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Abstract The brief history of relaxation in continuummechanics ranges from early application of non-convex
plasticity and phase transition formulations to small and large strain continuum damage mechanics. However,
relaxed continuum damage mechanics formulations are still limited in the following sense that their material
response lack tomodel strain softening and the convexification of the non-convex incremental stress potential is
computationally costly. This paper presents a reducedmodel for relaxed continuum damagemechanics at finite
strains which includes strain softening by a fiber-specific damage in the microsphere approach. Computational
efficiency is achieved by novel adaptive algorithms for the fast convexification of the one-dimensional fiber
material model. The algorithms are benchmarked against state-of-the-art methods, and the choice of quadrature
schemes for the microsphere approach is discussed. This contribution is finalized by a mesh independence test.

1 Introduction

The degradation of mechanical properties of materials, the development of cavities in the microscopic and
mesoscopic scale within the material, and the macroscopic process of fracture are called damage; see [34,
Sec. 1.1] and references therein. The evolution of microscopic cavities upon loading leads to reduced cross
section areas and, thus, to a weakening of the material. Therefore, microscopic damage manifests itself at
the macroscale by stress softening in terms of a reduction of material stiffness with an increase in stress,
and strain softening in the sense of a reduction of stress with increasing strain. These physical phenomena
are of fundamental engineering interest, and there exist several approaches to describe damage. Typically, the
computational description either considers the damage on themicro- and/or mesoscopic length scale directly or
suitable damage variables represent the microstructure in a phenomenological approach. The direct simulation
of micromechanics is still an elaborate task, especially due to localization in the presence of softening behavior.
Gitman et al. [21, Fig. 8] showed that hardly any representative volume element (RVE) exists in the case of
softening. More recently, Liang et al. [29] modeled quasi-brittle damage based on direct micromechanical
computations and the same RVE size dependency was observed. Instead, a so-called scaled damage law was
proposed in order to overcome this issue. In the present paper, we focus on the phenomenological approach.
We consider a scalar damage variable rather than a tensor-valued one. The damage variable, typically called
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D, is then associated with an effective cross section area reduction by (1− D). We refer to [26] for the origin
of this approach and to [34, Sec. 2.1.1] for a detailed historical overview. In the large strain setting, the (1−D)
model was derived in [31] and [41] and has turned out particularly important in the context of soft biological
tissues, cf. e.g., [7].

The (1 − D) ansatz leads to a non-convex incremental stress potential. Even in the absence of damage,
non-convexity is a major challenge mathematically and computationally. In the elastic regime, the notion of
convexity is too restrictive and violates physical requirements and constraints, see [30, Sec. 6.4, p.376]. Ball [3]
shows that in the finite elasticity case, polyconvexity is the decisive notion of semiconvexity for the energy den-
sity which leads to well-posed yet meaningful models. For anisotropy, a polyconvex basis has been introduced
in [39] and successfully applied to soft biological tissues in [5]. For a more detailed mathematical discussion
on convexity conditions, we refer to Dacorogna [18, Sec. 3.5] and Pedregal [37, Sec. 3.4]. However, continuum
damagemechanics faces dissipative processes. In this context, the framework of incremental variational formu-
lations introduced by a series of papers [16,24,33,35,36] successfully leads to thermodynamically consistent
pseudo-elastic potentials per incremental time step which can be treated with the mathematical tools of finite
elasticity. The incremental stress potentials, which are often non-convex, are relaxed, see [18, Sec. 3.6], i.e.,
the original non-convex energy density is replaced by a suitable semiconvex envelope, e.g., the poly-, quasi-
or rank-one convex envelope. For polyconvex and special cases of quasiconvex envelopes, the existence of
minimizers is guaranteed, while rank-one convex hulls are directly connected to the sound physical require-
ment of material stability, see [30, Sec. 6.3], which corresponds to the Legendre–Hadamard condition. Despite
these favorable mathematical and mechanical properties, the numerical computation of semiconvex hulls is
computationally expensive in the multidimensional case as the curse of dimensionality sets in. The reduction
to one spatial dimension via the microsphere approach is a resort allowing for computational efficiency. Its
natural combination with an adaptive discretization makes the overall approach computationally tractable for
practical applications.

In the context of continuum damage mechanics, a convexified (relaxed) formulation has been constructed
in the small strain regime in [23] and in the large strain case in [4]. The latter was proposed using a one-
dimensional convexified model for fiber damage, which has been extended in [38] to a microsphere approach
for the description of dispersed fiber orientations in soft biological tissues. Recently, in Schwarz et al. [40],
instead of constructing directly a convex or semiconvex hull of a small strain incremental continuum damage
mechanics potential, the underlyingmicrostructures, which are usually obtained as a byproduct of the convex or
semiconvex hull, respectively, are approximated (emulated) and a convex envelope is formulated based on them.
This strategy is conceptually different from other convex or semiconvex hull approximation schemes, which
are discussed in more detail in Sect. 3. In [40], strain softening was observed due to the evolutionary behavior
of the emulated microstructures. However, the microstructure construction therein is limited by significant
simplifications. Another recent contribution by Görthofer et al. [22] brought up a completely different model
approach, which utilizes a compliance tensor to model stress softening. The novelty of this approach is the a
priori convex modeling of the problem.

To the authors’ best knowledge, previous convexified models did not allow for the geometrically nonlinear
modeling of strain softening. To overcome this, the present paper proposes a strain softening procedure building
upon the microsphere scheme, see Bažant and Oh [12,32] and Miehe et al. [20]. Therein, one-dimensional
material laws, associated with single fiber orientations, are convexified, while incorporating failure of single
fiber orientations, and afterward integrated over the unit sphere to construct a three-dimensional material
response. For its practical realization, this paper introduces new algorithms for the efficient construction of the
convex envelope of one-dimensional functions, thus providing useful tools and benchmarks for the continuum
mechanics relaxation community.

The article is structured as follows. Section 2 recalls the theory of incremental continuumdamagemechanics
in the large strain case as derived in [4]. Section 3 discusses and compares state-of-the-art convexification
algorithms. The novel strain softening microsphere approach is then introduced in Sect. 4.2 along with a
suitable quadrature scheme on the sphere. Section 5 demonstrates the mesh independence of the new scheme
before the paper is concluded in Sect. 6.

