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Abstract: Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) is
an established method to enhance the Graft-versus-Leukemia (GvL) effect. However, alterations of
cellular subsets in the peripheral blood of DLI recipients have not been studied. We investigated
the changes in lymphocyte subpopulations in 16 patients receiving DLI after successful alloSCT. Up
to three DLIs were applied in escalating doses, prophylactically for relapse prevention in high-risk
disease (n = 5), preemptively for mixed chimerism and/or a molecular relapse/persistence (n = 8), or
as part of treatment for hematological relapse (n = 3). We used immunophenotyping to measure the
absolute numbers of CD4+, CD8+, NK, and CD56+ T cells and their respective subsets in patients’
peripheral blood one day before DLI (d − 1) and compared the results at day + 1 and + 7 post DLI to
the values before DLI. After the administration of 1 × 106 CD3+ cells/kg body weight, we observed
an overall increase in the CD8+ and CD56+ T cell counts. We determined significant changes between
day − 1 compared to day + 1 and day + 7 in memory and activated CD8+ subsets and CD56+ T cells.
Applying a higher dose of DLI (5 × 106 CD3+ cells/kg) led to a significant increase in the overall
counts and subsets of CD8+, CD4+, and NK cells. In conclusion, serial immune phenotyping in the
peripheral blood of DLI recipients revealed significant changes in immune effector cells, in particular
for various CD8+ T cell subtypes, indicating proliferation and differentiation.

Keywords: donor lymphocyte infusion; T lymphocytes; allogeneic stem cell transplantation; graft-
versus-leukemia effect; graft-versus-host disease; immunophenotyping

1. Introduction

Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT)
is a form of adaptive immunotherapy. In 1990, it was first demonstrated in patients with
relapse of chronic myeloid leukemia (CML) that DLI can augment the allogeneic Graft-
versus-Leukemia (GvL) effect [1]. Later, DLI was shown to be effective in other diseases
and clinical situations [2–4]. There are three major indications for the application of DLI:
Prophylactic DLI can be applied to prevent relapse in patients with a high-risk disease,
due to, e.g., high-risk cytogenetic or molecular genetic changes associated with a poor
prognosis [5,6] or in patients who were transplanted in advanced stages [7].

Preemptive DLI can be performed in patients with a cytogenetic or molecular genetic
relapse or patients showing minimal residual disease (MRD) [8] or an incomplete mixed
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chimerism (MC) [9–11] following alloSCT. Finally, therapeutic DLI, given alone or in com-
bination with chemotherapy and other anti-leukemic drugs, is a frequently used strategy
in hematological or extramedullary relapse post-transplant [3,7]. Major complications of
DLI are pancytopenia, as well as acute and chronic Graft-versus-Host disease (GvHD) [12].

Both functional changes of transfused lymphocytes and the mechanisms of the GvL
reaction induced by DLI are not well understood. It is known that CD3+ T cells trigger
the GvL reaction by recognizing recipient alloantigens on leukemic cells [13]. They mainly
target minor histocompatibility antigens, which may differ even in human leukocyte anti-
gen (HLA) identic donors and recipients [14], or tumor/leukemia associated antigens [15].
Thus far, it is unclear to what extent different CD3+ lymphocyte subsets are responsible as
effector cells for GvL effects applied by DLI, or which pathways are triggered by DLI [12,16].
In the present study, flow cytometry was used to evaluate qualitative and quantitative
changes in B and T lymphocyte subsets in the peripheral blood following DLI applied in
escalating doses.

2. Materials and Methods
2.1. Patients

We included 16 consecutive patients who received prophylactic (n = 5), preemptive
(n = 8), or therapeutic (n = 3) DLI at Augsburg University Hospital between 2016 and 2018,
according to the institutional guidelines. The study was approved by the institutional
ethical review board; patients provided written informed consent. As described [17,18],
the prerequisites for DLI were an established donor chimerism, cessation of immunosup-
pressive medication at least four weeks before the first DLI, and the absence of any signs of
infection or GvHD.

