uεκ} be as in the assumptions. By restricting the unfolded extended

sequence to Ω× Yκ in (the proof of) Theorem 6.2.1 we obtain

T ε(ũεκ)|Ω×Yκ ⇀ uκ weakly in
[
L2(Ω, H1(Yκ))

]3
,

T ε(∇ũεκ)|Ω×Yκ ⇀ ∇uκ +∇yūκ weakly in
[
L2(Ω× Yκ)

]3×3
. (6.2.4)

for uκ ∈ H1
ΓD

(Ω) and ūκ ∈
[
L2(Ω, H1

per,0(Y ))
]3

. There holds

T ε(ũεκ)|Ω×Yκ = T εκ (ũεκ) = T εκ (uεκ) and T ε(∇ũεκ)|Ω×Yκ = T εκ (∇ũεκ) = T εκ (∇uεκ),

wherefore the first convergence in (6.2.3) follows directly. To prove the second convergence

result, we define

Zε :=
1

ε
(T εκ (uεκ)−MYκ(uεκ))−∇uκ(y −MYκ(y)).

Since by construction, MYκ(Zε) = 0, we can apply Poincaré–Wirtinger inequality to estimate

‖Zε‖[L2(Ω×Yκ)]3 ≤ C‖∇yZε‖[L2(Ω×Yκ)]3×3

≤ C
(
‖T εκ (∇uεκ)‖[L2(Ω×Yκ)]3×3 + ‖∇uκ‖[L2(Ω×Yκ)]3×3

)
,

which is uniformly bounded using (6.2.2). Consequently, there exists ûκ such that

Zε ⇀ ûκ weakly in
[
L2(Ω, H1(Yκ))

]3
.

Since MYκ(Zε) = 0, one has MYκ(ûκ) = 0. From (6.2.4)

∇yZε = T εκ (∇uεκ)−∇uκ ⇀ ∇yūκ weakly in
[
L2(Ω× Yκ)

]3×3
,

which implies that ∇yûκ = ∇yūκ. So ûκ is also Y -periodic, which ends up the proof.

6.2.2. Passage to the limit in the connected case

We apply the compactness result from the last subsection to derive the homogenized problem,

which we subsequently write as a microscopic and macroscopic problem.

Theorem 6.2.3. Let {uε} be a sequence of weak solutions of the problem (4.0.3) with uε ∈
Wε

c (Ω) and {fε} a bounded sequence in
[
L2(Ω)

]3
such that

T εκ (fε) ⇀ f |Ω×Yκ weakly in
[
L2(Ω× Yκ)

]3
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6. Globally connected case

for some f ∈
[
L2(Ω× Y )

]3
and κ ∈ {0, 1}. Then, there exist uκ ∈ H1

ΓD
(Ω) and ûκ ∈[

L2(Ω, H1
per,0(Yκ))

]3
, κ ∈ {0, 1}, such thatT ε(uεκ) ⇀ uκ(x) weakly in

[
L2(Ω, H1(Yκ))

]3
,

T ε (e(uεκ)) ⇀ e(uκ) + ey(ûκ) weakly in
[
L2(Ω× Yκ)

]3×3
.

(6.2.5)

Furthermore,

u = (u1, û1, u0, û0) ∈ H1
ΓD

(Ω)×
[
L2(Ω, H1

per,0(Y1))
]3 ×H1

ΓD
(Ω)×

[
L2(Ω, H1

per,0(Y0))
]3

is the solution of the problem∫
Ω

∫
Y1

A (e(u1) + ey(û1)) (e(v1) + ey(v̂1)) dydx

+

∫
Ω

∫
Y0

A (e(u0) + ey(û0)) (e(v0) + ey(v̂0)) dydx

+

∫
Ω

∫
ΣY

(
KN(u1 · n− u0 · n)n+KT

2∑
i=1

(u1 · τ i − u0 · τ i)τ i
)
· (v1 − v0) dS(y)dx

=

∫
Ω

∫
Y1

f dy · v1 dx+

∫
Ω

∫
Y0

f dy · v0 dx+

∫
ΓN

g · h1v1 dS(x) +

∫
ΓN

g · h0v0 dS(x)

(6.2.6)

for all v = (v1, v̂1, v0, v̂0) ∈ H1
ΓD

(Ω)×
[
L2(Ω, H1

per,0(Y1))
]3 ×H1

ΓD
(Ω)×

[
L2(Ω, H1

per,0(Y0))
]3

.

Proof. Let {uε} be the sequence of weak solutions of problem (4.0.3). It is by Theorem 6.1.1

and Theorem 6.1.2 unique and uniformly bounded, i.e.

‖uε‖Wε
c (Ω) ≤ C.

Then, the convergences (6.2.5) follow directly from Theorem 6.2.2. We rewrite problem (4.0.3)

using Proposition 3.2.10, Proposition 3.2.7 (i) and (ii) and the fact that Πε = ∅∫
Ω

∫
Y1

T ε1 (Aε)T ε1 (e(uε1))T ε1 (e(ϕ1)) dydx+

∫
Ω

∫
Y0

T ε0 (Aε)T ε0 (e(uε0))T ε0 (e(ϕ0)) dydx

+

∫
Ω

∫
ΣY

(KN [T ε1 (uε1 · n)− T ε0 (uε0 · n)]n) · (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx

+

∫
Ω

∫
ΣY

(
KT

2∑
i=1

[
T ε1 (uε1 · τ i)− T ε0 (uε0 · τ i)

]
τ i

)
· (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx

=

∫
Ω

∫
Y1

T ε1 (fε) · T ε1 (ϕ1) dydx+

∫
Ω

∫
Y0

T ε0 (fε) · T ε0 (ϕ0) dydx+

∫
ΓN∩∂Ωε1

g · ϕ1 dS(x)

+

∫
ΓN∩∂Ωε0

g · ϕ0 dS(x).

(6.2.7)
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Let v0, v1 be elements of

DΓD(Ω) := {φ ∈ [C∞(Ω)]
3

: v is equal to 0 in a neighbourhood of ΓD},

w0, w1 ∈ [D(Ω)]
3

and

ψε0(x) := ψ0

(x
ε

)
and ψε1(x) := ψ1

(x
ε

)
with ψ0 ∈

[
H1

per,0(Y0)
]3

and ψ1 ∈
[
H1

per,0(Y1)
]3
Y -periodically extended. We define the test

functions as

ϕ0 = ϕε0 := v0 + εv̂ε0 and ϕ1 = ϕε1 := v1 + εv̂ε0

with v̂ε0(x) = v̂0(x, xε ) and v̂ε1(x) = v̂1(x, xε ), where

v̂0(x, y) = ((w0)i(x)(ψ0)i(y))1≤i≤3 and v̂1(x, y) = ((w1)i(x)(ψ1)i(y))1≤i≤3 .

Since ϕε0|ΓD
= 0 and ϕε1|ΓD

= 0, they satisfy ϕε ∈ Wε
c (Ω),

T ε0 (ϕε0) ∈
[
L2(Ω, H1(Y0))

]3
and T ε1 (ϕε1) ∈

[
L2(Ω, H1(Y1))

]3
.

With the same arguments as in the proof of Theorem 5.2.7

T εκ (ϕεκ)→ vκ strongly in
[
L2(Ω× Yκ)

]3
,

T εκ (e(ϕεκ))→ e(vκ) + ey(v̂κ) strongly in
[
L2(Ω× Yκ)

]3×3

for κ ∈ {0, 1} and∫
Ω

∫
ΣY

(KN [T ε1 (uε1 · n)− T ε0 (uε0 · n)]n) · T εκ (εv̂εκ) dS(y) dx→ 0

resp. for τi, i ∈ {1, 2} instead of n. Since wκ, κ ∈ {0, 1}, has compact support in Ω we can

rewrite the boundary integral∫
ΓN∩∂Ωεκ

g · ϕεκ dS(x) =

∫
ΓN

g · vκχΓN∩∂Ωεκ
dS(x)

for ε small enough. We follow the approach of section 7.6.2 in [Höpker, 2016] to prove the

convergence. Since χΓN∩∂Ωεκ
is bounded in L2(ΓN), there exists a subsequence (again denoted

by ε) and a function hκ ∈ L2(ΓN) with

χΓN∩∂Ωεκ
⇀ hκ weakly in L2(ΓN).

The set {u ∈ L2(ΓN) : 0 ≤ u ≤ 1} is closed and convex and therefore weakly closed, so

0 ≤ hκ ≤ 1. The function g ·vκ is independent of ε, so it converges strongly to g ·vκ in L2(ΓN).
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6. Globally connected case

Summing up, ∫
ΓN∩∂Ωεκ

g · ϕεκ dS(x)→
∫

ΓN

g · hκvκ dS(x).

Under additional assumption on the boundary ∂Ω and the exterior boundaries of Y0 and Y1 the

limit functions h0 and h1 can be formulated explicitly (cf. Theorem 7.17 in [Höpker, 2016]).

If we plug in the test functions in (6.2.7) and pass to the limit, we obtain (6.2.6). Since

DΓD
(Ω) is dense in H1

ΓD
(Ω) (cf. Theorem 3.1 from [Bernard, 2011]) and D(Ω) × H1

per,0(Yκ)

is dense in L2(Ω, H1
per,0(Yκ)), the homogenized problem is true for all v0, v1 ∈ H1

ΓD
(Ω), v̂0 ∈[

L2(Ω, H1
per,0(Y0))

]3
and v̂1 ∈

[
L2(Ω, H1

per,0(Y1))
]3

. Due to the uniqueness of the solution,

which we prove below, all the convergences above hold true for the whole sequence.

In the next theorem we want to split the problem (6.2.6) into a micro- and macroscopic problem.

Theorem 6.2.4. Let {uε} be as in Theorem 6.2.3. We can reformulate the homogenized

problem (6.2.6): Find u0, u1 ∈ H1
ΓD

(Ω) with∫
Ω

Ahom
1 e(u1)e(v1) dx+

∫
Ω

Ahom
0 e(u0)e(v0) dx

+

∫
Ω

∫
ΣY

(
KN(u1 · n− u0 · n)n+KT

2∑
i=1

(u1 · τ i − u0 · τ i)τ i
)
· (v1 − v0) dS(y)dx

=

∫
Ω

∫
Y1

f dy · v1 dx+

∫
Ω

∫
Y0

f dy · v0 dx+

∫
ΓN

g · h1v1 dS(x) +

∫
ΓN

g · h0v0 dS(x)

(6.2.8)

whereby

(Ahom
κ )ijkh =

∫
Yκ

aijkh(y)−
3∑

l,m=1

aijlm
(
ey(χkhκ )

)
lm

dy

and χlmκ ∈
[
H1

per,0(Yκ)
]3

, l,m ∈ {1, 2, 3}, is the unique solution of

− 3∑
j=1

∂

∂yj

[(
Aey(χlmκ )

)
ij
− aijlm

]
1≤i≤3

= 0 in Yκ,− 3∑
j=1

[(
Aey(χlmκ )

)
ij
− aijlm

]
nj


1≤i≤3

= 0 on ΣY

for κ ∈ {0, 1}.

Proof. This result can be shown in the same way as in the proof of Theorem 5.2.8.

Similar as in Theorem II.1.1 from [Oleinik et al., 1992], it can be proven that there exist αhom
κ ,

βhom
κ ∈ R with 0 < αhom

κ < βhom
κ , κ ∈ {0, 1}, such that Ahom

κ ∈ M(αhom
κ , βhom

κ ,Ω). With this

fact we are able to prove the uniqueness of the solution of (6.2.8).
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6.2. Homogenization in the connected case

Theorem 6.2.5. There exist unique solutions u0, u1 ∈ H1
ΓD

(Ω) of the macroscopic problem

(6.2.8).

Proof. Let u = (u1, u0), w = (w1, w0) ∈ H1
ΓD

(Ω) × H1
ΓD

(Ω) be two solutions of the problem

(6.2.8). If we choose as test function the difference of both solutions, i.e. v1 := u1 − w1 and

v0 := u0−w0, we can estimate, using the coercivity of Ahom
κ , κ ∈ {0, 1}, and Korn’s inequality

for functions with zero on part of the boundary,

0 =

∫
Ω

Ahom
0 e(u0 − w0)e(u0 − w0) dx+

∫
Ω

Ahom
1 e(u1 − w1)e(u1 − w1) dx

+

∫
Ω

∫
ΣY

(
KN[u1 − u0 − w1 + w0] · nn+KT

2∑
i=1

[u1 − u0 − w1 + w0] · τ iτ i
)

· (u1 − w1 − u0 + w0) dS(y)dx

≥αhom
0 C‖u0 − w0‖2[H1(Ω)]3 + αhom

1 C‖u1 − w1‖2[H1(Ω)]3

+ min{KN,KT}|ΣY |‖u1 − u0 − w1 + w0‖2[L2(Ω)]3 .

Thus, u0 = w0 and u1 = w1.

A similar result holds for the case of a more general elasticity tensor Aε.

Remark 6.2.6. As in the disconnected case (cf. Remark 5.2.10), we assume that Aε ∈
M(α, β,Ω) and T ε(Aε)→ C a.e. in Ω× Y . The homogenized problem is of the same form as

(6.2.8) but the homogenized tensors Ahom
κ , κ ∈ {0, 1}, satisfy

(Ahom
κ )ijkh(x) =

∫
Yκ

cijkh(x, y)−
3∑

l,m=1

cijlm(x, y)
(
ey(χkhκ )

)
lm

(x, y)dy

and χlmκ ∈
[
L∞(Ω, H1

per,0(Yκ))
]3

, l,m ∈ {1, 2, 3}, is the unique solution of∫
Yκ

C(x, y)ey(χlmκ )(x, y)ey(v̂κ)(y)− (C(x, y)ey(v̂κ)(y))lmdy = 0

for all v̂κ ∈
[
H1

per,0(Yκ)
]3

and for a.e. x ∈ Ω.
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7. Unidirectionally connected case

In this case, we are interested in domains, where one component represents fibers of tubular

structure, which are connected in one direction. We require additionally to the assumptions

in chapter 4 that the slices of Ω parallel to one of the xi–xj-planes with i 6= j ∈ {1, 2, 3} are

equal. Without restriction, we choose i = 1 and j = 2 (see Figure 7.1). So, in the notation of

chapter 4,

Ω = Ω′ × (0, L3)

with 0 < L3, where Ω′ ⊂ R2 is an open bounded connected Lipschitz-domain. Let Ω′×{0} ⊂ ΓD

and g = 0 on Ω′ × {L3} ⊂ ΓN, where g is the boundary load in (4.0.1).

Figure 7.1.: domain Ω Figure 7.2.: reference cell Y

The reference cell Y = interior (Y0 ∪ ΣY ∪ Y1) is of the form

Y0 = Y ′0 × (0, 1), Y1 = Y ′1 × (0, 1), ΣY = ΣY ′ × (0, 1),

where Y ′0 , Y
′
1 are two open subsets of Y ′ = (0, 1)2 ⊂ R2 such that Y ′0 is a relatively compact

subset of Y ′, Y ′0∩Y ′1 = ∅, ΣY ′ := Y ′0∩Y ′1 Lipschitz-continuous and Y ′ = interior (Y ′0 ∪ ΣY ′ ∪ Y ′1)

(see Figure 7.2). The stiffness tensor Aε only depends on Ω′, i.e.

Aε(x′) = (aεijkh(x′))1≤i,j,k,h≤3 :=

(
aijkh

(
x′

ε

))
1≤i,j,k,h≤3

= A

(
x′

ε

)
for x′ ∈ Ω′, where A( · ) = (aijkh( · ))1≤i,j,k,h≤3 ∈ M(α, β, Y ′) and all components aijkh are
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7. Unidirectionally connected case

Y ′-periodic for all i, j, k, h ∈ {1, 2, 3}. Thus, Aε ∈M(α, β,Ω′).

We prove the existence, uniqueness and uniform boundedness of the solution of (4.0.3) in

section 7.1 and derive the homogenized problem after proving some compactness results in

section 7.2.

7.1. Existence result in the unidirectionally connected case

Due to the assumption on the domain, ΓD ∩ ∂Ωε0 6= ∅ and ΓD ∩ ∂Ωε1 6= ∅. So we define the

solution space as the set of piecewise H1-functions with zero value on part of the boundary,

i.e.

Wε
m(Ω) = {u ∈

[
L2(Ω)

]3
: u0 ∈ H1

ΓD∩∂Ωε0
(Ωε0), u1 ∈ H1

ΓD∩∂Ωε1
(Ωε1)},

endowed with the norm

‖u‖2Wε
m(Ω) := ‖e(u0)‖2

[L2(Ωε0)]
3×3 + ‖e(u1)‖2

[L2(Ωε1)]
3×3 + ε‖ [u]Σε ‖

2
[L2(Σε)]3 .

Theorem 7.1.1.
(
Wε

m(Ω), ‖ · ‖Wε
m(Ω)

)
defines a Hilbert space.

Proof. It can be shown as in Theorem 5.1.1 that ‖ · ‖Wε
m(Ω) defines a norm. The trace operator

and Korn’s inequality for functions with zero trace on part of the boundary (cf. Theorem 2.2.5)

yield

c(ε)‖u‖2Wε
m(Ω) ≤

∑
ξ∈Λ̃ε

‖u0‖2[H1(Ωεξ)]
3 + ‖u1‖2[H1(Ωε1)]

3

≤ C(ε)

∑
ξ∈Λ̃ε

‖e(u0)‖2
[L2(Ωεξ)]

3×3 + ‖e(u1)‖2
[L2(Ωε1)]

3×3

 ≤ C(ε)‖u‖2Wε
m(Ω),

where Λ̃ε = {ξ ∈ Z2 : ε (Y ′ + ξ) ⊂ Ω′}, Ωεξ := interior
(
ε
(
Y ′0 + ξ

))
× (0, L3) ∩ Ωε0 and the

constants c and C may depend on ε. Since for every ε the set Λ̃ε is finite, the norms are

equivalent and thus, Wε
m(Ω) can be seen as the direct sum of Hilbert spaces[

H1
ΓD∩∂Ωε1

(Ωε1)
]3
×
∏
ξ∈Λ̃ε

[
H1

ΓD∩∂Ωεξ
(Ωεξ)

]3
endowed with the standard H1-norms, which yields the desired result.

We need the following estimates to prove the existence and uniform boundedness of the solution.

Lemma 7.1.2. For every v ∈ Wε
m(Ω), there holds

(i) ε‖v1‖2[L2(Σε)]3
≤ C

(
‖v1‖2[L2(Ωε1)]

3 + ε2‖∇v1‖2[L2(Ωε1)]
3×3

)
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7.1. Existence result in the unidirectionally connected case

(ii) ‖v0‖2[L2(Ωε0)]
3 ≤ C

(
ε2‖e(v0)‖2

[L2(Ωε0)]
3×3 + ε‖v0‖2[L2(Σε)]3

)
for constants C > 0 independent of ε.

Proof. The proof is as in Lemma 5.1.2 with Yκ := Y ′κ × (0, 1), κ ∈ {0, 1}, and Λε := {ξ ∈ Z3 :

ε (Y ′ × (0, 1) + ξ) ⊂ Ω}.

There exists a unique weak solution in the space Wε
m(Ω).

Theorem 7.1.3. Let fε ∈
[
L2(Ω)

]3
and g ∈

[
L2(ΓN)

]3
. Then, there exists a unique weak

solution u ∈ Wε
m(Ω) of (4.0.3) for all ϕ ∈ Wε

m(Ω).

Proof. We prove the result via combination of the proofs of Theorem 5.1.3 and Theorem 6.1.1.

We denote the left-hand side of (4.0.3) as a mapping a : Wε
m(Ω)×Wε

m(Ω)→ R,

a(u, v) =

∫
Ωε0

Aεe(u0)e(v0)dx+

∫
Ωε1

Aεe(u1)e(v1)dx

+ ε

∫
Σε

(
KN [un]Σε n+KT

2∑
i=1

[uτ i ]Σε τ
i

)
· (v1 − v0) dS(x)

and the right-hand side of (4.0.3) as a mapping F : Wε
m(Ω)→ R,

F (v) =

∫
Ω

fε · v dx+

∫
ΓN∩∂Ωε1

g · v1 dS(x),

The integral over ΓN ∩ ∂Ωε0 vanishes since g = 0 on Ω′ × {L3} ⊃ ΓN ∩ ∂Ωε0. As the norms on

Wε
d(Ω) andWε

m(Ω) are identical, the same proof as in Theorem 5.1.3 shows that a is a coercive

continuous bilinear form. It remains to prove that F is linear and continuous. The linearity is

clear. Let v ∈ Wε
m(Ω). Using Korn’s inequality from Theorem 4.4 in [Höpker, 2016] as in the

connected case for v1 (cf. Theorem 6.1.1), we obtain

‖v1‖2[L2(Ωε1)]
3 ≤ C‖e(v1)‖2

[L2(Ωε1)]
3×3 ≤ C‖v‖2Wε

m(Ω) (7.1.1)

and with Lemma 7.1.2

‖v0‖2[L2(Ωε0)]
3 ≤ C

(
ε2‖e(v0)‖2

[L2(Ωε0)]
3×3 + ε‖v0‖2[L2(Σε)]3

)
≤ C

(
ε2‖e(v0)‖2

[L2(Ωε0)]
3×3 + ε‖[v]Σε‖2[L2(Σε)]3 + ‖v1‖2[L2(Ωε1)]

3 + ε2‖∇v1‖2[L2(Ωε1)]
3×3

)
≤ C‖v‖2Wε

m(Ω). (7.1.2)

Thus, Hölder’s inequality leads to

|F (v)| ≤ C‖fε‖[L2(Ω)]3‖v‖Wε
m(Ω) + ‖g‖[L2(ΓN)]3‖v1‖[L2(ΓN∩∂Ωε1)]

3 .
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7. Unidirectionally connected case

Since estimate (6.1.2) is also true for v1, we receive

|F (v)| ≤ C
(
‖fε‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
‖v‖Wε

m(Ω).

Therefore, all assumptions of the Lax–Milgram theorem are fulfilled and we get the existence

and uniqueness of the solution.

If fε is bounded independently of ε, the weak solution uε is uniformly bounded.

Theorem 7.1.4. Let uε ∈ Wε
m(Ω) be the weak solution of (4.0.3) and fε bounded independently

of ε in
[
L2(Ω)

]3
. Then, there exists an ε-independent constant C with

‖uε‖Wε
m(Ω) ≤ C.

Proof. Using the estimates in the proof of Theorem 7.1.3 with v = uε, we get

min{α,KN,KT}‖uε‖2Wε
m(Ω) ≤ a(uε, uε) = F (uε) ≤ C

(
‖fε‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
‖uε‖Wε

m(Ω),

which shows the uniform boundedness of ‖uε‖Wε
m(Ω).

Lemma 7.1.5. With the same assumption as in Theorem 7.1.4, there holds

‖uε‖2[L2(Ω)]3 + ‖e(uε0)‖2
[L2(Ωε0)]

3×3 + ‖e(uε1)‖2
[L2(Ωε1)]

3×3 ≤ C

for a constant C > 0 independent of ε.

Proof. If we choose v = uε in the estimates (7.1.1) and (7.1.2) and note that the constants

there are independent of ε, we get, together with the uniform boundedness from Theorem 7.1.4,

the desired result.

7.2. Homogenization results in the unidirectionally connected

case

We prove in subsection 7.2.1 some compactness results via the periodic unfolding method,

which we apply in subsection 7.2.2 to derive the homogenized problem.

7.2.1. Compactness result in the unidirectionally connected case

Since A only depends on Y ′, we are, in addition to the standard weak convergences of the

unfolded sequence, also interested in the convergence of the mean value over (0, 1) of the

unfolded sequence. Therefore, we define the linear and continuous operator M1
(0,1) : L2(Ω ×

Y1)→ L2(Ω× Y ′1),

M1
(0,1)(u)(x, y′) :=

∫ 1

0

u(x, y′, y3) dy3

54



7.2. Homogenization results in the unidirectionally connected case

and the symmetric gradient with respect to y′

ey′(w) := e(y1,y2)(w) :=

 ∂y1
w1

1
2 (∂y1

w2 + ∂y2
w1) 1

2∂y1
w3

1
2 (∂y1

w2 + ∂y2
w1) ∂y2

w2
1
2∂y2

w3

1
2∂y1w3

1
2∂y2w3 0

 .

Theorem 7.2.1. Let {uε1} be a sequence with uε1 ∈ H1
ΓD∩∂Ωε1

(Ωε1) and

‖e(uε1)‖[L2(Ωε1)]
3×3 ≤ C

for a constant C independent of ε. Then, there exists, up to a subsequence, u1 ∈ H1
ΓD

(Ω) and

û1 ∈
[
L2(Ω, H1

per,0(Y1))
]3

, such that

T ε1 (uε1) ⇀ u1 weakly in
[
L2(Ω, H1(Y1))

]3
,

T ε1 (e(uε1)) ⇀ e(u1) + ey(û1) weakly in
[
L2(Ω× Y1)

]3×3
.

(7.2.1)

Furthermore,

M1
(0,1)(T

ε
1 (uε1)) ⇀ u1 weakly in

[
L2(Ω, H1(Y ′1))

]3
,

M1
(0,1)(T

ε
1 (e(uε1))) ⇀ e(u1) + ey′(ū1) weakly in

[
L2(Ω× Y ′1)

]3×3
,

where the mean value operator M1
(0,1) is applied to every component and ū1 =M1

(0,1)(û1).

Proof. Let {uε1} be a sequence with uε1 ∈ H1
ΓD∩∂Ωε1

(Ωε1) and ‖e(uε1)‖[L2(Ωε1)]
3×3 ≤ C. The

domain Ωε1 is of the same structure as in the connected case, so we can directly apply Theo-

rem 6.2.2 to obtain the weak convergences (7.2.1). Thus, for all v ∈
[
L2(Ω× Y ′1)

]3
∫

Ω

∫
Y ′1

M1
(0,1)(T

ε
1 (uε1))(x, y′) · v(x, y′) dy′dx =

∫
Ω

∫
Y1

T ε1 (uε1)(x, y) · v(x, y′) dydx

→
∫

Ω

∫
Y1

u1(x) · v(x, y′) dydx =

∫
Ω

∫
Y ′1

u1(x) · v(x, y′) dy′dx

and with Theorem 7.2.2∫
Ω

∫
Y ′1

∂yiM1
(0,1)(T

ε
1 (uε1))(x, y′) · v(x, y′) dy′dx =

∫
Ω

∫
Y1

∂yiT ε1 (uε1)(x, y) · v(x, y′) dydx→ 0,

for i ∈ {1, 2}. Analogously, for all v ∈
[
L2(Ω× Y ′1)

]3×3

∫
Ω

∫
Y ′1

M1
(0,1)(T

ε
1 (e(uε1)))(x, y′) : v(x, y′) dy′dx

→
∫

Ω

∫
Y ′1

(
e(u1)(x) +

∫ 1

0

ey(û1)(x, y′, y3)dy3

)
: v(x, y′) dy′dx.
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7. Unidirectionally connected case

Using that û1 is 1-periodic with respect to y3 and Theorem 7.2.2, there holds∫ 1

0

ey(û1)(x, y′, y3)dy3 = ey′(ū1)(x, y′)

with ū1(x, y′) =M1
(0,1)(û1).

The following technical theorem derives the weak derivative of the mean value of a function

with respect to one variable.

Theorem 7.2.2. Let κ ∈ {0, 1} and u ∈ [L2(Ω, H1(Yκ))]3. Then,∫ 1

0

u(·, ·, y3) dy3 ∈ [L2(Ω, H1(Y ′κ))]3

with weak derivative ∫ 1

0

∂yiu(x, y′, y3) dy3

for i ∈ {1, 2}.

Proof. By Hölder’s inequality∫
Ω

∫
Y ′0

∣∣∣ ∫ 1

0

u(x, y′, y3) dy3

∣∣∣2dy′dx ≤ ‖u‖2[L2(Ω×Y0)]3 ,

which shows that
∫ 1

0
u(·, ·, y3) dy3 ∈ [L2(Ω× Y ′κ)]3. Let ϕ ∈ [D(Y ′κ)]3 and i ∈ {1, 2}. Since ϕ is

independent of y3 we get∫
Y ′κ

∫ 1

0

u(x, y′, y3) dy3 · ∂yiϕ(y′) dy′ =

∫
Y ′κ

∫ 1

0

u(x, y′, y3) · ∂yiϕ(y′) dy3dy′. (7.2.2)

By applying Hölder’s inequality twice∫ 1

0

∫
Y ′κ

|u(x, y′, y3) · ∂yiϕ(y′)|dy′dy3

≤
∫ 1

0

(∫
Y ′κ

|u(x, y′, y3)|2 dy′

)1/2(∫
Y ′κ

|∂yiϕ(y′)|2 dy′

)1/2

dy3

≤ ‖u(x, ·)‖L2(Y0)‖∂yiϕ‖L∞(Y ′κ)|Yκ|1/2.

Thus, by Tonelli’s theorem we can interchange the integrals in (7.2.2) and use the weak differ-
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entiablity of ûκ with respect to y to obtain∫
Y ′κ

∫ 1

0

u(x, y′, y3) · ∂yiϕ(y′) dy3dy′ =

∫ 1

0

∫
Y ′κ

u(x, y′, y3) · ∂yiϕ(y′) dy′dy3

= −
∫ 1

0

∫
Y ′κ

∂yiu(x, y′, y3) · ϕ(y′) dy′dy3.

By applying Hölder’s inequality twice∫ 1

0

∫
Y ′κ

|∂yiu(x, y′, y3) · ϕ(y′)|dy′dy3

≤
∫ 1

0

(∫
Y ′κ

|∂yiu(x, y′, y3)|2 dy′

)1/2(∫
Y ′κ

|ϕ(y′)|2 dy′

)1/2

dy3

≤ ‖∂yiu(x, ·)‖L2(Yκ)‖ϕ‖L∞(Y ′κ)|Yκ|1/2.

So again by Tonelli’s theorem, we obtain for almost all x ∈ Ω∫
Y ′κ

∫ 1

0

u(x, y′, y3) dy3 · ∂yiϕ(y′) dy′ = −
∫
Y ′κ

∫ 1

0

∂yiu(x, y′, y3) dy3 · ϕ(y′) dy′.

Since ∫
Ω

∫
Y ′κ

∣∣∣ ∫ 1

0

∂yiu(x, y′, y3) dy3

∣∣∣2dy′dx ≤ ‖∂yiu‖2[L2(Ω×Yκ)]3∫ 1

0
∂yiu(x, y′, y3) dy3 ∈ [L2(Ω× Y ′κ)]3 and as ϕ was arbitrary, we get the desired result.

As in the disconnected case we have in general only a uniform estimate of the symmetric

gradient of uε0. But since we have weak bonding of the materials and every connected subset of

Ωε0 is fixed at one part of the outer boundary we can prove some general compactness results.

Theorem 7.2.3. Let {uε} be a sequence with uε ∈ Wε
m(Ω) and

‖uε‖Wε
m(Ω) ≤ C

for a constant C independent of ε. Then, there exists, up to a subsequence, u0 ∈ [L2(Ω, H1(Y0))]3

such that

T ε0 (uε0) ⇀ u0 weakly in
[
L2(Ω, H1(Y0))

]3
,

∇yT ε0 (uε0) ⇀ ∇yu0 weakly in
[
L2(Ω× Y0)

]3×3
,

ey(T ε0 (uε0))→ 0 strongly in
[
L2(Ω× Y0)

]3×3
.