2 Mathematical and continuum mechanical theory

This section briefly recapitulates the incremental variational framework and recalls the concept of relaxation
as proposed in [4], [23].
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2.1 Incremental variational formulation

The formulation of the incremental variational problem requires basic concepts and notation of continuum
mechanics, which are introduced first. The reference configuration of the physical body of interest is described
by the bounded subset B of R3 with elements X ∈ B. The deformation of the body relative to this reference
configuration is described by the nonlinear deformation map ϕt : B → Bt := ϕt (B) for times t ∈ R

+. Here,
Bt ⊂ R

3 denotes the actual configuration of the body at time t with the deformation x = ϕt (X) ∈ Bt for
X ∈ B. The deformation gradient is then given by F(X) = Grad ϕt (X), and the right Cauchy–Green tensor
C = FT F serves as suitable deformation measure to ensure objective constitutive models automatically. The
first, second and third principal invariants are denoted as

I1 = tr C, I2 = tr [Cof C] , I3 = det C (1)

and build the basis for the construction of isotropic, hyperelastic strain energy densities ψ := ψ(C) =
ψ(I1, I2, I3). Within continuum damage mechanics, the strain energy density can be modeled as

ψ(C, β) = (1 − D(β)) ψ0(C) (2)

where ψ0 is a material-dependent virtually undamaged strain energy density and D ∈ [0, 1) is the monoton-
ically increasing damage function of the internal variable β. Throughout the paper, the compressible Neo-
Hookean effective strain energy density

ψ0
NH(C) := μ

2
(I1 − 3) − μ ln(J ) + λ

2
ln(J )2 (3)

is used with J = √
I3 and the Lamé parameters μ and λ. We employ an exponential damage function of the

form

D(β) = D∞
[
1 − exp

(−β

D0

)]
, (4)

where D∞ ∈ (0, 1) and D0 are material-dependent parameters. This type of damage function was introduced
in [31]. There, D∞ is referred to as the maximum possible damage and D0 as a damage saturation parameter.
The reciprocal value of the latter corresponds to how fast the asymptotic limit D∞ is reached. Note that the
approach proposed in the following sections is not restricted to this specific choice of strain energy density and
damage function. For example, damage may also be considered to start to evolve only if a certain threshold
is exceeded. Such an initial damage state may be specifically important in soft biological tissues where no
damage should be assumed within the physiological range of loadings, cf. [6]. The internal variable β is
modeled according to the discontinuous damage approach of [31], i.e.,

βt := max
s≤t

[
ψ0(Cs)

]
for s, t ∈ R

+. (5)

Considering a discretization of time into a number of incremental time steps�tn+1 := tn+1−tn , the generalized
work done in the body within an incremental time step

W(Fk+1, βk+1) :=
∫ tk+1

tk
ψ̇ + φ dt (6)

is composed by two energetic quantities, the time derivative of strain energy density ψ̇ and the dissipation
potential φ. Following the incremental variational framework, the minimization of W with respect to the
internal variable β yields the incremental stress potential

W (Fk+1) = inf
βk+1

[W(Fk+1, βk+1)
]

(7)

which solely depends on the current deformation gradient Fk+1. The dissipation potential φ can be obtained by
inserting the time derivative of the strain energy density ψ̂(F, D) = (1− D)ψ0(F) into the Clausius–Duhem
inequality

(P − (1 − D)∂Fψ0) : Ḟ + Ḋψ0︸︷︷︸
=:φ

≥ 0. (8)
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With this dissipation potential, by analytically minimizing (7), the incremental stress potential can be obtained
as

W (F) = ψ(F, D) − ψ(Fk, Dk) + βD − βk Dk − D + Dk, (9)

where the shorthand notations D := D(β), Dk := D(βk), D := D(β), and Dk := Dk(β) denote the
evaluations of the functions at minimizers β of the current time step or the values of internal variables at the
last time step βk . A detailed derivation can be found in [4, Sec. 3.1]. Here, (·) corresponds to the antiderivative
and the index of the actual incremental step (·)k+1 was dropped. At this point, the principle of minimum
potential energy is employed:

inf
ϕ

{
�(ϕ) | ϕ = ϕ̂ on ∂Bϕ, t = t̂ on ∂Bσ

}
, �(ϕ) :=

∫
B
W (F(ϕ)) dV + �ext( t̂, ϕ). (10)

Here, �ext denotes the potential energy of external forces t̂ applied at the Neumann boundary. Considering
the displacement field u = x − X , taking the Gâteaux derivative and setting it equal to zero yields the weak
form in the total Lagrangian setting

∫
B
P : Gradδu dV −

∫
∂Bσ

t̂ · δu dS = 0, (11)

subject to Dirichlet boundary conditions u = û on ∂Bϕ , see, e.g., [25, Sec. 8.3] for a detailed derivation. Here,
the first Piola–Kirchhoff stress tensor P was introduced. The first Piola–Kirchhoff stress and its derivative, the
nominal tangent moduli A, are given by

P = ∂W (F)

∂F
, A = ∂ P

∂F
= ∂2W (F)

∂F∂F
. (12)

Equation (11) is solved computationally by a finite element discretization plus a Newton–Raphson scheme
for the resulting system of nonlinear algebraic equations. The Newton–Raphson scheme requires the residual
of (11) and the Jacobian. Thus, the first Piola–Kirchhoff stresses P and its derivative A are required in each
integration point of the finite element discretization. Unfortunately, due to the non-convex structure of W (F),
this problem is ill-posed.

Relaxation theory replaces W (F) by its convex envelope in 1D or by a suitable convex or semiconvex
envelope in the multi-dimensional case and, hence turns the problem into a well-posed one. Note that ifW (F)
is replaced, the requirements for solving (11) remain the same, i.e., relaxation only alters the response at the
material point (integration point) level.

2.2 One-dimensional relaxation

The direct multidimensional relaxation is computationally demanding. In the finite strain setting of continuum
damage mechanics, it has not been accomplished yet. This is why this paper promotes the reduction to one-
dimensional relaxation as part of a microsphere approach. In one dimension, all notions of semiconvexity
coincide with the classical notion of convexity, which is briefly recalled below.