2.2. Donor Lymphocyte Infusions

All donor lymphocytes were collected after transplantation from the original stem
cell donor. The first DLI in each patient was applied freshly, the following were cryop-
reserved according to institutional guidelines. The initial cell doses were based on the
donor type, clinical situation, and individual history of prior GvHD: A starting dose of
2 × 105 CD3+ cells/kg patient bodyweight was applied to recipients receiving DLI pre-
emptively or prophylactically from unrelated or haploidentical transplants.

In contrast, DLI after matched sibling donor transplants or given in therapeutic
indication was applied with a higher initial dose of 1 × 106 to 5 × 106 CD3+ cells/kg. A
dose escalation between 0.5 and 1 log was carried out every four weeks in the absence of
GvHD or progression of the underlying malignancy. We investigated lymphocyte subsets
before and after the application of 2 × 105 (n = 10 patients), 1 × 106 (n = 13 patients), and
5 × 106 (n = 15 patients) CD3+ lymphocytes/kg. Blood samples from 32 healthy blood
donors or volunteers, matched by age and sex, were analyzed as controls.

2.3. Analysis of Lymphocytes and Subsets by Immunophenotyping

EDTA peripheral blood was collected before (d − 1), at day + 1 and day + 7 after DLI.
All blood samples were processed within 24 h. Blood samples were distributed into seven
50 µL aliquots, and antibodies were added followed by 15 min incubation. Erythrocyte lysis
was conducted by addition of 500 µL Versal Lyse for 15 min. Subsequently, the samples
were washed with PBS. Flow cytometry was used to identify and analyze frequencies of B
and T lymphocytes and their respective subsets.

After cell staining with commercial fluoreszeinisothiocyanat (FITC-), phycoerythrin
(PE-), phycoerythrin Texas red-X (ECD-), and phycoerythrin-cyanin (PC5- and PC7-) labeled
antibodies purchased from Beckman Coulter (Brea, CA, USA) and Biolegend (San Diego,
CA, USA), samples were analyzed by flow cytometry using FC500 from Beckman Coulter
(Supplemental Table S1). For all lymphocyte subsets, percentages were determined, and
the absolute numbers were calculated. The absolute leukocyte counts were measured with
Stem-Count (Stem-Kit, Beckman Coulter) using CD45-FITC. A minimum of 10,000 events
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per aliquot of each sample was analyzed. Lymphocytes were identified by using forward
scatter and side scatter. To divide lymphocytes into different subsets, established standard
and well-described gating strategies were used [19–21] (Supplemental Figure S1 and
Table S2).

2.4. Definitions

Definitions of complete hematological, molecular response (CR and CRm), relapse,
and acute and chronic GvHD were defined as described [22]. The overall survival (OS)
was calculated between the date of first DLI and date of death or last follow-up. A clinical
response to DLI was defined by achievement of hematological CR or partial response
after therapeutic DLI and by the achievement of CRm or complete donor chimerism after
preemptive DLI. Whole and T cell chimerism was measured before and after completion of
DLI. Mixed chimerism was defined by the detection of any recipient marker in our PCR
based chimerism measurement. Following prophylactical DLI, a response obviously could
not be defined.

2.5. Statistics

The study was prospective and designed as a hypothesis-generating analysis. The
results of cellular analysis are given as the median values of all measured numbers for
descriptive analysis. To adjust to the relatively low patient numbers and the serial mea-
surement, we used the Wilcoxon signed-rank test for associated samples. We compared the
results at day + 1 and day + 7 post DLI each to the measurement before DLI. As a control,
lymphocyte counts of 32 healthy controls were compared to the numbers for patients before
the application of the first DLI. p-values < 0.05 were regarded as statistically significant.
Statistical analyses were performed with SPSS 24.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Patient Characteristics and Clinical Outcomes

Sixteen patients with various hematologic malignancies were included in this study.
At time of DLI, some patients had suffered from thrombopenia and/or anemia; however,
no patient was transfusion dependent. The overall T cell chimerism was >97% in all infor-
mative patients. The reason for DLI was hematological relapse (therapeutic DLI, n = 3), MC
or molecular relapse (preemptive DLI, n = 8), or maintenance for relapse prevention in
high-risk disease (prophylactic DLI, n = 5). The median time from alloSCT to first DLI was
8 months (range 5 to 44). The patient characteristics are shown in Tables 1 and S3.

