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Since the realization of high-quality microwave cavities coupled to quantum dots, one can envisage the
possibility to investigate the coherent interaction of light and matter in semiconductor quantum devices. Here
we study a parallel double quantum dot device operating as single-electron splitter interferometer, with each
dot coupled to a local photon cavity. We explore, how quantum correlation and entanglement between the two
separated cavities are generated by the coherent transport of a single electron passing simultaneously through the
two different dots. We calculate the covariance of the cavity occupations by using a diagrammatic perturbative
expansion based on Keldysh Green’s functions to fourth order in the dot-cavity interaction strength, taking into
account vertex diagrams. Furthermore, we demonstrate the creation of entanglement by showing that the classical
Cauchy-Schwarz inequality is violated if the energy levels of the two dots are almost degenerate. For large level
detuning or a single dot coupled to two cavities, we show that the inequality is not violated.

DOI: 10.1103/PhysRevB.105.L241407

I. INTRODUCTION

Nonlocality is a fundamental property of quantum mechan-
ics that manifests in two main ways: as delocalization of a
quantum particle in space according to its associated wave
function (superposition) and as correlations between spatially
separated parts of a quantum system (entanglement). It is
at the heart of quantum communication and computing in
various physical implementations.

An intriguing example of quantum delocalization is in-
terference in the motion of a single electron. Quantum
delocalized transport has been proven in nanodevices formed
by two possible paths connecting an initial point and a fi-
nal point, namely, two electrical contacts playing the role of
source and drain. Examples are parallel double dots [1–3],
operating as a single-electron splitter interferometer, and the
electronic Mach-Zehnder interferometer [4], operating with
the edge states of two-dimensional quantum Hall systems [5].
Similar to a photon in a Mach-Zehnder interferometer, an
electron wave function can split in two branches and then, by
recombining, can give rise to interference in the transmitted
flux. In general, semiconducting single-electron devices form
a unique playground to address nonlocal electron transport
and quantum interference [1–3,6,7].

Besides electron transport, quantum mechanics can be
explored with high precision in the fields of optics and
photonics. In particular, microwave quantum photonics has
made remarkable progress in the last decade. In the circuit
quantum electrodynamics (QED) architecture [8], a large
variety of quantum states in an electromagnetic microwave
resonator have been prepared and measured [9,10]. More-
over, using superconducting qubits or Josephson circuitry
(Josephson parametric amplifier or wave mixer), quantum

entangled states of microwave photons have been realized
in two spatially separated resonator cavities [11], in two
resonator modes of different frequencies [12,13], and in prop-
agating photons [14–16]. More recently, an entangled pair of
two-mode cat states was realized in two microwave cavities
[17], and a dc-biased Josephson junction was used to create
two continuous entangled microwave beams [18].

Beyond superconducting circuits based on Josephson junc-
tions, quantum dots realized in semiconducting nanostruc-
tures implement reliable and well-controlled qubits [19,20]
with transition frequencies in the microwave domain and
with the advantage of electric field control [21]. Quantum
dots can now be readily coupled to microwave photon cavi-
ties, leading to the field of semiconductor hybrid QED [22],
which provides a novel family of coherent quantum devices
that combine electronic with photonic degrees of freedom on
chip [23–33]. The so-called strong-coupling regime has been
reached [34–36], along with the full microwave control and
readout of the quantum dot qubits [37].

Coupling quantum dots with quantum optical resonators
adds a new dimension to the cavity and circuit QED, beyond
the conventional paradigm of an atom coupled to a harmonic
oscillator. This research line opens the path to exploring the
correlations between charge transport and nonequilibrium,
possibly quantum, regimes of localized electromagnetic ra-
diation. The corresponding hybrid devices are promising for
implementing quantum transducers, in which single electrons
control photonic quantum states in microwave cavities.