A function W : R → R is said to be convex if

W (ξF+ + (1 − ξ)F−) ≤ ξW (F+) + (1 − ξ)W (F−) (13)

holds for all ξ ∈ (0, 1) and F+, F− ∈ R. Alternatively, ifW is sufficiently regular, a function is convex if and
only if its first derivative is monotonically increasing and the convexity condition can be reformulated as:

(
W ′(F+) − W ′(F−)

)
(F+ − F−) ≥ 0, (14)

which will be of great interest later. Within the relaxed continuum mechanics framework, the non-convex
one-dimensional potential W is replaced by its convex envelope. The one-dimensional deformation gradient
F can thus be described as the convex combination

F = ξF+ + (1 − ξ)F−, (15)
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if F is within a convexified (relaxed) regime, i.e., a maximal interval (F−, F+), where W is greater than its
convex envelope that is simply given by the line ξ 
→ ξW (F+) + (1 − ξ)W (F−). This formulation allows
for the interpretation of F+ and F− as the supporting points of the convex hull at the point F . The points F+
and F− form a certain measure, namely a gradient Young measure, see, e.g., [10, Section 2.3], and describe
points between which the gradient of the solution is oscillating. Further, they are minimizers of the original
non-convex problem and it is known by rigorous mathematical theory, see, e.g., [37, Chapter 4],[9, Chapter 9],
that they describe bifurcated microphases of the original problem. Therefore, relaxation can be understood as
the homogenization of a microstructure which first bifurcates into a strongly and a weakly damaged phase. In
the convexified regime, the evolution of damage then takes place in terms of an increasing volume fraction of
the strongly damaged phase. This is actually in line with the physics of damage if the strongly damaged phase
is interpreted as broken fibrils appearing within the fiber. The material state F is then described as a mixture
of those phases F+ and F−. The convex coefficients ξ, (1 − ξ) ∈ (0, 1) represent the corresponding volume
fractions. The deformation gradients in the strongly and weakly damaged phase can be expressed in terms
of F , ξ and a distance d = (F+ − F−)/F ∈ R

+, which corresponds to a microbifurcation intensity (cf. [4,
Sec. 3.2.1]), as

F+ = F(1 + (1 − ξ)d), F− = F(1 − ξd). (16)

The convex envelopeWc ofW can now be reformulated in a pointwise manner as the greatest convex function
below W which depends on the volume fraction ξ and microbifurcation intensity d , i.e.,

Wc(F) = inf
ξ,d

[
W (F, d, ξ)

]
with W = ξW (F+) + (1 − ξ)W (F−). (17)

Both characterizations (14) and (17) will be of great interest later in the algorithmic computation of an
approximation of the convex hull.

3 Convexification algorithms

There are various approaches for constructing the convexhullWc for a given functionW . Sinceweconsider one-
dimensional damage models, we restrict ourselves to the convexification of functions in one spatial dimension.
We will focus on approaches which can be motivated through the different characterizations of convexity as
mentioned in the previous section.

Motivated by (17), one can construct a convex hull via the solution of a constrained continuous optimization
problem. In the context of relaxed continuum damage mechanics, [23, Section 5.1.4] used a scheme where
the two supporting points of the one-dimensional convex hull are determined beforehand and used throughout
the computation. In [4], a different strategy is applied, where the two supporting points are computed, while
the simulation runs by a continuous non-convex and multi-modal optimization problem. Due to the nature
of this minimization problem, a simple Newton optimization scheme is not sufficient for the computation
of a minimizer. Hence, a multistart strategy needs to be applied, as used in [4] and further extended by
an evolutionary search strategy for the multistart points in [38]. In order to overcome the drawbacks of
the optimization problem formulation, e.g., the accompanying computationally expensive computation of a
solution, a discrete approach motivated by the higher-dimensional rank-one convexification Dolzmann and
Walkington [8,19] seems worth considering. This approach is further motivated by the examination of the
convexity condition (14) for a discrete grid function.

3.1 Discrete convexification

In order to approximate the convex hull of the energy densityW , we first choose a (not necessarily equidistant)
grid Fj=0,...,N as a discretization for the deformation gradient variable F on a finite interval. We then approx-
imate the given function W by a piecewise linear function, which is determined by the values Wj = W (Fj )
for j = 0, . . . , N . Afterward, the convex envelope of this grid function is computed. A possible procedure to
realize this convexification in complexity O(N ) is presented in [9, Sec. 9.3.4] and recalled in Algorithm 1.
The procedure can be interpreted as the application of Graham’s scan [17, Sec 33.3] to the epigraph of the
discretized function that is characterized through the planar points (F0,W0), . . . , (FN ,WN ). This algorithm
is known for its linear complexity in case the given points are sorted along one axis, as it is the case in our
discretization Fj=0,...,N .
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Fig. 1 Test problem for convexification algorithm. Non-convex polynomial benchmark function W (F) = (F − 1)2(42 + 77
F + 15F2 − 102.5F3 + 58.89F4 − 12.89F5 + F6) drawn in blue and result of the algorithm drawn in red (color figure online)

Algorithm 1 Discrete one-dimensional convexification
1: Input: Fj=0,..,N , Wj=0,..,N
2: Output: Fc

j=0,..,n , W
c
j=0,..,n

3: Fc
0 = F0, Fc

1 = F1, Wc
0 = W0, Wc

1 = W1
4: n = 1
5: for i = 2, . . . , N do

6: while
Wc

n−Wc
n−1

Fc
n −Fc

n−1
≥ Wi−Wc

n
Fi−Fc

n
and n ≥ 1 do

7: n = n − 1
8: end while
9: n = n + 1
10: Fc

n = Fi ,Wc
n = Wi

11: end for

The algorithm successively checks the convexity condition (14) in the grid points by iterating from the left
to the right through the discretized interval. Points located above the convex hull are identified through the
while loop (lines 6 to 8) and neglected. Points that support the convex hull are saved as the grid points Fc

j=0,...,n
and the corresponding function values as Wc

j=0,...,n where n ≤ N . From an implementation perspective, the
arraysWc and Fc should be initialized by zero vectors of length N and cut down to the length n afterward. The
piecewise linear interpolation of these points gives an approximation to the analytical convex hull ofW . A test
problem can be seen in Fig. 1. This test problem is subject to multiple minima and not related to continuum
mechanics. It is chosen to visualize the generality of the used convexification algorithm and can be used as
a unit test for a convexification algorithm implementation. The figure shows a non-convex function, drawn
as blue line. The blue circles correspond to the function values of W at the grid points of the algorithm, i.e.,
Fj=0,...,N . The application of Algorithm 1 on the interval [0, 4.25] gives the approximation of the convex hull
ofW drawn in red (crosses), one may notice that the analytical convex hull ofW is a lower function due to the
local minimum at about 4.0 which needs to be resolved sufficiently well by the convexification mesh (compare
Fig. 3). The array Wc

j=0,...,n consists of five points at the left-hand side and three points at the right hand side
of the interval [0, 4.25], since only these eight points n = 7 support the convex hull of the piecewise linear
function described by Wj=0,...,N (with N = 33). For a given deformation gradient F , the supporting points
F+ and F− of the convex hull can be determined by searching for the first larger and first smaller element of
Fc
j=0,...,n with respect to the given point F .