The median follow-up from first DLI was 28.6 months (range 7 to 47). Clinical results
from individual patients are summarized in Supplemental Table S3. In brief, at last follow-
up, two out of five of the recipients of prophylactical DLI were still in remission after DLI,
whereas three had relapsed. None of the patients receiving therapeutic DLI had become
long-term survivors. In contrast, the results were more encouraging after preemptive
DLI, since the response could be clearly documented either by conversion of mixed to full
chimerism or by the achievement of complete molecular remission in all eight patients.
The median time from first DLI to best response was 6.4 months (range 3–12 months). The
OS from first DLI at 1 and 2 years for the entire cohort were 75% and 61%, respectively
(Supplemental Figure S2A). Considering only patients who had received prophylactic or
preemptive DLI, the two-year OS was 75% (Supplemental Figure S2B).
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Table 1. Patient characteristics.

Variables Results

Age; median/average (range) 55.5/56.9 (41–70)

Gender
male; n (%) 11 (68.75)
female; n (%) 5 (31.25)

Donor
URD; n (%) 10 (62.5)
MSD; n (%) 3 (18.8)
Haplo; n (%) 3 (18.8)

Indication for alloSCT
AML; n (%) 10 (62.5)

de novo AML; n (% of AML) 3 (30)
sAML; n (% of AML) 6 (60)
tAML; n (% of AML) 1 (10)

CML; n (%) 2 (12.5)
Multiple Myeloma; n (%) 3 (18.75)
Pro-B-ALL; n (%) 1 (6.25)

Indication for DLI
Prophylactic *; n (%) 5 (31.3)
Therapeutic **; n (%) 3 (18.8)
Preemptive *; n (%) 8 (50)

Mixed chimerism; n 6
Molecular relapse; n 1
Mixed chimerism and
molecular relapse; n 1

Initial DLI dose
2 × 105 CD3+ lymphocytes/kg 10 (62.5)
1 × 106 CD3+ lymphocytes/kg 5 (31.3)
5 × 106 CD3+ lymphocytes/kg 1 * (6)

Time alloSCT to 1. DLI; median (range in months) 8 (5–44)
Time 1. DLI to 2. DLI; median (range in days) 28 (21–215)
Time 2. DLI to 3. DLI; median (range in days) 28 (27–177)

* Prophylactic and preemptive DLI were given without additional anti-tumor medication. ** Therapeutic DLI was given as part of
multimodal regimen; for details see Table S3.

Four patients developed acute GvHD upon application of DLI reaching grade I (n = 2)
and II and IV (n = 1 each). Two of these and one additional patient developed chronic
GvHD (Supplemental Table S3).

3.2. Analysis of Lymphocytes and Subsets
3.2.1. Baseline levels

Baseline cellular status of our patients (obtained at day − 1 before the first DLI) were
first compared to a healthy control group (n = 32), matched by age and gender. The
measurements revealed substantial differences regarding various lymphocyte subsets.
In particular, the total lymphocyte counts and CD4+ subsets were significantly lower in
patients compared to the healthy control group illustrating an insufficient T-cell recovery
among transplant recipients (Supplemental Table S4).

3.2.2. The Total Lymphocytes and CD3+ Lymphocytes

We measured different lymphocyte subsets before and after the application of 2 × 105,
1 × 106, and 5 × 106 CD3+ lymphocytes/kg. Applying DLI even in higher doses did
not lead to a significant increase of total lymphocytes in the peripheral blood (median of
1117/µL before the first DLI compared to a median of 1315/µL at day + 7 after the last DLI.
Similarly, no significant changes were observed with respect to CD3+ cells (Figure 1).
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Figure 1. Graphic illustration of measurements of total lymphocytes (first column), B lymphocytes (second column) and T
lymphocytes (third column), CD8+ (fourth column) and CD4+ lymphocytes (fifth column) at day (d) − 1, d + 7, and d +
7 after application of DLI in escalating doses of 2 × 105 (first row), 1 × 106 (second row), and 5 × 106 (third row) CD3+
lymphocytes /kg patient body weight.

