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Abstract. Let g > 1 be a prime power, m > 1 an integer, GF(¢™) and GF(g) the Galois fields of order ¢™
and g, respectively. We show that the different module structures of (GF(¢™), +) arising from the intermediate
fields of the field extension GF(q™) over GF(g) can be studied simultaneously with the help of some basic prop-
erties of cyclotomic polynomials. The results can be generalized to finite cyclic Galois extensions over arbitrary fields.

In 1986, D. Blessenohl and K. Johnsen proved that there exist elements in GF(¢™) which generate normal
bases in GF(g™) over any intermediate field GF(q% of GF(g™) over GF(q). Such elements are called completely
free in GF(q™) over GF(q). Using our ideas, we give a detailed and constructive proof of the most difficult part
of that theorem, i.e., the existence of completely free elements in GF(g™) over GF(g) provided that m is a prime
power. The general existence problem of completely free elements is easily reduced to this special case.

Furthermore, we develop a recursive formula for the number of completely free elements in GF(g™) over GF(q)
in the case where m is a prime power.

1. Introduction. Cyclic Module Structures in Finite Fields

In order to fix the notation, we summarize some basic results about finite fields first. More
details and proofs may be found in Lidl and Niederreiter [6, Chap. 1, 2]. For the general
algebraic background we refer to Jacobson [4].

Let g > 1 be a prime power and m > 1 an integer; let GF(¢™) and GF(qg) be the Galois
fields of order ¢™ and g, respectively. Let o: GF(@™) — GF(q@™), v = v? be the Frobenius
automorphism of GF(q™) over GF(g). The Galois group of GF(q™) over GF(g) is cyclic
of order m and is generated by o.

The intermediate fields of GF(g™) over GF(q) are exactly the fields GF(g%), where
d = 1 is a divisor of m. The Galois group of GF(g™) over GF(q%) is cyclic of order 2
and is generated by o“. Since ¢¢ in particular is a GF(¢“)-linear automorphism on GF(g™),
considered as an Z-dimensional vector space over GF(qd), we know from Linear Algebra
that (GF(g™), +), the additive group of GF(¢g™), becomes a GF(g%)[x]-module with scalar
multiplication

deg(f) deg(f) i
(f Vg i=fl@Hw) = D, fiot)y = D) fA (1.1
i:=0 i-=0

(fis 23.1 polynomial in GF(g%)[x], the polynomial ring in the indeterminate x over the field
GF(g“), and v is an element of GF(q™). As usual, deg(f) denotes the degree of f.)
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The minimal polynomial u(c¢) of 0 over GF(g% is equal to ™ — 1. Furthermore,
(GF(g™), +) is a cyclic GF(g%)[x]-module (as such denoted by GF(g™, ¢%, ¢¢)). Any
generator of GF(q™, q“, ¢°) is called a free element in GF(q™) over GF(¢®). If w is free
in GF(g™) over GF(q%), the set

{w, a%w), a%w), ..., a" Y w)}

forms a GF(q%-basis of GF(q™), i.e., a normal basis of GF(q™) over GF(q®).

For any v in GF(g™) let u(o“, v) be the minimal polynomial of v over GF(g%), i.e., the
monic polynomial g of least degree in GF(g%[x], such that (g, v); = O. It is a divisor
of ¥ — 1 and called the g%-order of v.

The GF(qd)[x] submodules of GF(g™, g°, o%) are in one-to-one correspondence to the
monic divisors of ¥ — 1 in GF(g){xl, i.e., let f be a monic divisor of ™ ~ 1 in

GF(g%[x], then
Ue? f) := {v € GF(@™, q°, o%) | (f, v)a = 0} (1.2)

is the GF(g%-submodule of GF(¢™, q¢, ¢“) corresponding to f. U(c?, f) is cyclic with
minimal polynomial f and has cardinality g¢ %), Furthermore, the elements of U(c*,
f) are exactly the roots of

deg(f)

> fix,
i:=0

the associated ¢°-polynomial of f.

Finally, let ®(g“, f) denote the number of generators of U(a?, f), i.e., the number of
elements v in GF(q™) satisfying p(e?, v) = f. It is well known (see e.g. [6, (Lemma 3.69)]
that

q)(qd’ f) — H (qdk,deg(ﬁ-) _ qd(ki_”dCS(f::)), (13)

i:=1

where TI¢_, f% is the complete factorization of f over GF(q%).

In this paper we start to investigate simultaneously the different module structures of
(GF(q™), +) arising from the intermediate fields of the field extension GF(¢™) over GF(g).
In the next section we prove some fundamental properties concerning the relation of the
modules GF(g™, q, o) and GF(g@™, ¢°, %), where d is a positive divisor of m. We will
see that different module structures can be studied with the aid of some basic properties
of cyclotomic polynomials.

An element of GF(q™) over GF(g) which is free with respect to any intermediate field
of this field extension is called completely free in GF(q™) over GF(q). The existence prob-
lem for completely free elements in arbitrary finite Galois extensions over any field was
solved in Blessenohl and Johnsen {1]. In particular, concerning finite fields we have
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THEOREM 1.1. (BLESSENOHL AND JOHNSEN (1986)) Let g > 1 be a prime power and m
> 1 an integer. There exist elements in GF(q") which are completely free over GF(q).

