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A characterization of normal bases and complete normal bases in GF(g"") over
GF(q), where g > 1 is any prime power, r is any prime number different from the
characteristic of GF{g), and n = 1 is any integer, leads to a general construction
scheme of series (v,,),,,o in GF(¢"") := U,.oGF(g"") having the property that the
partial sums w, := .o, are free or completely free in GF(g”) over GF(q),
depending on the choice of v,,.

In the case where r is an odd prime divisor of ¢ — 1 or where r = 2 and ¢ = 1
mod 4, for any integer n = 1, all frec and completely free elements in GF(g"") over
GF(g) are explicitly determined in terms of certain roots of unity.

In the case where r = 2 and ¢ = 3 mod 4, for any n = 1, in terms of certain
roots of unity, an explicit recursive construction for free and completely free
elements in GF(g%") over GF(q) is given.

As an example, for a particular series of completely free elements the correspond-
ing minimal polynomials are given explicitly. © 1996 Academic Press, Inc.

1. NorMAL BAases AND COMPLETELY FREE ELEMENTS, AN OUTLINE

Let g > 1 be a prime power, m > 1 and integer, and let GF(g) and
GF(g™) denote the Galois fields of order g and ¢™, respectively. Let GV
be the Galois group of the field extension GF(q™) over GF(q), i.e., the
group of field automorphisms of GF(q") fixing the field GF(q) elementwise.

An element v in GF(g™) is called a normal basis generator in GF(g™)
over GF(q) or a free element in GF(q™) over GF(q), provided that
{g(v) | g € G}, the set of G 9-conjugates of v, is a GF(q)-basis of
GF(g™). Such a basis is called a normal basis in GF(q™) over GF(q).
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In [2], among other things, Blessenohl and Johnsen have proved the
remarkable theorem that for any pair (¢, m), there exist elements in GF(g™)
which simultaneously are free over every intermediate field of the ﬁeld
extension GF(¢™) over GF(q), ie., elements v whose GU7a’).
conjugates simultaneously build a GF(g?)-basis in GF(g™) for every positive
divisor d of m. Such elements are called completely free in GF(q™) over
GF(q) We therefore call the corresponding normal basis a complete normal
basis in GF{g™) over GF(g). The most difficult part of the proof is to settle
the existence in the case where m is a prime power, say r"”. Once this is
done, the general result follows from Theorem 1.1, a detailed proof of

which is given in Hachenberger [5] (Theorem 3.1 and (3.1.3)).

THEOREM 1.1. Let m > 1 be an integer and let I, pii be the prime
power factorization of m. Let ¢ > 1 be any prime power. If v; is free in
GF(qP ) over GF(q) for 1<i<k, thenw:= Ht AL is free in GF(q"’)

over UF\[{) IVIUI(‘:UUL’f l] Ul ld LU!N-[JLCtCLy leC t!t U[ \q } guer Ui \q} jUI

1 =i =<k, then wis completely free in GF(q™) over GF(q).

In (5] we have given a constructive and more transparent proof of the
difficult part of Blessenohl and Johnsen’s theorem. This was done mainly
by using basic properties of cyclotomic polynomials which occur as additive
orders of the field elements; i.e., by means of these qualities we have
considered the various decomposmons of the additive group (GF(q M, +)

o ac T AN 'a’) cenndrila e armcr _ 1 A A
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we even were able to give a recursive formula for the number of completely
free elements in GF(g”") over GF(g).

Here, we consider the problem to construct explicitly normal and
complete normal bases in GF(q"") over GF(q) for any integer n = 0.
For this reason, in Section 2, we briefly reexamine our results obtained
in [5] and give a characterization of free and completely free elements
in GF(g"") over GF(q) under the assumption that r is a prime number
different from the characteristic of GF(gq). This characterization immedi-
ately leads to a general construction scheme of series (v,).=o In the
field GF(g”") := U= GF(q"") having the property that the partial sums
Sr_o v; are free or completely free in GF(g”") over GF(g), depending
on the choice of v,.