3.2.3. CD4+ Lymphocytes

Regarding the total CD4+ lymphocytes, we observed an increase at day + 1 only after
the application of the highest dose of 5 × 106 CD3+ cells/kg (p = 0.033; Figure 1). Among
CD4+ subsets, memory (p = 0.028), central memory (p = 0.019), regulatory (p = 0.003), and
CD25+ (p = 0.019) lymphocytes showed a significant increase. However, these changes
were not observed anymore at day + 7 (Table 2).

Table 2. CD4+ lymphocytes.

Dose 1 × 106 5 × 106

d − 1 d + 1 p (d − 1 vs. d + 1) d + 7 p (d − 1 vs. d + 7) d − 1 d + 1 p (d − 1 vs. d + 1) d + 7 p (d − 1 vs. d + 7)

CD4+
Lymphocytes 137 [104;326] 166 [42;290] 0.929 159 [104;410] 0.11 166 [117;358] 219 [119;400] 0.033 165 [50;383] 0.721

memory 125 [101;286] 146 [39;254] 0.929 156 [85;365] 0.066 155 [107;318] 197 [155;359] 0.028 158 [38;340] 0.859

central memory 62 [21;618] 69 [18;141] 0.424 65 [33;225] 0.093 69 [30;191] 95 [32;232] 0.019 83 [19;210] 0.953

naive 8 [1;45] 8 [1;55] 0.859 9 [5;47] 0.011 10 [1;57] 11 [1;46] 0.182 9 [2;52] 0.441

effector
memory 64 [37;151] 77 [21;164] 1 84 [45;249] 0.214 80 [44;140] 86 [37;138] 0.286 71 [22;139] 0.953

EMRA 24 [1;90] 22 [2;70] 0.213 37 [2;108] 0.441 31 [3;77] 31 [3;69] 0.093 26 [1;75] 0.26

HLA-DR+ 62 [12;90] 56 [9;103] 0.722 74 [10;149] 0.327 68 [12;145] 83 [11;150] 0.117 66 [2;143] 0.333

CD69+ 11 [3;22] 8 [2;20] 0.424 9 [4;166] 0.26 6 [3;20] 9 [3;28] 0.272 6 [4;19] 0.959

Th1 14 [1;62] 17 [3;39] 0.286 19 [6;87] 0.26 21 [1;55] 30 [2;72] 0.209 21 [1;54] 0.594

Th2 13 [2;56] 9 [6;42] 0.213 21 [2;131] 0.401 15 [1;53] 15 [1;53] 0.099 16 [2;42] 0.646

Th17 12 [0;64] 7 [0;57] 0.333 7 [2;76] 0.889 11 [2;74] 13 [2;70] 0.155 11 [0;78] 0.878

regulatory 2 [1;26] 2 [1;22] 1 2 [1;27] 0.678 2 [1;19] 3 [1;20] 0.003 2 [1;5] 0.721

CD25+ 1 [0;13] 1 [0;13] 0.374 1 [0;10] 0.594 1 [0;7] 2 [0;8] 0.019 1 [1;2] 0.959

Numbers are median values /µL and minimum and maximum values in square brackets. EMRA: effector memory RA+.

Statistically significant increases after the application of 2× 105 and 1 × 106 CD3+ cells/kg
involved only naïve, HLA-DR+, and Th2 CD4+ subsets; however, the overall cell counts
were extremely low (Tabes 2 and S5).