The existence and nature of completely free elements seems to be very interesting in

itself and because of the various applications of normal bases in practice (see Jungnickel
[ , Chapters 3-5]). The main aim of this paper is to use the ideas developed in Section
2 to give a detailed, constructive and simpler proof of Theorem 1.1.

While the existence problem for completely free elements is easily reduced to the case
where m is a prime power, the really difficult part is to settle the existence in this special
case (see also [1]. For completeness and the convenience of the reader (especially since
D. Blessenohl and K. Johnsen have published their results in German), we include a proof
of the reduction of the existence problem to the special case (see Theorem 3.1).

If m = r" is a prime power (n = 2), i.e., if we are in the special case, using essen-
tially our observations from Section 2, we will see that, fortunately, it is enough being
able to handle simultaneously the two modules GF(q" , g, o) and GF(q’ q’, ).

Altogether, our approach to the problem is based on some properties of cyclotomic
polynomials, the structure of the unit groups of the rings of integers modulo » and on
the fundamental Lemma 3.3 (concerning decompositions of the modules considered into
direct sums of submodules) while D. Blessenohl and K. Johnsen in their (1986)-paper
mainly use representation theory of finite abelian groups. Although their proof could slightly
be condensed in Blessenohl [2], our approach is still simpler and seems to be more natural.

Furthermore, we are abie to give a recursive formuia for the number of compietely free
elements in GF(q™) over GF(q), provided that m is a prime power.

2. Basics on Orders of Elements Concerning Various Module Structures

In this section we study the additive group (GF(¢™), +), simultaneously as a GF(q)[x]-

and as a GF(qd)[x]—module for some positive divisor d of m. We begin with a characteriza-
tion of the prnd\rr] submodules of (GF(a™ -l-\ which are invariant under the Frobenius

Wi Ui sz DUUILIULILIVE VL (WY )y 1iavii Gav 313V AQEIY WMAIUTA uiAv A AvUva

automorphlsm g.

THEOREM 2.1. Let f be a monic divisor of ¥™*-1 in GF(q)[x]. Then f(x*) is a monic divisor
of X" — 1 in GF(g)[x].

Furthermore, the submodules U(a, f(x%) of GF(q™, g, o) and U(o®, f) of GF(g™, 4°,
o%) are equal as sets.

Conversely, if g is a monic divisor of x™® — 1 in GF(q®)[x] and if f is a monic divisor
of x™ — 1 in GF(q)[x] such that the modules U(o, f) and U(a®, g) coincide as sets, then
g has coefficients in GF(q) and f is equal to g(x°).

Proof. Let f be a monic divisor of x™ — 1 in GF(g)[x). The first assertion is trivial.

The equality of U(a, f(x%) and U(c?, f) as sets follows immediately from the fact that
v = (xd), v), for any v in GF(q™) (observe that f has coefficients in GF(q)) and
from (1.2).
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Assume conversely that U(o, f) and U(c?, g) are equal as sets for two polynomials
g and f satisfying the assumptions. Let G and F, be the associated g 9_polynomial of g
and the associated g-polynomial of f, respechvely G and F, are monic polynomials of
degree IU(o, Nl = IU(o g)I = g%8) = £48® Since they have g% common roots,

Samnsmandintale: Albnie nt dlacy neen mmcanl Tl awafinan PRGN o =P PO VF 7/ QPR |

Ww¢E lllullWIQLCly uviaill al Lllcy al \.l < 1HCITIVIC, g lldb CUCILIVICLIW lll Ul \4) alla
d:

f = 8(x%). O

As mentioned in the introduction, the modules U(o, f(x%) and U(c¢, f) both are cyclic.
In particular we are interested in completely free normal bases (normal bases generated

hv combpletelv free elempnte\ so that we have to consider elements which simultaneouslv

completely free elements), so that we have to consider elements which simultaneously
generate both modules. We therefore next give an easy criterion to decide if v generates
the module U(¢?, f), provided that v generates U(a, f(x%).

PROPOSITION 2.2. Let f be a monic divisor of x™ — 1 with coefficients in GF(g). Let
v be an element of GF(g™) with g-order p(o, v) = f(x%). Then u(a?, v), the g%order of
v, is a monic divisor of f with coefficients in GF(¢?%).

Furthermore, p(ad, v} = fif and only if ,u(ad, v) has coefficients in GF{(q).

Proof. Let fbe a monic divisor of ™ — 1 in GF(g)[x] and v an element of GF(q™) with
g-order f(x%). As a consequence of Theorem 2.1, v is an element of U(o?, f) and therefore
u(a?, v), the g%order of v, is a divisor of f. This is the first assertion.

One direction of the second assertion is trivial. Let therefore u(c¢, v) be a polynomial
over GF(q). Then

((@?, VxY, v); = (@, v), v)g = 0

es and using

and therefore f \JL ) = u(o, v) is a divisor of u(d?, V)(x ) Comparing d

the fact that u(o?, v) divides f, we obtain

gf

d deg(f) = deg(f(x9) = deg(u(o?, V(x%) = d deg(u(c?, v)) = d deg(/).