3.2 Adaptivity for one-dimensional discrete convexification

The described algorithm in Sect. 3.1 needs expert knowledge in terms of the one-dimensional grid of trial
deformation gradients. Thus, we present a scheme to obtain a computationally tailored one-dimensional dis-
cretization. The core idea is to apply a variation of Algorithm 1 first on a coarse grid and further utilize
second-order derivative information of the function W in order to detect intervals where the supporting points
of the convex hull are located. In Algorithm 2, this procedure is given as pseudocode. The algorithm requires
three different inputs, the coarse grid Fj=0,..,n , function values Wj=0,..,n , and second-derivative information
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at the coarse grid points W ′′
j=0,..,n = W ′′(Fj ). The adaptive grid array F̂j=0,..,a as well as the bool array

Fmask
j=0,..,n can be pre-allocated and statically sized. Here, Fmask

j=0,..,n is initialized to ones. Points that lie above
the convex hull are identified by the algorithm and marked with zeros. As a result, one obtains the supporting
points of the intervals where the piecewise linear approximation to W is non-convex. Here, n denotes the
coarse grid length and n � N where N is the amount of points in a fine, equidistant discretization used in
Algorithm 1. The goal is now to have an implementation at hand which splits up the work into two small
portions, namely constructing an adaptive grid and convexifying the function W on it. The total workload
should be smaller than the construction of the equidistant fine grid and convexifying on it with complexity
O(N ). The first while loop in Algorithm 2 is responsible for finding the supporting points of a non-convex
regime. Here, the procedure searches from left, with corresponding index i , and right, with index k, at the
same time in order to find F+ and F−. A nested while loop begins at line 8 if a non-convex regime starts and
stops as soon as the right and left bounds of the interval are convex again. In this context, interval denotes
the points from i to k. From line 9 to 22 the inner loop increments the right and left point of the current
interval until two subsequent points are convex again. The increment is done with the function iterator
that searches based on a given index, e.g., i , in the “+” case for the last true value index of Fmask

0,..,i and in the

“−” case for the first true index of Fmask
i,..,n . After the search of the supporting points of non-convex regions,

an iteration over the second derivative array W ′′
j=0,..,n = W ′′(Fj ) is started. Here, the second derivative infor-

mation is obtained by automatic differentiation; however, closed forms are also available in [4]. The lines
30 to 34 realize a search for local minima of the second derivative array. The identified indices with respect
to the coarse grid are saved in the array F∗∗. Afterward, the values of interest F∗ and F∗∗ are combined;
they contain grid points in the coarse mesh which capture the qualitatively relevant information concern-
ing convexity of the underlying function W . In a final step, the intervals bounded by the points of interest
are taken individually in order to insert the grid points. The total number of grid points is bounded by the
number a.

The construction of the adaptive one-dimensional grid is now performed by distributing grid points within
the range of the detected points of interest in the previous step (given by the arrays F∗ and F∗∗). For this
purpose, a distribution polynomial dis ∈ C1(R) is defined on each detected interval [F−, F+], where W is
non-convex, with F−, F+ ∈ (F∗ ∪ F∗∗) ⊂ Fj=0,...,n .
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Algorithm 2 Construction of adaptive one-dimensional grid
1: Input: Wj=0,..,n , W ′′

j=0,..,n , Fj=0,..,n

2: Fmask
j=0,..,n init with ones.

3: i = 0, k = 1, l = 2, empty dynamic array F∗
4: while l ≤ n − 1 do
5: l = iterator(“+”,k,Fmask

j=0,..,n)

6: if
Wk − Wi

Fk − Fi
<

Wl − Wk

Fl − Fk
then

7: rightconvex = false, leftconvex = true
8: while !(rightconvex && leftconvex) do
9: l = iterator(“+”,k,Fmask

j=0,..,n)

10: while
Wk − Wi

Fk − Fi
>

Wl − Wk

Fl − Fk
do

11: Fmask
k = 0

12: k = iterator(“+”,k,Fmask
j=0,..,n); l = iterator(“+”,k,Fmask

j=0,..,n)
13: leftconvex = false
14: end while
15: rightconvex = true
16: l = iterator(“−”,i,Fmask

j=0,..,n)

17: while
Wi − Wl

Fi − Fl
>

Wk − Wi

Fk − Fi
do

18: Fmask
i = 0

19: i = iterator(“−”,i,Fmask
j=0,..,n); l = iterator(“−”,i,Fmask

j=0,..,n)
20: rightconvex = false
21: end while
22: leftconvex = true
23: end while
24: else
25: i = iterator(“+”,i,Fmask

j=0,..,n); k = iterator(“+”,k,Fmask
j=0,..,n)

26: end if
27: end while
28: extract F± from Fmask

j=0,..,n by detecting subsequent bool switch and push in F∗
29: empty dynamically sized array F∗∗ hessian values of interest
30: for i = 1 ≤ n − 1 do
31: if W ′′

i < W ′′
i−1 && W ′′

i ≤ W ′′
i+1 or W ′′

i ≤ W ′′
i−1 && W ′′

i < W ′′
i+1 then

32: push!(F∗∗,F[i])
33: end if
34: end for
35: construct discretization F̂j=0,..,a based on maximum number of points a, regimes of interest F∗, F∗∗ and some appropriate

polynomial
36: Output: F̂j=0,..,a

The distribution polynomial dis on the interval [F−, F+] of length �F = F+ − F− is of the form:

dis : R −→ R

t 
−→
⎧⎨
⎩
b t p + c t + F−, if t < s−

r ,

e j + f, if s−
r ≤ t ≤ s+

r ,

− (b ( jmax − t)p + c ( jmax − t)) + F+, if s+
r < t.

Given the left and right end points F− and F+ of the interval, the amount of points jmax within the interval, a
radius r ∈ (0, �F

2 ) that characterizes the neighborhood for the refinement toward the end points, the minimal
grid size hmin, and the polynomial degree p, the remaining parameters b, c, e, f , and s±

r are defined as follows:

c = hmin,

e = 1

2 jmax

(√
(�F − (p − 1) (c jmax − 2r))2 + 4c jmax (p − 1) (�F − 2r)

− c jmax (p + 1) + �F + 2r (p − 1)

)
,
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Fig. 2 Parameterized polynomial used to distribute the one-dimensional grid points within the unit interval [0, 1]. All shown
functions can be scaled and translated by an affine transformation to the actual non-convex regime detected by Algorithm 2

s−
r = jmax

2
− �F/2 − r

e
,

s+
r = jmax − s−

r ,

f = F− + �F

2
− e

jmax

2
,

b = e − c

p (s−
r )p−1

.