The case where r is equal to the characteristic of GF(q) is essentially
different but easy to handle: Let r be the characteristic of GF(g). In [12,
Theorem 1], Perlis has characterized the free elements in GF(g” \ over
GF(g) as exactly the elements whose GF(g)-trace is nonzero. By the transi-
tivity of the trace function, we therefore obtain that any such element is
already completely free in GF(q"") over GF(g).

In [12, Theorem 3] and Semaev [14, Section 4], one finds explicit construc-
tions of free elements in such field extensions of GF(q).
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In the present paper, after gmng the general construction scheme men-
tioned above, we restrict our attention to the case where r is a prime divisor
of g — 1. If r = 2, we have to consider the casessg =1 mod 4 and g =3
mod 4 separately.

In Section 3 the case where r is odd or where r = 2 and ¢ = 1 mod 4 is
considered. This case is particularly simple since GF(g"") can easily be
obtained by adjoining a suitable root of unity to the given ground field
GF(g), a root whose minimal polynomial is a binomial. Furthermore, the
complete factorizations of the r"th cyclotomic polynomials, which play an
important role in the explicit construction of the series (v, ),-0, are easy to
manage over any extension field of GF(g). In terms of the root of unity
we explicitly determine all free and completely free elements in GF(g”")

over GF(q).
In Section 4, we consider field extensions of degree 27 over GF(g),
where ¢ = 3 mod 4 and where » = 1 is any integer. There, we

likewise give an explicit recursive construction of free and completely
free elements.

The case where r 1s an arbitrary prime number different from the charac-
teristic of GF(q) 1s more involved since there is no obvious construction
for the extension fields GF(gq”") over GF(g) (n = 1). We will therefore
consider the general situation in a forthcoming paper [6], where, after
discussing how the general case can be reduced to the special one studied
here, we likewise give explicit constructions of free and completely free
elements.

Several other authors also have considered the construction of normal
bases generators in field extensions of prime power degree over GF(g).
We have already mentioned the papers of Perlis [12] and Semaev [14].
Later, we will also discuss some of the work of Gao [4] and Scheerhorn [13].
However, the construction of completely free elements is not considered in
these papers.! Of course, in order to construct complete normal bases,
knowledge on ordinary free elements is required. We therefore state many
of our results for both types of elements.

As we work with iterative constructions, as a wider background, we
would like to draw the attention of the reader to the book of Brawiey and
Schnibben [3] and the paper of Liineburg [11]. For the general algebraic
background, the reader is refered to Jacobson [8]. Our standard references
for the theory of finite fields are Jungnickel (9] and Lidl and Niederreiter
[10]. All number theoretic results we use can be found in Berlekamp [1]
and Ireland and Rosen [7].

! In Blake, Gao and Mullin [15] and Scheerhorn [16] there are given examples of polynomials
whose roots are completely free (see also Examples 3.8 and 3.9). The author wants to thank
Dr. Scheerhorn for kindly providing him with these references.
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2. MODULE STRUCTURES AND A GENERAL CONSTRUCTION SCHEME FOR
FrREE AND COMPLETELY FREE ELEMENTS

We start by recalling some important facts on the structure of the additive
group of the extension fields considered. Although these results hold for
arbitrary finite extensions, for our purposes, we concentrate on the case
where the degree of extension is a prime power, say r".

Let GF(q) be the given ground field, let » = 1 be an integer, and let
je {0, 1, ., n — 1}. In order to simplify the notation, in contrast to
Section 1, let G("” denote the Galois group of GF(q"") over GF(q" ). By
naturally extending the action of G/, it is seen that the additive group
(GF(q""), +) is turned into a module over the group algebra GF(g")G").

Since G" is cyclic and has the Frobenius automorphism

n r

as canonical generator, it 1s appropriate to describe the scalar multiplication
in terms of the polynomial ring in the indeterminate x over the field
GF(g"), i.e., by

GF(q")Ix] X GF(g"") = GF(g""), (g, v) — g(o™)(v).