Therefore, equality holds everywhere and we get that deg(f) = deg(u(c?, v)). Since both
polynomials are monic and p(c?, v) is a divisor of £, we obtain that f and u(c?, v) are
equal. O

We conclude this section with two applications of Proposition 2.2 which are very useful.

COROLLARY 2.3. Let v be free in GF(g™) over GF(q) and let d be a positive divisor of
m. Then v is free over GF(¢g?) if and only if the g%-order of v has coefficients in GF(g).(]
Furthermore, we have

THEOREM 2.4. Let f be a monic divisor of X™ — 1 in GF(q%)([x]. Assume that every ir-
reducible divisor of f in GF(q®)[x] actually has coefficients in GF(q). Then each element
with g-order f(x%) has g¢°-order f.

In particular, if all irreducible factors of x™® — 1 in GF(g®%Ix) actually have coeffi-
cients in GF(q), then any free element in GF(q™) over GF(q) remains free over GF(qd).l:]
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3. Completely Free Elements in Finite Fields

Let r be a prime number and n = 1 an integer. The main problem in the proof of Theorem

1.1 of Blessenohl and Johnsen is to settle the existence of completely free elements in
Por VPN over GF(g). This will be done constructively in this section. The general result

U\ j UveL s 112 U [eRSALT LRSaadta Ll 223 S RAS L.

then follows from Theorem 3.1, which reduces the existence problem to the special case
where the degree of the extension is a prime power.

THEOREM 3.1. Let m be a positive integer and let TI%._| p% be the prime power Jactoriza-
tion of m. Let ¢ > 1 be any przme power. If v; is completely free in GF(q”* ) over GF(q)
for1 < i <k, thenv:= X _, v; is completely free in GF(@™) over GF(q).

Proof. The proof proceeds in several steps.

Assume that m = st, where s and ¢ are relatively prime, and let @ and & be elements
in GF(q™) such that GF(g)(a) and GF(q)(b), the intermediate fields of GF(¢™) over GF(q)
obtained by adjoining a respectively b to the ground field GF(g), are equal to GF(q®) and
GF(q"), respectively. Then

GF(q")(a), the field generated by GF(q") and a, is equal to GF(q™) (3.1.1)
Proof. On one hand, [GF(g")(a) : GF(q)], the degree of GF(q")(a) over GF(q), is equal to
[GF(¢)@ : GF(g"] * [GF(q)) : GF(g)] =

on the other hand, it is equal to

[GF(g')(a) : GF(q)(a)] * [GF(q)a) : GF(g)] =

Since s and ¢ are relatively prime and since ut = vs divides m = st, we obtain # = s and
v = t, proving (3.1.1).

If a is free in GF(q®) over GF(q), then a is free in GF(q*) over GF(g") (3.1.2)

Proof. 1et p denote the restriction of ¢, the Frobenius automorphism of GF(g™) over GF(g),
to the subfield GF(g®). Then p generates the Galois group of GF(q®) over GF(q) which
is cyclic of order s. By assumption we have that N := {a, p(a), ..., p° (a)} is a basis
in GF(g°) over GF(q). Since t and s are relatively prime, o', the restriction of ¢’ to GF(g*),
likewise generates the Galois group of GF(g*) over GF(q). We therefore obtain N = {a,

ol(a). . M HNY = {a gHa) rrm t(n\l Qn it remaing to show that N ig a basis

FASSs -y M /) s UV sy e A iaiaans 15
over GF(q").

By (3.1.1) the GF(g)-basis P := {1, a, @, ..., @'} of GF(g®) is also a basis in GF(g"™)
over GF(q"). Let A be the unique (s, s)-matrix over GF(g") defined by

.
o’'(a) = ZaiA,-j for0 <=j=<s— I
=0
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Then A describes a GF(g)-linear mapping from GF(g™) into itself. Since N is a basis of
GF(q°) over GF(q), we see that A actually has coefficients in GF(q) and therefore describes
also an GF(qg)-linear automorphism of GF(q®). Therefore, A is invertible and thus N is
a basis of GF(g™) over GF(g"), proving (3.1.2).

If a is free in GF(g°) over GF(q) and b is free in GF(q") over GF(q), then ab is free
in GF(g™) over GF(g). (3.1.3)

Proof. Let G, B and A be the Galois groups of GF(q™) over GF(q), GF(q™) over GF(g*)
and GF(q™) over GF(q"), respectively. Since s and ¢ are relatively prime, A and B have
trivial intersection while their complex product is equal to G. Let w := E, g\, y(ab) be
a linear combination of N := {y(ab) | v € G} over GF(q). Then, as a € GF(¢®) and b
€ GF(q"),

Ao B(bﬂ a(a).
BeB J

-4

= 25 21 hapleB)ab) = (
a€A PeB aEA L
Now assume that w is equal to 0. Then, since a by (3.1.2) is free in GF(¢™) over GF(q’),
we have that Zgep A,58(b) = O for all o in A. By assumption, b is free in GF(q") over

GF(a\. Therefore. since the restriction of R on PF(n’\ is the Galois groun of (’F(n \ over

NIy ) AiivaVavUIvy DALY A A Saabaasal Vi 28 Vi A3 MAAT RSQIVIES paVep VA RS

GF{(g), we have that A5 = O for all o in 4 and all B in B showing that ab is free in GF(q"')
over GF(g), i.e., assertion (3.1.3).