The choice is such that dis is of class C1 (in particular, the function and its first derivative are continuous at
the points s−

r and s+
r ) and the following conditions are met. The first index is mapped to F− (dis(0) = F−),

and the last index jmax is mapped to F+ (dis( jmax) = F+). The value jmax
2 ∈ R is mapped to the midpoint

F− + �F
2 of the interval [F−, F+]. The values s±

r are mapped exactly to the points where the change from
the linear to the degree p polynomial occurs and vice versa, i.e.,

dis(s−
r ) = F− + r, dis(s+

r ) = F+ − r.

Note that even in the case of even polynomial degree p, the function dis is monotonic by construction. Finally,
we use the distribution function to map the vector indices j = 0, . . . , jmax ∈ N0 of the grid points to a
deformation gradient value, cf. Figure 2. This leads to a symmetric distribution of the grid points on [F−, F+]
that is refined toward the boundary with a grading which depends on the polynomial degree p. After the
distribution of the grid points on all subintervals [F−, F+], they are glued together to obtain F̂j=0,...,a as
a discretization of the whole interval [F0, Fn] of interest. Clearly, the choice of polynomial and the set of
equations is flexible and can be adapted to the specific problem at hand. The proposed choice appears to be
sufficiently general to capture regular multi-well functions efficiently (cf. Fig. 3). In Fig. 2 (left), the influence
of the choice of r is plotted. Here, it can be seen that the larger r is chosen, the steeper the curve gets in the
middle of the interval and the more localized the distributed grid points are around the beginning and end of the
interval [0, 1]. In this part of the figure, the radius takes the values r ∈ {0.0, 0.025, 0.05, 0.1, 0.2, 0.5}, where
the steepest curve with respect to the center of the interval is r = 0.5, the curve appearing linear corresponds
to r = 0.0 and the function highlighted in red to r = 0.1. For all radius variations, the polynomial degree is
fixed to p = 5. In the right-hand panel of the figure, the polynomial degree is varied from one to six, where
the steepest curve corresponds to p = 6 and the linearly behaving function to p = 1. The curve highlighted
in red shows p = 3. Within this plot, the radius is fixed to r = 0.2 for all polynomial degrees.

In Figs. 3 and 4, the benchmark function from Fig. 1 and a Neo-Hooke effective energy, respectively, were
used as tests for the procedures of Algorithms 1 and 2. In these figures, the coarse grid is visualized at the
very bottom. The short black lines correspond to the grid points. Further, the function drawn in black denoted
as W (F) on Fj=0,..,n shows the information passed to the adaptive algorithm. The adaptive grid is visualized
as short black lines above the coarse grid. It is remarkable that the coarse grid only consisting of less than 50
points already allows the adaptive scheme to construct a grid, which accurately resolves the incremental stress
potential shape (drawn as red curve) as well as the start and end of the non-convex intervals.
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Fig. 3 Adaptive procedure applied to multi-well benchmark function from Fig. 1

Fig. 4 Convexified incremental stress potential where a neo-Hooke energyψ0 was used. The black curve and the second derivative
obtained by automatic differentiation at the same points are information entering Algorithm 2 to construct the adaptive grid which
is shown as black lines at the bottom of the figure. Here, the first row of black bars corresponds to the adaptive grid, while the
second row visualizes the coarse grid used to construct the adaptive one

To study this further, a compressible Neo-Hooke model with μ = 0.5 and λ = 0.1, the Yeoh model with
c1 = 6.0, c2 = 1.0, and c3 = 1.0, and the St. Venant–Kirchhoff model (St.V–K) with μ = 0.5, λ = 0.0, are
considered for the effective energy densities ψ0. The according strain energy density functions are given by
(3) and

ψ0
St.V−K(C) := λ

8
(I1 − 3)2 + μ

4

(
I 21 − 2I1 − 2I2 + 3

)
, (18)

ψ0
Yeoh(C) := c1

(
I1 I

−1/3
3 − 3

)
+ c2

(
I1 I

−1/3
3 − 3

)2 + c3
(
I1 I

−1/3
3 − 3

)3
. (19)

The damage parameters D∞ and D0 are kept to 0.99 and 0.5, respectively. In Table 1, the results of the
associated convexifications are compared with regard to the convex hull supporting points, F+ and F−, for
the adaptive and equidistant procedure. For an objective estimation of the difference, the relative distance
�(·) := [(·)adapt − (·)equiv]/(·)equiv is considered and given in Table 1. Herein, (·)adapt and (·)equiv denote
quantities of interest computed from the adaptive and equidistant distribution of grid points, respectively. All
considered incremental stress potential functions (with different effective strain energy densities) have exactly
two intervals of non-convexity, one interval [F−,c, F+,c] in the compression regime and the other interval
[F−,t , F+,t ] in the tension regime. Note that the hyper-parameters of the adaptive scheme hmin, p, and r
have been chosen rather arbitrarily; they have not been tuned to provide an optimal setting for the adaptive
scheme. The non-convex regime of the Yeoh and the St. Venant–Kirchhoff model is approximately of same
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Table 1 Comparison of convex supporting points F+ and F− in terms of relative deviations between adaptive and equidistant
grid in both, tension and compression zones. Here, superscripts (·)±,c and (·)±,t denote the compression and tension damage
regime, respectively

Type of ψ0 �F−,c �F+,c �F−,t �F+,t n a N hmin p r

Neo-Hooke 0.1397 0.0006 0.0060 0.0002 51 100 2000 0.015 7 1
Yeoh 0.025 0.0044 0.0045 0.0008 11 75 500 0.01 5 0.5
St.V–K 0.0 0.00071 0.000165 0.002 11 75 500 0.01 5 0.75

size and thus requires a similar amount of equidistant points to determine the convex hull supporting points
appropriately. As can be seen from Table 1, a significantly reduced amount of a grid points in the adaptive
scheme is sufficient to obtain comparable results (small relative deviations) instead of the N points of the
equidistant grid.