II. THE SYSTEM

In this context, we analyze a parallel double quantum dot
system, as shown in Fig. 1(a), with each dot capacitively
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FIG. 1. Sketch of the studied systems and idea. (a) Main model:
a parallel double quantum dot with a single electronic energy level
in each quantum dot. Each dot is coupled to one of two separated
microwave cavities and common left and right leads. (b) Basic idea:
An electron travels through both branches of the parallel double
quantum dot simultaneously. Its state is a coherent superposition of
the states in the two dots. The delocalization of the single electron
yields quantum correlations between the two cavities and remains
even when the electron leaves the system. (c) Single quantum dot
with a single electronic energy level coupled to two microwave
cavities.

coupled to one of two separated microwave cavities of res-
onance frequencies ωa and ωb. The two dots are connected to
common left and right leads with the same hopping parameter
t . We denote the coupling strength of the dot-cavity interaction
by λ.

We study a spinless model, consisting of a single electron
state in each dot, whose energy level is given by εa,b = ε̄ ± �ε

for the upper and lower dots, respectively. There is no di-
rect tunneling between the dots. A priori, we cannot exclude
the possibility that both dots are occupied simultaneously.
However, the tunneling of electrons into the double-dot sys-
tem is an uncorrelated event in our model due to the lack
of electron-electron interactions. The process itself there-
fore cannot generate quantum correlations between the two
microwave cavities that go beyond the elementary single-
electron tunneling process that we discuss in the following.

We explore how correlation and entanglement between the
two cavities emerge through the coherent transport of a sin-
gle electron passing simultaneously through the two different
dots. Let us first assume that the energy levels of the dots
are close to each other in the sense that the energy difference
is small compared to their broadening |�ε| = |εa − εb| � �,
i.e., the energy distributions overlap. In this regime the two
paths are indistinguishable, and the electron flows through
both branches simultaneously, causing quantum interference

in the double quantum dot system. This means that the linear
conductance associated with the levels of the double dot sys-
tem is different from the sum of the linear conductances of the
two separate dots, i.e., different from the single-level regime.

If the difference between the two energy levels is increased,
i.e., |�ε| � �, the interference is destroyed, and the electron
transfer occurs via the incoherent sum of the two possible
paths; namely, the electron proceeds independently through
the upper or lower branch but not simultaneously through
both. This is the mechanism that allows or prevents entangle-
ment.

As illustrated in Fig. 1(b), the idealized procedure is as
follows: When the electron travels inside the system, it splits.
Therefore, the electronic state is a coherent superposition of
the electron occupying the upper dot or the lower dot, with
the corresponding occupations n(el)

a and n(el)
b . The state of the

complete system is this superposed electron state coupled to
the two ground states of the cavities |GS〉a and |GS〉b:

|�〉in = 1√
2

(∣∣n(el)
a = 1, n(el)

b = 0
〉

+ ∣∣n(el)
a = 0, n(el)

b = 1
〉)|GS〉a|GS〉b. (1)

The interaction between an electron in a dot and the cor-
responding cavity ensures that a coherent state is created,
depending on the position of the electron, described by the
unitary time evolution operator

Û (τ ) = D̂a
[
n̂(el)

a ρ(τ )
] × D̂b

[
n̂(el)

b ρ(τ )
]
, (2)

where D̂a,b[ξ ] are the coherent displacement operators with
the associated parameter ξ and ρ(t ) = −iλt . (We set h̄ = 1
here and in the following.) After some dwell time τ the state
has evolved, and the dot-cavity interaction correlates the two
cavities,

U (τ )|�〉in = 1√
2

(∣∣n(el)
a = 1, n(el)

b = 0
〉|ρ(τ )〉a|GS〉b

+ ∣∣n(el)
a = 0, n(el)

b = 1
〉|GS〉a|ρ(τ )〉b

)
, (3)

where |ρ(τ )〉a and |ρ(τ )〉b are coherent states of the cavities.
The quantum delocalization of the single electron in the dou-
ble dot leads to a quantum correlation of the two cavities,
which indicates the possibility of an entangled state. This state
can persist even when the electron leaves the system and the
dot state is empty,

|�〉out = 1√
2
|0, 0〉(|ρ(τ )〉a|GS〉b + |GS〉a|ρ(τ )〉b

)
. (4)

Notice that in the last step the electron is removed without the
knowledge of which path it passed through, and this operation
corresponds to a kind of nonlocal measurement.