If a is completely free in GF(g®) over GF(g) and b is completely free in GF(q") over
GF(q), then ab is completely free in GF(q™) over GF(q). 3.1.4)

Proof. Let r be a divisor of m = st. Since s and ¢ are relatively prime, there exist divisors
r, and r, of s and ¢, respectively such that r = r,r,. By assumption, a is free in GF(q°)
over GF(q'+). Since r, and sr;! are relatively prime, an application of (3.1.1) and (3.1.2)
shows that a is free in GF(g*") over GF(q'+"%). Similar, since b is free in GF(g") over
GF(g"") and since tr; ! and r, are relatively prime, we have that b is free in GF(q") over
GF(q'"). Finally, since sr; ' and tr; ! are relatively prime, an application of (3.1.3) shows
that ab is free in GF(q™) over GF(q’s'") = GF(q"). This proves (3.1.4).

A simple induction on the number of different prime divisors of m finally completes
the proof of Theorem 3.1. O

Throughout the rest of this section, we assume that m = r", where r is a prime number
and n = 2 is an integer. We require some further notation.

Let T'(g, r") be the number of completely free elements in GF(q” ") over GF(g), i.e.,
the number of elements v in ("F'(ar\ satisfying

—i

wo vy =x"" -1 for0=i=n-1 3.1)
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Let Q(r") denote the ri-th cyclotomic polynomial and let Q(g, r") be the number of
elements v in GF(q" ) satisfying

ue™ V) = 0" for0s=isn- L (3.2)

Recall from Section 1 that the number of free elements in GF(q" n) over GF(q) is
denoted by ®(q, x" — 1).

We will separately handle the cases where r is equal to the characteristic of GF(q) or
not. The first one is rather simple.

THEOREM 3.2. Assume that r is equal to the characteristic of GF(q). Then any free element

i (YT \ over FF(n\ is cgmnlg,felv frpp
L iy gy UrEi A2

In pamcular, I'(g, r") = &g, x"— ) = ¢ l(ﬁ SOR

Proof. Since r is the characteristic of GF(q), we have that ¥ —-1= x — 1)" for all non-
negative integers i. Hence this Eolynomlal splits over GF(q). Therefore, for every 0 <
i < n — 1andevery vin GF(q" ), the g" -order of v has coefficients in GF(q). The asser-
tions follow now from Theorem 2.4 and (1.3). O

From now on we assume that r is different from the characteristic of GF(g), in which
case the polynomial x¥" — 1 has no multiple roots over GF(g). In order to give a fun-
damental characterization of the completely free elements in GF(q" ) over GF(g) in
Theorem 3.4, we repeatedly use a basic lemma which is well known in the more general
setting of modules over a principle ideal domain (see [4, Section 3.9]). For the sake of
completeness, we give a short proof.

LemmaA 3.3. Consider (GF(¢™), +) as GF(g)[x]-module. Let f and g be monic divisors
of xX™ — 1 which are relatively prime. Let v be an element of the submodule U(o, fg).
Then v can uniquely be written as v; + v,, where v, € U(o, f) and v, € U(o, g).

Moreover, v generates U(o, fg) if and only if v, generates U(o, f) and v, generates U(o,
g).

Proof. Since fand g are divisors of fg, the submodules U(o, f) and U(o, g) are contained
in U(a, fg).

Since f and g are relatively prime, there exist polynomials a and b in GF(g)[x] such
that af + bg = 1. Assume that v € U(o, f) N U(o, g), then

v=(Lv) =@ +bg v =@ v+ ®E»N =0+0=0.

Hence, U(o, f) and U(o, g) have trivial intersection.

Now, let x and y be elements of g-order f and g, respectively, and let 4 be the g-order
ofx +y. Then 0 = (h, x + y); = (h, x), + (h, ¥), whence (h, x); = — (h, y), lies in
U(o, f) N U(s, g) = {0}. Thus (h, x); = (h, y); = 0 which implies that fand g divide
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h. Since f and g are relatively prime, fg divides 4. Conversely, since (fg, x + ¥); = (g,
(fi )1 + (f, (8 1)1 = 0, we obtain that & divides fg. As all polynomials involved are
monic, we get that & is equal to fg.

Therefore, x + y generates U(o, fg) and consequently, U(o, fg) is contained in the sum
U(o, f) + Ulo, g).

Altogether we obtain that U(g, fg) is equal to the direct sum of U(o, f) and U(a, g).
The truth of Lemma 3.3 now follows immediately. O

We are now able to give the proposed characterization of compietely free elements in
GF(q™) over GF(gq) which leads to a recursive formula for I'(g, r").

THEOREM 3.4. Let v € GF(q" ) Then there exist umque elements v, and v, in GF(q" ) such

that v = v + v the n.nr/fpr nfv divides r’n_ 4 and the g-order nf Vs divideg n(r"\

v, the g-ordes vides x g-order divides
Furthermore, , VIS completely free in GF(q" ") over GF(qg) if and only f vy is completely
free in GF(q" ') over GF(q) and v, satisfies (3.2).
In particular, g, r") = I'(q, r"™) Qq, r").