Moreover, u0 is of the form u0(x, y) = B(x)y + c(x) for some skew-symmetric matrix B ∈[
L2(Ω)

]3×3
and appropriate function c ∈

[
L2(Ω)

]3
.
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Proof. Let {uε} be as in the assumption. Then, there holds due Proposition 3.2.7 (iii) and

(7.1.2)

‖T ε0 (uε0)‖[L2(Ω×Y0)]3 ≤ |Y |
1
2 ‖uε0‖[L2(Ωε0)]

3 ≤ C‖uε‖Wε
m(Ω) ≤ C

and if we apply Korn’s inequality (see Theorem 2.2.3) with respect to Y0 and Lemma 5.2.2, we

get

‖∇yT ε0 (uε0)‖2
[L2(Ω×Y0)]3×3 ≤ C

(
‖ey(T ε0 (uε0))‖2

[L2(Ω×Y0)]3×3 + ‖T ε0 (uε0)‖2[L2(Ω×Y0)]3

)
≤ C

(
ε2‖T ε0 (e(uε0))‖2

[L2(Ω×Y0)]3×3 + ‖T ε0 (uε0)‖2[L2(Ω×Y0)]3

)
≤ C,

which shows that {T ε0 (uε0)} is a bounded sequence in [L2(Ω, H1(Y0))]3. Thus, there exists a

subsequence (again denoted by ε) such that

T ε0 (uε0) ⇀ u0 weakly in
[
L2(Ω× Y0)

]3
,

∇yT ε0 (uε0) ⇀ ∇yu0 weakly in
[
L2(Ω× Y0)

]3×3
.

Since

‖ey(T ε0 (uε0))‖[L2(Ω×Y0)]3×3 ≤ ε‖T ε0 (e(uε0))‖[L2(Ω×Y0)]3×3 ≤ ε|Y | 12 ‖e(uε0)‖[L2(Ωε0)]
3×3 ≤ εC,

we receive the strong convergence

ey(T ε0 (uε0))→ 0 strongly in
[
L2(Ω× Y0)

]3×3
,

resulting in ey(u0)(x, y) = 0 for almost every (x, y) ∈ Ω × Y0. So there are only rigid-body

motions with respect to Y0 possible, i.e. u0(x, y) = B(x)y + c(x) with B(x) ∈ R3×3 skew-

symmetric. Clearly, B ∈
[
L2(Ω)

]3×3
and c ∈

[
L2(Ω)

]3
.

The limit function u0 satisfies some more properties.

Theorem 7.2.4. The limit function u0 ∈ [L2(Ω, H1(Y0))]3 from Theorem 7.2.3 is of the form

u0(x, y) = b(x)(y2,−y1, 0)T + c(x) with b ∈ L2(Ω).

Proof. Since T ε0 (uε0) ∈ [L2(Ω, H1(Y0))]3, the traces with respect to y3 exist. Following the steps

of the proof of Proposition 3.1 in [Cioranescu et al., 2008], we compute for all ϕ ∈ [D(Ω× Y ′0)]
3
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by an obvious change of variable∫
Ω×Y ′0

(T ε0 (uε0)(x, (y′, 1))− T ε0 (uε0)(x, (y′, 0))) · ϕ(x, y′) dxdy′

=

∫
Ω×Y ′0

(
uε0

(
ε
[x
ε

]
+ ε(y′, 1)

)
− uε0

(
ε
[x
ε

]
+ ε(y′, 0)

))
· ϕ(x, y′) dxdy′

=

∫
Ω×Y ′0

uε0

(
ε
[x
ε

]
+ ε(y′, 0)

)
· (ϕ(x− εe3, y

′)− ϕ(x, y′)) dxdy′

=

∫
Ω×Y ′0

T ε0 (uε0)(x, (y′, 0)) · (ϕ(x− εe3, y
′)− ϕ(x, y′)) dxdy′,

which converges to zero, using the weak convergence from Theorem 7.2.3. Thus, u0 is y3-

periodic and we obtain

0 = u0(x, (y′, 1))− u0(x, (y′, 0)) = B(x)(y′, 1)−B(x)(y′, 0) = (b13(x), b23(x), 0)

for almost every x ∈ Ω. Since B is skew-symmetric, u0 is of the form

u0(x, y) = B(x)y + c(x) = (b12(x)y2, b21(x)y1, 0)T + c(x) = b12(x)(y2,−y1, 0)T + c(x).

The result follows by setting b(x) := b12(x).

From Theorem 7.2.3 and Theorem 7.2.4, we directly obtain the following weak convergences.

Lemma 7.2.5. There holds

∂y3T ε0 (uε0) ⇀ 0 weakly in
[
L2(Ω× Y0)

]3
,

∂y1T ε0 (uε0)3 ⇀ 0 weakly in L2(Ω× Y0),

∂y2T ε0 (uε0)3 ⇀ 0 weakly in L2(Ω× Y0).

The third component of u0 is weak differentiable in e3-direction.

Theorem 7.2.6. The function c(x) from Theorem 7.2.4 satisfies ∂3c3(x) ∈ L2(Ω) and c3|ΓD
=

0.

Proof. The proof follows the idea of the proof of Lemma 2.3 from [Allaire and Murat, 1993]

applied to the unfolded sequence. For the readability, we define ũε0 := (uε0)3. We consider the

unfolded mean value over Y0 of the third component of uε0, i.e.

Mε
Y0

(ũε0)(x) :=
1

|Y0|

∫
Y0

T ε0 (ũε0)(x, y) dy.

Since

‖Mε
Y0

(ũε0)‖L2(Ω) ≤
(
|Y |
|Y0|

) 1
2

‖ũε0‖L2(Ωε0) ≤ C,
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there exists a function ũ0 ∈ L2(Ω) such that

Mε
Y0

(ũε0) ⇀ ũ0 weakly in L2(Ω).

We estimate the difference of the mean values of adjacent cells in e3-direction by using the

change of variable theorem and Lemma 2.2(2) from [Allaire and Murat, 1993]

|Mε
Y0

(ũε0)(x)−Mε
Y0

(ũε0)(x+ εe3)|

=

∣∣∣∣ 1

|Y0|

∫
Y0

T ε0 (ũε0)(x, y) dy − 1

|Y0|

∫
Y0

T ε0 (ũε0)(x, e3 + y) dy

∣∣∣∣
=

∣∣∣∣∣ 1

|Y0|

∫
Y ′0

(∫ 1

0

T ε0 (ũε0)(x, y′, y3) dy3 −
∫ 2

1

T ε0 (ũε0)(x, y′, y3) dy3

)
dy′

∣∣∣∣∣
≤ C

|Y0|

∫
Y ′0

(∫ 2

0

|∂y3
T ε0 (ũε0)(x, y′, y3)|2dy3

) 1
2

dy′

≤ C |Y
′
0 |

1
2

|Y0|
‖∂y3
T ε0 (ũε0)(x, ·)‖L2(Z0)

≤ Cε‖T ε0 (∂3ũ
ε
0)(x, ·)‖L2(Z0)

= Cε

(∫
Z0

∣∣∣∂3ũ
ε
0

(
ε
[x
ε

]
+ εy

)∣∣∣2dy

) 1
2

= Cε−
1
2 ‖∂3ũ

ε
0‖L2(ε[ xε ]+εZ0)

with Z0 := Y0 ∪ (Y0 + e3)∪ (∂Y0 ∩ ∂(Y0 + e3)). Let ω ⊂ Ω convex such that ω ⊂ Ω and ω ⊂ Ωε

for ε small enough. Let h > 0 sufficiently small such that x+ he3 ∈ Ω for all x ∈ ω. If h ≤ ε,

we have to distinguish two cases. If [x+he3
ε ] = [xε ], then

|Mε
Y0

(ũε0)(x)−Mε
Y0

(ũε0)(x+ he3)| = 0,

and if [x+he3
ε ] = [xε ] + e3, we use the previous estimate to get

|Mε
Y0

(ũε0)(x)−Mε
Y0

(ũε0)(x+ he3)| ≤ Cε− 1
2 ‖∂3ũ

ε
0‖L2(ε[ xε ]+εZ0).

Thus, ∫
ω

|Mε
Y0

(ũε0)(x)−Mε
Y0

(ũε0)(x+ he3)|2 dx

≤
∑
ξ∈Λε

∫
ε(ξ+Y0)

|Mε
Y0

(ũε0)(x)−Mε
Y0

(ũε0)(x+ he3)|2 dx

≤
∑
ξ∈Λε

Cε−1‖∂3ũ
ε
0‖2L2(εξ+εZ0)(ε− 0)(ε− 0)(ε− (ε− h))

≤ 2Cεh‖∂3ũ
ε
0‖2L2(Ωε0)

≤ εhC.

60
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If h > ε there exists an n ∈ N and h̃ < ε with h = nε+ h̃. Since ω is convex, we can split the

intervall (x, x+ he3) into the intervalls

(x+ jεe3, x+ (j + 1)εe3), j ∈ {0, . . . , n− 1}, and (x+ nεe3, x+ (nε+ h̃)e3).

With the results from the case h < ε, we estimate

‖Mε
Y0

(ũε0)(x)−Mε
Y0

(ũε0)(x+ he3)‖L2(ω)

≤
n−1∑
j=0

‖Mε
Y0

(ũε0)(x+ jεe3)−Mε
Y0

(ũε0)(x+ (j + 1)εe3)‖L2(ω)

+ ‖Mε
Y0

(ũε0)(x+ nεe3)−Mε
Y0

(ũε0)(x+ (nε+ h̃)e3)‖L2(ω)

≤ C(nε+ (εh̃)
1
2 )

≤ Ch.

Since Mε
Y0

(ũε0) converges weakly to ũ0 in L2(Ω),

Mε
Y0

(ũε0)(·)−Mε
Y0

(ũε0)(·+ he3) ⇀ ũ0(·)− ũ0(·+ he3)

weakly in L2(ω). Thus,

‖ũ0(·)− ũ0(·+ he3)‖L2(ω) ≤ lim inf
ε→0

‖Mε
Y0

(ũε0)(·)−Mε
Y0

(ũε0)(·+ he3)‖L2(ω) ≤ Ch,

and since ω was arbitrary, this shows that ∂3ũ0 ∈ L2(Ω). Furthermore, we know from Theo-

rem 7.2.4 that

T ε0 (ũε0) ⇀ c3 weakly in L2(Ω, H1(Y0)).

Since the mean-value operator is linear and continuous, we also get that

Mε
Y0

(ũε0) =MY0(T ε0 (ũε0)) ⇀MY0(c3) = c3 weakly in L2(Ω),

which yields that c3 = ũ0 ∈ L2(Ω). It can be shown that c3|ΓD
= 0 as in Lemma 4.41

from [Cioranescu et al., 2018] by extending the function by zero outside of the domain Ω.

In the next theorem, we prove the weak convergence of a sequence, where the symmetric

gradient with respect to y of this sequence coincides with the unfolded symmetric gradient of

uε0. The idea is to neglect the rigid-body motions on the microscopic scale because they do not

induce forces.

Theorem 7.2.7. Let {uε} be a sequence with uε ∈ Wε
m(Ω) and

‖uε‖Wε
m(Ω) ≤ C

for a constant C independent of ε. Then, there exists a function û0 ∈
[
L2(Ω, H1(Y0))

]3
such
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7. Unidirectionally connected case

that up to a subsequence

Zε0 :=
1

ε
[T ε0 (uε0)− rε] ⇀ û0 weakly in

[
L2(Ω, H1(Y0))

]3
,

T ε0 (e(uε0)) ⇀ ey(û0) weakly in
[
L2(Ω× Y0)

]3×3
,

where rε(x, y) = Bε(x)y + cε(x) with skew-symmetric matrix

Bε(x) :=MY0(∇yT ε0 (uε0)(x, y)− ey(T ε0 (uε0))(x, y))

and

cε(x) =MY0
(T ε0 (uε0)(x, y)−Bεy)

for a.e. (x, y) ∈ Ω× Y0. Furthermore, there holds MY0
(û0) = 0 and MY0

(∇× û0) = 0.

Proof. Let {uε} be a bounded sequence as in the assumption. The first part can be proven as

in Theorem 5.2.4. Since

MY0(∂yi(Z
ε
0)j − ∂yj (Zε0)i) =

1

ε
MY0

(∂yiT ε0 (uε0)j − bεji − ∂yjT ε0 (uε0)i + bεij)

=
1

ε
(MY0

(∂yiT ε0 (uε0)j − ∂yjT ε0 (uε0)i) + 2bεij) = 0

for i, j ∈ {1, 2, 3} with i 6= j and for all ε, we receive MY0
(∇× û0) = 0.

We can split the weak limit of the third component of the sequence {Zε0} into a non-periodic

and a 1-periodic part with respect to y3.

Lemma 7.2.8. With the same assumption as in Theorem 7.2.7, the third component of the

sequence {Zε0} satisfies

(Zε0)3 ⇀ ũ0 + ∂3c3(x)

(
y3 −

1

2

)
weakly in L2(Ω, H1(Y0))

with ũ0 ∈ L2(Ω, H1(Y0)) 1-periodic with respect to y3.

Proof. We define the sequence F ε0 := (Zε0)3−∂3c3(x)(y3− 1
2 ), which is bounded in L2(Ω, H1(Y0))

due to Theorem 7.2.6 and Theorem 7.2.7. Thus, there exists a ũ0 ∈ L2(Ω, H1(Y0)) such that

F ε0 ⇀ ũ0 weakly in L2(Ω, H1(Y0)).

We prove that ũ0 is 1-periodic with respect to y3. Let ϕ ∈ D(Ω × Y ′0), then by change of
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variable ∫
Ω×Y ′0

(F ε0 (x, (y′, 1))− F ε0 (x, (y′, 0)))ϕ(x, y′) dxdy′

=

∫
Ω×Y ′0

(T ε0 (uε0))3(x, (y′, 0))
1

ε
(ϕ(x− εe3, y

′)− ϕ(x, y′)) dxdy′

−
∫

Ω×Y ′0

1

ε

(
Bε(x)(y′, 1)T −Bε(x)(y′, 0)T )

)
3
ϕ(x, y′) dxdy′

−
∫

Ω×Y ′0
∂3c3(x)ϕ(x, y′) dxdy′

which converges to∫
Ω×Y ′0

(ũ0(x, (y′, 1))− ũ0(x, (y′, 0)))ϕ(x, y′) dxdy′

= −
∫

Ω×Y ′0
c3(x)∂3ϕ(x, y′) dxdy′ −

∫
Ω×Y ′0

∂3c3(x)ϕ(x, y′) dxdy′ = 0,

since c3 is weakly differentiable with respect to x3 and(
Bε(x)(y′, 1)T −Bε(x)(y′, 0)T

)
3

=
(
Bε(x)(0, 0, 1)T

)
3

= 0

due to the skew-symmety of Bε. From the definition of F ε0 there follows

(Zε0)3 ⇀ ũ0 + ∂3c3(x)

(
y3 −

1

2

)
weakly in L2(Ω, H1(Y0))

with ũ0 ∈ L2(Ω, H1(Y0)) 1-periodic with respect to y3.

We define the linear and continuous operator M0
(0,1) : L2(Ω× Y0)→ L2(Ω× Y ′0),

M0
(0,1)(u)(x, y′) :=

∫ 1

0

u(x, y′, y3) dy3.

Corollary 7.2.9. Let {uε} be a sequence with uε ∈ Wε
m(Ω) and

‖uε‖Wε
m(Ω) ≤ C

for a constant C independent of ε. Then, there exists, up to a subsequence, functions b ∈ L2(Ω),

c ∈
[
L2(Ω)

]3
with ∂3c3 ∈ L2(Ω), û0 ∈

[
L2(Ω, H1(Y0))

]2
and ũ0 ∈ L2(Ω, H1(Y0)) 1-periodic

with respect to y3 such that

M0
(0,1)(T

ε
0 (uε0)) ⇀ b(x)(y2,−y1, 0)T + c(x)
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weakly in
[
L2(Ω, H1(Y ′0))

]3
and

M0
(0,1)(T

ε
0 (e(uε0))) ⇀

∂y1(ū0)1
1
2 (∂y1(ū0)2 + ∂y2(ū0)1) 1

2 (∂y1(ū0)3 +
∫ 1

0
∂y3(û0)1 dy3)

∗ ∂y2
(ū0)2

1
2 (∂y2

(ū0)3 +
∫ 1

0
∂y3

(û0)2 dy3)

sym ∗ ∂3c3


weakly in

[
L2(Ω× Y ′0)

]3×3
, whereby M0

(0,1) is applied to every component and

ū0 :=

∫ 1

0

((û0)1, (û0)2, ũ0)Tdy3.

Furthermore, MY ′0
(ū0)(x) = 0 and MY ′0

(∂y1
(ū0)2 − ∂y2

(ū0)1)(x) = 0 for almost all x ∈ Ω.

Proof. We apply the continuous operator M0
(0,1) to the weak convergent sequences in Theo-

rem 7.2.4 and Theorem 7.2.7, wherefore with Theorem 7.2.2 as in Theorem 7.2.1

M0
(0,1)(T

ε
0 (uε0)) ⇀ b(x)(y2,−y1, 0)T + c(x)

weakly in
[
L2(Ω, H1(Y ′0))

]3
and

M0
(0,1)(T

ε
0 (e(uε0))) ⇀M0

(0,1)(ey(û0))

weakly in
[
L2(Ω× Y ′0)

]3×3
. By Lemma 7.2.8 the symmetric gradient of û0 is of the form

ey(û0) =

∂y1(û0)1
1
2 (∂y1(û0)2 + ∂y2(û0)1) 1

2 (∂y1 ũ0 + ∂y3(û0)1)

∗ ∂y2(û0)2
1
2 (∂y2 ũ0 + ∂y3(û0)2)

sym ∗ ∂y3 ũ0 + ∂3c3(x)

 .

Using Theorem 7.2.2 and the 1-periodicity of ũ0 with respect to y3 we obtain

M0
(0,1)(ey(û0)) =

∂y1
(ū0)1

1
2 (∂y1

(ū0)2 + ∂y2
(ū0)1) 1

2 (∂y1
(ū0)3 +

∫ 1

0
∂y3

(û0)1 dy3)

∗ ∂y2(ū0)2
1
2 (∂y2(ū0)3 +

∫ 1

0
∂y3(û0)2 dy3)

sym ∗ ∂3c3(x)


with ū0 :=

∫ 1

0
((û0)1, (û0)2, ũ0)Tdy3. Since∫ 1

0

(û0)3 dy3 =

∫ 1

0

ũ0 + ∂3c3

(
y3 −

1

2

)
dy3 =

∫ 1

0

ũ0 dy3

there follows

0 =M0
Y0

(û0)(x) =M0
Y ′0

(ū0)(x)

for almost all x ∈ Ω. Using again Theorem 7.2.2

0 =M0
Y0

(∂y1(û0)2 − ∂y2(û0)1)(x) =M0
Y ′0

(∂y1(ū0)2 − ∂y2(ū0)1)(x)
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for almost all x ∈ Ω.

7.2.2. Passage to the limit in the unidirectionally connected case

We apply the compactness results from the subsection above to derive the homogenized prob-

lem.

Theorem 7.2.10. Let {uε} be a sequence of weak solutions of the problems (4.0.3) with uε ∈
Wε

m(Ω) and {fε} a bounded sequence in
[
L2(Ω)

]3
such that

T εκ (fε) ⇀ f |Ω×Yκ weakly in
[
L2(Ω× Yκ)

]3
for some f ∈

[
L2(Ω× Y )

]3
and κ ∈ {0, 1}. Then, there exist functions

(u1, ū1, u0) ∈ H1
ΓD

(Ω)×
[
L2(Ω, H1

per,0(Y ′1))
]3 × [L2(Ω, H1(Y ′0))

]3
,

where

u0(x, y) = b(x)(y2,−y1, 0)T + c(x)

with b ∈ L2(Ω) and c ∈
[
L2(Ω)

]3
with ∂3c3 ∈ L2(Ω) and c3|ΓD = 0, and

(û0, ũ0) ∈
[
L2(Ω, H1(Y0))

]2 × L2(Ω, H1(Y0))

with ũ0 1-periodic with respect to y3, which satisfy, up to a subsequence,
M1

(0,1)(T
ε

1 (uε1)) ⇀ u1 weakly in
[
L2(Ω, H1(Y ′1))

]3
,

M1
(0,1)(T

ε
1 (e(uε1))) ⇀ e(u1) + ey′(ū1) weakly in

[
L2(Ω× Y ′1)

]3×3
,

M0
(0,1)(T

ε
0 (uε0)) ⇀ u0 weakly in

[
L2(Ω, H1(Y ′0))

]3
,

(7.2.3)

and

M0
(0,1)(T

ε
0 (e(uε0))) ⇀

∂y1(ū0)1
1
2 (∂y1(ū0)2 + ∂y2(ū0)1) 1

2 (∂y1(ū0)3 +
∫ 1

0
∂y3(û0)1 dy3)

∗ ∂y2
(ū0)2

1
2 (∂y2

(ū0)3 +
∫ 1

0
∂y3

(û0)2 dy3)

sym ∗ ∂3c3


weakly in

[
L2(Ω× Y ′0)

]3×3
, where ū0 :=

∫ 1

0
((û0)1, (û0)2, ũ0)Tdy3 with MY ′0

(ū0)(x) = 0 and

MY ′0
(∂y1(ū0)2 − ∂y2(ū0)1)(x) = 0 for almost all x ∈ Ω.
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Furthermore, u = (u1, ū1, u0, û0, ũ0) is the solution of the problem∫
Ω

∫
Y ′1

A(y′)(e(u1) + ey′(ū1))(e(v1) + ey′(v̂1)) dy′dx

+

∫
Ω

∫
Y ′0

A(y′)


∂y1

(ū0)1
1
2 (∂y1

(ū0)2 + ∂y2
(ū0)1) 1

2 (∂y1
(ū0)3 +

∫ 1

0
∂y3

(û0)1 dy3)

∗ ∂y2(ū0)2
1
2 (∂y2(ū0)3 +

∫ 1

0
∂y3(û0)2 dy3)

sym ∗ 0


+

0 0 0

0 0 0

0 0 ∂3c3


 (e(v0) + ey′(v̂0)) dy′dx

+

∫
Ω


∫

ΣY ′
(KN [u′1 · n′ − u′0 · n′]n′1 +KT [u′1 · τ ′ − u′0 · τ ′] τ ′1) dS(y′)∫

ΣY ′
(KN [u′1 · n′ − u′0 · n′]n′2 +KT [u′1 · τ ′ − u′0 · τ ′] τ ′2) dS(y′)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx

=

∫
Ω

∫
Y ′1

f̄ dy′ · v1 dx+

∫
Ω

∫
Y ′0

f̄ dy′ · v0 dx+

∫
ΓN

g · v1 dS(x)

(7.2.4)

for all v0, v1 ∈ H1
ΓD

(Ω), v̂1 ∈
[
L2(Ω, H1

per,0(Y ′1))
]3

and v̂0 ∈
[
L2(Ω, H1(Y ′0))

]3
, where f̄ =∫ 1

0
fdy3, u′1 = ((u1)1, (u1)2), u′0 = b(x)(y2,−y1) + (c1, c2), n′ is the normal vector and τ ′ is the

tangential vector of ΣY ′ .

Proof. Let {uε} be a sequence of weak solutions of problem (4.0.3) with uε ∈ Wε
m(Ω). From

Theorem 7.1.4 and Lemma 7.1.5 we get the uniform boundedness

‖uε‖2[L2(Ω)]3 + ‖e(uε0)‖2
[L2(Ωε0)]

3×3 + ‖e(uε1)‖2
[L2(Ωε1)]

3×3 ≤ C.

Then, the convergences (7.2.3) follow directly from Theorem 7.2.1 and Corollary 7.2.9. We

rewrite the weak formulation of problem (4.0.3) using Proposition 3.2.10 and Proposition 3.2.7

(i) and (ii) to receive the unfolded problem∫
Ω

∫
Y1

T ε1 (Aε)T ε1 (e(uε1))T ε1 (e(ϕ1)) dydx+

∫
Πε∩Ωε1

Aεe(uε1)e(ϕ1)dx

+

∫
Ω

∫
Y0

T ε0 (Aε)T ε0 (e(uε0))T ε0 (e(ϕ0)) dydx

+

∫
Ω

∫
ΣY

(KN [T ε1 (uε1 · n)− T ε0 (uε0 · n)]n) · (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx

+

∫
Ω

∫
ΣY

(
KT

2∑
i=1

[
T ε1 (uε1 · τ i)− T ε0 (uε0 · τ i)

]
τ i

)
· (T ε1 (ϕ1)− T ε0 (ϕ0)) dS(y) dx

=

∫
Ω

∫
Y1

T ε1 (fε) · T ε1 (ϕ1) dydx+

∫
Πε∩Ωε1

fε · ϕ1 dx+

∫
Ω

∫
Y0

T ε0 (fε) · T ε0 (ϕ0) dydx

+

∫
ΓN

g · ϕ1 dS(x).

(7.2.5)
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We define

DΓD(Ω) := {φ ∈ C∞(Ω) : v is equal to 0 in a neighbourhood of ΓD}.

Let v0, v1 ∈
[
DΓD

(Ω)
]3

, w0, w1 ∈ [D(Ω)]
3

and

ψε0(x′) := ψ0

(
x′

ε

)
:= ψ0

(x1

ε
,
x2

ε

)
and ψε1(x′) := ψ1

(
x′

ε

)
:= ψ1

(x1

ε
,
x2

ε

)
with ψ0 ∈

[
H1(Y ′0)

]3
and ψ1 ∈

[
H1

per,0(Y ′1)
]3

Y ′-periodically extended. We choose as test

functions

ϕ0 = ϕε0 := v0 + εv̂ε0 and ϕ1 = ϕε1 := v1 + εv̂ε1

with v̂ε0(x) = v̂0(x, (x1

ε ,
x2

ε )) and v̂ε1(x) = v̂1(x, (x1

ε ,
x2

ε )), where

v̂0(x, y′) = ((w0)i(x)(ψ0)i(y
′))1≤i≤3 and v̂1(x, y′) = ((w1)i(x)(ψ1)i(y

′))1≤i≤3.

Then, ϕε ∈ Wε
m(Ω),

T ε0 (ϕε0) ∈
[
L2(Ω, H1(Y0))

]3
and T ε1 (ϕε1) ∈

[
L2(Ω, H1(Y1))

]3
.

With the same arguments as in the proof of Theorem 5.2.7

T εκ (ϕεκ)→ vκ strongly in
[
L2(Ω× Yκ)

]3
,

T εκ (vκ)→ vκ strongly in
[
L2(Ω, H1(Yκ))

]3
for κ ∈ {0, 1}, ∫

Πε∩Ωε1

Aεe(uε1)e(ϕε1)dx→ 0 and

∫
Πε∩Ωε1

fε · ϕε1 dx→ 0

as ε→ 0 and ∫
Ω

∫
ΣY

(KN [T ε1 (uε1 · n)− T ε0 (uε0 · n)]n) · T εκ (εv̂εκ) dS(y) dx→ 0

resp. for τi, i ∈ {1, 2} instead of n. Every component of the symmetric gradient of ϕεκ satisfies

eij(ϕ
ε
κ) = eij(vκ) +

1

2

[
ε∂xi(wκ)j(x)(ψκ)j

(
x′

ε

)
+ (wκ)j(x)∂yi(ψκ)j

(
x′

ε

)
+ε∂xj (wκ)i(x)(ψκ)i

(
x′

ε

)
+ (wκ)i(x)∂yj (ψκ)i

(
x′

ε

)]

67



7. Unidirectionally connected case

for i, j ∈ {1, 2},

ei3(ϕεκ) = ei3(vκ) +
1

2

[
ε∂xi(wκ)3(x)(ψκ)3

(
x′

ε

)
+ (wκ)3(x)∂yi(ψκ)3

(
x′

ε

)
+ε∂x3

(wκ)i(x)(ψκ)i

(
x′

ε

)]
for i ∈ {1, 2} and

e33(ϕεκ) = e33(vκ) + ε∂x3
(wκ)3(x)(ψκ)3

(
x′

ε

)
.

If we apply the periodic unfolding operator to eij(ϕ
ε
κ) and use the properties from Proposi-

tion 3.2.7, we get

T εκ (eij(ϕ
ε
κ))→ eij(vκ) + (ey′(v̂κ))ij strongly in L2(Ω× Yκ).

Thus,

T εκ (e(ϕεκ))→ e(vκ) + ey′(v̂κ) strongly in
[
L2(Ω× Yκ)

]3×3
.

If we plug in the test function in (7.2.5), use the weak convergence results from subsection 7.2.1

and pass to the limit, we get∫
Ω

∫
Y1

A(y′)(e(u1) + ey(û1))(e(v1) + ey′(v̂1)) dydx

+

∫
Ω

∫
Y0

A(y′)


∂y1

(û0)1
1
2 (∂y1

(û0)2 + ∂y2
(û0)1) 1

2 (∂y1
ũ0 + ∂y3

(û0)1)

∗ ∂y2
(û0)2

1
2 (∂y2

ũ0 + ∂y3
(û0)2)

sym ∗ ∂y3
ũ0


+

0 0 0

0 0 0

0 0 ∂3c3


 (e(v0) + ey′(v̂0)) dydx

+

∫
Ω

∫
ΣY

(
KN

[
u1 · n− (b(x)(y2,−y1, 0)T + c(x)) · n

]
n

+KT

2∑
i=1

[
u1 · τ i − (b(x)(y2,−y1, 0)T + c(x)) · τ i

]
τ i

)
· (v1 − v0) dS(y) dx

=

∫
Ω

∫
Y1

f dy · v1 dx+

∫
Ω

∫
Y0

f dy · v0 dx+

∫
ΓN

g · v1 dS(x).

(7.2.6)

Due to the structure of ΣY the normal vector and one of tangent vectors can be chosen

independent of y3, i.e. n = (n′1, n
′
2, 0), τ1 = (τ ′1, τ

′
2, 0) and τ2 = (0, 0, 1) with n′ = (n′1, n

′
2) and
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τ ′ = (τ ′1, τ
′
2) the normal and tangential vector of ΣY ′ . So the interface term is of the form∫

Ω

∫
ΣY

(
KN

[
u1 · n− (b(x)(y2,−y1, 0)T + c(x)) · n

]
n

+KT

2∑
i=1

[
u1 · τ i − (b(x)(y2,−y1, 0)T + c(x)) · τ i

]
τ i

)
· (v1 − v0) dS(y) dx

=

∫
Ω


∫

ΣY ′
(KN [u′1 · n′ − u′0 · n′]n′1 +KT [u′1 · τ ′ − u′0 · τ ′] τ ′1) dS(y′)∫

ΣY ′
(KN [u′1 · n′ − u′0 · n′]n′2 +KT [u′1 · τ ′ − u′0 · τ ′] τ ′2) dS(y′)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx.

Since most of the functions in (7.2.6) are independent of y3, we can rewrite the problem to

obtain (7.2.4) for all v0, v1 ∈ H1
ΓD

(Ω), v̂1 ∈
[
L2(Ω, H1

per,0(Y ′1))
]3

and v̂0 ∈
[
L2(Ω, H1(Y ′0))

]3
,

where we have used that
[
DΓD(Ω̄)

]3
is dense in H1

ΓD
(Ω) (by Theorem 3.1 from [Bernard, 2011]),

D(Ω)×H1
per(Y

′
1) is dense in L2(Ω, H1

per(Y
′
1)) and D(Ω)×H1(Y ′0) is dense in L2(Ω, H1(Y ′0)).

If we assume that A is isotropic, we can simplify the problem.