When a second electron subsequently enters the double
dot, one can repeat a similar argument starting from the en-
tangled photon state instead of the vacuum. However, for long
times, the internal losses of the cavities should be included,
along with their energy relaxation and dephasing due to the
coupling with the conducting leads via the double dot. In other
words, Fig. 1(b) describes just the idealized argument of the
entanglement generation process, where it is assumed that the
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interaction time of the electron and the cavity is short and that
decoherence effects of the dots happen much later regarding
the timescale of the interaction.

To investigate the possibility of entanglement, we will eval-
uate two quantities: We prove correlation via the covariance of
the Fock occupation numbers and quantum correlation via the
violation of the classical Cauchy-Schwarz inequality [38] for
the two cavities. We calculate these quantities using a pertur-
bative expansion in the Keldysh Green’s function formalism.
To understand the underlying mechanism of the entanglement
generation, we compare the results of the double quantum dot
system for degenerate levels, namely, zero-energy difference
of the two levels, with those of a large energy level difference.
In addition, we discuss the results for a single quantum dot
coupled to two cavities with the same dot-cavity coupling
constant λ but with a dot-lead tunneling coupling of

√
2t [see

Fig. 1(c)].

III. THEORETICAL MODEL

A. Basic formalism

The double quantum dot system with the attached cavi-
ties is described by the following Hamiltonian including the
electronic and photonic parts as well as the electron-photon
interaction:

Ĥ = Ĥel + Ĥph + Ĥint, (5)

Ĥel =
∑

r=L,R

∑
k

(εkr − μr )ĉ†
kr ĉkr

+
∑
α=a,b

εα d̂†
α d̂α + t

∑
r=L,R

∑
α=a,b

∑
k

(ĉ†
kr d̂α + H.c.), (6)

Ĥph =
∑
α=a,b

ωαα̂†α̂, (7)

Ĥint = λ
∑
α=a,b

(α̂† + α̂)d̂†
α d̂α. (8)

In this work we focus on the noninteracting, spinless model
for the electronic system [39,40]. We disregard the spin degree
of freedom because the interaction with the cavity is spin
independent. The electron spin is therefore not crucial for the
entanglement generation process that we focus on here. ĉ†

kr

and d̂†
α , with r = L,R and α = a,b, are the creation operators

of the electrons in the left and right leads and in the two quan-
tum dots with energy levels εα . α̂† and α̂ are the creation and
annihilation operators of photons with frequency ωα in cavity
α. t ∈ R is the hopping parameter describing the transport of
an electron between dots and leads.

We focus on the regime of unidirectional transport. The
voltage that is applied along the system shifts the electrochem-
ical potentials of the leads. We consider a symmetric shift in
the high-voltage limit

μL = −μR = lim
eV →∞

eV/2. (9)

The Fermi functions of the left and right leads become
fL(E ) = 1 and fR(E ) = 0. This approximation holds as long
as the potential is the largest energy scale involved in our
model, namely, |eV | � max(kBT, �,�ε, ω0, η). Here kBT is

the temperature of the leads, and η is the damping parameter,
characterizing the cavity losses (see below). The origin of
the dot energy levels is chosen to be in the middle of the
electrochemical potentials of the two leads, i.e., ε̄ = 0. Dot
energies are therefore specified by the level difference, i.e.,
εa,b = ±�ε.

Let us note that we assume identical dot-lead couplings
in Eq. (6). If dot levels are degenerate, �ε = 0, and dot-
electrode couplings differ, the transmission function typically
shows a dip at energies in close vicinity to ε̄ instead of
the peak arising at all identical couplings. We explain in
the Supplemental Material [41] why a small asymmetry in
electrode-dot couplings is not expected to affect our main re-
sults. The essential argument is that since we are assuming the
high-voltage limit, a local singularity of transport properties
at ε̄ is averaged out. The singularity thus does not lead to a
discontinuous behavior of the integral of the total electron flux
or any other quantities, like Feynman diagrams, derived from
integrals over energy [42].