Proof. Letv € GF(q M. Clearly, the g-order of vdividesx”" — 1. Sincex” — 1 =" — )}
Q") and " —1and Q(r”") are relatively prime, Lemma 3.3 guarantees the existence
of v{ and v, satisfying the assertions in the first statement.

Now let v be completely free in GF(q" ) over GF(qg). Since v is free over GF(g), we
have that u(o, v) = X" —1and therefore, by Lemma S'n —31’—:”‘(0 vy = X" —1land u(o,
) =00r".Let0<i=n-—1Asx —1=("Y" - 1and Q(r”) = Q(r" ()
(see e.g. [6, Example 2 46] or [5, Theorem 2.6.2]), it follows from Proposmon 2.2 that

12
,u(o , vp) divides x” = 1and [.L(O v,) divides Q(r" . As p.(a V) = P 1 by
assumption, Lemma 3.3 implies that u(o”, v;) = 7 = 1and u(e”, vy) = QC"H.

Hence v, is completely free in GF(q" ) over GF(q) while v, satisfies (3.2).
The converse likewise follows immediately using Lemma 3.3. Let vl be oompletely free
in GF(g""") over GF(g) and assume that v, satisfies (3.2). Then u(o”, v;) = AR

and n(rr v-\ = f)(r" ‘\ and therefare u(n V) = ¥ 1 for all O0<i<n-1

s AN uavaivaNAA W ’ ~ 1 AvViI R iy

wherefore v satlsﬁes (3. 1) and therefore is completely free in GF(q" ") over GF(g). O

A recursive application of Theorem 3.4 gives

COROLLARY 3.5. Let v be a completely free element in GF(q” ) over GF(g). Then v can
umquely be written as L7._g v;, Where u(o, vp) = x — 1, i.e., vy € GF(g) — {0}, and

u(o ,v) Qriyforall0 <i<j—landall =/ < n.

Furthermore, for any 1 < j < n, the element w; = LJ._o v; is completely free in
GF(q"") over GF(q).

In particular, I'(q, r") = (g, x — DII}_; Qq, r’). O

Since Q(g, ) = ®(q, Q(r)) by definition, it remains to determine the numbers (g, r")

for n = 2. This will be done in what follows.

i1 Uv uUis YILAL 1ULIVUY

In order to handle the problem, we first have to understand the difficulties arising m
turning from GF(q) to GF(q") as ground fields, i.e., in studying the rwo modules GF(q )
q,0)and GF(q" , q", ") simultaneously; otherwise, we will not be able to solve the global
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problem, i.e., the existence of elements satisfying (3.2). To this purpose, we consider
elements in GF(¢™) having g-order Q(r") and g"-order Q(r"").

Observe that Q(r") = Q(r" () as n = 2, whence the modules U(o, Q(r")) and U(c”,
Q")) by Theorem 2.1 coincide as sets. Now the module structure of U(s, Q(r")
depends on the factorization of Q(r") over GF(g) while the structure of U(c”, Q(r"™ "))
dei)ends on the decomposition of Q(r" ') over GF(g"). This is the point where further
properties of cyclotomic polynomials come into the game.

Let hihy ... hy be the complete factorization of Q(+"~') over GF(q") and fif ... f.
the complete factorization of Q(r") over GF(q). Since g and r are relatively prime, the
residue class ¢ + r" Z is a unit in the ring Z/r"Z of residues modulo r". Let ord(r"; g)
denote the multiplicative order of ¢ + r"Z in U(Z/r"Z), the group of units modulo r”.
The number ord(r"~'; q”) is defined analogously. It is well known (see e.g., [6, Exam-
ple 2.46] or [5, Corollary 1.5.9]) that

b = o(r" Hord(r"™'; ¢") and deg(h) = ord(r"'; g") for 1 < i =< b,

¢ = o(rlord(r"; q) and deg(f) = ord(r"; q) forl <= i < ¢. (3.3)

fl

As usual, ¢ denotes the Euler function, i.e., ¢(k) is the cardinality of U(Z/kZ).

We will see that the parameters in each of the decompositions only depend on the behavior
of g + r"Z in U(Z/r"Z). Since (r") = r"~'(r — 1), the number ord(r"; g) has the form
rks, where 0 < k < n — 1 and s is a divisor of r — 1.

Next, recalling the content of Lemma 3.3 and Theorem 2.1, let g,g2, . . . g, be the com-
plete factorization of Q(r" ') over GF(q). Then

a=or" Hordir"'; q) and deg(g) = ord(r" !, g)for1 =i <a (3.9

Furthermore, Q(r") = Q(r" H(¥) = g,(X) g2(x) ... g (). Any element w in GF(g"")
over GF(q) of g-order Q(r") and ¢"-order Q(r"!) can uniquely be written as L4_, w;
where u(o, w;) = g{x") and u(o”’, w;) = g; for all 1 < i < a. Therefore, for any i, we
have to find the number of elements of g-order g,(x") and g -order g;. It will turn out that
these numbers are independent of the individual irreducible divisors of Q(r"!) over GF(g).

Let g be any irreducible divisor of Q(r"™!) over GF(q). Before considering the critical
situation, where g splits over GF(q") and g(x") splits over GF(q), we concentrate on two

cases which are easy to handle.
Case 1. Assume that g(x") is irreducible over GF(g).

