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Birch pollen extract enhances human cytomegalovirus 
replication in monocyte- derived dendritic cells

To the Editor,
Observational data revealed correlations between the birch pol-
len season and the prevalence of viral infections, including airway 
infections,1 and the reactivation of latent herpesviruses.2 One rea-
son might be a pollen- induced disturbance of the integrity of epi-
thelial tissues that would cause defects in its barrier function and 
thus allow for easier viral invasion. Importantly, the pollen matrix also 
contains compounds that can modulate immunity, irrespective of the 
allergenic traits of pollen.3 This raises the question of whether birch 
pollen can directly affect antiviral immunity, to which dendritic cells 
(DC) critically contribute to. Therefore, here we addressed whether 
treatment of human DC with birch pollen affects their gene expres-
sion profiles, their innate antiviral responses, and their susceptibil-
ity to viral infection. In accordance with earlier studies,3 treatment 
of monocyte- derived DC (moDC) with aqueous pollen extract (APE) 
downregulated LPS induced IL- 12p70 responses in a dose- dependent 
manner (Figure S1A). The strongest inhibition was detected at a con-
centration of 3 mg/ml APE, which we also used in the subsequent 
experiments. APE stimulation of moDC for 24 h moderately induced 
the surface expression of the DC maturation markers CD40, HLA- 
ABC, and HLA- DR (Figure 1A, B). Bulk RNA sequencing of moDC 
after APE treatment for 6 and 24 h revealed ample transcriptional 
changes (Figure S1B). Protein– protein interaction (PPI) network 
analysis of the combined differentially expressed genes (DEG) from 
both time points highlighted genes involved in pro- inflammatory 
innate immune functions such as type I interferon (IFN) signaling 
and IL- 6 expression (Figure 1C). The transcription factors NF- κB 
and RELA were identified as potential upstream controllers of APE- 
regulated genes (Figure 1D). At the protein level, APE- treated moDC 
did not produce any measurable IFN- α, and they did not significantly 

increase IL- 6 production (Figure S1C, D). Thus, our results indicate 
that APE treatment of moDC promotes a pro- inflammatory prone 
status at the transcriptional level, but has mild effects on the expres-
sion of pro- inflammatory cytokines at the protein level.

To investigate whether APE treatment enhances pro- 
inflammatory cytokine responses upon virus infection, we utilized 
the β- herpesvirus human cytomegalovirus expressing the fluores-
cent marker GFP (HCMV). This virus is known to infect various dif-
ferent subsets of the myeloid cell lineage, including moDC.4 Upon 
exposure of moDC with HCMV together with APE (APE + HCMV) 
(Figure 2A), protein secretion of IFN- α and IL- 6 was significantly en-
hanced compared to moDC treated with HCMV alone (Figure 2B, C). 
Interestingly, pre- incubation with APE for 24 h followed by HCMV 
exposure (preAPE + HCMV) did not have an impact on IFN- α pro-
duction, whereas it still augmented IL- 6 expression (Figure 2A, D, E 
and S2A, B). Notably, upon the various treatments, moDC did not 
produce detectable levels of anti- inflammatory cytokines, such as 
IL- 10, TGF- β, or IL- 23 (Figure S2C). Thus, APE treatment of moDC 
promotes a pro- inflammatory milieu upon HCMV infection.

To address whether APE affects viral infection, we quantified 
percentages of GFP expressing moDC by flow cytometry. Upon 
exposure of moDC to APE + HCMV, percentages of GFP- positive 
moDC, that is, cells that support viral gene expression, were sig-
nificantly enhanced (Figure 2F, G) and the release of viral progeny 
was increased (Figure S2E). PreAPE + HCMV treatment further 
increased the percentage of GFP- positive moDC and the amount 
of viral progeny (Figures 2F, G, S2D, F). Thus, APE- driven changes 
in gene signatures of moDC provide a favorable environment for 
HCMV infection and replication, despite an enhancement in pro- 
inflammatory cytokine responses.
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NF- κB signaling, which was induced by APE treatment of moDC, 
was reported to enhance HCMV infection.5 Pharmacological inhibi-
tion of NF- κB by BMS- 345541 (BMS) treatment reduced percent-
ages of GFP expressing moDC after HCMV exposure (Figure 2H, 
upper panel), suggesting that NF- κB signaling is important for ef-
ficient HCMV infection of moDC. Moreover, BMS treatment pre-
vented the increase of GFP expressing cells in APE + HCMV treated 
moDC, but not in preAPE + HCMV treated moDC when compared 
with HCMV treatment alone (Figure 2H, lower panel). Thus, our re-
sults indicate that APE + HCMV treatment augments HCMV infec-
tion in an NF- κB- dependent manner.

Warmer temperatures and expanding urbanization increase the 
release of birch pollen into the air and also enhance the amount of 
immune stimulatory mediators contained in pollen.3 This in turn 
could increase the risk of herpesvirus infection and reactivation in 
sensitized and non- sensitized individuals. A recent study demon-
strated that HCMV and Epstein– Barr virus were the two most abun-
dant viruses in the lung of asthma patients and that the presence of 

these viruses correlated with the severity of the disease.6 As asthma 
patients are especially sensitive to the effects of pollen, the pollen- 
induced enhancement of HCMV infection that we report here might 
have even more severe implications for such high- risk patients than 
for healthy individuals.
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F I G U R E  1  APE treatment promotes pro- inflammatory gene signatures in moDC. (A) Flow cytometric analysis of CD40, HLA- ABC 
and HLA- DR on moDC treated with 3 mg/ml APE for 24 h. (B) Statistical analysis of mean fluorescence intensity (MFI) of surface marker 
expression. Wilcoxon matched- pairs signed rank test, *p < .05, **p < .0098, mean ± SD, n = 10. RNA expression profiles of moDC treated 
with APE for 6 or 24 h were analyzed and DEG from both time points were combined. (C) Protein– protein interaction (PPI) network of 
combined DEG. (D) Transcription factor target analysis of combined DEG.
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F I G U R E  2  APE treatment enhances susceptibility of moDC to HCMV infection. (A) moDC were either exposed to HCMV, co- treated with 
APE and HCMV (APE + HCMV), or pre- treated with APE for 24 h and then infected with HCMV (preAPE + HCMV). IFN- α and IL- 6 content 
in supernatants of (B and C) APE + HCMV treated and (D and E) preAPE + HCMV treated moDC. (F) GFP expression and (G) percentages of 
GFP- positive cells were analyzed. (H) moDC were treated with HCMV and APE in the presence of DMSO or 1 μM and 5 μM BMS. Wilcoxon 
matched- pairs signed rank test, *p < .05, **p < .0078, ***p < .0007, ****p < .0001, data represent mean ± SD. n = 6– 32, each dot represents 
moDC from an independent donor.
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