To determine the electronic transport through the system
in the absence of electron-photon interaction, we calculate the
unperturbed electronic Green’s functions associated with the
electronic part Ĥel of the Hamiltonian, using the diagrammatic
Keldysh technique and applying the wideband approximation
for the leads [43,44]. In this way we obtain the broad-
ening � of the electronic levels. These electronic Green’s
functions represent our bare propagators in the perturbative
approach, where we expand in terms of the electron-photon
interaction. These unperturbed fermionic Green’s functions
Gαβ (ti, t j ) = −i〈Tc(d̂α (t )d̂†

β (t ′))〉, beyond being in the matrix
form of the Keldysh formalism [45], can also be brought
into the form of 2 × 2 matrices related to the two parallel
dots α, β = a,b [44]. Tc is the time-ordering operator with
respect to the Keldysh contour. In a similar way, we de-
fine the single-particle bosonic Green’s function Dα (t, t ′) =
−i〈Tc(α̂(t )α̂†(t ′))〉 for the two cavities and the two-particle
function Fαβ (t, t ′) = −i〈Tc(α̂(t )β̂(t )α̂†(t ′)β̂†(t ′))〉. We con-
sider the intrinsic photon losses in the two cavities using a
finite broadening η of the unperturbed bosonic propagators,
denoted as D(0)

α (t, t ′). The explicit form of the unperturbed
Green’s functions is detailed in the Supplemental Material,
Sec. A [41].

To demonstrate the entanglement of photons in the two
cavities, we calculate the covariance

C = 〈n̂an̂b〉 − 〈n̂a〉〈n̂b〉, (10)

which proves correlation if it is finite, i.e., C �= 0, and test the
classical Cauchy-Schwarz inequality

S =
〈
â†âb̂†b̂

〉
√〈

â†â†ââ
〉√〈

b̂†b̂†b̂b̂
〉 � 1, (11)

which proves quantum correlation if it is violated. The cav-
ity occupations are defined by the bosonic creation and
annihilation operators n̂a = â†â and n̂b = b̂†b̂, and S is the
Cauchy-Schwarz parameter.

To evaluate Eqs. (10) and (11), we express the expectation
values by Keldysh Green’s functions and perform a diagram-
matic perturbative expansion in the dot-cavity coupling λ up
to fourth order. The expectation values in these equations are
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related to the lesser Green’s functions in the limit of equal
times of the single-particle and two-particle Green’s functions
[45]. In this representation, the average photon number of a
single cavity 〈n̂α〉, the covariance C, and the Cauchy-Schwarz
parameter S read

〈n̂α〉 = D<
α (t, t ), (12)

C = iF<
ab (t, t ) + D<

a (t, t )D<
b (t, t ), (13)

S = F<
ab (t, t )√

F<
aa (t, t )F<

bb (t, t )
. (14)

The conditions for entanglement are a nonzero covariance,
C �= 0, and a violated classical Cauchy-Schwarz inequality,
i.e., S > 1. Both quantities have no finite contributions up to
third order, so we have to calculate them consistently up to
fourth order in λ.

B. Perturbation expansion

For the single-particle bosonic Green’s functions in
Eqs. (12) and (13) we perform a perturbation expansion up
to second order, and for the two-particle Green’s function
in Eqs. (13) and (14) we perform one up to fourth order
with respect to the dot-cavity interaction Hamiltonian in the
interaction picture,

Hint(τ ) =λ[(â† + â)d̂†
a d̂a + (b̂† + b̂)d̂†

b d̂b]τ . (15)

To calculate the expectation values we use Wick’s theorem,
which allows us to decompose a contour-ordered string of
creation and annihilation operators into a sum over all possible
pairwise products [45].

Every product corresponds to unperturbed fermionic
Gαβ (ti, t j ) and bosonic Green’s functions D(0)

α (ti, t j ), with ti
and t j lying on the Keldysh contour. An expansion up to
fourth order yields contributions with four bosonic and four
fermionic Green’s functions, integrated over four different
time arguments distributed on the Keldysh contour. As an
example we consider the integral

I (t, t ′) = λ4
∮
c

∮
c

∮
c

∮
c

dt1dt2dt3dt4

× D(0)
a (t, t1)D(0)

b (t2, t ′)D(0)
b (t, t3)D(0)

a (t4, t ′)

× Gab(t4, t3)Gba(t3, t4)Gab(t1, t2)Gba(t2, t1), (16)

which contributes to the covariance and the classical Cauchy-
Schwarz parameter. We can represent these integrals as
Feynman diagrams and get three different geometries, as de-
picted in Fig. 2, while the latter equation corresponds to the
third diagram. Due to the fourth order of the perturbative
expansion we get four interaction points proportional to λ.
This shows that we are dealing with a two-photon process,
emitting and absorbing photons in both cavities a and b with
corresponding energies ωa,b. The process is described by dif-
ferent types of fermionic interaction in the double quantum
dot system. Complete formulas for C and S are reported in the
Supplemental Material, Sec. B [41].