Hemato 2021, 2 697

3.2.4. CD8+ Lymphocytes

Following the smallest dose of 2 × 105 CD3+ cells/kg, we did not see any significant
increase in the total CD8+ lymphocytes (Supplemental Table S6). In contrast, at day + 1
and day + 7 post DLI of 1 × 106 CD3+ cells/kg, we observed significant differences in the
overall number of CD8+ lymphocytes and various subsets (Figure 1, Table 3). The median
number of total CD8+ cells increased moderately after DLI until day + 1 (p = 0.023) and
showed a doubling at day + 7 (p = 0.011). The increase at day + 1 could be observed within
the CD8+ subsets of naïve (p = 0.041), EMRA (p = 0.041), intermediate (p = 0.015), exhausted
(p = 0.034), and activated (HLA-DR+; p = 0.041) cytotoxic T lymphocytes.

Table 3. CD8+ lymphocytes and CD56+ T cells.

Dose 1 × 106 5 × 106

d − 1 d + 1 p (d − 1 vs. d + 1) d + 7 p (d − 1 vs. d + 7) d − 1 d + 1 p (d − 1 vs. d + 1) d + 7 p (d − 1 vs. d + 7)

CD8+
Lymphocytes 276 [51;617] 345 [39;868] 0.023 604 [62;869] 0.011 267 [44;1078] 394 [91;1289] 0.007 344 [90;816] 0.575

CD4+CD8+ 1 [0;0] 2 [0;11] 0.285 3 [0;15] 0.327 2 [0;12] 3 [0;9] 0.959 3 [0;11] 0.674

memory 136 [10;439] 204 [21;625] 0.11 216 [31;620] 0.038 155 [20;670] 168 [68;803] 0.019 176 [58;523] 0.374

central
memory 38 [0;143] 49 [0;130] 0.075 56.5 [0;114] 0.314 57 [2;193] 62 [2;164] 0.173 65 [1;126] 0.26

naive 17 [1;67] 18 [1;90] 0.041 32 [3;119] 0.028 20 [7;225] 31 [10;218] 0.099 26 [8;124] 0.515

effector
memory 147 [29;396] 158 [23;581] 0.05 264 [29;615] 0.028 120 [22;524] 130 [44;704] 0.075 127 [42;590] 0.515

EMRA 43 [6;281] 46 [9;369] 0.041 117 [4;376] 0.011 87 [13;602] 89 [8;757] 0.015 49 [6;131] 0.953

early 97 [20;273] 100 [15;236] 0.123 82 [22;668] 0.038 111 [25;390] 150 [54;398] 0.05 113 [52;255] 0.878

intermediate 40 [16;79] 52 [11;118] 0.015 46 [11;130] 0.015 34 [12;147] 51 [19;205] 0.039 49 [17;95] 0.386

late 53 [10;441] 43 [12;633] 0.05 317 [8;644] 0.021 60 [6;703] 93 [13;910] 0.039 71 [14;640] 0.285

exhausted 134 [32;459] 210 [26;675] 0.034 266 [41;558] 0.021 170 [26;465] 232 [63;437] 0.013 240 [65;383] 0.878

terminal
effector 31 [1;141] 29 [2;341] 0.075 182 [1;229] 0.011 30 [1;549] 38 [1;678] 0.131 34 [1;389] 0.139

HLA-DR+ 168 [11;549] 165 [8;740] 0.041 371 [12;766] 0.009 205 [9;701] 225 [16;813] 0.007 220 [7;602] 0.799

CD69+ 15 [3;66] 12 [6;69] 0.534 25 [4;192] 0.26 16 [4;208] 19 [9;203] 0.182 15 [4;73] 0.721

regulatory 0 [0;7] 0 [0;7] 0.678 0 [0;10] 0.463 0 [0;1] 0 [0;4] 0.075 0 [0;4] 0.5

CD25+ 0 [0;1] 0 [0;2] 0.878 0 [0;1] 0.249 0 [0;1] 0 [0;1] 0.721 0 [0;0] 0.499

CD56+ T cells 7 [1;59] 9 [0;41] 0.041 7 [2;60] 0.021 6 [1;52] 9 [2;48] 0.017 7 [1;35] 0.767

Numbers are median values /µL and minimum and maximum values in square brackets. EMRA: effector memory RA+.