The adaptive scheme is now benchmarked in terms of computating time against an equidistant grid for
the Neo-Hooke effective strain energy density. The reference timing consists of constructing the incremental
stress potential valuesW and convexifying them with the procedure presented in Algorithm 1. The benchmark
considered 3000 samples on a laptopwith an Intel(R) Core(TM) i7-7500UCPU@2.70GHz in order to average
out fluctuations. The benchmark software BenchmarkTools.jl was used for this purpose. Figure 5 shows the
obtained measurements. Here, the adaptive grid was limited to 250 points in total and each non-convex interval
needed to consist of at least 20 points. The construction of the adaptive grid as described in Algorithm 2 was
initialized with n = 20 grid points for each F̂j=0,..,n ,Wj=0,..,n andW ′′

j=0,..,n . This is the setting used for fitting
the polynomials which distribute the points of the grid. The comparative equidistant grid starts from 0.001
with step size δ = 0.01 and ends at F = 20. Therefore, the equidistant grid has in total 2000 points. Such
an equidistant grid was used whenever boundary value problems with true degrees of freedom were solved
without the adaptive scheme (as in Sect. 5) and thus, serves as a fair comparison. Different polynomial degrees
are tested; however, as can be seen in Fig. 5, the difference is marginal. All computations based on the adaptive
scheme required significantly reduced computing times.

4 Microsphere approach

The microsphere approach [12,32] is an attractive technique to produce three-dimensional models based on
one-dimensionalmaterial laws. Itwas originally derived for fiber or polymer chain-basedmaterials.However, in
[20] the procedure was generalized by introducing representative directions. Since the mathematical procedure
is almost identical, we refer to both as the microsphere approach. Note that the procedure can be applied to any
available one-dimensional material law. In the relaxation case, where dimensions are squared (W (F), where
F ∈ R

d×d ) within the problem, the curse of dimensionality makes the problem hard to solve—even in two

Fig. 5 Benchmark to compare the adaptive strategy with a typically used equidistant grid for a Neo-Hooke type base material
within the continuum damage mechanics formulation. The adaptive grid was limited to 250 points, and the measurements show a
successful adaptive strategy. Constructing an adaptive grid and convexifying it afterward is faster than convexifying an equidistant
fine grid with 2000 points
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spatial dimensions. Thus, microspherical integration of one-dimensional representative fibers is used to obtain
a generalized three-dimensional constitutive response, which may particularly be realistic in case of materials
reinforced with dispersed fibers. Denote by Fα the elongation of the α-th fiber (or representative direction),
then the one-dimensional constitutive response can be obtained by

Wα := W (Fα), Pα := ∂Wα

∂Fα
, (20)

where Wα is the incremental stress potential of the α-th fiber, which is modeled according to (9) with a one-
dimensional effective strain energy density ψ0(Fα). Now, by integrating all fibers over the unit sphere, the
three-dimensional first Piola–Kirchhoff stress and the nominal tangent moduli can be obtained (cf. [20]) by

P =
∫ 2π

0

∫ π

0
ρ Pα A ⊗ A sin ϑ dϑ dϕ, A =

∫ 2π

0

∫ π

0
ρ

∂Pα

∂Fα
A ⊗ A ⊗ A ⊗ A sin ϑ dϑ dϕ. (21)

In these formulas, A := A(ϕ, ϑ) denotes the direction of the fiber and depends on the spherical angles ϕ and
ϑ . In this work, we restrict ourselves to a uniform orientation distribution function and thus ρ = 1/4π , which
can be pulled in front of the integral. By application of a numerical quadrature rule for the microsphere given
by α = 1, . . . , N directions and weights wα , we obtain

P = 1

4π

N∑
α=1

wαPα Aα ⊗ Aα, A = 1

4π

N∑
α=1

wα ∂Pα

∂Fα
Aα ⊗ Aα ⊗ Aα ⊗ Aα. (22)

4.1 Benchmark of discrete and continuous convexification

In this section, we compare the discrete convexification against the continuous optimization procedure within
the context of the microsphere. All calculations are carried out by means of the Julia programming language
[13] using the finite element toolbox Ferrite.jl [15] and the tensors package Tensors.jl [14] for automatic
differentiation. The termdiscrete convexification refers to the algorithmic schemegiven inAlgorithm1,without
the adaptive scheme described in Sect. 3.2, whereas continuous convexification refers to the evolutionary search
multistart Newton strategy of [38]. All numbers presented compare one fiber of the microsphere inside one
integration point of a specific boundary value problem. The geometry of the boundary value problem is depicted
in Fig. 6b, where a unitcube is illustrated whose backside is fixed in all degrees of freedom while its front is
pulled displacement-driven in the x1-direction (indicated by the red arrow). Thus, a pseudo-time-dependent
Dirichlet boundary condition, which increases linearly to the maximum value of 4.0, is applied at the front,
while a homogeneous Dirichlet boundary condition in each direction is applied at the back. The displacement
field is approximated by trilinear basis functions and ten hexahedral elements along the x1-direction and two
elements in both of the x2- and x3-directions. For the analysis of computational performance, different metrics
associatedwith the computing time are considered, see Fig. 6a. As can be observed from the results, the discrete
convexification is superior to the multistart Newton strategy for all metrics, which is to be expected due to the
discrete convexification complexity ofO(N ). Note that the total runtime of the discrete convexification includes
the precompilation time of Julia. Thus, the measurements of total runtime should not be compared, but rather
the average time required for assembling the global system of equations. This is also reasonable with view to
the fact that the only difference between the compared approaches is associated with the computational effort
at the integration point, not the global solution of nonlinear equilibrium equations. The assembly function
was called 2000 times, and thus, all variations are averaged out. Nevertheless, the total assemble shows a
similar speed up as the assemble average. It is crucial to keep in mind that these speed ups drastically depend
on the given optimization procedure for the continuous convexification as well as the one-dimensional grid
of the discrete convexification scheme. The parameters of the continuous convexification were chosen such
that a conservative measurement is obtained, i.e., tuned parameters with expert knowledge. In contrary, the
parameter of the discrete convexification was an equidistant grid with step size δ = 0.1 starting from F = 1.0
and ending at F = 16. Since the complexity of the discrete convexification scheme scales linearly with the
grid size, one can extrapolate the timings for smaller step sizes, i.e., halving the grid size doubles the time.
The total speed up consists roughly of 237 times N fibers times the total amount of integration points within
the finite element discretization of the boundary value problem. The comparative computations were carried
out on a workstation with an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60 GHz containing 12 physical and
12 virtual cores. Summarizing, significant speedups can be realized by the proposed discrete convexification
scheme, even if no adaptive grid refinement is considered.
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(a) (b)