FIG. 2. Examples of vertex diagrams, which contribute to the
integrals of C and S. Black dots represent the electron-photon in-
teraction proportional to λ. Wiggly lines correspond to bosonic
Green’s functions of the microwave cavities with resonance fre-
quency ωa,b, distinguished by the colors red and blue. Straight lines
signify fermionic Green’s functions of the double quantum dot sys-
tem. Diagonal Green’s functions are indicated by blue and red lines;
off-diagonal Green’s functions are represented in green.

IV. RESULTS

To certain limits, we are able to calculate the relevant quan-
tities analytically. We consider equal resonance frequencies
ωa = ωb ≡ ω0 and zero temperature of the cavities. Further-
more, we focus on the regime of low damping inside the
cavities, i.e., ω0 � � � η, and on the high-voltage bias limit.
Regarding the energy levels of the parallel quantum dots we
consider two different cases: First, we study the case of two
almost equal energy levels, and second, we study the case for
two strongly differing levels. Finally, we compare these results
with the case of a single dot coupled to two cavities at the
same time [see Fig. 1(c)].

We first determine the average photon number of the single
cavities 〈n̂a〉 = 〈n̂b〉 = n̄ up to second order and the corre-
sponding fluctuations δn2 = 〈n̂2〉 − n̄2 up to fourth order. The
latter quantity can be easily computed from the knowledge of
n̄ and 〈α̂†α̂†α̂α̂〉 [namely, F<

αα (t, t )]. Then we can analyze the
behavior of the Fano factor, defined as F = δn2/n̄. Finally, we
calculate the covariance C and the Cauchy-Schwarz parameter
S both up to fourth order in λ. Due to the symmetries in
the system, the results for both cavities are the same. The
average occupations for the single dot and the double dot with
large level spacing are equal since we calculate the average
occupation up to only second order. The result of the double
dot with two almost equal energy levels, i.e., �ε � �, acting
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TABLE I. Results for the average photon number of a single
cavity n̄, fluctuations δn2, Fano factor F , covariance C, and Cauchy-
Schwarz parameter S for three different cases: the double quantum
dot (DQD) with zero or large level spacing and a single quantum dot

coupled to two cavities. Here n0 = π 2
(

λ

ω0

)2(
�

η

)
.

DQD, �ε = 0 DQD, �ε � � Single dot

n̄ n0 2n0 2n0

δn2 n0(1 − n0/4) 2n0(1 + n0) 2n0(1 + 4n0)
F 1 − n0/4 1 + n0 1 + 4n0

C n2
0/2 0 8n2

0

S 2 2/3 1

as a single-electron splitter, is half the size of the case �ε � �

and the single-dot system. In the case of zero or small level
spacing the electronic Hamiltonian, Eq. (6), can be written
in the form of an effective single-dot problem. Compared to
the real single-dot case the dot-lead coupling parameter t is
renormalized to t → t/

√
2. With � ∝ |t |2 this renormaliza-

tion enters as a factor of 2 in the bosonic occupation of the
cavities [44]. Furthermore, we checked that the result for the
single dot coupled simultaneously to two cavities coincides
with previous results in the limit, in which the induced damp-
ing associated with the electron-boson interaction is smaller
than the intrinsic damping of the cavities η [46,47].

According to Table I, for the fluctuations and the cor-
responding Fano factor of the double-dot system we find
a sub-Poissonian behavior in the regime, where we have
quantum interference in the transport through the double dot,
whereas we obtain a super-Poissonian behavior for the other
two cases. The sub-Poissonian behavior corresponds to a pho-
ton antibunching in the local cavity. Let us emphasize that
the nature of the interaction already appears at the level of
a single-cavity quantity, namely, the local fluctuations of the
photons in a cavity. This can also be seen for two trivial
examples since the sub-Poissonian behavior occurs both for
the entangled bosonic states in the Fock occupation |�〉pq ∝
|na = p, nb = q〉 + |na = q, nb = p〉, with p, q ∈ N, and in
the coherent state basis |�〉z1z2 ∝ |ξa = z1, ξb = z2〉 + |ξa =
z2, ξb = z1〉, with |ξ 〉 being a coherent state and z1, z2 ∈ C.