Let v € GF(q’"). If u(a”, v) = g, then v # O and therefore u(o, v) # 1. Theorem 2.1
implies that pu(o, v) divides g(x") and therefore, by the irreducibility of g(x’), we have u(o,
v) = g(X'). Hence, any element of g”-order g has g-order g(x") and therefore the number
of elements v in GF(q™) of g-order g(x") and g"-order g is equal to ®(q", g). As a conse-
quence, applying Lemma 3.3, we obtain that u(a”, w) = Q(r"") implies u(o, w) = Q(r").
We may therefore reduce the problem to a field extension of smaller prime power degree.
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By (3.3) and (3.4), g(x') is irreducible over GF{(q) if and only if
r (" Hiord(r™; q) = e(r"ord(r'; q) = ¢ = a = (r" Hiord(r""!; g),
B . Py [

A e A i
i.C., Il and o1y i1

ord(r"™!; q) = ord(+"; g)/r. (3.5)

THEOREM 3.6. Let q be a prime power, r a prime number which does not divide q and let
n = 2 be an integer. Assume that ord(r"~'; q) = ord(r"; g)/r. Then

Qg, r™) = Ag", r"7H. O
Case II. Assume that g remains irreducible over GF(g").

Letve GF(q’n). If (o, v) = g(x"), then v # 0 and therefore u(o’, v) # 1. Lemma 2.2
implies that p(o”, v) divides g and therefore, by the irreducibility of g over GF(q"), we
have that u(s”, v) = g. We obtain that any element of g-order g(x") has ¢"-order g whence
the number of elements v of g-order g(x") and ¢"-order g is equal to ®(g, g(x")).

By (3.3) and (3.4), g is irreducible over GF(q") if and only if

e(r""Hiord(r" ™!, q) = a = b = o(r" Hiord(r"™'; ¢",
i.e., if and only if

ord(r""Y; q@) = ord(r""'; ¢ (3.6)
bviously satisfied if and only if
r does not divide the order of ¢ + r"~'Z in U(Z/r"~'Z). (3.6")

The consequence of this is the content of the following theorem.

THEOREM 3.7. Let q be a prime power, r a prime number which does not divide q and let
n = 2 be an integer. Anssume that r does not divide the order of g modulo r"™'. Then any
Jree element in GF(q" ) over GF(q) is completely free over GF(q) and therefore

I'(g, r") = ®(g, ¥ — 1) and
Qg, r) = (g, OC").

In particular, any free element in GF (q’z) over GF(g) is completely free over GF(g).
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Proof. Assume that r does not divide ord(r""!; q), then r does not divide ord(r’; q) for
any 1 < i < n — 1. Furthermore, for any integer j = Oand forall1 =i <n — 1,
the order of ¢’ modulo 7' is equal to ord(r’; ¢) and therefore likewise is not divisible
by r. Consequently, forany 1 <i=<n—1, the factorization of X" — 1 over GF(q")
is the same as over GF(q). We may therefore apply Theorem 2.4 and obtain that any free
element in GF(g" ") over GF(qg) is completely free over GF(g). This proves the main
assertion.

The equation for (g, r") follows, as this number is given by I'(g, r") = I'(g, " He
(g, ") (see Theorem 3.4) and the fact that under the assumptiong,_II‘(q, r"y = &(q,

= 1) = 8, x| — De(g, Q™) and T(g, r"71) = &(g, x" — 1.
If n = 2, the assumption is always satisfied, since ord(r; g) divides ¢(r) = r — 1 and
therefore is not divisible by r. 0]

Next, we have to consider the

Critical Situation. Assume that neither g(x”) is irreducible in GF(g)[x] nor g is irreducible
in GF(q")[x].

Then, since both polynomials split, several order-pairs (u(o, w), u(c’, w)) may occur;
the distribution of orders is not clear in advance.

We first determine explicitly the cases where the critical situation arises. It is easy to
see that (3.5) is equivalent to:

The subgroup of U(Z/r"Z) generated by q + r"Z contains the kernel of the natural
epimorphism (3.5)

n: U@IrZ) » UZIr-'Z), u + r"Z = u + r"'Z.

Together with (3.6") this shows that we have to consider the group of units modulo r"Z
and its subgroup generated by g + r"Z. Using (3.3), (3.4), (3.5') and (3.6'), one can show
that, in the critical situation, ord(r"™!; g) = ord(r"; ¢) and ord(r""'; g) = ord(r"; ¢"
whence g(x") over GF(g) splits into the product of r irreducible polynomials and g over
GF(q") splits into the product of r irreducible polynomials.

The structure of the unit groups is well known; a proof of the following theorem may
be found in Ireland and Rosen [3, Chap. 4].

THEOREM 3.8. Let r be a prime number and n = 1 an integer. Then U(Z/r"Z) is cyclic
ifand only if r is odd or r" € {2, 4}, while U(Z/2"Z) is the direct product of the cyclic
subgroups <5 + 2"Z> and <—1 + 2"Z > of order 2"% and 2, respectively, provided

that n = 3.