Theorem 7.2.11. Additional to the assumption of Theorem 7.2.10, let A be isotropic. Then,

u = (u1, u0) is the solution of the problem∫
Ω

Ahom
1 e(u1)e(v1) dx+

∫
Ω

Ahom
0 ∂3c3∂3(v0)3 dx

+

∫
Ω


∫

ΣY ′
((u1)1 − by2 − c1)ζ1(n′) + ((u1)2 + by1 − c2)ζ2(n′) dS(y′)∫

ΣY ′
((u1)1 − by2 − c1)ζ2(n′) + ((u1)2 + by1 − c2)ζ3(n′) dS(y′)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx

=

∫
Ω

∫
Y ′1

f̄ dy′ · v1 dx+

∫
Ω

∫
Y ′0

f̄ dy′ · v0 dx+

∫
ΓN

g · v1 dS(x), (7.2.7)

for all v1 ∈ H1
ΓD

(Ω), v0 ∈
[
L2(Ω)

]3
with ∂3(v0)3 ∈ L2(Ω) and (v0)3|ΓD

= 0, where

ζ1(n′) = KN(n′1)2 +KT(n′2)2 = (KN −KT)(n′1)2 +KT,

ζ2(n′) = (KN −KT)n′1n
′
2,

ζ3(n′) = KN(n′2)2 +KT(n′1)2 = (KN −KT)(n′2)2 +KT.

Furthermore,

Ahom
0 :=

∫
Y ′0

a3333 −
a2

1133a2222 + a1111a
2
2233 − 2a1122a1133a2233

a1111a2222 − (a1122)2
dy′

and

(Ahom
1 )ijkh =

∫
Y ′1

aijkh(y′)−
3∑

l,m=1

aijlm(y′)
(
ey′(χ

kh
1 )
)
lm

dy′,
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7. Unidirectionally connected case

where χlm1 ∈
[
H1

per,0(Y ′1)
]3

, l,m ∈ {1, 2, 3}, is the weak solution of∫
Y ′1

A(y′)ey′(χ
lm
1 )ey′(v̂1)− (Aey′(v̂1))lm dy′ = 0

for all v̂1 ∈
[
H1

per,0(Y ′1)
]3

.

Proof. Since the normal and tangent vector of ΣY ′ are orthogonal, there holds n′ = (n′1, n
′
2)

and τ ′ = (n′2,−n′1). So the interface term is of the form

∫
Ω


∫

ΣY ′
(KN [u′1 · n′ − u′0 · n′]n′1 +KT [u′1 · τ ′ − u′0 · τ ′] τ ′1) dS(y′)∫

ΣY ′
(KN [u′1 · n′ − u′0 · n′]n′2 +KT [u′1 · τ ′ − u′0 · τ ′] τ ′2) dS(y′)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx

=

∫
Ω


∫

ΣY ′
((u1)1 − by2 − c1)ζ1(n′) + ((u1)2 + by1 − c2)ζ2(n′) dS(y′)∫

ΣY ′
((u1)1 − by2 − c1)ζ2(n′) + ((u1)2 + by1 − c2)ζ3(n′) dS(y′)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx

with

ζ1(n′) = KN(n′1)2 +KT(n′2)2 = (KN −KT)(n′1)2 +KT,

ζ2(n′) = (KN −KT)n′1n
′
2,

ζ3(n′) = KN(n′2)2 +KT(n′1)2 = (KN −KT)(n′2)2 +KT.

If we choose v0 = v1 = v̂1 = 0 in (7.2.4), then

∫
Ω

∫
Y ′0

A(y′)


∂y1

(ū0)1
1
2 (∂y1(ū0)2 + ∂y2(ū0)1) 1

2 (∂y1(ū0)3 +
∫ 1

0
∂y3(û0)1 dy3)

∗ ∂y2
(ū0)2

1
2 (∂y2

(ū0)3 +
∫ 1

0
∂y3

(û0)2 dy3)

sym ∗ 0


+

0 0 0

0 0 0

0 0 ∂3c3


 ey′(v̂0) dy′dx = 0
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for all v̂0 ∈ [L2(Ω, H1(Y ′0))]3. Using the isotropy of A, we can simplify the limit problem to∫
Ω

∫
Y ′0

(a1111(y′)∂y1(ū0)1 + a1122(y′)∂y2(ū0)2)∂y1(v̂0)1

+ a1212(y′)(∂y1
(ū0)2 + ∂y2

(ū0)1)(∂y1
(v̂0)2 + ∂y2

(v̂0)1)

+ a1313(y′)

(
∂y1

(ū0)3 +

∫ 1

0

∂y3
(û0)1 dy3

)
∂y1

(v̂0)3

+ (a1122(y′)∂y1
(ū0)1 + a2222(y′)∂y2

(ū0)2)∂y2
(v̂0)2

+ a2323(y′)

(
∂y2(ū0)3 +

∫ 1

0

∂y3(û0)2 dy3

)
∂y2(v̂0)3 dy′dx

= −
∫

Ω

∫
Y ′0

a1133(y′)∂3c3∂y1(v̂0)1 + a2233(y′)∂3c3∂y2(v̂0)2 dy′dx.

(7.2.8)

In this equation, only the symmetric gradient of the test functions, i.e. ey′(v̂0), is of interest.

So we can restrict the test function space to Z(Ω, Y ′0) := Z1(Ω, Y ′0)× Z2(Ω, Y ′0) defined by

Z1(Ω, Y ′0) := {w ∈ [L2(Ω, H1(Y ′0))]2 :MY ′0
(w) = 0,MY ′0

(∂y1w2 − ∂y2w1) = 0 f.a.a. x ∈ Ω}

and

Z2(Ω, Y ′0) := {w ∈ L2(Ω, H1(Y ′0)) :MY ′0
(w) = 0 f.a.a. x ∈ Ω}

equipped with the standard norms. Z1(Y ′0) and Z2(Y ′0) are as closed subspaces of [L2(Ω, H1(Y ′0))]2

resp. L2(Ω, H1(Y ′0)) again Hilbert spaces. Clearly, functions, which only depend on Ω have no

impact on the symmetric gradient with respect to y, so we can postulate thatMY ′0
(v̂0) = 0. As-

suming that there exists a function v ∈ [L2(Ω, H1(Y ′0))]3 withMY ′0
(v) = 0 and ey′(v) 6= ey′(w)

for all w ∈ Z(Ω, Y ′0), then,

MY ′0
(∂y1

v2 − ∂y2
v1) = γ(x)

for some function γ ∈ L2(Ω) \ {0}. Otherwise v ∈ Z(Ω, Y ′0). If we define

w(x, y′) :=

v1(x, y′) + γ(x)
2 (y2 −MY ′0

(y2))

v2(x, y′)− γ(x)
2 (y1 −MY ′0

(y1))

v3(x, y′)


there holds MY ′0

(w) = 0 and

MY ′0
(∂y1

w2 − ∂y2
w1) =MY ′0

(
∂y1

v2 −
γ(x)

2
−
(
∂y2

v1 +
γ(x)

2

))
= 0,

i.e. w ∈ Z(Ω, Y ′0). In addition ey′(w) = ey′(v), which is a contradiction to the assumption.

Furthermore, there holds Z1(Ω, Y ′0) ∩R = {0} with

R := {A(x)y′ + c(x) ∈ [L2(Ω, H1(Y ′0)]2 : A ∈ [L2(Ω)]2×2 skew-symmetric, c ∈ [L2(Ω)]2}
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the space of rigid displacements with respect to y′. So by Theorem 2.5 from [Oleinik et al.,

1992] there holds Korn’s inequality in two dimensions, i.e.

‖v(x, ·)‖[H1(Y ′0 )]2 ≤ C

∥∥∥∥∥
(
ey11(v)(x, ·) ey12(v)(x, ·)
ey12(v)(x, ·) ey22(v)(x, ·)

)∥∥∥∥∥
[L2(Y ′0 )]2×2

for all v ∈ Z1(Ω, Y ′0) and almost all x ∈ Ω with eyij = 1
2 (∂yivj + ∂yjvi), i, j ∈ {1, 2}, wherefore

‖v‖[L2(Ω,H1(Y ′0 ))]2 ≤ C

∥∥∥∥∥
(
ey11(v) ey12(v)

ey12(v) ey22(v)

)∥∥∥∥∥
[L2(Ω×Y ′0 )]2×2

. (7.2.9)

If we choose (v̂0)3 = 0 in (7.2.8) the problem simplifies to∫
Ω

∫
Y ′0

(a1111(y′)∂y1(ū0)1 + a1122(y′)∂y2(ū0)2)∂y1(v̂0)1

+ a1212(y′)(∂y1
(ū0)2 + ∂y2

(ū0)1)(∂y1
(v̂0)2 + ∂y2

(v̂0)1)

+ (a1122(y′)∂y1
(ū0)1 + a2222(y′)∂y2

(ū0)2)∂y2
(v̂0)2 dy′dx

= −
∫

Ω

∫
Y ′0

a1133(y′)∂3c3(x)∂y1(v̂0)1 + a2233(y′)∂3c3(x)∂y2(v̂0)2 dy′dx

for all ((v̂0)1, (v̂0)2) ∈ Z1(Ω, Y ′0). We define this equation as

ã(w, v) = F̃ (v) (7.2.10)

with ã : Z1(Ω, Y ′0)× Z1(Ω, Y ′0)→ R,

ã(w, v) =

∫
Ω

∫
Y ′0

A(y′)

e
y
11(w) ey12(w) 0

ey12(w) ey22(w) 0

0 0 0


e

y
11(v) ey12(v) 0

ey12(v) ey22(v) 0

0 0 0

 dy′dx

and F̃ : Z1(Ω, Y ′0)→ R,

F̃ (v) = −
∫

Ω

∫
Y ′0

a1133(y′)∂3c3(x)∂y1v1 + a2233(y′)∂3c3(x)∂y2v2 dy′dx.

Since A ∈M(α, β, Y ′) we receive by (7.2.9)

ã(w,w) =

∫
Ω

∫
Y ′0

A(y′)

e
y
11(w) ey12(w) 0

ey12(w) ey22(w) 0

0 0 0


e

y
11(w) ey12(w) 0

ey12(w) ey22(w) 0

0 0 0

 dy′dx

≥ α
∫

Ω

∫
Y ′0

2∑
i,j=1

(eyij(w))2 dy′dx ≥ C‖w‖2[L2(Ω,H1(Y ′0 ))]2
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and

ã(w, v) ≤ C‖w‖[L2(Ω,H1(Y ′0 ))]2‖v‖[L2(Ω,H1(Y ′0 ))]2 ,

which shows that ã is a continuous and coercive bilinear form. Since aijkl ∈ L∞(Y ′)

F̃ (v) ≤ Cβ‖∂3c3‖L2(Ω)(‖∂y1
v1‖L2(Ω×Y ′0 ) + ‖∂y2

v2‖L2(Ω×Y ′0 )) ≤ C‖v‖[L2(Ω,H1(Y ′0 ))]2 ,

which yields that F̃ is linear and continuous. Due the theorem of Lax–Milgram there exists a

unique solution w ∈ Z1(Ω, Y ′0) of (7.2.10). Since ū0 also solves this equation there must hold

w = ((ū0)1, (ū0)2)T . It follows that(
(ū0)1

(ū0)2

)
(x, y′) =− ∂3c3(x)

a1111a2222 − (a1122)2

(
(a1133a2222 − a1122a2233)y1

(a1111a2233 − a1122a1133)y2

)

+MY ′0

(
∂3c3(x)

a1111a2222 − (a1122)2

(
(a1133a2222 − a1122a2233)y1

(a1111a2233 − a1122a1133)y2

))
.

If we choose (v̂0)1 = (v̂0)2 = 0 in (7.2.8) the problem simplifies to

0 =

∫
Ω

∫
Y ′0

a1313(y′)

(
∂y1(ū0)3 +

∫ 1

0

∂y3(û0)1 dy3

)
∂y1(v̂0)3

+ a2323(y′)

(
∂y2

(ū0)3 +

∫ 1

0

∂y3
(û0)2 dy3

)
∂y2

(v̂0)3 dy′dx

(7.2.11)

for all (v̂0)3 ∈ Z2(Ω, Y ′0). Let (v̂0)3(x, y′) = ṽ0(x)(y1 −MY ′0
(y1)) with ṽ0 ∈ L2(Ω). Then

(7.2.11) is of the form

0 =

∫
Ω

∫
Y ′0

a1313(y′)

(
∂y1

(ū0)3 +

∫ 1

0

∂y3
(û0)1 dy3

)
dy′ ṽ0 dx.

By the fundamental lemma of the calculus of variations∫
Y ′0

a1313(y′)

(
∂y1

(ū0)3 +

∫ 1

0

∂y3
(û0)1 dy3

)
dy′ = 0 (7.2.12)

for almost every x ∈ Ω. Analogously,∫
Y ′0

a2323(y′)

(
∂y2

(ū0)3 +

∫ 1

0

∂y3
(û0)2 dy3

)
dy′ = 0 (7.2.13)

for almost every x ∈ Ω. We plug in the representation of the solution ((ū0)1, (ū0)2)T in the
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second integral of (7.2.4) and use (7.2.11), (7.2.12), (7.2.13)∫
Ω

∫
Y ′0

−∂3c3(x)a1133(y′)(∂1(v0)1 + ∂y1
(v̂0)1)− ∂3c3(x)a2233(y′)(∂2(v0)2 + ∂y2

(v̂0)2)

+ a1313(y′)

(
∂y1(ū0)3 +

∫ 1

0

∂y3(û0)1 dy3

)
(∂1(v0)3 + ∂3(v0)1 + ∂y1(v̂0)3)

+ a2323(y′)

(
∂y2

(ū0)3 +

∫ 1

0

∂y3
(û0)2 dy3

)
(∂2(v0)3 + ∂3(v0)2 + ∂y2

(v̂0)3)

+ (a1133(y′)∂y1
(ū0)1 + a2233(y′)∂y2

(ū0)2)∂3(v0)3

+ a1133(y′)∂3c3(∂1(v0)1 + ∂y1
(v̂0)1) + a2233(y′)∂3c3(∂2(v0)2 + ∂y2

(v̂0)2)

+ a3333(y′)∂3c3∂3(v0)3 dy′dx

=

∫
Ω

∫
Y ′0

a1313(y′)

(
∂y1(ū0)3 +

∫ 1

0

∂y3(û0)1 dy3

)
(∂1(v0)3 + ∂3(v0)1 + ∂y1(v̂0)3)

+ a2323(y′)

(
∂y2

(ū0)3 +

∫ 1

0

∂y3
(û0)2 dy3

)
(∂2(v0)3 + ∂3(v0)2 + ∂y2

(v̂0)3)

− a2
1133a2222 + a1111a

2
2233 − 2a1122a1133a2233

a1111a2222 − (a1122)2
∂3c3∂3(v0)3

+ a3333(y′)∂3c3∂3(v0)3 dy′dx

=

∫
Ω

∫
Y ′0

a1313(y′)

(
∂y1

(ū0)3 +

∫ 1

0

∂y3
(û0)1 dy3

)
∂y1

(v̂0)3

+ a2323(y′)

(
∂y2(ū0)3 +

∫ 1

0

∂y3(û0)2 dy3

)
∂y2(v̂0)3 dy′dx+

∫
Ω

Ahom
0 (y′)∂3c3∂3(v0)3 dx

=

∫
Ω

Ahom
0 (y′)∂3c3∂3(v0)3 dx,

whereby

Ahom
0 :=

∫
Y ′0

a3333 −
a2

1133a2222 + a1111a
2
2233 − 2a1122a1133a2233

a1111a2222 − (a1122)2
dy′.

Summing up, (7.2.4) can be rewritten as∫
Ω

∫
Y ′1

A(y′)(e(u1) + ey′(ū1))(e(v1) + ey′(v̂1)) dy′dx+

∫
Ω

Ahom
0 ∂3c3∂3(v0)3 dx

+

∫
Ω


∫

ΣY ′
((u1)1 − by2 − c1)ζ1(n) + ((u1)2 + by1 − c2)ζ2(n) dS(y′)∫

ΣY ′
((u1)1 − by2 − c1)ζ2(n) + ((u1)2 + by1 − c2)ζ3(n) dS(y′)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx

=

∫
Ω

∫
Y ′1

f̄ dy′ · v1 dx+

∫
Ω

∫
Y ′0

f̄ dy′ · v0 dx+

∫
ΓN

g · v1 dS(x)

for all v1 ∈ H1
ΓD

(Ω), (v0)1, (v0)2 ∈ L2(Ω) and (v0)3 ∈ H1(Ω) with (v0)3|ΓD
= 0 and v̂1 ∈
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7.2. Homogenization results in the unidirectionally connected case

[
L2(Ω, H1

per,0(Y ′1))
]3

. Choosing v0 = v1 = 0, we get for all v̂1 ∈
[
L2(Ω, H1

per,0(Y ′1))
]3

∫
Ω

∫
Y ′1

A(y′)(e(u1) + ey′(ū1))ey′(v̂1) dy′dx = 0.

Thus, ∫
Y ′1

A(y′) (e(u1)(x) + ey′(ū1)(x, y′)) ey′(v̂1)(y′) dy′ = 0

for a.e. x ∈ Ω and v̂1 ∈
[
H1

per,0(Y ′1)
]3

. Due to Korn’s inequality for periodic functions with

mean value zero, the same estimate as in (7.2.9) is true. Thus, for all v ∈
[
H1

per,0(Y ′1)
]3

∫
Y ′1

A(y′)ey′(v)ey′(v) dy′ ≥ α
∫
Y ′1

|ey′(v)|2 dy′ ≥ C‖∇y′v‖2[L2(Ω×Y ′1 ))]3×2 ≥ C‖v‖2[L2(Ω,H1(Y ′1 ))]3 ,

whereby we have used Poincaré inequality for the last estimate. Moreover,∫
Y ′1

A(y′)ey′(v)ey′(w) dy′ ≤ ‖A(y′)ey′(v)‖[L2(Y ′1 )]3×3‖ey′(w)‖[L2(Y ′1 )]3×3

≤ C‖v‖[L2(Ω,H1(Y ′1 ))]3‖w‖[L2(Ω,H1(Y ′1 ))]3

for all v, w ∈
[
H1

per,0(Y ′1)
]3

and∫
Y ′1

A(y′)e(u1)(x)ey′(v) dy′ ≤ C|u1(x)|‖A(y′)ey′(v)‖[L2(Y ′1 )]3×3

≤ C|u1(x)|‖v‖[L2(Ω,H1(Y ′1 ))]3 .

for all v ∈
[
H1

per,0(Y ′1)
]3

. So by the theorem of Lax–Milgram there exists a unique solution

ϕ ∈
[
H1

per,0(Y ′1)
]3

of ∫
Y ′1

A(y′) (e(u1)(x) + ey′(ϕ)(y′)) ey′(v̂1)(y′) dy′ = 0 (7.2.14)

for all v̂1 ∈
[
H1

per,0(Y ′1)
]3

and a.e. x ∈ Ω. We consider the cell problems: Find χlm1 ∈[
H1

per,0(Y ′1)
]3

, l,m ∈ {1, 2, 3}, such that∫
Y ′1

A(y′)ey′(χ
lm
1 )ey′(v̂1)− (Aey′(v̂1))lm dy′ = 0

for all v̂1 ∈
[
H1

per,0(Y ′1)
]3

. With a similar proof as before we can apply the theorem of Lax–

Milgram to obtain that there exists a unique solution χlm1 of the cell problem. If we plug in
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7. Unidirectionally connected case

−
∑3
l,m=1 elm(u1)(x)χlm1 (y) for ϕ in (7.2.14), we receive∫

Y ′1

A(y′) [e(u1) + ey′(ϕ)] ey′(v̂1)dy

=

∫
Y ′1

A(y′)e(u1)−
3∑

l,m=1

elm(u1)A(y′)ey′(χ
lm
1 )

 ey′(v̂1) dy′

=

∫
Y ′1

A(y′)e(u1)ey′(v̂1)−A(y′)e(u1)ey′(v̂1) dy′ = 0.

Hence,

ū1(x, y′) = −
3∑

l,m=1

elm(u1)(x)χlm1 (y′).

Using this equality we receive∫
Ω

∫
Y ′1

A(y′) [e(u1) + ey′(ū1)] [e(v1) + ey′(v̂1)] dy′dx

=

∫
Ω

∫
Y ′1

A(y′)

e(u1)−
3∑

l,m=1

elm(u1)ey′(χ
lm
1 )

 e(v1) dydx

=

∫
Ω

3∑
i,j,k,h=1

(∫
Y ′1

aijkh(y′) dy′

)
ekh(u1)eij(v1)

−
3∑

i,j,l,m=1

∫
Y ′1

3∑
k,h=1

aijkh(y′)
(
ey′(χ

lm
1 )
)
kh

dy′

 elm(u1)eij(v1)dx.

So the homogenized tensor Ahom
1 is given by

(Ahom
1 )ijkh =

∫
Y ′1

aijkh(y′)−
(
A(y′)ey′(χ

kh
1 )
)
ij

dy′

and the homogenized problem can be reformulated as the macroscopic problem∫
Ω

Ahom
1 e(u1)e(v1) dy′dx+

∫
Ω

Ahom
0 ∂3c3∂3(v0)3 dx

+

∫
Ω


∫

ΣY ′
((u1)1 − by2 − c1)ζ1(n′) + ((u1)2 + by1 − c2)ζ2(n′) dS(y′)∫

ΣY ′
((u1)1 − by2 − c1)ζ2(n′) + ((u1)2 + by1 − c2)ζ3(n′) dS(y′)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx

=

∫
Ω

∫
Y ′1

f̄ dy′ · v1 dx+

∫
Ω

∫
Y ′0

f̄ dy′ · v0 dx+

∫
ΓN

g · v1 dS(x)

for all v1 ∈ H1
ΓD

(Ω) and v0 ∈
[
L2(Ω)

]3
with ∂3(v0)3 ∈ L2(Ω) and (v0)3|ΓD

= 0.
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As in the disconnected case, a similar proof as in Theorem II.1.1 from [Oleinik et al., 1992]

shows that there exist constants αhom, βhom ∈ R with 0 < αhom < βhom such that Ahom
1 ∈

M(αhom, βhom,Ω).

Until now, we have all the results only up to a subsequence. We can prove the uniqueness

of the solutions of the homogenized problem, if we have more information as for example in

the case, where ΣY ′ is an ellipse. Let ΣY ′ be an ellipse with center (z1, z2) ∈ (0, 1)2 and

half-axes p, q ∈ (0, 1
2 ) such that the ellipse is completely contained in the unit cell (0, 1)2. We

can parametrise the submanifold by

Φ : [0, 2π)→ ΣY ′ , ϕ 7→ (p cosϕ+ z1, q sinϕ+ z2)

The normal vector is of the form

n′ =
1√

q2 cos2 ϕ+ p2 sin2 ϕ

(
q cosϕ

p sinϕ

)
.

By the integration rule for submanifolds,∫
ΣY ′

h(y′)dS(y′) =

∫ 2π

0

h(Φ(ϕ))
√

det(DΦTDΦ) dϕ =

∫ 2π

0

h(Φ(ϕ))

√
p2 sin2 ϕ+ q2 cos2 ϕdϕ

for some function h, it follows that∫
ΣY ′

n′1n
′
2dS(y′) = 0,

∫
ΣY ′

y1n
′
1n
′
2dS(y′) = 0,

∫
ΣY ′

y2n
′
1n
′
2dS(y′) = 0

and ∫
ΣY ′

yi(n
′
1)2dS(y′) = zi

∫
ΣY ′

(n′1)2dS(y′),

∫
ΣY ′

yi(n
′
2)2dS(y′) = zi

∫
ΣY ′

(n′2)2dS(y′)

for i ∈ {1, 2}. So the homogenized problem (7.2.7) simplifies to∫
Ω

Ahom
1 e(u1)e(v1) dy′dx+

∫
Ω

Ahom
0 ∂3c3∂3(v0)3 dx

+

∫
Ω


(
KN

∫
ΣY ′

(n′1)2dS(y′) +KT

∫
ΣY ′

(n′2)2dS(y′)
)

((u1)1 − bz2 − c1)(
KN

∫
ΣY ′

(n′2)2dS(y′) +KT

∫
ΣY ′

(n′1)2dS(y′)
)

((u1)2 + bz1 − c2)

|ΣY ′ |KT((u1)3 − c3)

 · (v1 − v0) dx

=

∫
Ω

∫
Y ′1

f̄ dy′ · v1 dx+

∫
Ω

∫
Y ′0

f̄ dy′ · v0 dx+

∫
ΓN

g · v1 dS(x). (7.2.15)

If we define u0 := (bz2 + c1,−bz1 + c2, c3), we can show that the solution u0 and u1 are unique,

but not the uniqueness of b and c.

Theorem 7.2.12. There exist unique solutions u0 ∈
[
L2(Ω)

]3
with ∂3(u0)3 ∈ L2(Ω) and
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7. Unidirectionally connected case

(u0)3|ΓD
= 0 and u1 ∈ H1

ΓD
(Ω) of the problem (7.2.15).

Proof. Let u = (u1, u0), w = (w1, w0) be two solutions of the problem (7.2.15). We choose as

test function the difference of both solutions, i.e. v1 := u1 − w1 and v0 := u0 − w0. Thus, we

can estimate, using the coercivity of Ahom
1 , the fact that Ahom

0 > 0 and all constants of the

interface term are greater than zero, and Korn’s inequality for functions with zero on part of

the boundary,

0 =

∫
Ω

Ahom
1 e(u1 − w1)e(u1 − w1) dx+

∫
Ω

Ahom
0 ∂3(u0 − w0)3∂3(u0 − w0)3 dx

+

∫
Ω


(
KN

∫
ΣY ′

(n′1)2dS(y′) +KT

∫
ΣY ′

(n′2)2dS(y′)
)

((u1 − w1 − u0 + w0)1)(
KN

∫
ΣY ′

(n′2)2dS(y′) +KT

∫
ΣY ′

(n′1)2dS(y′)
)

((u1 − w1 − u0 + w0)2)

|ΣY ′ |KT((u1 − w1 − u0 + w0)3)


· (u1 − w1 − u0 + w0) dx

≥αhom
1 C‖u1 − w1‖2[H1(Ω)]3 +Ahom

0 ‖∂3(u0 − w0)3‖2L2(Ω) + c‖u1 − u0 − w1 + w0‖2[L2(Ω)]3 .

Thus, u1 = w1 and u0 = w0.

We get a similar result as in Theorem 7.2.11 if we use a more general elasticity tensor Aε.

Remark 7.2.13. As in the disconnected case (cf. Remark 5.2.10), we assume that Aε ∈
M(α, β,Ω) and T ε(Aε)→ C a.e. in Ω× Y with C independent of y3. Then, the homogenized

problem is of the same form as (7.2.7) but the homogenized tensors Ahom
κ , κ ∈ {0, 1}, satisfy

Ahom
0 (x) =

∫
Y ′0

c3333(x, y′)− 1

c1111(x, y′)c2222(x, y′)− (c1122(x, y′))2

(
c21133(x, y′)c2222(x, y′)

+c1111(x, y′)c22233(x, y′)− 2c1122(x, y′)c1133(x, y′)c2233(x, y′)
)

dy′

and

(Ahom
1 )ijkh(x) =

∫
Y ′1

cijkh(x, y′)−
3∑

l,m=1

cijlm(x, y′)
(
ey′(χ

kh
1 )
)
lm

(x, y′) dy′

with χlmκ ∈
[
L∞(Ω, H1

per,0(Y ′1))
]3

, l,m ∈ {1, 2, 3}, is the unique weak solution of∫
Y ′1

C(x, y′)ey′(χ
lm
1 )(x, y′)ey′(v̂1)(y′)− (C(x, y)ey′(v̂1)(y′))lm dy′ = 0

for all v̂1 ∈
[
H1

per,0(Y ′1)
]3

and a.e. x ∈ Ω.
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8. Conclusion and outlook

After deriving the homogenized problems (5.2.7), (6.2.8), (7.2.7) in the disconnected (chap-

ter 5), globally connected (chapter 6) and unidirectionally connected case (chapter 7), we are

interested in the differences and similarities.

Since Ωε1 is globally connected for all ε in all three cases, we were able to use the well-known

extension operators to define functions on the whole domain Ω. This allowed us to prove

uniform boundedness and compactness results. Due to the similar structure of the domains

the homogenized tensors Ahom
1 are of the same form in all three cases, namely

(Ahom
1 )ijkh =

∫
Y1

aijkh(y)−
3∑

l,m=1

aijlm
(
ey(χkh1 )

)
lm

dy

resp. as an integral over Y ′1 with χlm1 , l,m ∈ {1, 2, 3}, the solutions of the associated cell

problems in Y1 resp. Y ′1 . The differences in the upscaled problem arise due to the connected-

ness conditions of Ωε0. Although we could not estimate the gradient uniformly in Ωε0 in the

disconnected and unidirectionally connected case, we were able to prove some compactness

results using the weak boundedness of the material and that Ωε0 is fixed at one part of the

outer boundary in the unidirectionally connected case. In the homogenized problem of the

disconnected case, there is no contribution of any homogenized tensor Ahom
0 since there is no

stress transmitted globally by the material of the disconnected domain. In contrast, in the

connected domain the homogenized tensor Ahom
0 is of the same structure as Ahom

1 , i.e. the

stress is globally transmitted. The unidirectionally connected case can be seen as a mixture of

the other two. So we have as in the connected case some macroscopic stress transmission but

only in one direction. However, there are no further contributions as in the disconnected case,

i.e. there is no macroscopic contribution of shear stresses and normal stresses in the discon-

nected direction. All three cases have in common that u0 and u1 are connected through the

interface term. Although there are differences in the homogenized tensor Ahom
0 the density of

the material does always play a role in all three cases as f is a force density w.r.t. volume. If

the normal and tangential stiffness KN and KT are the same, we obtain in the disconnected

case the same homogenized problem as if we would assume that Ωε0 are holes without mate-

rial. This rises from the fact that we allow jumps in deformations in normal and tangential

directions at the interface. The different conditions at the exterior boundary follow from the

different periodic structures of the domains.

In terms of the application to concretes reinforced with short carbon fibres, it is unlikely that

the disconnected or connected case are useful models. As future work, we could study the more
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general case of connectedness in one direction, where the slices in every plane are not equal,

i.e. we allow Y0 6= Y ′0 × (0, 1). Furthermore, it may be of interest to compare simulation results

of the derived homogenized problems with experimental data.
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Part II.

Parameter identification for the

linearized elasticity problem
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To simulate the deformation of a two-scale composite of two materials under forces, the solution

of the homogenized linear elasticity problem is often needed. If the material parameters,

the microstructure and the volume and boundary forces are known, the computation of the

direct problem is a classical result. It is of the form of the linear elasticity equation with an

effective elasticity tensor, which is computed from solutions of auxiliary problems defined

in the periodicity cell and may depend on the macroscopic variable. Another interesting

aspect for application is to obtain information about the interior structure of a body without

destroying it or using other tools like scanning electron microscope, which are often not feasible

in practice. As in the direct problem, we consider a composite of two solids with periodic

microstructure. If measured data of the deformation of the composite’s exterior boundary

under known forces is given, we prove results, using the methods of periodic homogenization

and parameter identification, which allow us to compute the parameters characterizing the

microscopic structure. The comparison with the original microstructure of the material may

help to detect any changes in material, e.g. the extent of the (microscopic) damage (size of weak

domains). Generally, computing the direct problem, i.e. finding the displacement field when the

microstructure is known, is much easier (and less numerically costly) than the inverse problem,

i.e. deducing the structure of the periodicity cell from the measurements of deformations on

the boundary.

In this work, we consider a composite of two solids, which are perfectly bonded at the internal

interface of the periodicity cell, whereby one component is completely contained in the cell and

its geometry can be modelled by some finite vector of real parameters τ . We derive results on

the inverse problem to investigate the minimization problems

arg min
τ∈Iη

1

2
‖u[τ ]− um‖2[L2(∂Ω)]3 resp. arg min

τ∈Iη

1

2
‖u[τ ]− um‖2[L2(S×∂Ω)]3

for the stationary resp. time-dependent case, where the parameter τ ∈ Iη, Iη a compact

set, describes the geometry of the inclusions in the periodicity cell, u[τ ] : Ω → R3 resp.

u[τ ] : S ×Ω→ R3 is the displacement field for some given τ and um is the measured displace-

ment.