Fig. 6 Benchmark measurements for a one fiber and b boundary value problem of the benchmark problem

4.2 Microsphere strain softening approach

Themain idea of the newmicrosphere strain softening approach is to incorporate fiber failure on themicroscopic
level, i.e., on the fiber level. In Algorithm 3, a pseudocode of the procedure is given. Given a deformation
gradient F in three spatial dimensions, the deformation gradient is projected along all fiber directions α in each
integration point of the finite element discretization. The projection happens due to the product of deformation
gradient and fiber direction vector Aα . Afterward, the fiber stretch, denoted as Fα , can be computed by taking
the Euclidean norm of the resulting vector. Now, a condition is utilized that checks whether or not the maximal
fiber stretch Ffail is exceeded. If this is not the case, the usual microsphere procedure is done, i.e., the first
Piola–Kirchhoff stress Pα and nominal tangent Aα per fiber is obtained by evaluating the one-dimensional
material law. The fiber stress and nominal tangent are then integrated by taking into account the appropriate
dyadic product of the fiber direction. This procedure is repeated for each fiber independently and thus invites
to parallelize the work of the fibers trivially. All the following results will use this fact where the parallelization
happens in a sharedmemory context, i.e., threaded parallelism, bymeans of FLoops.jl [1]. In case themaximum
fiber stretch is exceeded, the contribution can be skippedwhich is equivalent to setting it to zero. This procedure
models an abrupt failure of the fiber as soon as the maximum fiber stretch is reached. In the following section,
it is analyzed whether or not this leads to a smooth stress–strain curve showing strain-softening.

Algorithm 3 Microsphere approach with microscopic failure
1: Input: F, Ffail, N , wα

2: Output: P,A
3: ρ = 1/4π
4: for α in 1, . . . , N do
5: Fα = |FAα |
6: if Fα < Ffail then
7: get Pα,Aα from 1D Material subroutine with Fα

8: P += ρ wαPα Aα ⊗ Aα

9: A += ρ wα
A

α Aα ⊗ Aα ⊗ Aα ⊗ Aα

10: end if
11: end for

4.3 Influence of the integration scheme for the microsphere

Themicrosphere fiber failure approach to incorporate strain softening is investigated in terms of its dependence
with respect to the chosen quadrature formula over the unit sphere. Note that the introduced discontinuities of
abrupt fiber failure yield a challenging task in terms of integration and the calculation of the tangent moduliA.
The used 5294 Lebedev integration scheme is not sufficient to approximate the integral properly in terms
of the second derivative of W . Strictly speaking, the tangent modulus for the individual fiber is not defined
whenever the fiber fails. The Jacobian of the global Newton scheme depends on A and thus, on the moduli of
the single fibers. Therefore, the Newton procedure may not see an appropriate search direction for finding the
structural equilibrium. A potential way out is to include a soft fiber failure in the sense of a smoothed reduction
of fiber stress to zero. In addition to that, an adaptive integration scheme refining around the failing fibers can
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be applied. The accuracy of the integration scheme is anyhow important and thus, the choice of quadrature
formula should be considered as part of the constitutive modeling when using the microsphere approach, as
pointed out in Verron [43]. In order to do so, we test the Lebedev [28] scheme and scale the integration points
up to 5294 points, which are tabled in the open source Julia package Lebedev.jl [11]. Further, we compare this
symmetric scheme with the unsymmetric scheme of Sloan and Womersley [42], which was also used in [43].
In Fig. 7, the resulting stress–stretch diagrams for the two different integration schemes are shown for varying
numbers of integration points. As can be observed from the staircase-like response, the fiber failure introduces
discontinuities in the material response owing to the abrupt failure of the fibers. However, as soon as the
integration points are increased to a certain amount (roughly of magnitude 1000), the staircase-like behavior
reduces to a smooth softening curve. In particular, it should be noted that the scheme by Sloan & Womersley
leads to smoother curves when compared to equivalently many or less points within a Lebedev scheme. The
disadvantage of a Sloan & Womersley scheme is that it is not symmetric, which is a desirable property from
a mechanics perspective. From the results presented in Fig. 7, it can be concluded that a magnitude of 100
integration points does not suffice in order to get a smooth softening response and thus, none of the prominent
schemes in Bažant and Oh [12] would be appropriate for integrating the fiber failure, since there, only schemes
up to 122 integration points have been presented.

5 Analysis of mesh independence

The main motivation behind constructing a convexified incremental stress potential for damage is to ensure
mesh-independent numerical calculations. Note that the microsphere approach does not guarantee sufficient
convexity in the space of the three-dimensional deformation gradient, even though the one-dimensional models
are convex. Due to the numerical integration over the unit sphere, a finite set of fibers (representative directions)
is defined along which the model is convexified. The energy along deformation gradients not in line with the
fiber directions may thus still be non-convex. However, practically, such cases hardly appear and may be thus
tolerated from the application point of view. Therefore, here we investigate to what extent mesh dependencies
can indeed be avoided. For this purpose, the proposed microsphere strain softening scheme is tested in the
two element material perturbation test introduced in [27], where mesh-dependence of a relaxed plasticity
formulation has been analyzed. This test has also been considered to show mesh independence of relaxed
damage formulations in [23] and [4] for small and finite strains, respectively. The test problem consists of a
uniaxial tension test discretized with two elements, arrayed in line with the tension direction. To introduce an
inhomogeneity to the structural problem, the stiffness of one of the elements is slightly perturbed by modifying
the material parameter D∞ = 0.99 through the perturbation ε = 10−6 such that the perturbed parameter value
becomes D∞ := D∞ − ε. The total length of the domain L is fixed; however, the ratio of the elements
is parameterized by a parameter denoted by κ . Thus, the first element’s length can be described as κL and
length of the second one by (1 − κ)L . The two-element material perturbation boundary value problem is
visualized in Fig. 8. Its major advantage is that mesh dependence can be analyzed by solely changing the mesh
distribution, not the number of elements. Thereby, mesh independence can be checked independently from
the standard finite element convergence behavior. Note that the perturbation is chosen small enough not to
modify the mechanical outcome of the problem if a suitable numerical scheme is considered. However, for
mesh-dependent formulations, this physically negligible perturbation will yield significant differences when
considering different discretization in terms of varied κ . The Neo-Hooke effective strain energy density ψ0

with Lamé parameters λ = 0.0 and μ = 0.5 is used for this problem and the critical fiber stretch is set to
Fα,fail = 5.0. Due to the nature of the microsphere approach, a three-dimensional material model is obtained
and thus three-dimensional elements with trilinear basis functions are used. The nodes of the finite elements at
the left-hand side of the problem in Fig. 8, drawn as blue circles, are blocked in all directions. The center nodes
of the discretization, drawn as black circles, are free in x1 direction and held fixed in the direction x2 and x3. The
nodes at the right-hand side, drawn as red circles, have a prescribed linearly increasing pseudo-time-dependent
Dirichlet condition in the x1-direction, while all other directions are prescribed to zero.