Recall that ord(r"; g) is of the form r*s, where 0 < k < n — 1 and where s is a divisor
of r — 1

The kernel of 5 (see (3.5")) is equal to <1 + r*! + r"Z> and has order . Hence
a necessary condition for (3.5') is that r divides ord(r"; g). Let us therefore assume that
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the parameter k is at least 1. It is obvious that (3.5) holds, provided that U(Z/r"Z) is
cyclic, since then there is only one subgroup in U(Z/r"Z) of order r, namely the kerne]
of 7.

By Theorem 3.8, let therefore n = 3 and r = 2. In this case, the kernel of 7 is equal
to <5 + 2"Z> and has order 2. Consequently, if ord(2"; q) is divisible by 4, it is
the unique subgroup of order 2 of U(Z/2"Z)* = {x* + 2"Z | x € Z, x odd} and therefore
the subgroup <gq + 2"Z > likewise contains the kernel of 7. Hence (3.5") holds, pro-
vided that k = 2. Tr1v1ally, if ord2"; g) = 2and g = 52" * mod 2", then <q+2"Z>

(.,U[lldl[lb lﬂC KCI'IlCl Ul n.

Altogether we conclude that (3.5") does not hold if and only if k = Qor (r =2,k = 1,
n=3andq # 5% mod2". The latter case is called the exceptional case in [5].

If £ = 0 then ord(r"; ¢) = ord(r"; q) = ord(r" 7', q’) and we have Case I which

ic coverad hv Theorem 37
1§ COVEered 0y i1iheorem 3./,

Summarizing, we have the pleasant result that the critical situation only occurs in the
exceptional case.

In the following theorem the exceptional case is handled.

THEOREM 3.9. Assume the exceptional case. Let v € GF(qzn). Then v satisfies (3.2) if and
only if it has g-order Q2™ and q*-order Q(2"").
Furthermore,

Qg 2" = (¢* - 4% + 3" > 0.

Proof. A_lssume that ¢ is odd and ord(2"; q) = 2, where n = 3 and let furthermore
q # 52" mod 2". Then, over GF(q), the polynonnal o Y splits into the product of
2"~3 jrreducible factlors each of degree 2. Since GF(g?) is the splitting field of Q2" 1),
we deduce that x> — 1 splits into linear factors over GF(g?). Therefore, an applica-
tion of Theorem 2.4 shows that any free element in GF(q 2"y over GF(qz) is completely

F Mo b P, UG, §-pu

1Icc Over U['[q ) Logcuicr Wlul lllOUICIll J I L(llb illlplle I.Ild.l 1% bdublle [J ‘l') ll auu UIlly
if (o, v) = Q" and u(o?, v) = Q" 1), i.e., the first assertion.

Let g be any irreducible divisor of Q(2"~!) over GF(g). Then g(x?) divides Q(2") and,
over GF(q), is the product of two irreducible polynomials each of degree 2, while g splits

over FF(nz\ into two linear factors. We want to determine the number of elements v satis-

i NsL LAV LYY A/ ARiAwARR AW S YV QUIL U vt Wi i

fying y(a v) = g(x® and pu(o?, v) = g. To this end, let k := x — ¢ be a linear factor
of g over GF(g? and f:= x> — ax — f an irreducible factor of g(x?) over GF(q).
i u(o, v) = fand u(o?, v) = h, we obtain

WM — =@ - =0=00 —ax — 8, V) = 6’(v) — ac(v) — Bv

and therefore {v = ag(v) + Bv. Since { € GF(g®) — GF(g) and v # 0, we have that o
is not equal to 0. Therefore, a(v) = w, where v := ({ — B)/a € GF(g*) — GF(q). Now

x — & o)y = a2 o) — fo() = v(e* W) — ) =vx — V), =0
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and since v # 0, we see that deg (l~¢(0 , w)) > 0 wherefore u(¢?, w) = x — {. But
on the other hand, we have that p.(o , W) = u(a , a(v)) = x — a({). Thus we obtain
¢ =a(®. But this is a contradiction to the fact that { does not lie in GF(qg).

We conclude that any element v with deg(p.(o v)) = 1 has g-order g(xz) Now, using

(1 J)’ WC tha'"

[{v € GFg™)lu(o, v) = g(?), u(@®, v) = g}l
®(q, 80P) — 2%(q*, )
= @ - D' —2¢* - 1)

= q* — 4¢> + 3.
e e 1 is grea 4mze tlanas N ~F sl o ,. A.,.n A L o
1'his numoer g CdilCl uian v auu 1uucycuucut Or ui€ Cnoicc O S’ WIICICIUIC, lUg Ci

with Lemma 3.3, the first statement of the theorem and the fact that Q2" 1y over GF(q
splits into 2"~ irreducible factors, we obtain that

g, 2 = (¢* — 44° + I >0,
i.e., the second assertion. r

Altogether, this completes our investigation of elements in GF(g™) having g-order Q(r")
and g"-order Q(r"” 1y and by Theorem 3.4 we are now able to handle simultaneously the
two module structures GF(q , 0, q) and GF(q ,0',q").

Furthermore, because of the nature of Theorems 3.6, 3.7 and 3.9 we also obtain a recur-
sive formula for the number of elements in GF(q” ") satisfying (3.2) and, again using
Theorem 3.4 and its Corollary 3.5, we have even settled the existence of completely free
elements in GF(q"') over GF(g), as desired.