Parameter identification problems in the context of shape optimization and homogenization

are studied by several authors. In [Allaire et al., 2018], topology optimization in connection

with homogenization of the linearized elasticity in two dimension is considered, where the mi-

crostructure consists of a cell with a rectangular central hole. The aim is to find the optimal

length, width and rotation of the rectangle. In [Allaire et al., 2011], they investigate in a non-

multiscale setting the damage evolution in linear elasticity via shape optimization, wherefore

they have to compute the shape derivative. They handle the difficulty that the boundary of

the damaged region moves and the full strain and stress tensors are not continuous through

the interface. In [Michailidis, 2014, chapter 6.7], they study the linear elasticity equation to-

gether with some thermal stress tensor in the setting of inverse homogenization. They use the

method of Céa in connection with a smoothed-interface instead of a sharp interface as we con-
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sider here. A more application-oriented work is [Orlik et al., 2016], where textile-materials are

optimized via homogenization and beam approximation. They prove results under the assump-

tion that the homogenized tensor is constant and under different assumptions on the elasticity

tensor. Apart from identifying the shape from measurements on the boundary, many authors

are interested in finding the (microscopic) material parameters as e.g. in [Hartmann et al.,

2021] and [Schmidt et al., 2015]. Apart from elasticity, there are several other applications,

where parameter identification problems arise. For example in [Hintermueller and Laurain,

2008] the Electrical Impedance Tomography is considered, where the aim is to find the electri-

cal conductivity and permittivity under special structural assumptions. Some general results

in shape optimization by homogenization method can be found in [Allaire, 2002] and [Delfour

and Zolésio, 2011] and in the theory of inverse problems in e.g. [Isakov, 1998] and [Kirsch, 2011].

Part II is structured as follows. In chapter 9 we first formulate the direct problem of the

stationary linear elasticity equation (with perfect bond at the internal interface) and state the

well-known existence result and the homogenized problem, whereby we prove some properties

of the homogenized tensor. In the second part of this chaper, we study the inverse problem.

We show that there exists at least one solution of the inverse problem and derive the Gâteaux

derivative of the target functional to be able to apply gradient-based algorithm. In chapter

10, we consider the direct and inverse problem in the time-dependent case. After proving the

existence of solution, we derive the homogenized problem via the periodic unfolding method.

We use some results from the steady-state case to prove the existence of at least one solution of

the inverse problem and to gain the Gâteaux derivation of the target functional. In chapter 11,

we present some numerical experiments to showcast the functioning of the method. Chapter

12 summarises the results of part II.

Throughout this part, we denote by C a constant independent of ε whose value may change

from line to line.
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9. Parameter identification for the

steady-state linearized elasticity

problem

We are interested in identifying parameters describing the periodic microstructure of a two-

scale composite of two solids. If measured data of the deformation on the exterior boundary

under known forces and the materials of the composite are given, we prove that there exists at

least one solution of minimization problem, which is a finite real vector describing the shape

of the periodicity cell.

Concretely, in section 9.1 we consider the direct problem, i.e. we derive the homogenized

problem of the steady-state linear elasticity problem by using the periodic unfolding method,

and prove some properties of the homogenized tensor. We need these subsequently in section 9.2

to prove the existence of a solution of the inverse problem. Afterwards, we derive the Gâteaux

derivative of the target function to be able to apply gradient-based optimization algorithm.

The results in this chapter have been published in the journal Mathematical Methods in the

Applied Sciences [Lochner and Peter, 2022].

9.1. Statement of the direct problem

Let Ω be an open bounded connected Lipschitz-domain in R3, ΓD ⊂ ∂Ω closed with positive

two-dimensional Hausdorff measure and ΓN := ∂Ω\ΓD. Let ν be the outward-pointing normal

to ΓN. We assume that the periodic microstructure can be described by the (scaled) reference

cell Y = (0, l1)× (0, l2)× (0, l3) ⊂ R3 with l1, l2, l3 > 0.

9.1.1. Periodic and homogenized problem

We consider the linear elasticity equation in the steady-state case as introduced in section 2.1

to model the deformation of the domain Ω under body load f and boundary force g
−∇ · (Aεe(uε)) = f in Ω,

uε = 0 on ΓD,

(Aεe(uε))ν = g on ΓN,

(9.1.1)
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9. Parameter identification for the steady-state linearized elasticity problem

where uε : Ω→ R3 is the displacement field and Aε the tensor of fourth order, which describes

the stiffness of the material of the solid. The associated weak formulation is: Find uε ∈
H1

ΓD
(Ω) := {u ∈

[
H1(Ω)

]3
: u = 0 on ΓD} such that∫

Ω

Aεe(uε)e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v dS(x) (9.1.2)

for all v ∈ H1
ΓD

(Ω). There exists a unique weak solution of this problem for every ε.

Theorem 9.1.1. Let Aε ∈M(α, β,Ω) (see Definition 2.1.1), f ∈
[
L2(Ω)

]3
and g ∈

[
L2(ΓN)

]3
.

Then, there exists a unique weak solution uε ∈ H1
ΓD

(Ω) of the problem (9.1.2). Moreover, uε

is bounded in H1
ΓD

(Ω)

‖uε‖[H1(Ω)]3 ≤
C

α

(
‖f‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
,

where C is a constant only depending on Ω.

Proof. The proof can be found in Theorem 10.6. in [Cioranescu and Donato, 1999], whereby

we use additionally Korn’s inequality to estimate the gradient by the symmetric gradient.

We use the periodic unfolding operator from Definition 3.2.1 and the properties stated in

Proposition 3.2.2 to derive the homogenized problem, whereby we assume that the unfolded

tensor T ε(Aε) converges pointwise almost everywhere as ε→ 0.

Theorem 9.1.2. Let f ∈
[
L2(Ω)

]3
, g ∈

[
L2(ΓN)

]3
, {Aε} a sequence of tensors in M(α, β,Ω)

and {uε} the associated sequence of weak solutions of (9.1.2). Suppose that

Bε := T ε(Aε)→ B a.e. in Ω× Y.

Then, B ∈M(α, β,Ω×Y ) and there exists u ∈ H1
ΓD

(Ω) and û ∈
[
L2(Ω, H1

per,0(Y ))
]3

such that

uε → u strongly in
[
L2(Ω)

]3
, (9.1.3)

T ε(uε) ⇀ u weakly in
[
L2(Ω, H1(Y ))

]3
, (9.1.4)

T ε(∇uε) ⇀ ∇u+∇yû weakly in
[
L2(Ω× Y )

]3×3
. (9.1.5)

Furthermore, (u, û) is the unique solution of

1

|Y |

∫
Ω×Y

B(x, y)(e(u)(x) + ey(û)(x, y))(e(v)(x) + ey(v̂)(x, y)) dxdy

=

∫
Ω

f · v dx+

∫
ΓN

g · v dS(x)

(9.1.6)

for all v ∈ H1
ΓD

(Ω) and v̂ ∈
[
L2(Ω, H1

per,0(Y ))
]3

.
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Proof. From Satz IV.4.4 in [Werner, 2009] we get the measurability of B. We know that

Aε ∈M(α, β,Ω) for all ε > 0 and

T ε(Aε)(x, y) =

Aε(ε
[
x
ε

]
+ εy) for a.e. (x, y) ∈ Ωε × Y,

0 for a.e. (x, y) ∈ Πε × Y.

For a.e. (x, y) ∈ Ω× Y there holds

bijkh(x, y) = lim
ε→0

bεijkh(x, y) = lim
ε→0

aεijkh(ε
[
x
ε

]
+ εy) if (x, y) ∈ Ωε × Y

0 if (x, y) ∈ Πε × Y

= lim
ε→0

aεjikh(ε
[
x
ε

]
+ εy) if (x, y) ∈ Ωε × Y

0 if (x, y) ∈ Πε × Y

= lim
ε→0

bεjikh(x, y) = bjikh(x, y).

Analogously, bijkh = bkhij . Since |Πε| → 0, there exists some ε0 > 0 such that for all ε ≤ ε0

and all symmetric matrices m

α|m|2 ≤ Aε(ε
[x
ε

]
+ εy)mm = T ε(Aε)(x, y)mm→ B(x, y)mm,

which shows that B is coercive. Furthermore, we get the boundedness

β|m| ≥ |Aε(ε
[x
ε

]
+ εy)m| = |T ε(Aε)(x, y)m| → |B(x, y)m|

for all matrices m. Thus all entries of B are in L∞(Ω×Y ). Summing up all results, we obtain

that B ∈ M(α, β,Ω × Y ). Due to Theorem 9.1.1 the solutions uε are uniformly bounded in[
H1(Ω)

]3
and so we can apply Proposition 3.2.2 (ix) to get the convergences (9.1.3)–(9.1.5).

Choosing standard test functions in (9.1.2) and passing to the limit, we receive (9.1.6). Due

to the Y -periodicity of v̂ ∈
[
L2(Ω, H1

per,0(Y ))
]3

and Korn’s inequality for functions with zero

value on part of the boundary (see Theorem 2.2.5) and for periodic functions with zero mean

value (see Corollary 2.2.6), we estimate for all (v, v̂) ∈ H1
ΓD

(Ω)×
[
L2(Ω, H1

per,0(Y ))
]3

‖e(v) + ey(v̂)‖2
[L2(Ω×Y )]3×3 =

∫
Ω×Y

|e(v)|2 + 2e(v) : ey(v̂) + |ey(v̂)|2dydx

= |Y |‖e(v)‖2[L2(Ω)]3×3 + ‖ey(v̂)‖2
[L2(Ω×Y )]3×3

≥ C
(
|Y |‖v‖2[H1(Ω)]3 + ‖v̂‖2[L2(Ω,H1(Y ))]3

)
.

Using this inequality and the fact that B ∈M(α, β,Ω×Y ), we get by Lax–Milgram theorem the

existence and uniqueness of the weak solution of (9.1.6) in H1
ΓD

(Ω)×
[
L2(Ω, H1

per,0(Y ))
]3

.

In the next step, we want to split the homogenized problem into a macroscopic and a cell

87



9. Parameter identification for the steady-state linearized elasticity problem

problem.

Theorem 9.1.3. The homogenized problem (9.1.6) is of the form: Find u ∈ H1
ΓD

(Ω) such that∫
Ω

Ahome(u)e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v dS(x) (9.1.7)

for all v ∈ H1
ΓD

(Ω), where Ahom = (ahom
ijkl )1≤i,j,k,l≤3 with

ahom
ijkl (x) =

1

|Y |

∫
Y

B(x, y)eij(ekl − ey(wkl)(x, y)) dy (9.1.8)

for a.e. x ∈ Ω and wkl, k, l ∈ {1, 2, 3}, is the unique solution in
[
L∞(Ω, H1

per,0(Y ))
]3

of the

cell problem ∫
Y

B(x, y)
(
ey(wkl)(x, y)− ekl

)
e(ϕ) dy = 0 (9.1.9)

for all ϕ ∈ [H1
per,0(Y )]3.

Proof. We consider the problem of finding wkl ∈
[
L2(Ω, H1

per,0(Y ))
]3

such that∫
Ω×Y

B(x, y)ey(wkl)(x, y)ey(v)(x, y) dydx =

∫
Ω×Y

B(x, y)ekley(v)(x, y) dydx

for all v ∈
[
L2(Ω, H1

per,0(Y ))
]3

. Since B ∈ M(α, β,Ω × Y ) and by Korn’s inequality for

periodic functions with mean value zero, the left-hand side is a continuous coercive bilinear

form. The right-hand side is a linear continuous functional, so we can apply the theorem of

Lax–Milgram to receive the existence and uniqueness of the solution wkl ∈
[
L2(Ω, H1

per,0(Y ))
]3

of this problem. Furthermore, due to the fundamental lemma of the calculus of variations the

solution has to satisfy∫
Y

B(x, y)ey(wkl)(x, y)ey(v)(y)dy =

∫
Y

B(x, y)ekley(v)(y)dy

for a.e. x ∈ Ω and v ∈
[
H1

per,0(Y )
]3

. Using again that B ∈ M(α, β,Ω × Y ) and Korn’s

inequality for periodic functions with mean value zero, we get that

‖∇y(wkl)(x, ·)‖[L2(Y )]3×3 ≤ C

for a constant C independent of x. Thus, wkl ∈ [L∞(Ω, H1
per,0(Y ))]3. Choosing v = 0 in (9.1.6)

yields
1

|Y |

∫
Ω×Y

B(x, y)(e(u)(x) + ey(û)(x, y))ey(v̂)(x, y) dxdy = 0
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9.1. Statement of the direct problem

for all v̂ ∈ [L2(Ω;H1
per,0(Y ))]3. If we plug in û = −

∑3
l,m=1 elm(u)(x)wlm(x, y), we receive

1

|Y |

∫
Ω×Y

B(x, y)e(u)−
3∑

l,m=1

elm(u)B(x, y)ey(wlm)

 ey(v̂) dydx

=
1

|Y |

∫
Ω×Y

B(x, y)e(u)ey(v̂)−B(x, y)e(u)ey(v̂) dydx = 0

because wlm solves the cell problem. Since û is unique, we can rewrite the limit problem (9.1.6)

1

|Y |

∫
Ω

∫
Y

B(x, y) [e(u) + ey(û)] [e(v) + ey(v̂)] dydx

=

∫
Ω

1

|Y |

∫
Y

B(x, y)

e(u)−
3∑

l,m=1

elm(u)ey(wlm)

 e(v) dydx

=

∫
Ω

3∑
i,j,k,h=1

(
1

|Y |

∫
Y

bijkh(x, y)dy

)
ekh(u)eij(v)

−
3∑

i,j,l,m=1

 1

|Y |

∫
Y

3∑
k,h=1

bijkh(y)
(
ey(wlm)

)
kh

dy

 elm(u)eij(v) dx.

So the homogenized tensor Ahom is given by (9.1.8) and the homogenized problem (9.1.6) can

be reformulated into the macroscopic problem (9.1.7).

Remark 9.1.4. The strong formulation of (9.1.7) is
−∇ · (Ahome(u)) = f in Ω,

u = 0 on ΓD,

(Ahome(u))ν = g on ΓN.

If B is Y -periodic, we can write the cell problem (9.1.9) in the strong form{
−∇y · (B(x, ·)(ey(wkl)(x, ·)− ekl)) = 0 in Y,

wkl(x, ·)Y -periodic with MY (wkl(x, ·)) = 0

for a.e. x ∈ Ω.

9.1.2. Properties of the homogenized tensor and homogenized problem

We want to show that the homogenized tensor Ahom (see (9.1.8)) is under an additional as-

sumption in the set M(α, β
2

α ,Ω). First, we compute the boundedness of the cell solutions.

Lemma 9.1.5. The solution wkh ∈
[
L∞(Ω, H1

per,0(Y ))
]3

of the cell problem (9.1.9) is bounded
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9. Parameter identification for the steady-state linearized elasticity problem

as follows

‖ey(wkh)‖[L∞(Ω,L2(Y ))]3×3 ≤ β|Y |1/2

α
.

Proof. We use that B(x, y) ∈M(α, β,Ω× Y ) to estimate

α‖ey(wkh(x, ·))‖2[L2(Y )]3×3 ≤
∫
Y

B(x, y)ey(wkh)ey(wkh) dy =

∫
Y

B(x, y)ekhey(wkh) dy

≤ |Y |1/2
∫

Y

|
3∑

i,j=1

bijkhe
y
ij(w

kh)|2dy

1/2

≤ |Y |1/2
(∫

Y

|B(x, y)ey(wkh)|2dy

)1/2

≤ |Y |1/2β‖ey(wkh)(x, ·)‖[L2(Y )]3×3

for a.e. x ∈ Ω.

We need some auxiliary lemmas.

Lemma 9.1.6. Let v ∈
[
H1

per,0(Y )
]3

. Then, v can be extended Y -periodically to an element

of
[
H1

loc(R3)
]3

.

Proof. Let v ∈
[
H1

per,0(Y )
]3

. Clearly, we can extend the function Y -periodically, which we

denote by ṽ. It remains to prove that v ∈ [H1
loc(R3)]3. Therefore, let K be a compact subset

of R3. We define the sets

Z(K) := {ξ ∈ R3 : ξ = (l1ξ̃1, l2ξ̃2, l3ξ̃3) for some ξ̃ ∈ Z3,K ∩ (Y + ξ) 6= ∅}

and

K̃ :=
⋃
ξ∈Z

(Y + ξ).

Thus, Z(K) consists of finitely many elements and K ⊂ K̃. Then, using the transformation

formula

‖ṽ‖2[L2(K)]3 =

∫
K

|ṽ(y)|2dy ≤
∫
K̃

|ṽ(y)|2dy =
∑

ξ∈Z(K)

∫
Y+ξ

|ṽ(y)|2dy =
∑

ξ∈Z(K)

∫
Y

|ṽ(y + ξ)|2dy

=
∑

ξ∈Z(K)

∫
Y

|v(y)|2dy = ‖v‖2[L2(Y )]3

∑
ξ∈Z(K)

1

|Y |

∫
Y

dy =
|K̃|
|Y |
‖v‖2[L2(Y )]3

and, analogously,

‖∇ṽ‖2
[L2(K)]3×3 =

∫
K

|∇ṽ(y)|2dy ≤
∫
K̃

|∇ṽ(y)|2dy =
|K̃|
|Y |
‖∇v‖2

[L2(Y )]3×3 .

Since K was arbitrary, we get the desired result.
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9.1. Statement of the direct problem

Lemma 9.1.7. Let v ∈
[
L2(Y )

]3×3
with∫

Y

v : ∇ϕdy = 0

for all ϕ ∈
[
H1

per,0(Y )
]3

. Then, v can be extended Y -periodically to an element of
[
L2

loc(R3)
]3

,

denoted again by v, such that −∇ · v = 0 in
[
D′(R3)

]3
.

Proof. Let v ∈
[
L2(Y )

]3×3
satisfy

∫
Y
v : ∇ϕdy = 0 for all ϕ ∈ [H1

per,0(Y )]3. Then, in the

sense of distributions

−
∫
Y

(∇ · v) · ϕdy =

∫
Y

v : ∇ϕdy = 0 =

∫
Y

0 · ϕdy

for all ϕ ∈ [C∞c (Y )]
3
, wherefore the distributional derivate fulfills −∇ · v = 0 ∈ [L2(Y )]3. So

v is an element of the space H(Y,div) := {w ∈
[
L2(Y )

]3×3
: ∇ · w ∈

[
L2(Y )

]3}. Using Prop.

3.47 (ii) from [Cioranescu and Donato, 1999], there holds for all φ ∈
[
H1(Y )

]3
−
∫
Y

(∇ · v) · φdy =

∫
Y

v : ∇φdy + 〈vn, φ〉[H−1/2(∂Y )]
3
,[H1/2(∂Y )]

3

where n is the normal of ∂Y . With the results from above, we get for all ϕ ∈
[
H1

per,0(Y )
]3

0 = 〈vn, ϕ〉[H−1/2(∂Y )]
3
,[H1/2(∂Y )]

3 ,

which proves that v is Y -periodic. With Lemma 9.1.6 we can extend v Y -periodically, again

denoted by v, such that v ∈
[
L2

loc(R3)
]3

. It remains to prove that −∇ · v = 0 in
[
D′(R3)

]3
.

Let ϕ ∈
[
C∞c (R3)

]3
. Due to the compact support, there exists a bounded set K ⊂ R3 such

that ϕ ∈ [C∞0 (K)]
3

and K =
⋃
ξ∈Z(Y + ξ) for some set Z ⊂ R3 with finitely many elements,

which satisfy (Y + ξ) ∩ (Y + ξ̃) = ∅ for all ξ 6= ξ̃ ∈ Z. So we get

−
∫
R3

(∇ · v) · ϕdx =

∫
K

v : ∇ϕdx =
∑
ξ∈Z

∫
Y+ξ

v : ∇ϕdx =
∑
ξ∈Z

∫
Y

v(y) : ∇ϕ(y + ξ) dy

=
∑
ξ∈Z

∫
Y

−(∇ · v(y)) · ϕ(y + ξ) dy + 〈v(·)n, ϕ(·+ ξ)〉[H−1/2(∂Y )]
3
,[H1/2(∂Y )]

3

=
∑
ξ∈Z

〈v(·)n, ϕ(·+ ξ)〉[H−1/2(∂Y )]
3
,[H1/2(∂Y )]

3 .

The sum disappears since v is periodic and either ϕ is continuous on ∂Y +ξ or already zero.

Let A ∈ M(α, β, Y ) and m ∈ R3×3 be a symmetric matrix. We use the Voigt notation to

rewrite the tensor of fourth order as a 6 × 6 matrix and the symmetric matrix as a vector of
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9. Parameter identification for the steady-state linearized elasticity problem

R6, i.e.

AV =



a1111 a1122 a1133 a1123 a1113 a1112

a1122 a2222 a2233 a2223 a2213 a2212

a1133 a2233 a3333 a3323 a3313 a3312

a1123 a2223 a3323 a2323 a2313 a2312

a1113 a2213 a3313 a2313 a1313 a1312

a1112 a2212 a3312 a2312 a1312 a1212


, mV =



m11

m22

m33

2m23

2m13

2m12


.

Lemma 9.1.8. Let A ∈ M(α, β, Y ). Then, the inverse of AV exists and is symmetric. Fur-

thermore, there holds

A−1w : w ≥ α

β2
|w|2 (9.1.10)

for all symmetric matrices w ∈ R3×3, where A−1w is defined by ((AV)−1wV)1
1
2 ((AV)−1wV)5

1
2 ((AV)−1wV)6

1
2 ((AV)−1wV)5 ((AV)−1wV)2

1
2 ((AV)−1wV)4

1
2 ((AV)−1wV)6

1
2 ((AV)−1wV)4 ((AV)−1wV)3

 . (9.1.11)

Proof. Let A ∈M(α, β, Y ) and λV ∈ R6. Then, the associated matrix

λ :=

 λV
1

1
2λ

V
5

1
2λ

V
6

1
2λ

V
5 λV

2
1
2λ

V
4

1
2λ

V
6

1
2λ

V
4 λV

3

 .

is symmetric and we can use that A ∈M(α, β, Y ) to estimate

(AVλV, λV) = Aλλ ≥ α|λ|2 ≥ α

2
|λV|2,

where (·, ·) denotes the standard scalar product. This shows that AV is positive definite and

due to the definition symmetric. Thus, the inverse of AV exists and is symmetric. To prove the

inequality (9.1.10), we follow the proof of Proposition 8.3 in [Cioranescu and Donato, 1999],

where the same result is shown for tensors of second order. Let w ∈ R3×3 be a symmetric

matrix and m = A−1w defined as in (9.1.11). Then, Am = w and because A ∈M(α, β, Y )

A−1w : w = Amm ≥ α|m|2 = α|A−1w|2. (9.1.12)

Since A is linear operator, we can estimate the operator norm

‖A‖ = sup
R3×33u6=0

|Au|
|u|
≤ β|u|
|u|

= β.

Thus,

|w| = |Am| ≤ |m|‖A‖ ≤ β|A−1w|.
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9.1. Statement of the direct problem

Together with estimate (9.1.12), we get

A−1w : w ≥ α|A−1w|2 ≥ α

β2
|w|2.

We now have all the results to show that Ahom ∈M(α, β
2

α ,Ω).

Theorem 9.1.9. If B is additionally Y -periodic in the second argument, there holds Ahom ∈
M(α, β

2

α ,Ω).

Proof. We prove the Theorem for a.e. x̂ ∈ Ω. Since B ∈ M(α, β,Ω × Y ) and Lemma 9.1.5

holds, we get

|ahom
ijkl (x̂)| ≤ 1

|Y |

∫
Y

|B(x̂, y)eij(ekl − ey(wkl)(x̂, y))|dy

≤ ‖bijkl‖L∞(Ω×Y ) +
β

|Y |1/2
‖ey(wkl)‖[L∞(Ω,L2(Y ))]3×3 ≤ C

for a constant C independent of x̂, which proves that ahom
ijkl ∈ L∞(Ω). Using wkl as a test

function in (9.1.9) for the cell problem of wij (and the other way round) and the symmetry of

B we receive

ahom
ijkl (x̂) =

1

|Y |

∫
Y

B(x̂, y)eijekl dy −
1

|Y |

∫
Y

B(x̂, y)eijey(wkl)(x̂, y) dy

=
1

|Y |

∫
Y

B(x̂, y)eijekl dy −
1

|Y |

∫
Y

B(x̂, y)ey(wij)(x̂, y)ey(wkl)(x̂, y) dy

=
1

|Y |

∫
Y

B(x̂, y)ekleij dy − 1

|Y |

∫
Y

B(x̂, y)ekley(wij)(x̂, y) dy = ahom
klij (x̂)

and

ahom
ijkl (x̂) =

1

|Y |

∫
Y

B(x̂, y)eij(ekl − e(wkl)(x̂, y)) dy

=
1

|Y |

∫
Y

B(x̂, y)eji(ekl − e(wkl)(x̂, y)) dy = ahom
jikl (x̂),

which shows the symmetry of Ahom. In the next step, we prove the coercivity of Ahom with

the coercivity constant α. We extend B Y -periodically in the second argument to obtain a

tensor Bε(x) := B(x̂, xε ), which is well-defined for x ∈ Ω and ε > 0 small enough. Clearly,

Bε ∈M(α, β,Ω) for every ε. Let m = (mkh)1≤k,h≤3 ∈ R3×3 be a symmetric matrix and

vε(x) :=

3∑
k,h=1

mkhw
kh
ε (x) :=

3∑
k,h=1

mkh

(
(xhδik)1≤i≤3 − εwkh

(
x̂,
x

ε

))
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9. Parameter identification for the steady-state linearized elasticity problem

with wkh(x̂, ·) Y -periodically extended as in Lemma 9.1.6. Then, vε ∈
[
H1(Ω)

]3
,

vε →
3∑

k,h=1

(mkhxhδik)1≤i≤3 =

3∑
h=1

(mihxh)1≤i≤3

strongly in
[
L2(Ω)

]3
and, since ∇ywkh

(
x̂, xε

)
⇀MY (∇ywkh(x̂, y)) = 0 weakly in

[
L2(Ω)

]3
,

∂jv
ε(x) =

3∑
h=1

(mih∂jxh)1≤i≤3 −
3∑

k,h=1

mkh∂yjw
kh
(
x̂,
x

ε

)
⇀ (mij)1≤i≤3

weakly in
[
L2(Ω)

]3
for j ∈ {1, 2, 3}. Furthermore,

(Bεe(vε))ij(x) =

3∑
k,h=1

bijkh

(
x̂,
x

ε

)(
mkh −

3∑
p,q=1

mpq(ey(wpq))kh

(
x̂,
x

ε

))

⇀
1

|Y |

∫
Y

3∑
k,h=1

bijkh(x̂, y)

(
mkh −

3∑
p,q=1

mpq(ey(wpq))kh(x̂, y)

)
dy

=

3∑
p,q=1

mpq
1

|Y |

∫
Y

3∑
k,h=1

bijkh(x̂, y) (δkpδhq − (ey(wpq))kh(x̂, y)) dy

= (Ahom(x̂)m)ij

weakly in L2(Ω) for all i, j ∈ {1, 2, 3}. Next, we prove that∫
Ω

Bεe(vε)e(vε)ϕ(x) dx→
∫

Ω

Ahom(x̂)mmϕ(x) dx.

for all ϕ ∈ C∞c (Ω). We compute

eij(ϕv
ε) = ϕeij(v

ε) +
1

2
∂iϕv

ε
j +

1

2
∂jϕv

ε
i

and for x̃ :=
∑3
h=1(mihxh)1≤i≤3

exij(ϕx̃) =
1

2
(∂xiϕx̃j + ϕ∂xi x̃j + ∂xjϕx̃i + ϕ∂xj x̃i)

=
1

2

3∑
h=1

(
∂xiϕmjhxh + ∂xjϕmihxh

)
+ ϕ

1

2
(mji +mij)

=
1

2

3∑
h=1

(
∂xiϕmjhxh + ∂xjϕmihxh

)
+ ϕmij

by the symmetry of m. Using the symmetry of B(x̂, ·) we can apply Lemma 9.1.7 to v :=
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9.1. Statement of the direct problem

B(x̂, ·)
(
ey(wkl)(x̂, ·)− ekl

)
. Thus,

−∇y · (B(x̂, ·)(e(wpq)(x̂, ·)− epq) = 0 in [D′(R3)]3

and∫
Ω

Bεe(vε)e(ϕvε) dx =

3∑
p,q=1

mpq

(∫
Ω

B
(
x̂,
x

ε

)(
epq − ey(wpq)

(
x̂,
x

ε

))
e(ϕvε)dx

)
= 0,

since we can approximate vε by C∞(Ω) functions. Using this result and the strong and weak

convergences from above

∫
Ω

Bεe(vε)e(vε)ϕdx =

∫
Ω

Bεe(vε)e(ϕvε)dx−
∫

Ω

3∑
i,j=1

(Bεe(vε))ij
1

2

(
∂iϕv

ε
j + ∂jϕv

ε
i

)
dx

→−
∫

Ω

3∑
i,j=1

(Ahom(x̂)m)ij
1

2

3∑
h=1

(∂iϕmjhxh + ∂jϕmihxh) dx =

∫
Ω

Ahom(x̂)mmϕdx.

The last equation holds since

−
∫

Ω

Ahom(x̂)me (ϕx̃) dx = −Ahom(x̂)m

∫
Ω

e (ϕx̃) dx = 0.

The coercivity of Bε together with the weak lower semicontinuity of the L2-norm yields for

ε→ 0 and for all ϕ ∈ C∞c (Ω) with ϕ ≥ 0∫
Ω

Ahom(x̂)mmϕdx = lim
ε→0

∫
Ω

Bεe(vε)e(vε)ϕdx ≥ lim inf
ε→0

α

∫
Ω

|e(vε)|2ϕdx ≥
∫

Ω

α|m|2ϕdx.

Rearranged, ∫
Ω

(
Ahom(x̂)mm− α|m|2

)
ϕdx ≥ 0,

which shows that Ahom(x̂)mm ≥ α|m|2. It remains to prove the last property of Ahom, namely,

|Ahom(x̂)m| ≤ β2

α |m| for all matrices m. Let m ∈ R3×3. We define as before

vε(x) :=

3∑
k,h=1

mkhw
kh
ε (x) :=

3∑
k,h=1

mkh

(
(xhδik)1≤i≤3 − εwkh

(
x̂,
x

ε

))
If we apply Lemma 9.1.8 on w = Bεe(vε), whereby (Bε)−1w is defined as in (9.1.11), we get

for all ϕ ∈ C∞c (Ω) with ϕ ≥ 0∫
Ω

Bεe(vε)e(vε)ϕdx =

∫
Ω

(Bε)−1w : wϕdx ≥ α

β2

∫
Ω

|w|2ϕdx =
α

β2

∫
Ω

|Bεe(vε)|2ϕdx.

The same convergences as before are true, since only the symmetry of Bε and Ahom(x̂) was
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9. Parameter identification for the steady-state linearized elasticity problem

needed. We have used the symmetry of the matrix only to get the weak convergence of e(vε)

to m. Thus, passing to the limit yields∫
Ω

Ahom(x̂)mmϕdx ≥ α

β2

∫
Ω

|Ahom(x̂)m|2ϕdx.

Since ϕ ≥ 0 was arbitrary and we can apply Cauchy–Schwarz inequality, we get

|Ahom(x̂)m|2 ≤ β2

α
Ahom(x̂)mm ≤ β2

α
|Ahom(x̂)m||m|.

Thus,

|Ahom(x̂)m| ≤ β2

α
|m|.

Remark 9.1.10. Although we have already proven in Theorem 9.1.2 the existence and unique-

ness of the solution, we can use the last result to show this directly by applying the Lax–Milgram

theorem to the problem (9.1.7). As a consequence we get

‖u‖[H1(Ω)]3 ≤ C
(
‖f‖[L2(Ω)]3 + ‖g‖[L2(ΓN)]3

)
(9.1.13)

for a constant C independent of the structure of the cell Y .