For the covariance C we find a finite, positive value for
the double quantum dot with two equal energy levels, which
verifies the correlation of the photons in the single cavities.
The covariance for a large level spacing vanishes, meaning
that there is no correlation. This result is expected for the
case of two separated electron pathways. Notice, however,
that finite covariance also arises in the case of a single dot
simultaneously coupled to two cavities [see Fig. 1(c)]. This
can be interpreted as a classical correlation, as we have a
single-photon emitter coupled to both cavities.

Finite covariance proves correlation but does not indicate
quantum correlation (entanglement). To distinguish classical
and quantum correlations, we calculated the classical Cauchy-
Schwarz parameter S in Eq. (14), which we cast in the
following form:

S = |n̄2 + C|
|n̄(n̄ − 1) + δn2| =

∣∣n̄ + C
n̄

∣∣
|n̄ + F − 1| . (17)

The expression states that a violated Cauchy-Schwarz in-
equality (S > 1) occurs if a finite and positive covariance
is combined with a sub-Poissonian (F < 1) behavior. As
reported in Table I, the Cauchy-Schwarz inequality for van-
ishing level spacing is clearly violated. This confirms the
quantum entanglement of the photons in the two distant mi-
crowave cavities if the energy levels of the two dots are
sufficiently close to each other, viz., the electron is delo-
calized over the two dots when it flows from one lead to
the other. For strongly differing energy levels of the dots,
the classical Cauchy-Schwarz inequality is no longer violated
as C = 0 (uncorrelated systems). As a sanity check, for the
single dot with C > 0 and F > 1 (super-Poissonian) we find
that the classical Cauchy-Schwarz inequality is not violated
but reaches the maximum classical value.

Let us finally discuss the role of decoherence in the sys-
tem. Intrinsic contributions stem from losses in the cavities.
Therefore, we assume high-quality cavities with an intrinsic
damping that is smaller than the broadening of the electronic
levels η � � � ω0. We expect the photon production rate
to be proportional to the flow of electrons through the dots.
If the cavities lose energy at a rate which is faster than the
rate at which photons are created, this will, of course, destroy
entanglement. Another source of decoherence arises from the
stochastic nature of electron tunneling. The granular electron
flow cannot generate a pure quantum state of the photons in
the two cavities, but it will create an entangled mixed state.

We propose our setup as a proof of concept to realize
bosonic quantum correlations mediated by single-electron
transport. Although several parameters were assumed to be
equal, we expect our results to be relevant for carefully cho-
sen experimental settings. Since the covariance C and the
Cauchy-Schwarz parameter S are continuous functions of
the parameters of the Hamiltonian, we expect our idealized
proposal to be robust to small variations and hence to be re-
alizable. A long-term perspective may be the creation of pure
entangled states. For this objective time-dependent control of
electron occupations of the dots may need to be implemented
along the lines discussed in [9,10].

V. SUMMARY

We studied single-electron transport through a parallel
double quantum dot, with each dot being coupled to a separate
microwave cavity. We showed in a simple scheme that for de-
generate dot energies, when quantum interference between the
two transport pathways is most pronounced, the delocalized
electron entangles the photons in two separated microwave
cavities. Using the Keldysh Green’s function method and a
perturbative expansion up to fourth order in the dot-cavity
interaction strength, we demonstrated quantum correlations
between the cavities through nonzero covariance and the vio-
lation of the classical Cauchy-Schwarz inequality. Due to the
complexity of the calculations we presented analytical results
only for the perfectly symmetric case, with both quantum
dots exhibiting equal energy levels. But we expect that our
findings are still valid if the degeneracy is lifted and the system
becomes slightly asymmetric. For too large level detunings or
a single dot coupled to two cavities, we have shown that the
photons in the different cavities cannot be entangled.
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