In the following main theorem on completely free elements in GF(g” n) over GF(q) we

summarize the results so far obtained.

THEOREM 3.10. Let q be a prime power, r a prime number different from the characteristic
of GF(q) and n = 1 an integer.

Moreover, let the nonnegative integers k and s be defined by ord(r™; q) = r*s, where
s is a divisor of r — 1 and ord(r"; q) denotes the order of q modulo r". Let t := max
{a | a an integer and a < k/2}.

For 1 < j < nlet T(q, r’) be the number of completely free elements in GF(q ) over
GF(q) For 1 < j < n, let Qq, r’) denote the number of elements in GF(q’ "y over GF(q)
having q -oraer Q(rf ) Joraii0 =i <j— 1 (with Q(r’ ) being the ri~ ith cyclotomic
polynomial). Then

(i) . Any completely free element v in GF(q" ") over GF( ) can uniquely be written as
Vv = v, + v, where v, is completely free in GF(q" ) over GF(q) and v, has q" -
order Q(r"™) for all 0 < i < n — 1. Furthermore,
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I'q, r"y = Tg, r") &g, r")

@) Ifn =1 orn = = 2, then any free element in GF(q’") over GF(q) is completely free

in GF(q" ) over GF(q).
(;;\ Iflr — 0O Hr flr 1 and » 5o orlf]\
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7 & e o mou 4 ),
n
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) q
then any free element in GF(q" ) over GF(q) is completely free in GF(q’ ) over GF(qg).
WIfn=3k=1Lr=2and(g= —1mod2" orq = -5 mod 2"), then

g, " = (g* — 4> + 37",

V) If k = 2 then

n—k+r—l/S

g, r = (@ -V
(vi) In particular, there exist completely free elements in GF(q’") over GF(q).

Proof. The only assertion left to prove is (v). Let k = 2, then necessarily n = 3.
By Theorem 3.6 we have Q(g, r*) = Q(q’, r"~!). In order to apply the recursion, we
have to determine the order of g” modulo r"~!. By Theorem 3.8, in either case, the
subgroup of U(Z/r"Z) generated by g + r"Z contains the kernel of y : Z/r"Z —
Zir"'Z, x + r"Z — x + r""'Z (see (3.5')). We obtain that ord(r""!; gq) = r¥~ls
Since this number is divisible by r, we obtain furthermore that ord(r"'; q") = rk=2,
What we have to consider now is whether we meet the exceptional case in starting with
the assumptions in (v). Therefore, assume that r = 2 and that ord(2"; g) is divisible by

4. Using Theorem 3.8 we get that U(Z/2"Z)* = <5* + 2"Z> contains g> + 2"Z.

Annlvine n. we gee that /n2 + 27 17\ is a cnl\nrnnp of (<2 + 2n 17\ =

SAppayriig  if, Swhs wiav ~ Y G Suugive

U(Z/2"~'Z)? and therefore contains the kernel of v:U(Z/2" ' Z) —» U(Z/2"*Z), x +
2""1Z - x + 2"72Z. An induction argument shows finally that under the assumption
k = 2, the exceptional case will never occur in the recursion.

By the definition of the parameter ¢, applying the recursion ¢ times, we obtain that

g, rm = Q(qr', rn—t)
and, after turning from GF(q) to GF(q’t), Case II holds, whence Theorem 3.7 implies that
Qq", I = @(g", QY.

Using (1.3), after some simplifications, we see that this number is equal to the one given
in assertion (v), concluding the proof. 0

In our final example, we consider field extensions of degree r3, i.e., the smallest non-
trivial example.
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ExAMPLE 3.11. We want to determine the number of completely free elements in GF(g™)
over GF(q), where m = 7 is a cube of a prime number r which does not divide g.

We consider the case r = 2 first.

If g = 1 mod 8 or g = 5 mod §, then (g, 8) = (g, Q8)) and I'(g, 8) = (g, x® — 1),
i.e., any free element in GF(q®) over GF(q) is completely free in GF(¢®) over GF(q).
Using (1.3), we have T'(g, 8) = (¢ — 1? in the first and T'(g, 8) = (g — D*g? — 1)

in the second case.
Ifg=3mod8org =7 mod 8, we are in the exceptional case and therefore Q(q, 8) =

q* - 4¢g* + 3 by Theorem 3.9. Using recursion, in both cases we get that I'(g, 8) =
q — D¥g* — D@* — 4¢” + 3). In comparison with &(g, x* — 1) = (¢ — D*(¢" — 1’,
we obtain

g8 _,_ 2
&g, - 1) gt -1

E.g., if ¢ = 3, then 3/4 of all free elements in GF(3%) over GF(3) are completely free
over GF(3).

Finally, let r be odd.

Let r*s be the order of g modulo r3Z, where s is a divisor of » — 1. Then k < 2.
- 1 DU PR T, U (R R b z 3
If k < 1 then any free element in GF(q" ) over GF(q) is completely free in GF(q" )

over GF(q) and therefore
I'(g, ) = &g, ¥ — 1).

If £k = 2, then

I'(g, r*) Ugq, r’)
= (g, x"" — 1)¥(g", O(rY).

I'(q, r)

O
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