9.2. Inverse problem

In the previous section, we were in the setting that if volume and boundary forces f and

g are given we can easily compute the displacement field u, since the microstructure was

known. From now on, we only know the volume and boundary forces f and g and some

measured displacement um on the exterior boundary. With this information we want to deduce

the microstructure of the reference cell Y , which can be described by a finite vector of real

parameters τ . Concretely, we consider Y consisting of two parts, where one is a connected

Lipschitz domain Y0 completely contained in Y , whose geometry is uniquely given by some

finite real vector.

Although the following results are true in this general setting, we restrict us to case, where Y0 is

an ellipsoid as illustrated in Figure 9.1, for explicit examples and computations. Let Y0[τ ] be an

open ellipsoid centered in the middle of the reference cell Y with axis orientation in direction of

the standard unit vectors and axis lengths τ = (τ1, τ2, τ2) ∈ [η, l1−η]×[η, l2−η]×[η, l3−η] =: Iη

for some small η (see Figure 9.2). Furthermore, we define Y1[τ ] := Y \Y0[τ ] and ΣY [τ ] := ∂Y0[τ ].

Thus, Y = Y0 ∪ Y1 ∪ ΣY .
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Figure 9.1.: ellipsoid Y0 in the cuboid Y

Y0[τ ]

Y1[τ ]

τ1

τ2

Figure 9.2.: periodicity cell Y in 2D

As mentioned in the beginning of part II, we consider a perfectly bonded composite of two

materials. So we can define the elasticity tensor Aε[τ ] as

Aε[τ ](x) = A0(x)χY0[τ ]

(x
ε

)
+A1(x)χY1[τ ]

(x
ε

)
with χY0[τ ] resp. χY1[τ ] the characteristic function of the Y -periodic extended domain Y0[τ ]

resp. Y1[τ ] and some fourth order tensors A0, A1 ∈M(α, β,Ω) such that

T ε(Aε[τ ])(x, y)

=

A0(ε
[
x
ε

]
+ εy)χY0[τ ](y) +A1(ε

[
x
ε

]
+ εy)χY1[τ ](y) for a.e. (x, y) ∈ Ωε × Y,

0 for a.e. (x, y) ∈ Πε × Y

→ A0(x)χY0[τ ](y) +A1(x)χY1[τ ](y) =: B[τ ](x, y)

for a.e. (x, y) ∈ Ω× Y . In this case, Ahom = (ahom
ijkl )1≤i,j,k,l≤3 with

ahom
ijkl [τ ](x) =

1

|Y |

∫
Y0[τ ]

A0(x)eij(ekl − ey(wkl)(x, y)) dy

+
1

|Y |

∫
Y1[τ ]

A1(x)eij(ekl − ey(wkl)(x, y)) dy

and since B[τ ] is Y -periodic, Ahom[τ ] ∈ M(α, β
2

α ,Ω) by Theorem 9.1.9. Because B[τ ](x, ·) is

piecewise smooth in Y , we even get that restricted cell solution wkl(x, ·) to Y0[τ ] resp. Y1[τ ]

belongs to [C∞(Y0[τ ])]3 and [C∞(Y1[τ ])]3 due to Theorem 6.2 in Chapter I of [Oleinik et al.,

1992]. We define the input–output operator:

Definition 9.2.1 (input–output operator).

Lτ :
[
L2(Ω)

]3 × [L2(ΓN)
]3 → [L2(∂Ω)]3, (f, g) 7→ u[τ ]|∂Ω,

where u[τ ] is the solution of the homogenized problem (9.1.7) for given τ .

Using the properties of the trace operator and (9.1.13) the continuity of the linear operator Lτ
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9. Parameter identification for the steady-state linearized elasticity problem

follows directly. We study the following inverse problem.

Definition 9.2.2 (Inverse Problem). Let 0 < η < min{l1, l2, l3}. Find τ ∈ Iη such that for

given measured data um ∈
[
L2(∂Ω)

]3
, when forces (f, g) are applied, τ is the solution of the

minimization problem

arg min
τ∈Iη

J (τ) := arg min
τ∈Iη

1

2
‖Lτ (f, g)− um‖2[L2(∂Ω)]3 . (9.2.1)

Clearly, other functionals than J could be used.

9.2.1. Existence result

In this section, we prove that there exists at least one solution of the inverse problem (9.2.1). We

decompose the mapping Z : Iη → [L2(∂Ω)]3, τ 7→ Lτ (f, g) for given (f, g) into the continuous

trace operator T :
[
H1(Ω)

]3 → [L2(∂Ω)]3 and the operator Hf,g : Iη → H1
ΓD

(Ω), τ 7→ u[τ ],

i.e. Z(τ) = T ◦Hf,g(τ). To prove the continuity of Z we have to show that Hf,g is continuous.

Theorem 9.2.3. The operator Hf,g is continuous.

Proof. Let τn, τ̂ ∈ Iη with τn → τ̂ for n→∞ and u[τn], u[τ̂ ] the corresponding weak solutions

of the homogenized problem (9.1.7). Then, they satisfy for all ϕ ∈ H1
ΓD

(Ω)

a(u[τn], ϕ; τn) = F (ϕ), a(u[τ̂ ], ϕ; τ̂) = F (ϕ),

where a : H1
ΓD

(Ω)×H1
ΓD

(Ω)→ R is the bilinear form of the left-hand side of (9.1.7), i.e.

a(v, ϕ; τ) =

∫
Ω

Ahom[τ ]e(v)e(ϕ) dx,

and F : H1
ΓD

(Ω)→ R is the τ -independent functional of the right-hand side of (9.1.7), i.e.

F (ϕ) =

∫
Ω

f · ϕdx+

∫
ΓN

g · ϕdS(x).

The third index of a emphasizes that the bilinear form depends on the given τ through the

homogenized tensor Ahom[τ ]. Taking the difference of both equations yield∫
Ω

Ahom[τn]e(u[τn]− u[τ̂ ])e(ϕ)dx =

∫
Ω

(Ahom[τ̂ ]−Ahom[τn])e(u[τ̂ ])e(ϕ)dx.

We choose as test function ϕ = u[τn]− u[τ̂ ] and use that Ahom[τn] is coercive to estimate

α‖e(u[τn]− u[τ̂ ])‖2[L2(Ω)]3×3

≤
∫

Ω

(Ahom[τ̂ ]−Ahom[τn])e(u[τ̂ ])e(u[τn]− u[τ̂ ])dx

≤ ‖(Ahom[τ̂ ]−Ahom[τn])e(u[τ̂ ])‖[L2(Ω)]3×3‖e(u[τn]− u[τ̂ ])‖[L2(Ω)]3×3 .
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We obtain by Korn’s inequality for functions with zero value on part of the boundary (see

Theorem 2.2.5)

c‖Hf,g(τn)−Hf,g(τ̂)‖[H1(Ω)]3 ≤ ‖(Ahom[τ̂ ]−Ahom[τn])e(u[τ̂ ])‖[L2(Ω)]3×3 (9.2.2)

for some constant c > 0 independent of τ . ahom
ijkl [τ ], i, j, k, l ∈ {1, 2, 3}, is bounded in L∞(Ω)

independent of τ ∈ Iη since we can estimate, using that B[τ ] ∈ M(α, β,Ω × Y ) and Lemma

9.1.5,

|ahom
ijkl [τ ](x)| ≤ 1

|Y |
‖B[τ ](x, ·)eij‖[L2(Y )]3×3‖ekl − e(wkl[τ ](x, ·))‖[L2(Y )]3×3

≤ βC‖e(wkl[τ ](x, ·))‖[L2(Y )]3×3 ≤ C

for a.e. x ∈ Ω and for some constant C > 0 independent of τ and x. Thus,

|(Ahom[τ̂ ](x)−Ahom[τn](x))e(u[τ̂ ](x))|2 ≤ C|e(u[τ̂ ](x))|2 ∈ L1(Ω)

for a.e. x ∈ Ω and C > 0 independent of x. By Theorem 9.2.4, what we show next,

|(ahom
ijkl [τn](x)− ahom

ijkl [τ̂ ](x))e(u[τ̂ ](x))|2 → 0

pointwise for a.e. x ∈ Ω as n→∞. So by the dominated convergence theorem the right-hand

side of (9.2.2) converges to 0 as n→∞, which proves that Hf,g is continuous.

We show the pointwise convergence of Ahom[τn](x) to Ahom[τ ](x) as τn → τ , which was used

to prove the last Theorem.

Theorem 9.2.4. For a.e. x ∈ Ω, ahom
ijkl [τn](x) converges to ahom

ijkl [τ̂ ](x) for τn → τ̂ in Iη and

every i, j, k, l ∈ {1, 2, 3}.

Proof. Let x ∈ Ω and τn ∈ Iη with τn → τ̂ . Since Iη is compact, τ̂ ∈ Iη. We use the definition

of Ahom to estimate

|ahom
ijkl [τn](x)− ahom

ijkl [τ̂ ](x)|

=

∣∣∣∣ 1

|Y |

∫
Y

B[τn](x, y)eij(ekl − e(wkl[τn])) dy − 1

|Y |

∫
Y

B[τ̂ ](x, y)eij(ekl − e(wkl[τ̂ ])) dy

∣∣∣∣
≤ 1

|Y |

∫
Y

∣∣(B[τn](x, y)−B[τ̂ ](x, y)) eij
(
ekl − e(wkl[τ̂ ])

)∣∣ dy

+
1

|Y |

∣∣∣∣∫
Y

B[τn](x, y)eij
(
e(wkl[τn])− e(wkl[τ̂ ])

)
dy

∣∣∣∣
=: I1

n(x) + I2
n(x).
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9. Parameter identification for the steady-state linearized elasticity problem

We prove that both terms I1
n and I2

n converge to zero. Starting with I1
n,

I1
n(x) ≤ 1

|Y |
‖ (B[τn](x, ·)−B[τ̂ ](x, ·)) eij‖[L2(Y )]3×3‖ekl − e(wkl[τ̂ ](x, ·))‖[L2(Y )]3×3

≤ 1

|Y |1/2

(
1 +

β

α

) 3∑
h,r=1

‖bijhr[τn](x, ·)− bijhr[τ̂ ](x, ·)‖L2(Y ),

where we have applied Lemma 9.1.5. Since bijhr[τn] ∈ L∞(Ω×Y ) and Y is bounded, we obtain

that bijhr[τn](x, ·) ∈ L2(Y ) for a.e. x ∈ Ω and

‖bijhr[τn](x, ·)− bijhr[τ̂ ](x, ·)‖L2(Y )

≤ ‖a0
ijhr(x)(χY0[τn](·)− χY0[τ̂ ](·))‖L2(Y ) + ‖a1

ijhr(x)(χY1[τn](·)− χY1[τ̂ ](·))‖L2(Y )

≤ |a0
ijhr(x)|‖χY0[τn] − χY0[τ̂ ]‖L2(Y ) + |a1

ijhr(x)|‖χY1[τn] − χY1[τ̂ ]‖L2(Y )

→ 0,

because A0, A1 ∈ L∞(Ω). The second term

I2
n(x) =

1

|Y |

∣∣∣∣∣∣
3∑

h,r=1

∫
Y

bijhr[τn](x, y)
(
ehr(w

kl[τn])− ehr(wkl[τ̂ ])
)

dy

∣∣∣∣∣∣
converges to zero, if we show that

ehr(w
kl[τn])(x, ·) ⇀ ehr(w

kl[τ̂ ])(x, ·) weakly in L2(Y )

for n→∞ and h, r ∈ {1, 2, 3}, because we already know the strong convergence

bijhr[τn](x, ·)→ bijhr[τ̂ ](x, ·)

in L2(Y ) from above. Due to Lemma 9.1.5 the sequence of solutions of the cell problems

{wkl[τn]} is uniformly bounded in [L∞(Ω, H1
per,0(Y ))]3. Thus, for a.e. x ∈ Ω there exists a

subsequence (again denoted by τn) and a function w̃ ∈ [H1
per,0(Y )]3 such that

wkl[τn](x, ·) ⇀ w̃(·) weakly in [H1
per,0(Y )]3.

We equate the cell problems (9.1.9) for the weak solution wkl[τn] and wkl[τ̂ ] and pass to the

limit ∫
Y

B[τ̂ ](x, y)(ekl − e(w̃))e(ϕ) dy = lim
n→∞

∫
Y

B[τn](x, y)(ekl − e(wkl[τn]))e(ϕ) dy = 0

=

∫
Y

B[τ̂ ](x, y)(ekl − e(wkl[τ̂ ]))e(ϕ) dy

for all ϕ ∈ [C∞per(Y )]3. Taking as a test function ϕ(y) = wkl[τ̂ ](x, y) − w̃(y), the coercivity of
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B and Korn’s inequality for periodic functions (see Corollary 2.2.6) lead to

c‖wkl[τ̂ ]− w̃‖[H1(Y )]3 ≤ α‖e(wkl[τ̂ ]− w̃)‖[L2(Y )]3×3

≤
∫
Y

B[τ̂ ](x, y)(e(wkl[τ̂ ])− e(w̃))(e(wkl[τ̂ ])− e(w̃))dy = 0.

Thus, w̃ coincides with wkl[τ̂ ](x, ·) and since the subsequence was chosen arbitrary and the

limit function is unique, we get the convergence of the whole sequence

wkl[τn](x, ·) ⇀ wkl[τ̂ ](x, ·) weakly in [H1
per,0(Y )]3

for a.e. x ∈ Ω.

Now, we can prove that there exists at least one solution of the inverse problem (9.2.1).

Theorem 9.2.5. There exists at least one solution of the minimization problem (9.2.1).

Proof. The operator Z(τ) = T ◦Hf,g(τ) is continuous since it is a composition of the continuous

trace operator T and by Theorem 9.2.3 of the continuous operator Hf,g. Since the set Iη is

compact, we can apply the extreme value theorem to guarantee that there exists at least one

τ̂ ∈ Iη such that

τ̂ = arg min
τ∈Iη

J (τ).

The solution space is compact.

Lemma 9.2.6. The solution space of the homogenized problem (9.1.7)

Lf,g :=
{
u ∈ H1

ΓD
(Ω) : u solution of (9.1.7) for some τ ∈ Iη

}
for fixed (f, g) is compact.

Proof. Let {un} ⊂ Lf,g be a sequence of solutions. Then, there exists for every n ∈ N a vector

τn ∈ Iη such that un = u[τn]. Because Iη is a compact set there exists a subsequence of {τn},
again denoted by n, such that τn converges to some τ̂ ∈ Iη. Since by Theorem 9.2.3 Hf,g is

continuous, we receive the convergence of un to u[τ̂ ] in H1
ΓD

(Ω).

9.2.2. Gâteaux derivative of Ahom

In the following we compute the Gâteaux derivative of Ahom by applying the concept of shape

derivatives, which we need in the next section to derive the Gâteaux derivative of J to facilitate

the use of gradient-based optimization algorithms.

Concretely, we use the Lagrangian method of Céa following the idea of [Allaire et al., 2011]

to compute the Gâteaux derivative of Ahom. For this, we define for all x ∈ Ω a Lagrangian
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9. Parameter identification for the steady-state linearized elasticity problem

function Lxijkl which coincides with

Jxijkl(Y0) :=

∫
Y

B[Y0](x, y)eij(ekl − e(wkl)(x, y)) dy

in some special points, where B[Y0](x, y) := A0(x)χY0
(y) + A1(x)(1 − χY0

(y)) with A0, A1 ∈
M(α, β,Ω) and wkl ∈

[
L∞(Ω, H1

per(Y ))
]3

is the weak solution of{
−∇y · (B[Y0](x, ·)(ey(wkl)− ekl)) = 0 in Y,

MY (wkl) = 0.
(9.2.3)

The reason for considering of Lxijkl instead of Jxijkl is that we can apply standard shape deriva-

tive results, which is not possible for the second function since the solutions wkl of the cell

problem also depend on Y0. For the readability, we omit the index y in the divergence ∇y·
and in the symmetric gradient ey(·) because all the computations in this subsection are done

for some fixed x ∈ Ω. Since the spatial derivative of wkl may be discontinuous at the interface

ΣY , we rewrite the problem as a transmission problem: For a.e. x ∈ Ω find (wx,1kl , w
x,0
kl ) ∈ V

with

V :=
{

(u1, u0) ∈
[
H1(Y1)

]3 × [H1(Y0)
]3

: u1 is Y-periodic,MY (u1χY1 + u0χY0) = 0
}

such that 
−∇ · (A1

x(e(wx,1kl )− ekl)) = 0 in Y1,

wx,1kl = wx,0kl on ΣY ,

A1
x(e(wx,1kl )− ekl)n1 +A0

x(e(wx,0kl )− ekl)n0 = 0 on ΣY

(9.2.4)

and 
−∇ · (A0

x(e(wx,0kl )− ekl)) = 0 in Y0,

wx,0kl = wx,1kl on ΣY ,

A1
x(e(wx,1kl )− ekl)n1 +A0

x(e(wx,0kl )− ekl)n0 = 0 on ΣY ,

(9.2.5)

where A1
x := A1(x), A0

x := A0(x) and n = n0 = −n1 is the outward unit normal vector of the

interface ΣY with direction from Y0 to Y1. The transmission problem is equivalent to (9.2.3),

since

wxkl(y) := wx,1kl (y)χY1
(y) + wx,0kl (y)χY0

(y) ∈
[
H1

per,0(Y )
]3

due to the assumptions on the interface and for all ϕ ∈ [H1
per,0(Y )]3

0 =−
∫
Y1

∇ · (A1
x(e(wx,1kl )− ekl)) · ϕdy −

∫
Y0

∇ · (A0
x(e(wx,0kl )− ekl)) · ϕdy

=−
∫
∂Y

A1
x(e(wx,1kl )− ekl)n1ϕdS(y)−

∫
ΣY

A1
x(e(wx,1kl )− ekl)n1ϕdS(y)

+

∫
Y1

A1
x(e(wx,1kl )− ekl)e(ϕ)dy −

∫
ΣY

A0
x(e(wx,0kl )− ekl)n0ϕdS(y)
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+

∫
Y0

A0
x(e(wx,0kl )− ekl)e(ϕ)dy

=−
∫

ΣY

[
A1
x(e(wx,1kl )− ekl)n1 +A0

x(e(wx,0kl )− ekl)n0
]
ϕdS(y)

+

∫
Y

B[Y0](x, y)(e(wxkl)(y)− ekl)e(ϕ)(y)dy

=

∫
Y

B[Y0](x, y)(e(wxkl)(y)− ekl)e(ϕ)(y)dy.

Clearly, the restricted solution wkl(x, ·) of (9.2.3) to the domain Y0 resp. Y1 solves the trans-

mission problem, i.e. wkl(x, ·) = wx,1kl in Y1 and wkl(x, ·) = wx,0kl in Y0. We define the general

Lagrangian function Lxijkl, where q1, q0 play the role of Lagrange multiplier,

Lxijkl(v
0, v1, q0, q1, Y0)

:=

∫
Y0

A0
xeij(ekl − e(v0)) dy +

∫
Y1

A1
xeij(ekl − e(v1)) dy

−
∫
Y0

A0
x(e(v0)− ekl)e(q0) dy −

∫
Y1

A1
x(e(v1)− ekl)e(q1) dy

− 1

2

∫
ΣY

(A1
x(e(v1)− ekl) +A0

x(e(v0)− ekl))n · (q1 − q0) dS(y)

− 1

2

∫
ΣY

(A1
x(e(q1) + eij) +A0

x(e(q0) + eij))n · (v1 − v0) dS(y)

=−
∫
Y0

A0
x(e(q0) + eij)(e(v

0)− ekl) dy −
∫
Y1

A1
x(e(q1) + eij)(e(v

1)− ekl) dy

− 1

2

∫
ΣY

(A1
x(e(v1)− ekl) +A0

x(e(v0)− ekl))n · (q1 − q0) dS(y)

− 1

2

∫
ΣY

(A1
x(e(q1) + eij) +A0

x(e(q0) + eij))n · (v1 − v0) dS(y)

for v0, v1, q0, q1 ∈
[
H1

per,0(Y )
]3

. Since only the values of vα and qα in Yα and on ΣY , α ∈ {0, 1},
are relevant for computation of the integral, we sometimes plug in functions, which are elements

of
[
H1(Yα)

]3
. This is no problem, since they can be easily extended to functions of the whole

domain and the extension does not change the computation of Lxijkl. In the next two lemmas

we compute some conditions for optimal points.

Lemma 9.2.7. The solutions u1 and u0 of (9.2.4) resp. (9.2.5) satisfy the optimality condition

0 =
∂Lxijkl
∂q1

(u0, u1, p0, p1, Y0)(φ) =
∂Lxijkl
∂q0

(u1, u0, p0, p1, Y0)(φ) (9.2.6)

for all φ ∈
[
H1

per,0(Y )
]3

. Therefore, the solution wxkl := wkl(x, ·) of (9.2.3) fulfils the condition

0 =
∂Lxijkl
∂q1

(wxkl, w
x
kl, p

0, p1, Y0)(φ) =
∂Lxijkl
∂q0

(wxkl, w
x
kl, p

0, p1, Y0)(φ)
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for all φ ∈
[
H1

per,0(Y )
]3

in particular.

Proof. Let φ ∈
[
H1

per,0(Y )
]3

. We compute the directional derivatives

∂Lxijkl
∂q1

(v0, v1, q0, q1, Y0)(φ)

=−
∫
Y1

A1
xe(φ)(e(v1)− ekl) dy − 1

2

∫
ΣY

(A1
x(e(v1)− ekl) +A0(e(v0)− ekl))n · φ dS(y)

− 1

2

∫
ΣY

A1
xe(φ)n · (v1 − v0) dS(y)

=

∫
Y1

∇ · (A1
x(e(v1)− ekl) · φdy −

∫
ΣY

A1
x(e(v1)− ekl)n1 · φdS(y)

− 1

2

∫
ΣY

(A1
x(e(v1)− ekl) +A0

x(e(v0)− ekl))n · φ dS(y)

− 1

2

∫
ΣY

A1
xe(φ)n · (v1 − v0) dS(y)

=

∫
Y1

∇ · (A1
x(e(v1)− ekl) · φdy +

1

2

∫
ΣY

(A1
x(e(v1)− ekl)−A0

x(e(v0)− ekl))n · φdS(y)

− 1

2

∫
ΣY

A1
xe(φ)n · (v1 − v0) dS(y)

and analogously,

∂Lxijkl
∂q0

(v0, v1, q0, q1, Y0)(φ)

=

∫
Y0

∇ · (A0
x(e(v0)− ekl) · φdy +

1

2

∫
ΣY

(A1
x(e(v1)− ekl)−A0

x(e(v0)− ekl))n · φdS(y)

− 1

2

∫
ΣY

A0
xe(φ)n · (v1 − v0) dS(y).

Choosing v1 = u1 and v0 = u0 yields that all the integrals vanish. Thus, (9.2.6) holds. The

second statement of the lemma follows directly since wxkl solves the transmission problem as

mentioned above.

We define the adjoint transmission problem: Find (p1, p0) ∈ V such that
−∇ · (Aαx(e(pα) + eij)) = 0 in Yα,

p1 = p0 on ΣY ,

A1
x(e(p1) + eij)n

1 +A0
x(e(p0) + eij)n

0 = 0 on ΣY

(9.2.7)

for α ∈ {0, 1}, which is equivalent to the problem{
−∇ · (B[Y0](x, ·)(e(p) + eij)) = 0 in Y,

MY (p) = 0.
(9.2.8)
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An analogous computation as before shows the equivalance of both problems.

Lemma 9.2.8. The solution (p0, p1) of the adjoint transmission problem (9.2.7) satisfies the

optimality condition

0 =
∂Lxijkl
∂v1

(u0, u1, p0, p1, Y0)(φ) =
∂Lxijkl
∂v0

(u0, u1, p0, p1, Y0)(φ)

for all φ ∈
[
H1

per,0(Y )
]3

. Furthermore, the solution wxij := wij(x, ·) of (9.2.3) for k = i and

l = j fulfils the condition

0 =
∂Lxijkl
∂v1

(u0, u1,−wxij ,−wxij , Y0)(φ) =
∂Lxijkl
∂v0

(u0, u1,−wxij ,−wxij , Y0)(φ)

for all φ ∈
[
H1

per,0(Y )
]3

.

Proof. Let φ ∈
[
H1

per,0(Y )
]3

. We compute the directional derivatives

∂Lxijkl
∂v1

(v0, v1, q0, q1, Y0)(φ)

=−
∫
Y1

A1
x(e(q1) + eij)e(φ) dy − 1

2

∫
ΣY

A1
xe(φ)n · (q1 − q0) dS(y)

− 1

2

∫
ΣY

(A1
x(e(q1) + eij) +A0

x(e(q0) + eij))n · φdS(y)

=

∫
Y1

∇ · (A1
x(e(q1) + eij)) · φ dy −

∫
ΣY

A1
x(e(q1) + eij)n

1 · φ dS(y)

− 1

2

∫
ΣY

A1
xe(φ)n · (q1 − q0) dS(y)− 1

2

∫
ΣY

(A1
x(e(q1) + eij) +A0

x(e(q0) + eij))n · φdS(y)

=

∫
Y1

∇ · (A1
x(e(q1) + eij)) · φ dy − 1

2

∫
ΣY

A1
xe(φ)n · (q1 − q0) dS(y)

+
1

2

∫
ΣY

(A1
x(e(q1) + eij)−A0

x(e(q0) + eij))n · φdS(y)

and analogously,

∂Lxijkl
∂v0

(v0, v1, q0, q1, Y0)(φ) =

∫
Y0

∇ · (A0
x(e(q0) + eij)) · φdy − 1

2

∫
ΣY

A0
xe(φ)n · (q1 − q0) dS(y)

+
1

2

∫
ΣY

(A1
x(e(q1) + eij)−A0

x(e(q0) + eij))n · φ dS(y).

Choosing q1 = p1 and q0 = p0 yields that all the integrals vanish, wherefore the first statement

follows. The function −wxij := −wij(x, ·), where wij is the solution of (9.2.3) for k = i, l = j,

is the solution of (9.2.8). Thus, the second statement of the lemma follows directly.

We introduce the shape differentation, whereby we refer to [Michailidis, 2014] for the following

definitions and propositions and for further details.
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Definition 9.2.9. Let Ω0 be a reference domain, Ω = {x+ θ(x) : x ∈ Ω0} =: (Id+ θ)(Ω0) for

some vector field θ : R3 → R3. A functional F : Ω → R is said to be shape differentiable at

Ω0 if the application θ 7→ F((Id + θ)(Ω0)) is Fréchet differentiable at 0 in the Banach space[
W 1,∞(R3)

]3
. Then, the following asymptotic expansion holds in the vicinity of 0:

F((Id+ θ)(Ω)) = F(Ω) + F ′(Ω)(θ) + o(θ) with lim
θ→0

|o(θ)|
‖θ‖

= 0,

where F ′(Ω) is a continuous linear form on [W 1,∞(R3)]3.

As in the standard differentiation of functions we can also define directional derivatives.

Definition 9.2.10. The directional derivative of a functional F : Ω→ R at Ω in the direction

θ ∈
[
W 1,∞(R3)

]3
is defined by (if it exists)

F ′(Ω)(θ) = lim
δ→0

F((Id+ δθ)Ω)−F(Ω)

δ
.

If the function F is defined as an integral, where the integrand does not depend on the domain,

there exists an explicit formula for the shape derivative.

Proposition 9.2.11. Let Ω0 ⊂ R3 a smooth bounded open set. If f ∈ W 1,1(R3) and F :

C(Ω0) → R is defined by F(Ω) =
∫

Ω
f(x)dx, where C(Ω0) := {Ω = (Id + θ)(Ω0) with θ ∈

[W 1,∞(R3)]3}, then F is differentiable at Ω0 and

F ′(Ω0)(θ) =

∫
Ω0

∇ · (θ(x)f(x))dx =

∫
∂Ω0

θ(x) · n(x)f(x)dS(x)

for all θ ∈
[
W 1,∞(R3)

]3
.

The Proposition is still true if Ω0 is regular enough to apply the transformation formula and

Gauß’s theorem.

Proposition 9.2.12. Let Ω0 ⊂ R3 a smooth bounded open set. If f ∈ W 2,1(R3) and F :

C(Ω0) → R is defined by F(Ω) =
∫
∂Ω
f(x)dS(x), where C(Ω0) := {Ω = (Id+ θ)(Ω0) with θ ∈[

W 1,∞(R3)
]3}, then F is differentiable at Ω0 and for all θ ∈

[
W 1,∞(R3)

]3
F ′(Ω0)(θ) =

∫
∂Ω0

∇f · θ + f(∇ · θ −∇θn · n)dS(x) =

∫
∂Ω0

(
∂f

∂n
+Hf

)
θ · ndS(x),

where H = ∇ · n is the mean curvature of ∂Ω0.

The weak solution wkl of the cell problem (9.2.3) is not shape differentiable. But we can show

that, upon a suitable extension outside of Yα, α ∈ {0, 1}, the solutions wx,0kl and wx,1kl of the

transmission problem are shape differentiable.

Lemma 9.2.13. The solutions wx,1kl of (9.2.4) and wx,0kl of (9.2.5) are shape differentiable for

a.e. x ∈ Ω and θ ∈
[
W 1,∞

0 (Y )
]3

.
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Proof. The Lemma can be shown as in the proof of Theorem 5.3.2 from [Henrot and Pierre,

2005]. We summarise the main ideas. We consider the cell problem (9.2.3) on the transformed

domain Yθ := (Id + θ)(Y ) for some θ ∈ [W 1,∞
0 (Y )]3, which guarantees that we still have a

domain which can be extended periodically. Using the change of variable theorem, the weak

formulation can be rewritten as an integral over the reference cell Y . Since this integrand is of

class C1 with respect to θ and v ∈ [H1
per,0(Y )]3, we can apply the implicit function theorem to

get the desired result after suitable extension of the solutions wx,αkl outside of Yα, α ∈ {0, 1}.

We are now able to prove that the Lagrangian Lxijkl is equal to the functional Jxijkl(Y0) in the

optimal point (wx,0kl , w
x,1
kl ,−w

x,0
ij ,−w

x,1
ij , Y0).

Lemma 9.2.14. The shape derivative of the objective function Jxijkl(Y0) exists and is given by

(Jxijkl)
′(Y0)(θ) =

∂Lxijkl
∂Y0

(wx,0kl , w
x,1
kl ,−w

x,0
ij ,−w

x,1
ij , Y0)(θ),

for all θ ∈ [W 1,∞
0 (Y )]3.

Proof. The following identity holds

Lxijkl(w
x,0
kl , w

x,1
kl , q

0, q1, Y0)

=

∫
Y0

A0
xeij(ekl − e(w

x,0
kl )) dy +

∫
Y1

A1
xeij(ekl − e(w

x,1
kl )) dy

−
∫
Y0

A0
x(e(wx,0kl )− ekl)e(q0) dy −

∫
Y1

A1
x(e(wx,1kl )− ekl)e(q1) dy

− 1

2

∫
ΣY

(A1
x(e(wx,1kl )− ekl) +A0

x(e(wx,0kl )− ekl))n · (q1 − q0) dS(y)

− 1

2

∫
ΣY

(A1
x(e(q1) + eij) +A0

x(e(q0) + eij))n · (wx,1kl − w
x,0
kl ) dS(y)

=Jxijkl(Y0)−
∫
Y0

A0
x(e(wx,0kl )− ekl)e(q0) dy −

∫
Y1

A1
x(e(wx,1kl )− ekl)e(q1) dy

+

∫
ΣY

(A1
x(e(wx,1kl )− ekl)n1 · q1 +A0

x(e(wx,0kl )− ekl)n0 · q0 dS(y)

=Jxijkl(Y0) +

∫
Y0

∇ · (A0
x(e(wx,0kl )− ekl))q0 dy +

∫
Y1

∇ · (A1
x(e(wx,1kl )− ekl))q1 dy

=Jxijkl(Y0),

using the properties of wx,1kl and wx,0kl . Since Lxijkl and wx,κkl , κ ∈ {0, 1}, are shape differentiable,

we get the identity

(Jxijkl)
′(Y0)(θ) =

∂Lxijkl
∂Y0

(wx,0kl , w
x,1
kl , q

0, q1, Y0)(θ) +

1∑
κ=0

∂Lxijkl
∂vκ

(wx,0kl , w
x,1
kl , q

0, q1, Y0)
∂wx,κkl
∂Y0

(θ).