Additionally, at day + 7, memory (p = 0.038), effector memory (p = 0.028), early
(p = 0.038), late (p = 0.021), and terminal effector (p = 0.011) CD8+ subsets also showed
higher values compared to day − 1. Hence, the increase in the total number of CD8+ lym-
phocytes between day + 1 and day + 7 occurred predominantly in the subsets involved in
the activation of the cellular immune system (effector memory, EMRA, late, exhausted, ter-
minal effector, and activated cells), whereas numbers of early CD8+ lymphocytes decreased.
No differences were observed between fresh and cryopreserved DLI.

Applying the highest dose of 5 × 106 CD3+ cells/kg also led to a significant increase at
day + 1 after DLI in CD8+ lymphocytes (p = 0.007, Figure 1) and various subsets: Memory
(p = 0.019), EMRA (p = 0.015), intermediate (p = 0.039), late (p = 0.039), exhausted (p = 0.013),
and activated memory (HLA-DR+, p = 0.007) (Table 3).

Regarding CD56+ T cells, we observed a significant increase at day + 1 (p = 0.041)
and day + 7 (p = 0.021), compared to the measurement before the administration of
1 × 106 CD3+ cells/kg. Further, applying a higher dosage of 5 × 106 CD3+ cells/kg led to
a significant increase at day + 1 post DLI (p = 0.017) (Table 3).

3.2.5. NK Cells

Among NK cells, we analyzed CD56+ CD16+, CD56 bright CD16 dim, and CD56
dim CD16 bright lymphocytes. A significant increase could be observed for the overall
NK cells population as well as for the subset of CD56+ CD16+ cells at day + 7 after the
application of the highest DLI dosage of 5 × 106 CD3+ cells/kg (p = 0.037 and p = 0.017,
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respectively; Table 4). No significant changes were observed after DLI in the lowest dosage
of 2 × 105 CD3+ cells/kg (Supplemental Table S7).

Table 4. NK cells.

Dose 1 × 106 5 × 106

d − 1 d + 1 p (d − 1 vs. d + 1) d + 7 p (d − 1 vs. d + 7) d − 1 d + 1 p (d − 1 vs. d + 1) d + 7 p (d − 1 vs. d + 7)

NK cells 158 [88;441] 196 [125;369] 1.0 231 [66;322] 0.374 162 [93;401] 208 [93;387] 0.917 189 [127;438] 0.037

CD56+CD16+ 97 [44;289] 106 [62;252] 0.695 112 [43;251] 0.26 104 [49;289] 104 [66;280] 0.463 130 [64;305] 0.017

CD56bright
CD16dim 36 [18;229] 42 [17;203] 0.328 36 [13;223] 0.859 36 [13;211] 37 [16;76] 0.552 29 [15;101] 0.285

CD56dim
CD16bright 23 [10;158] 31 [8;86] 0.859 37 [6;78] 0.374 27 [7;120] 20 [4;101] 0.917 23 [12;164] 0.445

Numbers are median values /µL and minimum and maximum values in square brackets. NK: Natural Killer.

3.2.6. B Lymphocytes

As internal negative control, we measured absolute B lymphocytes and their subsets
(naïve, memory, class-switch, and transitional). No significant changes were seen after DLI
(Figure 1 and Supplemental Table S8).

3.2.7. Subgroup Analysis on Recipients of Preemptive DLI

A subgroup analysis was performed among patients receiving preemptive DLI, since
increasing chimerism and achievement of CRm can be regarded as clinical evidence for an
effective alloreactive, respectively, GvL reaction. All eight patients responded. Similarly to
the entire cohort, a significant increase of various CD8+ subsets and some CD4+ subsets
was observed at day +1 and day + 7 after the administration of 1 × 106 CD3+ cells/kg (see
Supplemental Table S9 for detailed results).