The structural response of this system in terms of reaction force versus displacements at the right-hand
side of the problem can be seen in Fig. 9a. For the one-dimensional unrelaxed model, which is integrated
over the microsphere, the well-known strongly mesh-dependent behavior can be observed. There exists some
critical value after which the finite element discretization leads to a strongly intensified inhomogeneity in
the distribution of the deformation gradient which is unphysical. This unphysical behavior has already been
observed in [27]. The relaxed model consisting of the convexified fiber model without fiber failure within the
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Fig. 7 Study of the influence of the chosen quadrature scheme. The Lebedev (left) and the Sloan and Womersley (right) scheme
are used and, in both cases, the number of integration points is increased to approximately 5000 points

Fig. 8 Two element material perturbation boundary value problem

(a) (b)

Fig. 9 Visualization of the structural response in terms of a force-displacement diagram (subfigure 9a). A strongmesh dependency
for the unrelaxed model can be observed, while the relaxed and fiber fail models turn out to be mesh-independent. A closer look
(zoom-in depicted in subfigure 9b) shows a slight mesh dependency in the fiber failure model, due to the lack of exact integration
of the fibers
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microsphere approach, as in [38], shows no mesh dependence at all. However, since one-dimensional convex
functions are integrated over the unit sphere, it is not necessarily the case that the resulting three-dimensional
energy is convex. In that case, it could even be that compatibility and frame indifference are lost. Although
this may in principle happen, it is quite unlikely if convex orientation distribution functions are considered
and so far this has not been numerically observed. However, the relaxed model from [38] does not allow for
the description of strain-softening as can be seen from the flat line in the convexified regime, see Fig. 9a. For
the proposed model where fiber failure is taken into account in the individual fiber representatives, clearly
significant strain-softening can be described. Furthermore, the deviations of the force-displacement curves for
varied κ are negligible when using 5294 Lebedev integration points, cf. Fig. 9b. These deviations magnify if
the chosen integration scheme has less integration points. Therefore, it can be concluded that the remaining
slight deviations mostly result from the numerical integration error, rather than from the fiber failure. Thus,
the results for the proposed relaxed scheme indicate mesh independence.

6 Conclusion

This contribution utilized the framework of incremental variational formulations and relaxation theory to for-
mulate a microsphere-based strain-softening scheme. For this, the incremental variational setting of continuum
damagemechanics at finite strains is described in Sect. 2. Furthermore, relaxation and its recovery properties in
terms of statingwell-posed problemswere introduced. Two topics were at the core of this contribution: efficient
convexification schemes for one-dimensional functions and a microsphere-based strain-softening scheme. The
former is discussed in Sect. 3,where first the state-of-the-art techniqueswere summarized. Thereafter, a discrete
convexification scheme with approximation properties was applied for the first time in large-strain continuum
damage mechanics. Here, a special adaptive strategy was presented in order to enhance and tailor the convex-
ification scheme of [9]. The proposed adaptive scheme opens possibilities for relaxed continuum mechanics.
On the one hand, multidimensional convexification can employ the presented one-dimensional convexification
Algorithms 1 and 2; on the other hand, different non-convex mechanical problems as, e.g., plasticity or phase
transition problems can be treated. While often optimization schemes are used, this method can be applied
to sufficiently regular functions, which is in general the case in continuum mechanics formulations. Note
that the regularity assumption is not only required in the adaptive discrete scheme but also in the alterna-
tive nonlinear optimization procedure. Comparing both methods, significant speed-up has been shown for the
discrete convexification scheme. In the last part of Sect. 3, state-of-the-art convexification schemes based on
multi-modal optimization were compared to the proposed discrete convexification scheme. The comparison
showed the superiority of the discrete scheme. As a benchmark, a single fiber within themicrosphere of a three-
dimensional boundary value problem was compared. The microsphere approach is recapitulated in Sect. 4.2,
and a novel scheme for strain-softening based on microsphere fiber damage was introduced. The latter was
examined with respect to its dependency of the chosen quadrature formula for the integration over the unit
sphere, where it was concluded that a certain number of integration points is required in order to smooth out
the introduced discontinuities of the fiber failure. Further, an integration scheme study was carried out to test
a Lebedev and a Sloan & Womersley type integration over the unit sphere. Here, the Lebedev scheme was
outperformed by the Sloan &Womersley integration; however, the Lebedev scheme possesses symmetry prop-
erties desirable for mechanics-related integrations. Hence, the highest-order Lebedev scheme was chosen in
order to studymesh independence in Sect. 5. The two-element material perturbation test was used, where it was
shown that integrated fibers obeying a non-convex one-dimensional potential yield a strongly mesh-dependent
behavior. Further, the test confirmed that fibers using the relaxed formulation of [4,38] together with the dis-
crete convexification scheme proposed here are mesh-independent. Lastly, the proposed microsphere-based
strain-softening scheme was tested in this problem as well. There, it was shown that indeed significant strain-
softening can be observed in numerical tests. Furthermore, only an insignificant mesh dependency appeared
which was, however, concluded to result from the numerical integration error. This is likely to be resolved
by an even higher and/or adaptive integration scheme. Since the used Lebedev integration scheme already
consists of more than 5000 integration points, an adaptive scheme as described in, e.g., Badel and Leblond
[2], could be utilized since symmetry can be guaranteed by construction and an error estimator can be easily
conducted. Around every fiber which fails, new integration points should be placed which should lead to an
optimal handling of the introduced discontinuity by the fiber failure. However, these discontinuities may also
influence the consistency of the macroscopic Newton–Raphson scheme and thus, the computational effort
related to the orientation integration can still be expected to be significant. Summarizing, the proposed relaxed
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damage formulation and its algorithmic treatment turned out to outperform previous convexified models in
terms of efficiency and the capability not only to describe stress but also strain-softening.
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