In the special case where q0 = −wx,0ij and q1 = −wx,1ij the last two terms disappear.
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With this lemma we can compute the shape derivative of Lxijkl instead of Jxijkl(Y0), which is

much easier. Since v0, v1, q0, q0 do not depend on the structure of Y0, we can apply Proposi-

tion 9.2.11 and Proposition 9.2.12 to compute the shape derivative of the Lagrangian Lxijkl.

∂Lxijkl
∂Y0

(wx,0kl , w
x,1
kl ,−w

x,0
ij ,−w

x,1
ij , Y0)(θ)

=

∫
ΣY

A0
xeij(ekl − e(w

x,0
kl ))θ · n0dS(y) +

∫
ΣY

A1
xeij(ekl − e(w

x,1
kl ))θ · n1dS(y)

−
∫

ΣY

A0
x(e(wx,0kl )− ekl)e(−wx,0ij )θ · n0dS(y)−

∫
ΣY

A1
x(e(wx,1kl )− ekl)e(−wx,1ij )θ · n1dS(y)

− 1

2

∫
ΣY

(
∂

∂n
+H

)[
(A1

x(e(wx,1kl )− ekl) +A0
x(e(wx,0kl )− ekl))n · (−wx,1ij + wx,0ij )

]
θ · n0 dS(y)

− 1

2

∫
ΣY

(
∂

∂n
+H

)[
(A1

x(e(−wx,1ij ) + eij) +A0
x(e(−wx,0ij ) + eij))n · (wx,1kl − w

x,0
kl )
]
θ · n0 dS(y),

where H is the mean curvature. Because wx,1kl = wx,0kl and wx,1ij = wx,0ij on ΣY , the integrals

involving H vanish on ΣY , i.e.

∂Lxijkl
∂Y0

(wx,0kl , w
x,1
kl ,−w

x,0
ij ,−w

x,1
ij , Y0)(θ)

=

∫
ΣY

A0
xeij(ekl − e(w

x,0
kl ))θ · ndS(y)−

∫
ΣY

A1
xeij(ekl − e(w

x,1
kl ))θ · ndS(y)

−
∫

ΣY

A0
x(e(wx,0kl )− ekl)e(−wx,0ij )θ · ndS(y) +

∫
ΣY

A1
x(e(wx,1kl )− ekl)e(−wx,1ij )θ · ndS(y)

− 1

2

∫
ΣY

∂

∂n

[
(A1

x(e(wx,1kl )− ekl) +A0
x(e(wx,0kl )− ekl))n · (−wx,1ij + wx,0ij )

]
θ · ndS(y)

− 1

2

∫
ΣY

∂

∂n

[
(A1

x(e(−wx,1ij ) + eij) +A0
x(e(−wx,0ij ) + eij))n · (wx,1kl − w

x,0
kl )
]
θ · ndS(y).

Using the same argument and the fact that A1
x(e(wx,1kl ) − ekl)n = A0

x(e(wx,0kl ) − ekl)n on ΣY

leads to

∂Lxijkl
∂Y0

(wx,0kl , w
x,1
kl ,−w

x,0
ij ,−w

x,1
ij , Y0)(θ)

=

∫
ΣY

A0
x(e(wx,0kl )− ekl)(e(wx,0ij )− eij)θ · ndS(y)

−
∫

ΣY

A1
x(e(wx,1kl )− ekl)(e(wx,1ij )− eij)θ · ndS(y)

+

∫
ΣY

Ax(e(wxkl)− ekl)n ·
∂(wx,1ij − w

x,0
ij )

∂n
θ · n dS(y)

+

∫
ΣY

Ax(e(wxij)− eij)n ·
∂(wx,1kl − w

x,0
kl )

∂n
θ · n dS(y),

(9.2.9)
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whereby we denote by Ax(e(wxkl) − ekl)n and Ax(e(wxij) − eij)n the continuous quantities

through the interface.

This formula can be simplified under additional assumptions. We assume that the material is

isotropic, i.e. Aκx, κ ∈ {0, 1}, is a tensor of the form

Aκx = 2µκxI4 + λκxI2 ⊗ I2,

where λκ ∈ L∞(Ω) and µκ ∈ L∞(Ω) are the Lamé parameters depending on the macrovariable

and I2 and I4 are the identity tensors of second and fourth order. At each point of ΣY , we

define the local orthonormal basis (t, n) with unit normal vector n and both unit tangential

vectors as a collection t. A 3× 3-matrix in local basis can be written as

m =

(
mtt mtn

mnt mnn

)
with mtt ∈ R2×2,mtn ∈ R2,mnn ∈ R

Lemma 9.2.15. Ax(e(wxkl) − ekl)n and e(wxkl)tt are continuous across the interface ΣY . All

other components have jumps on the interface given by

(i) [(e(wxkl)− ekl)nn] =
[

1
2µx+λx

]
(Ax(e(wxkl)− ekl))nn −

[
λx

2µx+λx

]
tr(e(wxkl)− ekl)tt,

(ii) [(e(wxkl)− ekl)tn] =
[

1
2µx

]
(Ax(e(wxkl)− ekl))tn,

(iii)

[(Ax(e(wxkl)− ekl))tt] = [2µx](e(wxkl)− ekl)tt +

([
2µxλx

2µx + λx

]
tr(e(wxkl)− ekl)tt

+

[
λx

2µx + λx

]
(Ax(e(wxkl)− ekl))nn

)
I2,

where the square brackets denote the jump on the interface, i.e. [f ] = f1 − f0.

Proof. Let κ ∈ {0, 1}. Using I4 = (δilδjk)1≤i,j,k,l≤3 and I2 ⊗ I2 = (δijδkl)1≤i,j,k,l≤3 and the

similarity invariance of the trace, we compute

1

2µκx + λκx
(Aκx(e(wx,κkl )− ekl))nn −

λκx
2µκx + λκx

tr(e(wx,κkl )− ekl)tt

=
1

2µκx + λκx

((
2µκx(δipδjm)3

i,j,m,p=1 + λκx(δijδmp)
3
i,j,m,p=1

)
(e(wx,κkl )− ekl)

)
nn

− λκx
2µκx + λκx

tr(e(wx,κkl )− ekl)tt

=
1

2µκx + λκx
(2µκx(e(wx,κkl )− ekl)nn + λκxtr(e(wx,κkl )− ekl)((δmp)3

m,p=1)nn)

− λκx
2µκx + λκx

tr(e(wx,κkl )− ekl) +
λκx

2µκx + λκx
(e(wx,κkl )− ekl)nn

=
1

2µκx + λκx
(2µκx(e(wx,κkl )− ekl)nn + λκx(e(wx,κkl )− ekl)nn)

= (e(wx,κkl )− ekl)nn
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and

1

2µκx
(Aκx(e(wx,κkl )− ekl))tn =

1

2µκx

(
2µκx(e(wx,κkl )− ekl)tn + λκxtr(e(wx,κkl )− ekl)((δmp)3

m,p=1)tn
)

= (e(wx,κkl )− ekl)tn

and

2µκx(e(wx,κkl )− ekl)tt +
2µκxλ

κ
x

2µκx + λκx
tr(e(wx,κkl )− ekl)ttI2 +

λκx
2µκx + λκx

(Aκx(e(wx,κkl )− ekl))nnI2

=2µκx(e(wx,κkl )− ekl)tt +
2µκxλ

κ
x

2µκx + λκx
tr(e(wx,κkl )− ekl)ttI2

+
λκx

2µκx + λκx
(2µκx(e(wx,κkl )− ekl)nn + λκxtr(e(wx,κkl )− ekl)((δmp)3

m,p=1)nn)I2

=2µκx(e(wx,κkl )− ekl)tt +
λκx

2µκx + λκx
(2µκxtr(e(wx,κkl )− ekl) + λκxtr(e(wx,κkl )− ekl))I2

=2µκx(e(wx,κkl )− ekl)tt + λκxtr(e(wx,κkl )− ekl)(I3)tt

=(Aκx(e(wx,κkl )− ekl))tt.

The statements (i)–(iii) follow directly by taking the difference.

With this lemma we can rewrite the first two integrands of
∂Lxijkl
∂Y0

A1
x(e(wx,1kl )− ekl)(e(wx,1ij )− eij)

=(A1
x(e(wx,1kl )− ekl))tt(e(wx,1ij )− eij)tt + 2(A1

x(e(wx,1kl )− ekl))tn(e(wx,1ij )− eij)tn
+ (A1

x(e(wx,1kl )− ekl))nn(e(wx,1ij )− eij)nn

=2µ1
x(e(wx,1kl )− ekl)tt(e(wx,1ij )− eij)tt +

2µ1
xλ

1
x

2µ1
x + λ1

x

tr(e(wx,1kl )− ekl)ttI2(e(wx,1ij )− eij)tt

+
λ1
x

2µ1
x + λ1

x

(A1
x(e(wx,1kl )− ekl))nnI2(e(wx,1ij )− eij)tt

+ 2(A1
x(e(wx,1kl )− ekl))tn

1

2µ1
x

(A1
x(e(wx,1ij )− eij))tn

+ (A1
x(e(wx,1kl )− ekl))nn

1

2µ1
x + λ1

x

(A1
x(e(wx,1ij )− eij))nn

− (A1
x(e(wx,1kl )− ekl))nn

λ1
x

2µ1
x + λ1

x

tr(e(wx,1ij )− eij)tt

=2µ1
x(e(wx,1kl )− ekl)tt(e(wx,1ij )− eij)tt +

2µ1
xλ

1
x

2µ1
x + λ1

x

tr(e(wx,1kl )− ekl)tttr(e(wx,1ij )− eij)tt

+
1

µ1
x

(A1
x(e(wx,1kl )− ekl))tn(A1

x(e(wx,1ij )− eij))tn

+
1

2µ1
x + λ1

x

(A1
x(e(wx,1kl )− ekl))nn(A1

x(e(wx,1ij )− eij))nn
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and analogously for the term A0
x(e(wx,0kl )− ekl)(e(wx,0ij )− eij). Thus,

A1
x(e(wx,1kl )− ekl)(e(wx,1ij )− eij)−A0

x(e(wx,0kl )− ekl)(e(wx,0ij )− eij)

=[2µx](e(wxkl)− ekl)tt(e(wxij)− eij)tt +

[
2µxλx

2µx + λx

]
tr(e(wxkl)− ekl)tttr(e(wxij)− eij)tt

+

[
1

µx

]
(Ax(e(wxkl)− ekl))tn(Ax(e(wxij)− eij))tn

+

[
1

2µx + λx

]
(Ax(e(wxkl)− ekl))nn(Ax(e(wxij)− eij))nn,

which is an expression of only continuous functions at the interface.

Lemma 9.2.16. For two displacements wxkl and q there holds: if q = 0 on ΣY , then

Ax(e(wxkl)− ekl)n ·
∂q

∂n
= 2(Ax(e(wxkl)− ekl)n) · (e(q)n)− (Ax(e(wxkl)− ekl))nne(q)nn

on ΣY .

Proof. Since q = 0 on ΣY , there holds ∇q t = 0 for all tangential vectors t. Thus, if (t1, t2, n)

is an orthonormal basis,

(Ax(e(wxkl)− ekl))nne(q)nn =
1

2
nT (Ax(e(wxkl)− ekl))nnT (∇q + (∇q)T )n

=
1

2
nT (Axe(w

x
kl)− ekl))n(nT∇qn+ nT (∇q)Tn)

=nT (Ax(e(wxkl)− ekl))(nnT + t1t
T
1 + t2t

T
2 )(∇q)Tn

=(Ax(e(wxkl)− ekl))n · (∇q)Tn,

where we have used the fact that nnT + t1t
T
1 + t2t

T
2 = (t1, t2, n)(t1, t2, n)T = I3. So we can

prove the equality in the lemma

2(Ax(e(wxkl)− ekl)n) · (e(q)n)− (Ax(e(wxkl)− ekl))nne(q)nn
= (Ax(e(wxkl)− ekl)n) · (∇qn+ (∇q)Tn)− (Ax(e(wxkl)− ekl))nne(q)nn

= (Ax(e(wxkl)− ekl)n) · ∂q
∂n

+ (Ax(e(wxkl)− ekl)n) · ((∇q)Tn)− (Ax(e(wxkl)− ekl))nne(q)nn

= (Ax(e(wxkl)− ekl)n) · ∂q
∂n

.
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9. Parameter identification for the steady-state linearized elasticity problem

We apply this to the third integrand of
∂Lxijkl
∂Y0

Ax(e(wxkl)− ekl)n ·
∂(wx,1ij − w

x,0
ij )

∂n

=2Ax(e(wxkl)− ekl)n · (e(w
x,1
ij )− e(wx,0ij ))n− (Ax(e(wxkl)− ekl))nn(e(wx,1ij )− e(wx,0ij ))nn

=

[
2

2µx + λx

]
(Ax(e(wxkl)− ekl))nn(Ax(e(wxij)− eij))nn

−
[

2λx
2µx + λx

]
(Ax(e(wkl)− ekl))nntr(e(wxij)− eij)tt

+

[
1

µx

]
(Ax(e(wxkl)− ekl))tn(Ax(e(wxij)− eij))tn

−
[

1

2µx + λx

]
(Ax(e(wxkl)− ekl))nn(Ax(e(wxij)− eij))nn

+

[
λx

2µx + λx

]
(Ax(e(wxkl)− ekl))nntr(e(wxij)− eij)tt

=

[
1

2µx + λx

]
(Ax(e(wxkl)− ekl))nn(Ax(e(wxij)− eij))nn

−
[

λx
2µx + λx

]
(Ax(e(wxkl)− ekl))nntr(e(wxij)− eij)tt

+

[
1

µx

]
(Ax(e(wxkl)− ekl))tn(Ax(e(wxij)− eij))tn

and analogously for the fourth integrand Ax(e(wxij)− eij)n ·
∂(wx,1kl −w

x,0
kl )

∂n . Summing up all the

results, we obtain for the shape derivative of Lxijkl

∂Lxijkl
∂Y0

(wx,0kl , w
x,1
kl ,−w

x,0
ij ,−w

x,1
ij , Y0)(θ)

=−
∫

ΣY

(
[2µx](e(wxkl)− ekl)tt(e(wxij)− eij)tt

+

[
2µxλx

2µx + λx

]
tr(e(wxkl)− ekl)tttr(e(wxij)− eij)tt

+

[
1

µx

]
(Ax(e(wxkl)− ekl))tn(Ax(e(wxij)− eij))tn

+

[
1

2µx + λx

]
(Ax(e(wxkl)− ekl))nn(Ax(e(wxij)− eij))nn

)
θ · n dS(y)

+

∫
ΣY

([
1

2µx + λx

]
(Ax(e(wxkl)− ekl))nn(Ax(e(wxij)− eij))nn

−
[

λx
2µx + λx

]
(Ax(e(wxkl)− ekl))nntr(e(wxij)− eij)tt

+

[
1

µx

]
(Ax(e(wxkl)− ekl))tn(Ax(e(wxij)− eij))tn

)
θ · n dS(y)
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9.2. Inverse problem

+

∫
ΣY

([
1

2µx + λx

]
(Ax(e(wxij)− eij))nn(Ax(e(wxkl)− ekl))nn

−
[

λx
2µx + λx

]
(Ax(e(wxij)− eij))nntr(e(wxkl)− ekl)tt

+

[
1

µx

]
(Ax(e(wxij)− eij))tn(Ax(e(wxkl)− ekl))tn

)
θ · n dS(y).

Rewriting this as one integral proves the following result.

Theorem 9.2.17. The shape derivative of the Lagrangian Lxijkl(Y0) is of the form

∂Lxijkl
∂Y0

(wx,0kl , w
x,1
kl ,−w

x,0
ij ,−w

x,1
ij , Y0)(θ)

=

∫
ΣY

(
−[2µx](e(wxkl)− ekl)tt(e(wxij)− eij)tt

−
[

2µxλx
2µx + λx

]
tr(e(wxkl)− ekl)tttr(e(wxij)− eij)tt

+

[
1

µx

]
(Ax(e(wxkl)− ekl))tn(Ax(e(wxij)− eij))tn

+

[
1

2µx + λx

]
(Ax(e(wxkl)− ekl))nn(Ax(e(wxij)− eij))nn

−
[

λx
2µx + λx

]
(Ax(e(wxkl)− ekl))nntr(e(wxij)− eij)tt

−
[

λx
2µx + λx

]
(Ax(e(wxij)− eij))nntr(e(wxkl)− ekl)tt

)
θ · ndS(y)

for all θ ∈ [W 1,∞
0 (Y )]3.

We want to derive some Y -periodic vector fields Θ1,Θ2,Θ3 ∈ [W 1,∞
0 (Y )]3 such that

Y0[τ1 + δτ1, τ2 + δτ2, τ3 + δτ3] = (Id+ δτ1Θ1 + δτ2Θ2 + δτ3Θ3)(Y0[τ ])

and

Y1[τ1 + δτ1, τ2 + δτ2, τ3 + δτ3] = (Id+ δτ1Θ1 + δτ2Θ2 + δτ3Θ3)(Y1[τ ])

with small increment (δτ1, δτ2, δτ3). Then, Lemma 9.2.14 yields

∂ahom
ijkl

∂τh
[τ ](x) =

1

|Y |
(Jxijkl)

′(Θh) =
1

|Y |
∂Lxijkl
∂Y0

(Θh) (9.2.10)

for h ∈ {1, 2, 3}, where the last term can be easily computed in the isotropic case by Theo-

rem 9.2.17.

Now, we derive Θi explicitly in the case of ellipsoids, which are given by the implicit equation

El(τ1, τ2, τ3) :
1

τ2
1

(
y1 −

l1
2

)2

+
1

τ2
2

(
y2 −

l1
2

)2

+
1

τ2
3

(
y3 −

l3
2

)2

=
1

4
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9. Parameter identification for the steady-state linearized elasticity problem

for some τ ∈ Iη. The idea is to define appropriate functions Θi, which describe the displacement

of the points in direction ei. Let i = 1, the other functions follow analogously. We consider

the displacement in the case, where we change τ1 to τ1 + δτ1 for some small δτ1 and the

other parameters τ2, τ3 remain the same. Let ŷ2 ∈ ( l22 −
τ2
2 ,

l2
2 + τ2

2 ). Then, choose , ŷ3 ∈(
l3
2 − τ3

√
1
4 −

1
τ2
2

(ŷ2 − l2
2 )2, l32 + τ3

√
1
4 −

1
τ2
2

(ŷ2 − l2
2 )2
)

. Thus, there exists ŷ1 ∈ (0, l12 ) with

ŷ = (ŷ1, ŷ2, ŷ3) ∈ El(τ1, τ2, τ3). We demand that Θ1 fulfils

� (ŷ1, ŷ2, ŷ3) + δτ1Θ1(ŷ) = (ỹ1, ŷ2, ŷ3) ∈ El(τ1 + δτ1, τ2, τ3)

� Θ1(0, ŷ2, ŷ3) = Θ1( l12 , ŷ2, ŷ3) = Θ1(l1, ŷ2, ŷ3) = 0.

The first condition leads to

Θ1(ŷ) =
1

δτ1
(ỹ1 − ŷ1)e1

=
1

δτ1

(
l1
2
± (τ1 + δτ1)

√
1

4
− 1

τ2
2

(
ŷ2 −

l2
2

)2

− 1

τ2
3

(
ŷ3 −

l3
2

)2

− l1
2
∓ τ1

√
1

4
− 1

τ2
2

(
ŷ2 −

l2
2

)2

− 1

τ2
3

(
ŷ3 −

l3
2

)2
)
e1

=±

√
1

4
− 1

τ2
2

(
ŷ2 −

l2
2

)2

− 1

τ2
3

(
ŷ3 −

l3
2

)2

e1, (9.2.11)

where we used the ellipsoid equation to find the representation of ŷ1 and ỹ1. We make as an

ansatz Θ1(y1, ŷ2, ŷ3) = a
(l1,l2,l3)
(τ1,τ2,τ3)(ŷ2, ŷ3) sin(by1)e1 for some function a and some constant b.

Due to the second condition we choose b = 2π
l1

and due to (9.2.11) we receive

a
(l1,l2,l3)
(τ1,τ2,τ3)(ŷ2, ŷ3) = −

√
1
4 −

1
τ2
2

(ŷ2 − l2
2 )2 − 1

τ2
3

(ŷ3 − l3
2 )2

sin
(

2π
l1
τ1
√

1
4 −

1
τ2
2

(ŷ2 − l2
2 )2 − 1

τ2
3

(ŷ3 − l3
2 )2
) .

Until now the function Θ1 is only defined for y1 ∈ [0, l1] and

(y2, y3) ∈ Aτ2,τ3 :=

{
(y2, y3) ∈ R2 :

1

τ2
2

(
y2 −

l2
2

)2

+
1

τ2
3

(
y3 −

l3
2

)2

<
1

4

}
.

The next step is to find a continuous extension on Y . Let y1 be fixed. We choose a sequence

(y2, y3) ⊂ Aτ2,τ3 such that

(y2, y3)→ (ỹ2, ỹ3) :=

(
ỹ2,

l3
2
± τ3

√
1

4
− 1

τ2
2

(
ỹ2 −

l2
2

)2
)
∈ ∂Aτ2,τ3
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9.2. Inverse problem

for some ỹ2 ∈
(
l2
2 −

τ2
2 ,

l2
2 + τ2

2

)
. Therefore, we get the limit

lim
(y2,y3)→(ỹ2,ỹ3)

Θ1(y) = lim
t→0,t>0

− t

sin( 2π
l1
τ1t)

sin

(
2π

l1
y1

)
e1 = − l1

2πτ1
sin

(
2π

l1
y1

)
e1.

Now we can define Θ1 on the whole domain Y

Θ1(y) =

a
(l1,l2,l3)
(τ1,τ2,τ3)(y2, y3) sin( 2π

l1
y1)e1 , if 1

τ2
2

(y2 − l2
2 )2 + 1

τ2
3

(y3 − l3
2 )2 < 1

4

− l1
2πτ1

sin( 2π
l1
y1)e1 , if 1

τ2
2

(y2 − l2
2 )2 + 1

τ2
3

(y3 − l3
2 )2 ≥ 1

4

(9.2.12)

and analogously

Θ2(y) =

a
(l2,l1,l3)
(τ2,τ1,τ3)(y1, y3) sin( 2π

l2
y2)e2 , if 1

τ2
1

(y1 − l1
2 )2 + 1

τ2
3

(y3 − l3
2 )2 < 1

4

− l2
2πτ2

sin( 2π
l2
y2)e2 , if 1

τ2
1

(y1 − l1
2 )2 + 1

τ2
3

(y3 − l3
2 )2 ≥ 1

4

(9.2.13)

and

Θ3(y) =

a
(l3,l1,l2)
(τ3,τ1,τ2)(y1, y2) sin( 2π

l3
y3)e3 , if 1

τ2
1

(y1 − l1
2 )2 + 1

τ2
2

(y2 − l2
2 )2 < 1

4

− l3
2πτ3

sin( 2π
l3
y3)e3 , if 1

τ2
1

(y1 − l1
2 )2 + 1

τ2
2

(y2 − l2
2 )2 ≥ 1

4 .
(9.2.14)

It remains to prove that Θi ∈ [W 1,∞
0 (Y )]3 for i ∈ {1, 2, 3}. Clearly, Θ1 is continuous and

piecewise continuous differentiable. It remains to prove that the boundary terms of the partial

derivative exists, if we compute the limit to the boundary starting from the inner of the ellipse.

We compute

∂

∂y1
(Θ1)1(y) =

∂

∂y1

(
a

(l1,l2,l3)
(τ1,τ2,τ3)(y2, y3) sin

(2π

l1
y1

))
=

2π

l1
a

(l1,l2,l3)
(τ1,τ2,τ3)(y2, y3) cos

(2π

l1
y1

)
and if we define s(y2, y3) :=

√
1
4 −

1
τ2
2

(y2 − l2
2 )2 − 1

τ2
3

(y3 − l3
2 )2

∂

∂y2
(Θ1)1(y) =

∂

∂y2

(
a

(l1,l2,l3)
(τ1,τ2,τ3)(y2, y3) sin

(2π

l1
y1

))

=

1
τ2
2

(y2 − l2
2 )
[
sin( 2π

l1
τ1s(y2, y3))− 2π

l1
τ1s(y2, y3) cos( 2π

l1
τ1s(y2, y3))

]
s(y2, y3) sin2( 2π

l1
τ1s(y2, y3))

sin
(2π

l1
y1

)
.

We want to pass this term to the limit (y2, y3) → (ỹ2, ỹ3) ∈ ∂Aτ2,τ3 . Therefore we use the
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9. Parameter identification for the steady-state linearized elasticity problem

Taylor series of Sine and Cosine at 0

sin
(2π

l1
τ1s(y2, y3)

)
=

2π

l1
τ1s(y2, y3)− 1

6

(2π

l1
τ1s(y2, y3)

)3

+O(s(y2, y3)5)

cos
(2π

l1
τ1s(y2, y3)

)
=1− 1

2

(2π

l1
τ1s(y2, y3)

)2

+O(s(y2, y3)4)

sin2
(2π

l1
τ1s(y2, y3)

)
=
(2π

l1
τ1s(y2, y3)

)2

+O(s(y2, y3)4).

to rewrite the partial derivative

∂

∂y2
(Θ1)1(y) =

1

τ2
2

(
y2 −

l2
2

)(− 1
6 + 1

2

)
( 2π
l1
τ1s(y2, y3))3 +O(s(y2, y3)5)

( 2π
l1
τ1)2s(y2, y3)3 +O(s(y2, y3)5)

sin
(2π

l1
y1

)
.

Passing to the limit and using the fact that s(y2, y3)→ 0 for (y2, y3)→ (ỹ2, ỹ3), results in

lim
(y2,y3)→(ỹ2,ỹ3)

∂

∂y2
(Θ1)1(y) =

2πτ1
3l1τ2

2

(
ỹ2 −

l2
2

)
sin
(2π

l1
y1

)
.

Due to symmetry an analogous result holds for ∂
∂y3

(Θ1)1(y). Summing up, this shows that

Θ1 ∈ [W 1,∞
0 (Y )]3. Due to the results above, we also obtain that the mapping (Id + δτ1Θ1 +

δτ2Θ2 + δτ3Θ3)(y) is strictly monotonically increasing for δτ1, δτ2, δτ3 small enough. Thus,

(Id+ δτ1Θ1 + δτ2Θ2 + δτ3Θ3)(Y [τ ]) = Y [τ1 + δτ1, τ2 + δτ2, τ3 + δτ3].

9.2.3. Gâteaux derivative of J

Finally, we can derive the Gâteaux derivative of (9.2.1), namely of

J (τ) :=
1

2

∫
∂Ω

|Lτ (f, g)− um|2dS(x).

We know that u[τ ] is the weak solution of∫
Ω

Ahom[τ ]e(u[τ ])e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v dS(x)

and u[τ + ετ̃ ] of∫
Ω

Ahom[τ + ετ̃ ]e(u[τ + ετ̃ ])e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v dS(x)
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9.2. Inverse problem

for all v ∈ H1
ΓD

(Ω). Taking the difference of both equations, dividing by ε and passing to the

limit yields

0 = lim
ε→0

1

ε

∫
Ω

Ahom[τ ]e(u[τ + ετ̃ ]− u[τ ])e(v) dx

+ lim
ε→0

1

ε

∫
Ω

(Ahom[τ + ετ̃ ]−Ahom[τ ])e(u[τ + ετ̃ ])e(v) dx

=

∫
Ω

Ahom[τ ]e(δu(τ, τ̃))e(v) dx+

∫
Ω

δAhom(τ, τ̃)e(u[τ ])e(v) dx. (9.2.15)

From the last subsection, we know that every element of δAhom satisfies

δahom
ijkl (τ, τ̃)(x) =

3∑
h=1

∂ahom
ijkl

∂τh
[τ ](x)τ̃h. (9.2.16)

Furthermore, the first term of
∂ahom
ijkl

∂τh
[τ ] is an element of L∞(Ω)∣∣∣∣∫

ΣY

−[2µx](e(wxkl)− ekl)tt(e(wxij)− eij)ttθ · ndS(y)

∣∣∣∣
≤ |[2µx]|‖θ · n‖L∞(ΣY )

∫
ΣY

|(e(wxkl)− ekl)tt(e(wxij)− eij)tt|dS(y)

≤ 2‖µ‖L∞(Ω)‖θ‖L∞(ΣY )3‖(e(wxkl)− ekl)tt‖L2(ΣY )‖(e(wxij)− eij)tt‖L2(ΣY )

≤ C
(
‖(e(wxkl))tt‖L2(ΣY ) + ‖(ekl)tt‖L2(ΣY )

) (
‖(e(wxij))tt‖L2(ΣY ) + ‖(eij)tt‖L2(ΣY )

)
≤ C

‖ 3∑
i,j=1

tieij(w
x
kl)tj‖L2(ΣY ) + ‖2tktl‖L2(ΣY )


‖ 3∑

k,l=1

tkekl(w
x
ij)tl‖L2(ΣY ) + ‖2titj‖L2(ΣY )


≤ C

(
‖e(wxkl)‖L2(ΣY )3×3 + 2|ΣY |

) (
‖e(wxij)‖L2(ΣY )3×3 + 2|ΣY |

)
≤ C

(
‖wkl‖L∞(Ω,H1(Y ))3 + 2|ΣY |

) (
‖wij‖L∞(Ω,H1(Y ))3 + 2|ΣY |

)
≤ C.

The proof for the other terms follow analogously. Thus,
∂ahom
ijkl

∂τh
[τ ] ∈ L∞(Ω), and since u[τ ] ∈

H1
ΓD

(Ω) is some known quantity we can apply the theorem of Lax–Milgram to get the existence

and uniqueness of the solution δu(τ, τ̃) ∈ H1
ΓD

(Ω) of (9.2.15). Using (9.2.16), we can rewrite

the problem: Find for h ∈ {1, 2, 3} the functions ∂u
∂τh
∈ H1

ΓD
(Ω) such that

∫
Ω

Ahom[τ ]e

(
∂u

∂τh

)
e(v) dx = −

∫
Ω

∂Ahom

∂τh
[τ ]e(u[τ ])e(v) dx.
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9. Parameter identification for the steady-state linearized elasticity problem

Then, due to the uniqueness of the solutions,

∇u[τ ] · τ̃ :=

3∑
h=1

∂u

∂τh
τ̃h = δu(τ, τ̃). (9.2.17)

We derive the first variation of J

δJ (τ, τ̃) = lim
ε→0

1

2ε

∫
∂Ω

|u[τ + ετ̃ ]− um|2 − |u[τ ]− um|2dS(x)

= lim
ε→0

∫
∂Ω

1

2
(u[τ + ετ̃ ] + u[τ ]− 2um) · 1

ε
(u[τ + ετ̃ ]− u[τ ])dS(x)

=

∫
∂Ω

(u[τ ]− um) · δu(τ, τ̃)dS(x).