3.2.8. Subgroup Analysis on Patients Developing GvHD

Further, we analyzed all patients who developed acute or chronic GvHD after DLI
of ≥5 × 106 CD3+ cells/kg (n = 5). After DLI of 2 × 105 or 1 × 106 CD3+ cells/kg, no
GvHD occurred. We observed a significant increase in activated CD8+ lymphocytes at
day + 1 after DLI of 5 × 106 CD3+ cells/kg. CD8+CD69+ cells increased from 15/µL
(5.6% of CD8+ cells) to 35/µL (13% of CD8+ cells) (p = 0.04). In contrast, this was not
observed in patients who did not develop GvHD (4.6% of all CD8+ cells at day − 1 and
3.7% at day + 1).

4. Discussion

Applying donor lymphocyte infusion (DLI) to a patient with an established chimerism
after alloSCT is a frequently used method to enhance the GvL effect [1,2,4,6]. Whereas
several studies explored T cell recovery after alloSCT [23–25], only one analyzed delayed
changes in lymphocyte subsets and T cell response after DLI [26]. No data are available on
lymphocyte alterations during the early phase after DLI. To address this, we measured the
changes of various peripheral blood B and T cell subsets as well as CD56+ T and NK cells
at day + 1 and day + 7 after DLI, applied in increasing doses to an unselected cohort of
consecutively treated patients.

In a first observation, we found lower overall numbers of lymphocytes and their
subsets among our patients before DLI as compared to healthy controls, indicating an
incomplete immune reconstitution after alloSCT. However, even application of up to three
infusions in escalating cell doses, i.e., after an interval of 8–12 weeks from first DLI, did not
lead to an overall increase of total lymphocytes, nor CD3+ T cells. Hence, at least based on
overall peripheral lymphocyte counts as a surrogate marker, repeated DLI were unable to
accelerate cellular immune reconstitution.

In contrast, significant early changes in various T lymphocyte subsets were observed
after DLI in a dose-dependent fashion. Despite of their exploratory nature, these are the first
data describing, in detail, early changes of peripheral lymphocytes following unmodified
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DLI, which, although being transient, might be a hint for reactions occurring in the tissue
and lymphatic organs. In detail, we found significant increases in the overall CD8+ counts
and various subsets at day + 1 and day + 7 after the application of 1 × 106 CD3+ cells/kg.

Changes at day + 1 might be a consequence of the addition of CD8+ cells to the pool of
circulating lymphocytes by the infusion itself. However, the remarkable increase in the total
number of CD8+ lymphocytes between day + 1 and day + 7 was particularly observed in the
activated cellular subsets (effector memory, EMRA, late, exhausted, terminal effector, and
activated cells), whereas early CD8+ lymphocytes decreased. Possible explanations might
be an effective stimulation and proliferation of the transfused lymphocytes themselves
or an overall stimulating effect of DLI on the effector cell system within the recipient. In
contrast, an increase of CD4+ cells was only observed at day + 1 after the administration of
the highest analyzed dose of 5 × 106 CD3+ cells/kg.

Alterations of peripheral blood lymphocytes might occur for various reasons, in-
cluding infections, other acute inflammatory reactions, and GvHD. Among our patients,
infectious stimuli can be excluded to the greatest extent, since the absence of infections was
a clinical prerequisite for the application of DLI, as was ongoing GvHD. Beyond this, we
did not observe clinical signs of infections early after DLI. In contrast, the changes observed
in our study might reflect an unspecific, polyclonal alloreaction, as freshly collected donor
lymphocytes have not undergone tolerance induction and might, therefore, be activated by
contact with allogeneic tissue.

This cannot be ruled out by our data since we did not perform tests, like spectra
typing or T-cell receptor sequencing, to distinguish oligoclonal expansion of specific T
cells from polyclonal activation. Nevertheless, it can also be hypothesized that early
numeric and functional changes among lymphocyte subpopulations are associated with
specific alloreactivity against the malignant disease. Both CD4+ and CD8+ lymphocytes
are discussed as effector cells for a GvL reaction [27–29]. In our cohort, both memory
and activated as well as exhausted CD8+ T cell subsets showed a significant increase
at day + 1 and day + 7 after application of 1 × 106 CD3+ cells/kg and at day + 1 after
5 × 106 CD3+ cells/kg, respectively (Table 3).