Therefore, (GF(q™"), +) is considered as a vector space over GF(g") to-
gether with the GF(g”)-linear mapping o). This is the familiar situation
studied in linear algebra. The existence of a normal basis in GF(q"") over
GF(g") just means that this vector space is a cyclic module. Its generators
are exactly the free elements in GF(q"") over GF(q’J ).

The minimal polynomial of ¢ is equal to x”"~ — 1. For any v in
GF(n' ), the ¢ "_order of v is the monic polynomial g of least degree with

J vai LU RS AN aAAVRLEN ALl 8 A AN

coefﬁaents in GF(g”) such that v is anmhllated by g. ie., such that
g(o"N)(v) = 0. Of course, g is a divisor of x” "’ — 1. Furthermore, v is free
in GF(q"") over GF(q"), if and only if its g”-order is equal to x”"” — 1.
From now on, throughout this entire section, we assume that r is not a
divisor of the characteristic of GF(g). In Theorem 2.4 below, we give the
fundamental characterization of free and completely free elements in
GF(g"") over GF(q), which will immediately lead to the iterated construc-
tion scheme mentioned in Section 1. The detailed proof is given in [5] and
therefore is omitted here. We just mention that it essentially relies on the
following well-known basic three facts which will be required later.

Fact 2.1 (see [10, Section 2.4] or [9, Section 1.5]). Foranyjin{0,1.. . . ,
n — 1}, the polynomial x”"~ — 1 is squarefree and, over the prime field of
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GF(q), decomposes into

" = D,

»wn=ith ~u~lat

whaora b ._; Adanntoac tha f, i nalvnnamra 1 a tha naluvnAamial
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whose roots are exactly the primitive r"~/th roots of unity

Fact 2.2 (see Lemma 3.3 in [5]). If v and w are elements in GF(g"")
with relatively prime g”-orders f and g, respectively, then v + w has ¢"-
order fg.

Conversely, any element u with g ”_order fg can uniquely be written as
v + w with v and w having ¢"-order f and g, respectively, provided that f
and g are relatively prime.

Fact 2.3. The intermediate fields of GF(g"") over GF(q) are linearly
ordered by inclusion.

In Fact 2.1, a factorization of the monic generator of t
of (GF(g""), +) viewed as a GF(q")G""-module is given. Fact 2.2 actually
holds in a more general setting of modules over a principal ideal domain,

see e.g., [8, Section 3.9]. Its content is that knowing the complete factoriza-

n—
hnn nf the nn]\rnnmlal v’ i 1 over G E(n"l\ and a cenerator nf aach
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irreducible GF(q”)G(”’)-submodule of (GF(g""), +), which correspond bi-
jectively to the irreducible GF(q”)-divisors of that polynomial, we obtain
a free element by building the sum of all these generators. Moreover, any

free element has this form. Fact 2.3 is straichtforward. but crucial for
AL WANA/AAIN LA 1320 Liiao AN/2 1334 G s a9 [SAS S ulsllthA vy UI.AU AL WA VAW AGLL AL

proving the existence of completely free elements and for the iterative
constructions we give.

2 1 2
Ci1111111 a.

THEOREM 2.4. Let v € GF(q""), where r is a prime number different
from the characteristic of GF(q) and where n = 1 is any integer. Then there
exist unique elements v, and v, in GF(q"") such that v = v, + v, and the
following conditions hold:

(2.4.1) Forany0 <] =n-—1,theq” order of vy is a monic divisor

n;l

of x — 1, while the q"-order of v, is a monic divisor of ® .
(2.4.2) visfreein GF(q ) over GF(q") forsomej€X0,. . . .n—1}
if and only if v, has q -order x” " = 1, ie., is free in GF(q ") over

GF(g"), and v, has q"-order ® .