Using (9.2.17), we can determine the Gâteaux derivative of the objective function

δJ (τ, τ̃) =

∫
∂Ω

(u[τ ]− um) · δu(τ, τ̃)dS(x)

=

∫
∂Ω

(u[τ ]− um) · ∇u[τ ]dS(x)τ̃ =: ∇J (τ) · τ̃ .
(9.2.18)
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10. Parameter identification for the

time-dependent linearized elasticity

problem

As in the steady-state case (see chapter 9), we want to identify the microstructure of a two-scale

composite of two solids. But now we consider the time-dependent linearized elasticity equation.

Therefore, we show that if measured data of the deformation on the exterior boundary over

some time interval are given, we get at least one solution of the minimization problem, which

is to identify a finite vector of real parameters describing the shape of the microstructure.

In section 10.1, we consider the direct problem, i.e. we prove the existence of the solution of

the time-dependent linear elasticity problem and derive the homogenized problem by using

the periodic unfolding method. In section 10.2, we show that there exists a solution of the

inverse problem and derive the Gâteaux derivative of the target function by using the Gâteaux

derivative of homogenized tensor from subsection 9.2.2.

10.1. Statement of the direct problem

Let S = (0, T ) with 0 < T < ∞, Ω ⊂ R3 be a open bounded connected Lipschitz-domain,

ΓD ⊂ ∂Ω closed with positive two-dimensional Hausdorff measure and ΓN := ∂Ω \ ΓD. Let ν

be the outward-pointing normal to ΓN. We define the Banach spaces

H1
ΓD

(Ω) :=
{
u ∈

[
H1(Ω)

]3 |u = 0 on ΓD

}
and L2

%(Ω) :=
[
L2(Ω)

]3
equipped with norms

‖u‖H1
ΓD

(Ω) = ‖e(u)‖[L2(Ω)]3×3 and ‖u‖% =
√
〈u, u〉%,

where 〈·, ·〉% is the weighted scalar product

〈u, v〉% :=

∫
Ω

%(x)u(x)v(x)dx

on the space L2
%(Ω)×L2

%(Ω) with 0 < % ∈ L∞(Ω). ‖ · ‖H1
ΓD

(Ω) is a norm on H1
ΓD

(Ω) because of

Korn’s inequality for functions with zero value on part of the boundary (cf. Theorem 2.2.5).
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10. Parameter identification for the time-dependent linearized elasticity problem

Then, there holds

H1
ΓD

(Ω) ⊂ L2
%(Ω) =

(
L2
%(Ω)

)∗ ⊂ (H1
ΓD

(Ω))∗,

where H1
ΓD

(Ω) is a separable Hilbert space. If we write L2(O) for some open set O, we equip

this Hilbert space with the standard norm ‖u‖2L2(O) =
∫
O |u|

2dx.

10.1.1. General existence result

We consider the time-dependent linear elasticity equation as introduced in section 2.1 to modell

the deformation of the domain under body load f (given as a density per mass) and boundary

force g during time interval S

∂t(%∂tu)−∇ · (Ae(u)) = %f in S × Ω,

u = 0 on S × ΓD,

(Ae(u))ν = g on S × ΓN,

u(0, x) = u0(x) a.e. in Ω,

∂tu(0, x) = u1(x) a.e. in Ω,

(10.1.1)

where u0 and u1 are the initial values of u and ∂tu at time t = 0. There exists a unique weak

solution of this problem.

Theorem 10.1.1. Let %0 ∈ R, % ∈ L∞(Ω) with 0 < %0 < %(x) for a.e. x ∈ Ω, A ∈M(α, β,Ω)

(see Definition 2.1.1), f ∈ L2(S;L2
%(Ω)), u0 ∈ H1

ΓD
(Ω), u1 ∈ L2

%(Ω), g ∈ H1
(
S;
[
L2(ΓN)

]3)
.

Then, there exists a unique weak solution u ∈ L2(S;H1
ΓD

(Ω)) with u ∈ L∞(S;H1
ΓD

(Ω)), ∂tu ∈
L∞(S;L2

%(Ω)) and ∂t(%∂tu) ∈ L2(S; (H1
ΓD

(Ω))∗) in the sense of distributions, as well as u ∈
C0(S̄;L2

%(Ω)), of the problem (10.1.1), i.e. for all v ∈ L2(S;H1
ΓD

(Ω)) with ∂tv ∈ L2(S;L2
%(Ω))

and v(T ) = 0 there holds

−
∫ T

0

∫
Ω

%∂tu · ∂tv dxdt+

∫ T

0

∫
Ω

Ae(u)e(v) dxdt

=

∫ T

0

∫
Ω

%f · v dxdt+

∫ T

0

∫
ΓN

g · v dS(x)dt+

∫
Ω

%u1 · v(0) dx

(10.1.2)

and u(0) = u0.

Proof. We prove this theorem with the help of the Galerkin method and similar to the proof

of Theorem 12.4 from [Schweizer, 2018].

(i) Existence of Galerkin-solutions: Since H1
ΓD

(Ω) is separable, we find n-dimensional

subspaces H1,n
ΓD

(Ω) := span{w1, . . . , wn} ⊂ H1
ΓD

(Ω) such that for every v ∈ H1
ΓD

(Ω) there

exists a sequence {vn} with vn ∈ H1,n
ΓD

(Ω) such that vn converges strongly to v in H1
ΓD

(Ω).

Furthermore, let {u0n} and {u1n} sequences in H1
ΓD

(Ω) with u0n, u1n ∈ H1,n
ΓD

(Ω) and

u0n → u0 strongly in H1
ΓD

(Ω) and u1n → u1 strongly in L2
%(Ω). (10.1.3)
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We want to find a weak solution of problem (10.1.1) projected on the space H1,n
ΓD

(Ω). Meaning,

we are searching for some function

un : S → H1,n
ΓD

(Ω), un(t) =

n∑
j=1

znj(t)wj (10.1.4)

with un(0) = u0n and ∂tun(0) = u1n, such that, using ∂t(%∂tun) = %∂2
t (un),

〈∂2
t un(t), wl〉% + a(un(t), wl) = 〈f(t), wl〉% + 〈g(t), wl〉L2(ΓN) (10.1.5)

for every l ∈ {1, . . . , n} and a.e. t ∈ S, where

a(u, v) :=

∫
Ω

Ae(u)e(v) dx.

If we use (10.1.4), we can rewrite (10.1.5)

n∑
j=1

∂2
t znj(t)〈wj , wl〉% +

n∑
j=1

znj(t)a(wj , wl) = 〈f(t), wl〉% + 〈g(t), wl〉L2(ΓN). (10.1.6)

Since the scalar product is coercive, the matrix W ∈ Rn×n with Wjl = 〈wj , wl〉% satisfies

zTWz = zT


〈w1, w1〉% · · · 〈w1, wn〉%

...
. . .

...

〈wn, w1〉% · · · 〈wn, wn〉%

 z = 〈
n∑
i=1

ziwi,

n∑
j=1

zjwj〉% > 0

for all z 6= 0 ∈ Rn. Thus, W is positive definite and therefore invertible. So (10.1.6) is a

linear ordinary differential equation (ODE) of second order. After reformulation as a system of

ODEs of first order and using the initial conditions, we can apply Carathéodory theory, which

guarantees the existence of a unique solution un on the interval S̄.

(ii) A priori estimates: We multiply equation (10.1.6) with ∂tznl, summarise over l ≤ n and

integrate from 0 to t1 with 0 < t1 ≤ T . We receive∫ t1

0

〈∂2
t un(t),∂tun(t)〉% dt+

∫ t1

0

a(un(t), ∂tun(t)) dt

=

∫ t1

0

〈f(t), ∂tun(t)〉% dt+

∫ t1

0

〈g(t), ∂tun(t)〉L2(ΓN) dt.

Since A is symmetric and independent of t and we can apply integration by parts formula in
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the last integral, we get

1

2

[
‖∂tun(t)‖2% + a(un(t), un(t))

]t1
0

=

∫ t1

0

〈f(t), ∂tun(t)〉%dt

+ 〈g(t1), un(t1)〉L2(ΓN) − 〈g(0), u0n〉L2(ΓN) −
∫ t1

0

〈∂tg(t), un(t)〉L2(ΓN)dt.

We can estimate the left-hand side using the coercivity and boundedness of A

1

2
‖∂tun(t1)‖2% +

1

2
a(un(t1), un(t1))− 1

2
‖u1n‖2% −

1

2
a(u0n, u0n)

≥ 1

2
‖∂tun(t1)‖2% +

α

2
‖un(t1)‖2H1

ΓD
(Ω) −

1

2
‖u1n‖2% −

β

2
‖u0n‖2H1

ΓD
(Ω)

and the right-hand side using Hölder’s and Young’s inequality and the estimate of the trace

operator∫ t1

0

〈f(t), ∂tun(t)〉%dt+ 〈g(t1), un(t1)〉L2(ΓN) − 〈g(0), u0n〉L2(ΓN) −
∫ t1

0

〈∂tg(t), un(t)〉L2(ΓN)dt

≤
∫ t1

0

‖f(t)‖%‖∂tun(t)‖%dt+ ‖g(t1)‖[L2(ΓN)]3‖un(t1)‖[L2(ΓN)]3

+ ‖g(0)‖[L2(ΓN)]3‖u0n‖[L2(ΓN)]3 +

∫ t1

0

‖∂tg(t)‖[L2(ΓN)]3‖un(t)‖[L2(ΓN)]3dt

≤ 1

2

∫ t1

0

‖f(t)‖2%dt+
1

2

∫ t1

0

‖∂tun(t)‖2%dt+
1

2ε
‖g(t1)‖2[L2(ΓN)]3 +

ε

2
Ctrace‖un(t1)‖2H1

ΓD
(Ω)

+
1

2
‖g(0)‖2[L2(ΓN)]3 +

1

2
Ctrace‖u0n‖2H1

ΓD
(Ω) +

1

2

∫ t1

0

‖∂tg(t)‖2[L2(ΓN)]3dt

+
1

2
Ctrace

∫ t1

0

‖un(t)‖2H1
ΓD

(Ω)dt.

Choosing ε = α
2Ctrace

and using the fact that g is continuous in t, we receive

‖∂tun(t1)‖2% +
α

2
‖un(t1)‖2H1

ΓD
(Ω)

≤ ‖u1n‖2% + (β + Ctrace) ‖u0n‖2H1
ΓD

(Ω) +

∫ t1

0

Ctrace‖un(t)‖2H1
ΓD

(Ω) + ‖∂tun(t)‖2%dt

+

∫ t1

0

‖f(t)‖2% +
2CTtraceCtrace

α
‖g(t)‖2[L2(ΓN)]3 + CTtrace‖g(t)‖2[L2(ΓN)]3 + ‖∂tg(t)‖2[L2(ΓN)]3dt,

where CTtrace is the continuity constant of the trace operator of Bochner spaces (cf. Theo-

rem 2.2.2). Gronwall’s Lemma yields

‖∂tun(t1)‖2% + ‖un(t1)‖2H1
ΓD

(Ω)

≤ c1ec2t1
(
‖u1n‖2% + ‖u0n‖2H1

ΓD
(Ω) + ‖f‖2L2(S;L2

%) + ‖g‖2H1(S;[L2(ΓN)]3)

)
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with constants c1, c2 only depending on α, β. Since every convergent sequence is bounded, we

get (for n big enough) the a priori estimates

‖∂tun‖2L∞(S;L2
%(Ω)) ≤ c3e

c2T
(
‖u1‖2% + ‖u0‖2H1

ΓD
(Ω) + ‖f‖2L2(S;L2

%) + ‖g‖2H1(S;[L2(ΓN)]3)

)
,

‖un‖2L∞(S;H1
ΓD

(Ω)) ≤ c3e
c2T
(
‖u1‖2% + ‖u0‖2H1

ΓD
(Ω) + ‖f‖2L2(S;L2

%) + ‖g‖2H1(S;[L2(ΓN)]3)

)
.

(10.1.7)

(iii) Passing to the limit n → ∞: Due to the estimate (10.1.7), the sequence {un}
(resp. {∂tun}) is uniformly bounded in L∞(S;H1

ΓD
(Ω)) (resp. L∞(S;L2

%(Ω))). Therefore, there

exists a weakly-* convergent subsequence such that

un
∗
⇀ u weakly-* in L∞(S;H1

ΓD
(Ω)),

∂tun
∗
⇀ ∂tu weakly-* in L∞(S;L2

%(Ω)).
(10.1.8)

We multiply equation (10.1.5) with some function ϕ ∈ C1(S̄) with ϕ(T ) = 0, integrate over S

and integrate by parts in the first integral

−
∫ T

0

〈∂tun(t), ∂tϕ(t)wl〉%dt+

∫ T

0

a(un(t), ϕ(t)wl)dt

=

∫ T

0

〈f(t), ϕ(t)wl〉%dt+

∫ T

0

〈g(t), ϕ(t)wl〉L2(ΓN)dt+ 〈u1n, ∂tϕ(0)wl〉%.

Due to the weak-* convergences (10.1.8), we can pass to the limit

−
∫ T

0

〈∂tu(t), ∂tϕ(t)wl〉%dt+

∫ T

0

a(u(t), ϕ(t)wl)dt

=

∫ T

0

〈f(t), ϕ(t)wl〉%dt+

∫ T

0

〈g(t), ϕ(t)wl〉L2(ΓN)dt+ 〈u1, ∂tϕ(0)wl〉%.

The linear span of the function ϕwl, l ∈ N, is dense in L2(S;H1
ΓD

(Ω)) (more details can be

found in the proof of Theorem 12.4 in [Schweizer, 2018]). Clearly,∫ T

0

〈∂tun(t), ϕ(t)wl〉%dt =−
∫ T

0

〈un(t), ∂tϕ(t)wl〉%dt− 〈u0n, ϕ(0)wl〉%,∫ T

0

〈∂tu(t), ϕ(t)wl〉%dt =−
∫ T

0

〈u(t), ∂tϕ(t)wl〉%dt− 〈u(0), ϕ(0)wl〉%.

If we pass to limit n→∞, we get

〈u0n, ϕ(0)wl〉% → 〈u(0), ϕ(0)wl〉%,

which shows that u0n ⇀ u(0) in L2
%(Ω). Together with (10.1.3) it follows that u(0) = u0. So

we have found a weak solution u of (10.1.1) with u ∈ L∞(S;H1
ΓD

(Ω)), ∂tu ∈ L∞(S;L2
%(Ω))

and ∂t(%∂tu) ∈ L2(S; (H1
ΓD

(Ω))∗) in the sense of distributions. Thus, u ∈ L2(S;H1
ΓD

(Ω)),
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∂tu ∈ L2(S;L2
%(Ω)) and due to Theorem 10.9 from [Schweizer, 2018] u ∈ C0(S̄;L2

%(Ω)).

(iv) Uniqueness of the solution: We assume that there exists two weak solutions ua and

ub. Due to the linearity, there holds for u := ua − ub

u(0) = 0, ∂tu(0) = 0

and

−
∫ T

0

〈∂tu(t), ∂tv(t)〉% dt+

∫ T

0

a(u(t), v(t)) dt = 0

for all v ∈ L2(S;H1
ΓD

(Ω)) with ∂tv ∈ L2(S;L2
%(Ω)) and v(T ) = 0. Let 0 ≤ s ≤ T , χs the

characteristic function of the interval [0, s] and

v(t) :=

∫ t

0

χs(τ)u(τ) dτ −
∫ T

0

χs(τ)u(τ) dτ.

Then, v is an admissable test function, v(t) = v(T ) = 0 for s ≤ t ≤ T , v is absolute continuous

in [0, T ] and ∂tv(t) = χs(t)u(t) a.e. in S. So we get for the first integral

−
∫ T

0

〈∂tu(t), ∂tv(t)〉% dt = −
∫ s

0

〈∂tu(t), u(t)〉% dt = −1

2
‖u(s)‖2%.

Similarly, we receive∫ T

0

a(u(t), v(t)) dt =

∫ s

0

a(∂tv(t), v(t)) dt = −1

2
a(v(0), v(0)).

Summing up,

0 =
1

2
‖u(s)‖2% +

1

2
a(v(0), v(0)) ≥ 1

2
‖u(s)‖2% +

α

2
‖v(0)‖2H1

ΓD
(Ω)

for a.e. s ∈ S. Therefore, u = 0 a.e.

As a simple consequence we receive a linear continuous operator, which maps the initial values

and given forces to the solution of (10.1.2).

Corollary 10.1.2. Under the same assumption as in Theorem 10.1.1, we get the linear and

continuous operator

L : H1
ΓD

(Ω)× L2
%(Ω)× L2(S;L2

%(Ω))×H1(S;
[
L2(ΓN)

]3
)→ L∞(S;H1

ΓD
(Ω))× L∞(S;L2

%(Ω))

with

L(u0, u1, f, g) = (u, ∂tu),

where u is the weak solution of (10.1.1). Furthermore, there exists a constant C independent
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of u0, u1, f, g, such that

‖u‖2L∞(S;H1
ΓD

(Ω)) + ‖∂tu‖2L∞(S;L2
%(Ω))

≤ C
(
‖u1‖2% + ‖u0‖2H1

ΓD
(Ω) + ‖f‖2L2(S;L2

%(Ω)) + ‖g‖2H1(S;[L2(ΓN)]3)

)
Proof. This result follows directly from the proof of Theorem 10.1.1 using (10.1.7) and the

weak lower semicontinuity of the norm.

10.1.2. Periodic and homogenized problem

We define the reference cell Y = (0, l1)× (0, l2)× (0, l3) ⊂ R3 with l1, l2, l3 > 0. We consider a

bounded sequences {(Aε, %ε)} in M(α, β,Ω)×L∞(Ω), where Aε is a tensor of fourth order and

%ε a mass density. Additionally, all %ε should satisfy 0 < %0 < %ε(x) < %1 for some %0, %1 ∈ R
and for a.e. x ∈ Ω. The norms ‖ · ‖L2

%ε
and ‖ · ‖L2(Ω) are equivalent since

√
%0‖u‖[L2(Ω)]3 ≤ ‖u‖%ε ≤

√
%1‖u‖[L2(Ω)]3 . (10.1.9)

We define for every ε the time-dependent linear elasticity problem

∂t(%
ε∂tu

ε)−∇ · (Aεe(uε)) = f in S × Ω,

uε = 0 on S × ΓD,

Aεe(uε)ν = g on S × ΓN,

uε(0, x) = u0(x) a.e. in Ω,

∂tu
ε(0, x) = u1(x) a.e. in Ω.

(10.1.10)

We assume that f is given as a volume force. It can be rewritten as %ε f%ε with f
%ε force per

mass, which is well-defined since 0 < %0 < %ε. Thus, we can apply Theorem 10.1.1 to get the

existence and uniqueness of the weak solution.

Theorem 10.1.3. Let (Aε, %ε) be defined as above, u0 ∈ H1
ΓD

(Ω), u1 ∈ [L2(Ω)]3, f ∈[
L2(S × Ω)

]3
and g ∈ H1(S; [L2(ΓN)]3). Then, there exists a unique weak solution uε ∈

L2(S;H1
ΓD

(Ω)) of (10.1.10) with uε ∈ L∞(S;H1
ΓD

(Ω)), ∂tu
ε ∈ L∞(S; [L2(Ω)]3) and ∂t(%

ε∂tu
ε) ∈

L2(S; (H1
ΓD

(Ω))∗) in the sense of distributions, as well as uε ∈ C0(S̄; [L2(Ω)]3), i.e. for all

v ∈ L2(S;H1
ΓD

(Ω)) with ∂tv ∈ L2(S;L2
%ε(Ω)) and v(T ) = 0 there holds

−
∫ T

0

∫
Ω

%ε∂tu
ε · ∂tv dxdt+

∫ T

0

∫
Ω

Aεe(uε)e(v) dxdt

=

∫ T

0

∫
Ω

f · v dxdt+

∫ T

0

∫
ΓN

g · v dS(x)dt+

∫
Ω

%εu1 · v(0) dx

(10.1.11)
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and uε(0) = u0. Furthermore,

‖uε‖2L∞(S;H1
ΓD

(Ω)) + ‖∂tuε‖2L∞(S;[L2(Ω)]3)

≤ C
(
‖u1‖2[L2(Ω)]3 + ‖u0‖2H1

ΓD
(Ω) + ‖f‖2L2(S;[L2(Ω)]3) + ‖g‖2H1(S;[L2(ΓN)]3)

) (10.1.12)

for some constant C independent of ε.

Proof. The result follows directly from Theorem 10.1.1 and Corollary 10.1.2 and the equivalence

of the norms (10.1.9).

Under the assumptions of Theorem 10.1.3

uε
∗
⇀ u weakly-* in L∞(S;H1

ΓD
(Ω)) and ∂tu

ε ∗⇀ ∂tu weakly-* in L∞(S; [L2(Ω)]3).

Since L∞(S;H1
ΓD

(Ω)) ⊂ L2(S;H1
ΓD

(Ω)) and L∞(S; [L2(Ω)]3) ⊂
[
L2(S × Ω)

]3
, we even know

that

uε ⇀ u weakly in L2(S;H1
ΓD

(Ω)) and ∂tu
ε ⇀ ∂tu weakly in

[
L2(S × Ω)

]3
. (10.1.13)

We want to pass to the limit in (10.1.11). Therefore, we need the partial periodic unfolding

operator T εY from Definition 3.2.4 and the properties stated in Proposition 3.2.5. For func-

tions independent of time, we can use the standard periodic unfolding operator T ε defined in

Definition 3.2.1.

Theorem 10.1.4. Let {uε} be a sequence with uε ∈ L∞(S;H1
ΓD

(Ω)), ∂tu
ε ∈ L∞(S; [L2(Ω)]3),

uε(0) = u0 and

‖uε‖2L2(S;H1
ΓD

(Ω)) + ‖∂tuε‖2[L2(S×Ω)]3 ≤ C

for a constant C independent of ε. Then, there exists a subsequence (again denoted by {uε}),

u ∈ L2(S;H1
ΓD

(Ω))∩H1(S; [L2(Ω)]3) with u(0) = u0 and û ∈ L2(S×Ω; [H1
per,0(Y )]3) such that

T εY (uε) ⇀ u weakly in [L2(S × Ω× Y )]3, (10.1.14)

T εY (∂tu
ε) ⇀ ∂tu weakly in [L2(S × Ω× Y )]3, (10.1.15)

T εY (∇xuε) ⇀ ∇u+∇yû weakly in [L2(S × Ω× Y )]3×3. (10.1.16)

Proof. Due to the uniform boundedness of uε, we can estimate by using Proposition 3.2.5 (ii)

‖T εY (uε)‖[L2(S×Ω×Y )]3 ≤ |Y |1/2‖uε‖[L2(S×Ω)]3 ≤ C,

‖∂tT εY (uε)‖[L2(S×Ω×Y )]3 = ‖T εY (∂tu
ε)‖[L2(S×Ω×Y )]3 ≤ |Y |1/2‖∂tuε‖[L2(S×Ω)]3 ≤ C,

‖∇yT εY (uε)‖[L2(S×Ω×Y )]3×3 = ‖εT εY (∇uε)‖[L2(S×Ω×Y )]3×3 ≤ ε|Y |1/2‖∇uε‖[L2(S×Ω)]3×3 ≤ εC.

Thus,

‖T εY (uε)‖H1(S;[L2(Ω×Y )]3) ≤ C and ‖T εY (uε)‖L2(S×Ω;[H1(Y )]3) ≤ C.
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So there exist functions u ∈ H1(S; [L2(Ω× Y )]3) with

T εY (uε) ⇀ u weakly in [L2(S × Ω× Y )]3,

∂tT εY (uε) ⇀ ∂tu weakly in [L2(S × Ω× Y )]3

and û ∈ L2(S × Ω; [H1(Y )]3) with

T εY (uε) ⇀ û weakly in [L2(S × Ω× Y )]3,

∇yT εY (uε)→ 0 weakly in [L2(S × Ω× Y )]3×3.

Therefore û is independent of y and since the weak limit is unique, there holds û = u. The

condition u(0) = u0 follows directly from uε(0) = u0 for all ε > 0. Proposition 3.2.5 (vi) shows

(10.1.16).

Because of Proposition 3.2.5 (v), we even get that uε ⇀MY (u) = u weakly in
[
L2(S × Ω)

]3
in Theorem 10.1.4. This yields that the limit function u coincides with u from (10.1.13). In

the next step, we want to pass to the limit ε→ 0 in (10.1.11).

Theorem 10.1.5. Let {(Aε, %ε)} be defined as above, f ∈
[
L2(S × Ω)

]3
, g ∈ H1(S; [L2(ΓN)]3),

u0 ∈ H1
ΓD

(Ω), u1 ∈ [L2(Ω)]3 and {uε} the associated sequence of weak solutions of (10.1.11).

Then, the weak convergences (10.1.13),(10.1.14),(10.1.15) and (10.1.16) hold. Suppose that

Bε = T ε(Aε)→ B a.e. in Ω× Y

and

T ε(%ε)→ % a.e. in Ω× Y.

Then, B ∈M(α, β,Ω× Y ), 0 < %0 ≤ %(x) ≤ %1 for a.e. x ∈ Ω and

(u, û) ∈ L2(S;H1
ΓD

(Ω))× L2(S × Ω; [H1
per,0(Y )]3)

with ∂tu ∈ [L2(S × Ω)]3 and u(0) = u0 is the weak solution of

−
∫ T

0

∫
Ω

1

|Y |

∫
Y

%(x, y)dy ∂tu(t, x) · ∂tv(t, x) dxdt

+
1

|Y |

∫ T

0

∫
Ω×Y

B(x, y)(e(u)(t, x) + ey(û)(t, x, y))(e(v)(t, x) + ey(v̂)(t, x, y)) dxdydt

=

∫ T

0

∫
Ω

f(t, x) · v(t, x) dxdt+

∫ T

0

∫
ΓN

g · v(t, x) dS(x)dt

+

∫
Ω

1

|Y |

∫
Y

%(x, y) dy u1(x) · v(0, x) dx

(10.1.17)

for all v ∈ L2(S;H1
ΓD

(Ω)) with ∂tv ∈ [L2(S × Ω)]3, v(T ) = 0 and v̂ ∈ L2(S × Ω; [H1
per,0(Y )]3).
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Proof. The weak convergences (10.1.13)–(10.1.16) follow directly from (10.1.12) and Theo-

rem 10.1.4. We have already proven in Theorem 9.1.2 that B ∈ M(α, β,Ω × Y ). Since

0 < %0 < %ε(x) < %1 for a.e. x ∈ Ω clearly 0 < %0 ≤ %(x, y) ≤ %1 for a.e. (x, y) ∈ Ω × Y . We

rewrite the weak formulation (10.1.11) using the partial periodic unfolding method

− 1

|Y |

∫ T

0

∫
Ω×Y

T ε(%ε)T εY (∂tu
ε) · T εY (∂tv) dxdydt

+
1

|Y |

∫ T

0

∫
Ω×Y

T ε(Aε)T εY (e(uε))T εY (e(v)) dxdydt+ I1

=
1

|Y |

∫ T

0

∫
Ω×Y

T εY (f) · T εY (v) dxdydt+

∫ T

0

∫
ΓN

g · v dS(x)dt

+
1

|Y |

∫
Ω×Y

T ε(%ε)T ε(u1) · T ε(v(0)) dxdy + I2,

(10.1.18)

where

I1 = −
∫ T

0

∫
Πε
%ε∂tu

ε · ∂tv dxdt+

∫ T

0

∫
Πε
Aεe(uε)e(v) dxdt

I2 =

∫ T

0

∫
Πε
f · v dxdt+

∫
Πε
%εu1 · v(0) dx

We choose as test functions v(t, x) = ϕ(t)w(x) with ϕ ∈ C1
c ([0, T )) and w ∈ DΓD

(Ω), where

DΓD
(Ω) := {φ ∈ [C∞(Ω)]

3
: v is equal to 0 in a neighbourhood of ΓD}.

Then, it follows from Proposition 3.2.5 (iii)

T εY (v)→ ϕw strongly in [L2(S × Ω× Y )]3,

T εY (∂tv)→ ∂tϕw strongly in [L2(S × Ω× Y )]3,

T εY (e(v))→ ϕe(w) strongly in [L2(S × Ω× Y )]3×3.

So passing to the limit in (10.1.18) and using the almost everywhere convergence of T ε(%ε)(x, y)

and T ε(Aε)(x, y), yields

− 1

|Y |

∫ T

0

∫
Ω×Y

%(x, y)∂tu(t, x) · ∂tϕ(t)w(x) dxdydt

+
1

|Y |

∫ T

0

∫
Ω×Y

B(x, y)(e(u)(t, x) + ey(û)(t, x, y))ϕ(t)e(w)(x) dxdydt

=
1

|Y |

∫ T

0

∫
Ω×Y

f(t, x) · ϕ(t)w(x) dxdydt+

∫ T

0

∫
ΓN

g · ϕ(t)w(x) dS(x)dt

+
1

|Y |

∫
Ω×Y

%(x, y)u1(x) · ϕ(0)w(x) dxdy.

(10.1.19)
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10.1. Statement of the direct problem

The terms I1 and I2 vanish because of Hölder’s inequality and the fact that∫
Πε
|v|2dx,

∫
Πε
|∂tv|2dx,

∫
Πε
|e(v)|2dx,

∫
Πε
|v(0)|2dx→ 0.

In the next step, we choose as a testfunctions v(t, x) = εϕ(t)ŵε(x) with ŵε(x) = ŵ(x, xε ),

where

ŵ(x, y) = (ψi(x)ηi(y))1≤i≤3

and ϕ ∈ C∞c (S), ψ ∈ D(Ω) and η ∈
[
H1

per,0(Y )
]3

. Similar as in the proof of Theorem 5.2.7, we

get the convergences

T εY (v) = εϕT ε(ŵε)→ 0 strongly in [L2(S × Ω× Y )]3,

T εY (∂tv) = ε∂tϕT ε(ŵε)→ 0 strongly in [L2(S × Ω× Y )]3,

T εY (e(v)) = ϕT ε(εe(ŵε))→ ϕey(ŵ) strongly in [L2(S × Ω× Y )]3×3.

So passing to the limit in (10.1.18) yields

1

|Y |

∫ T

0

∫
Ω×Y

B(x, y)(e(u)(t, x) + ey(û)(t, x, y))ϕ(t)ey(ŵ)(x, y) dxdydt = 0. (10.1.20)

If we add (10.1.19) and (10.1.20) and use the fact that C1
c ([0, T )) ⊗ DΓD(Ω) is dense in

L2(S;H1
ΓD

(Ω)) (cf. Theorem 3.1 from [Bernard, 2011]) and C∞c (S) ⊗ (D(Ω) ⊗ H1
per,0(Y ))3

dense in L2(S × Ω; [H1
per,0(Y )]3), we obtain (10.1.17).

We can reformulate the homogenized problem (10.1.17).

Theorem 10.1.6. Find u ∈ L2(S;H1
ΓD

(Ω)) with ∂tu ∈ [L2(S ×Ω)]3 and u(0) = u0 such that

−
∫ T

0

∫
Ω

MY (%(x, ·))∂tu(t, x) · ∂tv(t, x) dxdt+

∫ T

0

∫
Ω

Ahom(x)e(u)(t, x)e(v)(t, x) dxdt

=

∫ T

0

∫
Ω

f(t, x) · v(t, x) dxdt+

∫ T

0

∫
ΓN

g · v(t, x) dS(x)dt+

∫
Ω

MY (%(x, ·))u1(x) · v(0, x) dx

(10.1.21)

for all v ∈ L2(S;H1
ΓD

(Ω)) with ∂tv ∈ [L2(S×Ω)]3 and v(T ) = 0, where Ahom = (ahom
ijkl )1≤i,j,k,l≤3

with

ahom
ijkl (x) =

1

|Y |

∫
Y

B(x, y)eij(ekl − ey(wkl)(x, y))dy

for a.e. x ∈ Ω and wkl ∈ [L∞(Ω, H1
per,0(Y ))]3, k, l ∈ {1, 2, 3}, is the unique solution of the cell

problem ∫
Y

B(x, y)
(
ey(wkl)(·, y)− ekl

)
ey(v)(y)dy = 0 (10.1.22)

for all v ∈
[
H1

per,0(Y )
]3

.