Likewise, in a subgroup analysis of patients achieving a response and long-term dis-
ease control upon preemptive DLI (n = 8), a significant increase in these CD8+ T cell subsets
was observed after the application of 1 × 106 CD3+ cells/kg (Supplemental Table S9). Due
to the 100% response rate among these recipients of preemptive DLI, we could not compare
changes among responding versus non-responding patients.

Low patient numbers precluded the determination of predictive markers for response
by multivariate analysis. Nevertheless, preemptive DLI might be an appropriate scenario
to study GvL reactions, since achieving CRm after molecular relapse or MRD represents a
clinically relevant and measurable example for a GvL reaction. Similarly, conversion from
MC to full chimerism carries characteristics of an anti-tumor immune response since MC
has been frequently associated with incipient relapse [30]. Concurrently, conversion of
chimerism could also be a consequence of an unspecific alloreaction.

Assuming a role of early predominant CD8+ increase for a GvL effect, this observation
would support earlier studies showing specific antileukemic reactivity of CD8+ cells both
directed against minor histocompatibility and tumor-associated antigens [12,31,32]. The
role of CD8+ cells is further supported by clinical studies from the literature that have
used CD4+ selected instead of unmodified donor lymphocytes for DLI to enhance the
GvL effect or to diminish the occurrence of GvHD but failed to show superiority of this
approach [27,33].

In the only study analyzing T cell subpopulations after DLI thus far, Hofmann et al.,
studied the frequency and diversity of the leukemia-associated antigen T cell response
at a median of eight months after DLI. At this delayed time point, they did not find
any differences in the CD8+ T cell subsets in the peripheral blood comparing clinical
responders and non-responders, but detected a significant decrease of regulatory CD4+
cells in patients responding to DLI [26]. In our study, we found significant changes in the
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total CD4+ lymphocytes, particularly in the memory and central memory subsets on day +
1 after the application of the highest dose of 5 × 106 CD3+ cells/kg. Possibly these memory
cells migrate into the in lymphoid tissue and can, therefore, no longer be measured at
day + 7.

NK cells play a role in controlling malignancies [34,35] and viral infections, like
CMV [36], but also in triggering alloreactivity [37]. The significant increase of NK cells
day + 7 post DLI with 5 × 106 CD3+ cells/kg (p = 0.037) adds to the theory that NK
cells could contribute to alloreactivity [12]. A close interaction between the activation of
cytotoxic T cells and NK cells has been described [38].

Five of our patients developed acute or chronic GvHD after DLI of 5 × 106 CD3+
cells/kg or higher doses. In these patients, activated CD8+CD69+ T lymphocytes increased
significantly at day + 1. This was not the case among patients without GvHD. Hence, it
might be speculated that activated CD8+CD69+ T cells could be further investigated as
an early prognostic marker for the risk of GvHD [39]. Low patient numbers precluded
further analysis or comparison among patients with and without GvHD. Considering the
composition of the transfused cells during DLI, a higher number of CD27+ B-cells, but no
T cell subsets, were associated with GvHD [40]. Beyond this, other factors, such as the
number of transfused lymphocytes, have been associated with DLI-induced GvHD [41].

In summary, within the limitations of relatively low patient numbers and some clinical
heterogenicity, our study describes a significant increase in various lymphocyte subsets
early after unmodified DLI. Subsets of activated CD8+ T cells represented the most clearly
changing cellular population. As we could not distinguish between unspecific polyclonal
stimulation and the expansion of specific oligoclonal subsets in the present study, dedicated
investigations, such as spectra typing or T-cell receptor sequencing, are warranted to further
characterize the expansion and function of transfused donor lymphocytes.
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