Proof. We have already proven in Theorem 9.1.3 that there exists a unique solution wkl ∈
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10. Parameter identification for the time-dependent linearized elasticity problem

[L∞(Ω, H1
per,0(Y ))]3 of (10.1.22). Choosing v = 0 in (10.1.17) yields

1

|Y |

∫ T

0

∫
Ω×Y

B(x, y)(e(u)(t, x) + ey(û)(t, x, y))ey(v̂)(t, x, y) dxdydt = 0

for all v̂ ∈ L2(S × Ω; [H1
per,0(Y )]3). Using the fundamental lemma of calculus of variations we

receive
1

|Y |

∫
Y

B(x, y)(e(u)(t, x) + ey(û)(t, x, y))ey(v̂)(y) dy = 0

for a.e. t ∈ S and x ∈ Ω and all v̂ ∈
[
H1

per,0(Y )
]3

. Due to Korn’s inequality for periodic

functions with mean value zero (see Corollary 2.2.6), there exists for a.e. t ∈ S and x ∈ Ω a

unique solution ϕ ∈
[
H1

per,0(Y )
]3

of

1

|Y |

∫
Y

B(x, y)(e(u)(t, x) + ey(ϕ)(y))ey(v̂)(y) dy = 0 (10.1.23)

for all v̂ ∈ [H1
per,0(Y )]3. With the same computation as in the proof of Theorem 9.1.3, we

get that ϕ = −
∑3
l,m=1 elm(u)(t, x)wlm(x, y) is a solution of (10.1.23). Due to uniqueness and

since (t, x) was arbitrary, we obtain that

û(t, x, y) = −
3∑

l,m=1

elm(u)(t, x)wlm(x, y).

So again with the same computation as in the proof of Theorem 9.1.3 we get the macroscopic

problem (10.1.21).

We know from Theorem 9.1.9 that Ahom ∈ M(α, β
2

2 ,Ω). With this fact we can prove the

uniqueness of the solution of the homogenized problem.

Theorem 10.1.7. There exists a unique solution u ∈ L2(S;H1
ΓD

(Ω)) with ∂tu ∈ [L2(S ×Ω)]3

and u(0) = u0 of problem (10.1.21).

Proof. We assume that there exists two weak solutions ua and ub. Due to the linearity, there

holds u(0) = 0 for u := ua − ub and

−
∫ T

0

∫
Ω

MY (%(x, ·))∂tu(t, x) · ∂tv(t, x) dxdt+

∫ T

0

∫
Ω

Ahom(x)e(u)(t, x)e(v)(t, x) dxdt = 0

for all v ∈ L2(S;H1
ΓD

(Ω)) with ∂tv ∈ [L2(S × Ω)]3 and v(T ) = 0. Let 0 ≤ s ≤ T , χs the

characteristic function of the interval [0, s] and

v(t, x) :=

∫ t

0

χs(τ)u(τ, x) dτ −
∫ T

0

χs(τ)u(τ, x) dτ.

Then, v is an admissable test function, v(t, ·) = v(T, ·) = 0 for s ≤ t ≤ T , v is absolutely
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10.2. Inverse problem

continuous in [0, T ] and ∂tv(t.x) = χs(t)u(t, x) a.e. in S × Ω. So we can compute

0 = −
∫ T

0

∫
Ω

MY (%(x, ·))∂tu(t, x) · ∂tv(t, x) dxdt+

∫ T

0

∫
Ω

Ahom(x)e(u)(t, x)e(v)(t, x) dxdt

= −
∫ s

0

∫
Ω

MY (%(x, ·))∂tu(t, x) · u(t, x) dxdt+

∫ s

0

∫
Ω

Ahom(x)e(∂tv)(t, x)e(v)(t, x) dxdt

= −
∫ s

0

∫
Ω

MY (%(x, ·))∂tu(t, x) · u(t, x) dxdt− 1

2

∫
Ω

Ahom(x)e(v)(0, x)e(v)(0, x) dx,

where we have used the symmetry of Ahom. The coercivity of Ahom yields

0 =

∫ s

0

∫
Ω

MY (%(x, ·))∂tu(t, x) · u(t, x) dxdt+
1

2

∫
Ω

Ahom(x)e(v)(0, x)e(v)(0, x) dx

≥ 1

2
%0‖u(s, ·)‖2[L2(Ω)]3 +

α

2
‖v(0, ·)‖2H1

ΓD
(Ω)

for a.e. s ∈ S. Thus, u = 0 a.e.

Remark 10.1.8. The strong formulation of (10.1.21) is

∂t (MY (%)∂tu)−∇ · (Ahome(u)) = f in S × Ω,

u = 0 on S × ΓD,

(Ahome(u)) · ν = g on S × ΓN,

u(0, x) = u0(x) a.e. in Ω,

∂tu(0, x) = u1(x) a.e. in Ω.

If B(x, ·) is Y -periodic, we can rewrite the cell problem (10.1.22) in the strong form{
−∇y · (B(x, y)(ey(wkl)(x, y)− ekl)) = 0 in Y,

wkl(x, ·)Y -periodic with MY (wkl(x, ·)) = 0.

for a.e. x ∈ Ω, which is the same cell problem as in the steady-state case.

10.2. Inverse problem

With the results from the previous section, we are able to compute the displacement field

u of the homogenized problem if body and boundary forces are given and the sequence of

elasticity tensors {Aε} satisfies some properties. A classical example for Aε is a tensors of

the form Aε(x) = A
(
x
ε

)
with A Y -periodic, i.e. the material properties only depend on the

microstructure. So in this case, the microstructure is known. From now on, we want to derive

the microstructure of Y , when measured data on the exterior boundary under known volume

and boundary forces f and g over some time interval S are given.

We make the same structural assumptions about the reference cell Y and choose the same

sequence {Aε} of tensors of fourth order as stated in the beginning of section 9.2 in the steady-
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state case. So Ahom = (ahom
ijkl )1≤i,j,k,l≤3 ∈M(α, β

2

α ,Ω) with

ahom
ijkl [τ ](x) =

1

|Y |

∫
Y0[τ ]

A0(x)eij(ekl − ey(wkl)(x, y)) dy

+
1

|Y |

∫
Y1[τ ]

A1(x)eij(ekl − ey(wkl)(x, y)) dy.

Furthermore, we assume that %ε[τ ] is of the form

%ε[τ ](x) = %0(x)χY0[τ ]

(x
ε

)
+ %1(x)χY1[τ ]

(x
ε

)
for some 0 < %0, %1 ∈ L∞(Ω) such that

T ε(%ε[τ ])(x, y) =

%0(ε
[
x
ε

]
+ εy)χY0[τ ](y) + %1(ε

[
x
ε

]
+ εy)χY1[τ ](y) for a.e. (x, y) ∈ Ωε × Y,

0 for a.e. (x, y) ∈ Πε × Y

→ %0(x)χY0[τ ](y) + %1(x)χY1[τ ](y) =: %[τ ](x, y)

for a.e. (x, y) ∈ Ω × Y . We define the input–output operator, which maps the body and

boundary forces and the initial values to the solution of the homogenized problem (10.1.21).

Definition 10.2.1 (input–output operator).

Lτ : [L2(S × Ω)]3 ×H1(S; [L2(ΓN)]3)×H1
ΓD

(Ω)× [L2(Ω)]3 →
[
L2(S × ∂Ω)

]3
with

(f, g, u0, u1) 7→ u[τ ]|∂Ω,

where u[τ ] ∈ L2(S;H1
ΓD

(Ω)) ∩ H1(S; [L2(Ω)]3) is the solution of the homogenized problem

(10.1.21) for given τ .

This operator satisfies some properties.

Theorem 10.2.2. The operator Lτ is linear and continuous. Furthermore, u[τ ] satisfies

‖u[τ ]‖2[L2(S×∂Ω)]3 ≤ C
(
‖u1‖2[L2(Ω)]3 + ‖u0‖2H1

ΓD
(Ω) + ‖f‖2L2(S;[L2(Ω)]3) + ‖g‖2H1(S;[L2(ΓN)]3)

)
for some constant C independent of the structure of the reference cell Y .

Proof. Since Ahom ∈M(α, β
2

α ,Ω), it follows directly from Theorem 10.1.1 and Corollary 10.1.2

that

‖u[τ ]‖2L∞(S;H1
ΓD

(Ω)) + ‖∂tu[τ ]‖2L∞(S;[L2(Ω)]3)

≤ C
(
‖u1‖2[L2(Ω)]3 + ‖u0‖2H1

ΓD
(Ω) + ‖f‖2L2(S;[L2(Ω)]3) + ‖g‖2H1(S;[L2(ΓN)]3)

)
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10.2. Inverse problem

for some constant C depending only on α, β but not on the structure of the periodicity cell Y .

The continuity of the trace operator and L∞ ⊂ L2 yields the desired result.

We want to study the following inverse problem.

Definition 10.2.3 (Inverse Problem). Let 0 < η < min{l1, l2, l3}. Find τ ∈ Iη such that for

given measured data um ∈
[
L2(S × ∂Ω)

]3
, when forces (f, g) are applied and initial conditions

u0, u1 are given, τ is the solution of the minimization problem

arg min
τ∈Iη

J (τ) := arg min
τ∈Iη

1

2
‖Lτ (f, g, u0, u1)− um‖2[L2(S×∂Ω)]3 . (10.2.1)

10.2.1. Existence result

We prove that there exists at least one solution of the inverse problem (10.2.1).

Theorem 10.2.4. The inverse problem (10.2.1) has at least one optimal solution τ∗ ∈ Iη.

Proof. Let {τn} be a minimizing sequence in Iη such that

lim
n→∞

J (τn) = inf{J (τ) : τ ∈ Iη} ≥ 0.

Obviously, the sequence {τn} is bounded. Since Iη is a compact set in R3, there exists a

subsequence (again denoted by {τn}) such that τn → τ∗ for some τ∗ ∈ Iη as n → ∞. Let

{u[τn]} be the associated sequence of weak solutions of the homogenized problem (10.1.21). We

receive as in the proof of Theorem 10.2.2 the uniform boundedness of {u[τn]} in L2(S;H1
ΓD

(Ω))∩
H1(S; [L2(Ω)]3). Thus, there exists a subsequence of {τn} – again denoted by {τn} – such that

u[τn] ⇀ ũ weakly in L2(S;H1
ΓD

(Ω)) ∩H1(S; [L2(Ω)]3). (10.2.2)

In the next step we prove that ũ = u[τ∗]. For every τn the function u[τn] is the solution of

a(u[τn], v; τn) = F (v; τn)

for all v ∈ L2(S;H1
ΓD

(Ω)) ∩H1(S; [L2(Ω)]3) with v(T ) = 0, where

a : L2(S;H1
ΓD

(Ω)) ∩H1(S; [L2(Ω)]3)× L2(S;H1
ΓD

(Ω)) ∩H1(S; [L2(Ω)]3)→ R

is the bilinear form of the left-hand side of (10.1.21), i.e.

a(w, v; τ̂) =−
∫ T

0

∫
Ω

MY (%[τ̂ ](x, ·))∂tw(t, x) · ∂tv(t, x) dxdt

+

∫ T

0

∫
Ω

Ahom[τ̂ ](x)e(w)(t, x)e(v)(t, x) dxdt,
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and

F : L2(S;H1
ΓD

(Ω)) ∩H1(S; [L2(Ω)]3)→ R

is the linear functional of the right-hand side, i.e.

F (v; τ̂) =

∫ T

0

∫
Ω

f(t, x) · v(t, x) dxdt+

∫ T

0

∫
ΓN

g · v(t, x) dS(x)dt

+

∫
Ω

MY (%[τ̂ ](x, ·))u1(x) · v(0, x) dx.

The index τ̂ emphasizes that the bilinear and linear form depend on the parameter τ̂ through

Ahom[τ̂ ] and %[τ̂ ]. For the readability, we omit the arguments (t, x) of the functions. In the

first step we show that

|a(u[τn], v; τn)− a(ũ, v; τ∗)| → 0 (10.2.3)

for n→∞. We rewrite the difference and use Hölder’s inequality

|a(u[τn], v; τn)− a(ũ, v; τ∗)|

=

∣∣∣∣∣−
∫ T

0

∫
Ω

(MY (%[τn](x, ·))−MY (%[τ∗](x, ·))) ∂tu[τn] · ∂tv dxdt

−
∫ T

0

∫
Ω

MY (%[τ∗](x, ·))(∂tu[τn]− ∂tũ) · ∂tv dxdt

+

∫ T

0

∫
Ω

(
Ahom[τn](x)−Ahom[τ∗](x)

)
e(ũ)e(v) dxdt

+

∫ T

0

∫
Ω

Ahom[τn](x)(e(u[τn])− e(ũ))e(v) dxdt

∣∣∣∣∣
≤‖MY (%[τn]− %[τ∗])‖L∞(Ω)‖∂tu[τn]‖[L2(S×Ω)]3‖∂tv‖[L2(S×Ω)]3

+ ‖MY (%[τ∗])‖L∞(Ω)

∣∣∣∣∣
∫ T

0

∫
Ω

∂t(u[τn]− ũ) · ∂tv dxdt

∣∣∣∣∣
+ ‖(Ahom[τn]−Ahom[τ∗])e(ũ)‖[L2(S×Ω)]3×3‖e(v)‖[L2(S×Ω)]3×3

+

∣∣∣∣∣∣
∫ T

0

∫
Ω

 3∑
k,l=1

ahom
ijkl [τn]ekl(v)


i,j=1,2,3

: (e(u[τn]− ũ)) dxdt

∣∣∣∣∣∣ .
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Since 0 < %0, %1 ∈ L∞(Ω), we receive for a.e. x ∈ Ω

|MY (%[τn](x)− %[τ∗](x))|

=
1

|Y |

∣∣∣∣∫
Y

(%0(x)(χY0[τn](y)− χY0[τ∗](y)) + %1(x)(χY1[τn](y)− χY1[τ∗](y))dy

∣∣∣∣
≤ 1

|Y |
(%0(x)|Y0[τn]\Y0[τ∗] ∪ Y0[τ∗]\Y0[τn]|+ %1(x)|Y1[τn]\Y1[τ∗] ∪ Y1[τ∗]\Y1[τn]|)

≤ C

|Y |
(|Y0[τn]\Y0[τ∗] ∪ Y0[τ∗]\Y0[τn]|+ |Y1[τn]\Y1[τ∗] ∪ Y1[τ∗]\Y1[τn]|)→ 0.

(10.2.4)

Since the last term in the inequality is independent of x, we even get the convergence in L∞(Ω).

The same proof as in the proof of Theorem 9.2.3 shows that

‖(Ahom[τn]−Ahom[τ∗])e(ũ)‖[L2(S×Ω)]3×3 → 0.

Using the pointwise convergence of Ahom[τn] to Ahom[τ∗] (cf. Theorem 9.2.4) and the weak

convergence (10.2.2) this shows (10.2.3). In the second step, we prove

|F (v, τn)− F (v, τ∗)| → 0 (10.2.5)

for n→∞. We estimate

|F (v; τn)− F (v; τ∗)| ≤‖MY (%[τn]− %[τ∗])‖L∞(Ω)

∣∣∣∣∫
Ω

u1(x) · v(0, x) dx

∣∣∣∣
≤C‖MY (%[τn]− %[τ∗])‖L∞(Ω).

Thus, (10.2.5) follows directly from (10.2.4). So we can conclude from the first and second step

that

a(ũ, v; τ∗) = lim
n→∞

a(u[τn], v; τn) = lim
n→∞

F (v; τn) = F (v; τ∗). (10.2.6)

Since u[τn], ũ ∈ L2(S;H1
ΓD

) ∩ H1(S; [L2(Ω)]3) we can apply Theorem 10.9 from [Schweizer,

2018] to get that un, ũ ∈ C0(S̄; [L2(Ω)]3). Thus, using Proposition 10.8 from [Schweizer, 2018]

u[τn](t) = γt(u[τn]), ũ(t) = γt(ũ) for all t ∈ S̄,

where the trace operator γt for Bochner spaces is defined in Theorem 2.2.2. The definition of

the trace operator and the weak convergence of the solutions in H1(S; [L2(Ω)]3) yield for all

φ ∈ C∞c ([0, T )) with φ(0) = 1

u0(x) = u[τn](0, x) = γ0(u[τn]) = −
∫ T

0

u[τn](t)∂tφ(t)dt−
∫ T

0

∂tu[τn](t)φ(t)dt

→ −
∫ T

0

ũ(t)∂tφ(t)dt−
∫ T

0

∂tũ(t)φ(t)dt = γ0(ũ) = ũ(0, x),
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10. Parameter identification for the time-dependent linearized elasticity problem

which shows that

ũ(0, x) = u0(x).

Summing up all these results, we have shown that ũ = u[τ∗] due to the uniqueness of the

solution u[τ∗] of (10.1.21). The functional F :
[
L2(S × ∂Ω)

]3 → R, v 7→ ‖v − um‖2L2(S×∂Ω) is

continuous and convex, since for all λ ∈ (0, 1) and v, w ∈
[
L2(S × ∂Ω)

]3
F(λv + (1− λ)w) = ‖λ(v − um) + (1− λ)(w − um)‖2[L2(S×∂Ω)]3

≤
(
λ‖v − um‖[L2(S×∂Ω)]3 + (1− λ)‖w − um‖[L2(S×∂Ω)]3

)2

≤ λF (v) + (1− λ)F (w).

By Theorem 13.8 from [Schweizer, 2018] we obtain that F is weakly lower semi-continuous.

Thus, we can conclude that

J (τ∗) ≤ lim inf
n→∞

J (τn) = lim
n→∞

J (τn) = inf{J (τ) : τ ∈ Iη} ≤ J (τ∗),

which shows that τ∗ is a solution of the inverse problem (10.2.1).

10.2.2. Gâteaux derivative of J

In this section, we compute the Gâteaux derivative of the functional of the minimization

problem (10.2.1), namely of

J (τ) :=
1

2

∫
S

∫
∂Ω

|Lτ (f, g)− um|2dS(x)dt.

Apart from the Gâteaux derivative of Ahom, which we have already computed in section 9.2.2,

we need the Gâteaux derivative of MY (%[τ ]). Therefore we define

F(Y ) :=

∫
Y0

%0(x)dy +

∫
Y1

%1(x)dy =: F1(Y0) + F1(Y1)

for a.e. x ∈ Ω. We compute the directional derivative

F ′(Y )(θ) = lim
δ→0

F((Id+ δθ)(Y ))−F(Y )

δ

= lim
δ→0

F1((Id+ δθ)(Y0)) + F2((Id+ δθ)(Y1))−F1(Y0)−F2(Y1)

δ

=F ′1(Y0)(θ) + F ′2(Y1)(θ)

136



10.2. Inverse problem

for all θ ∈ [W 1,∞(R3)]3. Due to Proposition 9.2.11, the last two term exist and are of the form

F ′(Y )(θ) =F ′1(Y0)(θ) + F ′2(Y1)(θ)

=

∫
∂Y0

%0(x)θ · ndS(y) +

∫
∂Y

%1θ · ndS(y) +

∫
∂Y0

%1(x)θ · (−n)dS(y).

In our setting, we are only interested in Θi ∈ [W 1,∞
0 (Y )]3, i ∈ {1, 2, 3}, chosen as in (9.2.12),

(9.2.13), (9.2.14), which guarantees that

(Id+ δτ1Θ1 + δτ2Θ2 + δτ3Θ3)(Y [τ ]) = Y [τ1 + δτ1, τ2 + δτ2, τ3 + δτ3]

and the structural assumption is maintained, i.e. the transformed Y0 is still an ellipsoid. Since
1
|Y |F(Y [τ ]) =MY (%[τ ]), we obtain

δMY (%[τ ], τ̂)(x) =
3∑
i=1

1

|Y |
F ′(Y [τ ])(Θi)τ̂i

=
1

|Y |

∫
∂Y0[τ ]

(%0(x)− %1(x))(τ̂1Θ1 + τ̂2Θ2 + τ̂3Θ3) · n dS(y).

The integrals
∫
∂Y

%1(x)Θi · ndS(y), i ∈ {1, 2, 3}, vanish due to the definition of Θi. Now we

are able to compute the Gâteaux derivative of (10.2.1). Let u[τ ] and u[τ + ετ̂ ] be the weak

solutions of (10.1.21) for given τ resp. τ + ετ̂ . We take the difference of both equations and

divide by ε

− 1

ε

∫ T

0

∫
Ω

(MY (%[τ + ετ̂ ](x, ·))−MY (%[τ ](x, ·))) ∂tu[τ + ετ̂ ] · ∂tv dxdt

− 1

ε

∫ T

0

∫
Ω

MY (%[τ ](x, ·))(∂tu[τ + ετ̂ ]− ∂tũ) · ∂tv dxdt

+
1

ε

∫ T

0

∫
Ω

(
Ahom[τ + ετ̂ ](x)−Ahom[τ ](x)

)
e(u[τ + ετ̂ ])e(v) dxdt

+
1

ε

∫ T

0

∫
Ω

Ahom(x)[τ ](e(u[τ + ετ̂ ])− e(ũ))e(v) dxdt

=
1

ε

∫
Ω

MY (%[τ + ετ̂ ](x, ·)− %[τ ](x, ·))u1(x) · v(0, x) dx.

We pass to limit to get the first variation

−
∫ T

0

∫
Ω

δMY (%[τ ], τ̂)(x)∂tu[τ ] · ∂tv dxdt−
∫ T

0

∫
Ω

MY (%[τ ](x, ·))∂t(δu(τ, τ̂)) · ∂tv dxdt

+

∫ T

0

∫
Ω

δAhom(τ, τ̂)e(u[τ ])e(v) dxdt+

∫ T

0

∫
Ω

Ahom[τ ]e(δu(τ, τ̂))e(v) dxdt (10.2.7)

=

∫
Ω

δMY (%[τ ], τ̂)(x)u1(x) · v(0, x) dx.
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10. Parameter identification for the time-dependent linearized elasticity problem

From the steady-state case we already know that

δahom
ijkl (τ, τ̂)(x) =

3∑
h=1

∂ahom
ijkl

∂τh
[τ ](x)τ̂h ∈ L∞(Ω).

In the case where ρ0 and ρ1 are independent of x, we get that ∂t(δMY (%[τ ], τ̂)∂tu[τ ]) ∈
L2(S, (H1

ΓD
(Ω))∗) and so we can apply Satz 1.1 from [Gajewski et al., 1974] to get the existence

and uniqueness of the solution δu(τ, τ̂) ∈ L2(S;H1
ΓD

(Ω)) ∩ H1(S; [L2(Ω)]3) of (10.2.7) with

initial condition δu(τ, τ̂)(0, x) = 0. We could also use more general ρ0 and ρ1 as long as

∂t(δMY (%[τ ], τ̂)∂tu[τ ]) ∈ L2(S, (H1
ΓD

(Ω))∗). We rewrite the problem: Let h ∈ {1, 2, 3}. Find

the function ∂u
∂τh

such that

−
∫ T

0

∫
Ω

MY (%[τ ](x, ·))∂t
(
∂u

∂τh

)
· ∂tv dxdt+

∫ T

0

∫
Ω

Ahom[τ ]e

(
∂u

∂τh

)
e(v) dxdt

=

∫
Ω

∂MY

∂τh
(%[τ ])(x)u1(x) · v(0, x) dx+

∫ T

0

∫
Ω

∂MY

∂τh
(%[τ ])(x)∂tu[τ ] · ∂tv dxdt

−
∫ T

0

∫
Ω

∂Ahom

∂τh
[τ ]e(u[τ ])e(v) dxdt,

where
∂MY

∂τh
(%[τ ])(x) =

1

|Y |

∫
∂Y0[τ ]

(%0(x)− %1(x))Θh(y) · ndS(y). (10.2.8)

Then, due to uniqueness

∇u[τ ] · τ̂ :=

3∑
h=1

∂u

∂τh
τ̂h = δu(τ, τ̂).

We compute the first variation of J

δJ (τ, τ̂) = lim
ε→0

1

2ε

∫
S

∫
∂Ω

|u[τ + ετ̃ ]− um|2 − |u[τ ]− um|2 dS(x)dt

=

∫
S

∫
∂Ω

(u[τ ]− um)δu(τ, τ̂) dS(x)dt.

Using (10.2.8), we get the Gâteaux derivative of the target functional

δJ (τ, τ̂) =

∫
S

∫
∂Ω

(u[τ ]− um)∇u[τ ]dS(x)dt · τ̂ =: ∇J (τ) · τ̂ . (10.2.9)
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11. Numerical simulations

In this section, we present some numerical simulations to showcast that we can derive the

ellipsoidal microstructure from measurements of the deformation on the boundary of a beam,

whereby we use a generally known gradient-based algorithm. The material of the beam Ω

with volume 120 cm × 40 cm × 40 cm is a composite of carbon and concrete, whereby the

carbon fibres with ellipsoidal structure are distributed periodically on a microscopic scale.

The material properties for the concrete are Young’s modulus Econ = 20 GPa, Poisson’s ratio

νcon = 0.2 and density %con = 2300 kg/m3 and for the carbon Young’s modulus Ecar = 230

GPa, Poisson’s ratio νcar = 0.2 and density %car = 1800 kg/m3. To handle the different

scales, we non-dimensionalize the cell problem. We assume that reference cell has sidelengths

2 × 1 × 1 and the fibre is an ellipsoid centred in the middle of the cuboid with axis lengths

τ = (τ1, τ2, τ3) ∈ [0.12, 1.88] × [0.12, 0.88]2. We fix the beam on one of the small faces and

assume no volume forces and zero initial values for the deformation. The boundary load on

the upper part of the surface is given by g ≡ −2e3 [GPa] in the steady-state case and by

g(t) = −0.8te3 [GPa] in the time-dependent case, where t is the time variable. In both cases

there is zero boundary load on the rest of the surface. In this setup, we consider the inverse

problems of the form

arg min
τ∈Iη

J (τ) := arg min
τ∈Iη

1

2|∂Ω|2

∫
∂Ω

|u[τ ]− um|2dS(x)

for the steady-state case and

arg min
τ∈Iη

J (τ) := arg min
τ∈Iη

1

2|∂Ω|2

∫
S

∫
∂Ω

|u[τ ]− um|2dS(x)dt,

for the time-dependent case, where Iη := [0.12, 1.88]×[0.12, 0.88]2, um is the deformation of the

beam for the target value τ target = (1.5, 0.6, 0.4), u[τ ] is the solution of homogenized problem

(9.1.7) resp. (10.1.21) for given τ and S = [0, 3]s is the time interval. The functional J slightly

differs from the definitions in the sections above by the constant 1
|∂Ω|2 , which has no impact

on the analytical results up to a scaling factor.

To solve the minimization problem numerically, we use MATLAB® (version R2020a) and the

finite element simulation software COMSOL Multiphysics® [Com, 2020], which can be con-

nected by COMSOL LiveLinkTM for MATLAB®. In a first step, we compute in COMSOL

the solutions of the cell problems (9.1.9), which we use to calculate the homogenized tensor

(9.1.8), the mean value of the density (in the time-dependent case) and their Gâteaux deriva-
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11. Numerical simulations

tives with the formula from Theorem 9.2.17 and (10.2.8). We save these values in MATLAB to

pass them as parameters to another COMSOL model to solve the homogenized problem (9.1.7)

resp. (10.1.21) (in the time-dependent case). We use the solution to compute the target func-

tional J and its Gâteaux derivative (9.2.18) resp. (10.2.9) (in the time-dependent case). These

values are needed to apply the MATLAB function fmincon with the algorithm ’sqp-legacy’,

which is a gradient-based alogrithm solving the minimization problem.

In both cases – the stationary and time-dependent – we start the iteration with the same

boundary value of Iη as the initial guess, namely τ start = (0.12, 0.12, 0.12). In the steady-state

case, the values of τ1, τ2 and τ3 in every iteration step are plotted in Figure 11.1, whereby the

constant functions show the values of τ target
1 , τ target

2 and τ target
3 . In Figure 11.2 the associated

values of J in every iteration step are plotted. After 32 steps the algorithm terminates since

the relative first-order optimality is less than the optimality tolerance of 10−6. We obtain the

value τ end = (1.483, 0.624, 0.396).

Figure 11.1.: values of τ in each iteration step
in the steady-state case

Figure 11.2.: target functional on a logarith-
mic scale in each iteration step

In the time-dependent case, the values of τ1, τ2 and τ3 in every iteration step are plotted in

Figure 11.3 and the corresponding values of J in Figure 11.4. The algorithm terminates after

32 steps when the relative first-order optimality is less than the optimality tolerance of 10−6.

We obtain the value τ end = (1.507, 0.591, 0.402).
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Figure 11.3.: values of τ in each iteration step
in the time-dependent case

Figure 11.4.: target functional on a logarith-
mic scale in each iteration step

The results of the simulations show that we get a good approximation of the target value

τ target = (1.5, 0.6, 0.4) at the end, which demonstrates the functioning of the method. In this

example, we have assumed that we know the exact deformation on the boundary of the beam

in every mesh point, which is not possible in practice. So to quantify this properly, further

research has to be done such as a stability and sensitivity analysis, but which is beyond the

scope of this thesis. Furthermore, we could investigate, especially in the time-dependent case,

the impact of different test loadings on the perfomance of the optimization algorithm.
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12. Conclusion and outlook

The question of identifying the microscopic structure of the composite material was the moti-

vation for the second part of this thesis. We considered resp. derived the homogenized problem

of the stationary resp. time-dependent linear elasticity, where we have assumed perfect bonding

of fibres and matrix. In both cases, we can split the problem into a microscopic and macro-

scopic part, which are connected through the effective elasticity tensor, whose elements are

based on the solutions of the microscopic problem. Only this elliptic cell problem takes the

representative structure of the composite into account. In the corresponding inverse problem,

we were interested in identifying the parameters describing the structure of this representative

cell from macroscopic measurements on the boundary. We proved that there exists at least

one solution of the minimization problem

arg min
τ∈Iη

J (τ) := arg min
τ∈Iη

1

2
‖Lτ (f, g)− um‖2[L2(∂Ω)]3

resp.

arg min
τ∈Iη

J (τ) := arg min
τ∈Iη

1

2
‖Lτ (f, g, u0, u1)− um‖2[L2(S×∂Ω)]3

under given volume and boundary forces f and g and measured data um, where τ is a finite

vector of real paramaters describing the structure of the periodicity cell. To be able to solve

this problem numerically by generally known gradient-based algorithm, we derived the formula

(9.2.18) for the Gâteaux derivative of J . For this we have to compute the shape derivative of

the homogenized tensor and solve several partial differential equations. Numerical simulations

for an ellipsoidal microstructure showed that we can reconstruct the size of the axes of the

ellipsoids. However, to quantify this would require a proper stability and sensitivity analysis,

which is beyond the scope of this thesis. Although we have only considered isotropic materials

with special microstructure at the end, the results are still true for the case of more general

microstructure as long as there holds (9.2.10) for some appropriate Θ or if we use formula

(9.2.9) instead of Theorem 9.2.17 for anisotropic materials.

In addition to a more detailed study of the numerics, there arise several interesting aspects in

this context, but which go beyond the scope of this work. One could consider more advanced

models like the linear elasticity equation with slip displacement conditions as studied in the

first part of the thesis. Furthermore, the microscopic structure could depend on the macro-

scopic variable x, i.e. the representative cell is not same everywhere in the domain. Thus,

the parameter τ is a function of x and not a finite real vector anymore. This is a classical

generalization of the direct problem but requires now for the inverse problem to find a function
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in an infinite-dimensional space instead of a finite one.
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