(2.4.3) v is completely free in GF(q"™") over GF(q) if and only if v, is
completely free in GF(q’"_l) over GF(q) and the q"-order of v, is equal to
b, forallje{0,. .. ,n— 1}

This characterization immediately leads to a recursive construction
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scheme for free and completely free elements in field extensions of prime
power degree.

THEOREM 2.5. Let q > 1 be a prime power and let r be a prime number
different from the characteristic of GF(q).

(2.5.1) Let vy be any nonzero element of GF(q). Then wy := v, is free
and completely free in GF(q) over GF(q).

(2 5 2) Assume that w, is free in GF(q"") over GF(q) and let v,.., €
GF(q"" ) be an element of q-order ®,n+1. Then w,.y := w, + v, is free
in GF(q”"") over GF(q). Moreover, if w, is completely free in GF(q"") over
GF(q), then w,,., is completely free in GF(q"" ) over GF(q) if and only if
Uns1 has q"-order ® »+1-j for all 0 < j < n.

So, we are able to iteratively find normal bases or complete normal bases
in any finite subfield of GF(q"") over GF(q), if we can solve the following
main problem.

Problem 2.6. For any integer n = 1, find elements in GF(gq”") having
g-order ®,», and find elements v, in GF(g"") satisfying the property

(Vnrg) the q’j -order of v, is equal to ®,»-; for any
je{o,1,...,n-1}L

In order to settle the existence of completely free elements in GF(q"")
over GF(g), in [5], we had to study property (V,,,,) of Problem 2.6. Fortu-
nately, see Theorem 2.7 below, it turned out that in almost all cases the
problem of finding an element in GF(g"") satistying (V,,,) is the same as
that of finding an element in GF(g"") having g"-order ®,~-: for a suitable
tin{0,1,. .. ,n — 1} depending only on r, n, and ¢. From our iterative
point of view, this means that in most cases, the problem of finding a
completely free element in GF(g”") over GF(gq) essentially is not more
difficult than finding a free element in GF(g"") over GF(q).

Though the following theorem is an immediate consequence of the proof
of Theorem 3.10 in (5], it is not explicitly stated there. In order to formulate
it, we need some further notation:

For g, r, and n as above, let ord,»(q) be the multiplicative order of g
modulo r, i.e., the least positive integer N = 1 such that g — 1 is divisible
by r". From elementary number theory (see, e.g., Theorem 2 and Theorem
2’ in Chapter 4 of [7]), it is known that ord,»(q) is of the form s/, where
s is a divisor of r — 1 and / is an integer satlsfylng 0=l= n = 1. As in
[2], the case where r = 2, ordy«(g) = 2, n = 3, and ¢ # 5 mod 2" is
called the exceptional case.
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THEOREM 2.7. Let q > 1 be a prime power, n = 1 an integer, and r a
prime number different from the characteristic of GF(q). Let ord,«(q) = sr'

with | <= n — 1 and s being a divisor of r — 1. Furthermore, let
v e GF(q" ).
(2.7.1)  Excludine the exceptional case, let t := 1/2 if | is even and
(2.7.1) Excludin g ceptional case, let t := /2 if | is even and

t:= (I - 1)2if lis odd. Then v satisfies (V,,,,) if and only if the q"-order
of v is equal to ® .

(2.7.2) Assuming the exceptional case, then v satisfies (V,, ) if and
only if the g-order of v is equal to ®,» and the q*-order of v is equal
19 CI)zn-I,

As we have pointed out the importance of the cyclotomic polynomial
®,~ so far, it is worthwhile noting that for n = 1, with x as indeterminate,

r—1
Bp=0,x" )= > x"
j:=0

Thus, with ¢ being the Frobenius automorphism in GF(g"") over GF(g),
we see that ®,~(o) restricted to GF(g’") is just the trace function onto
GF(g" ™). If (W,,)n=o and (v,) = as in Theorem 2.5 are series which build
free elements, then, since v, lies in the kernel of @ +(¢), and w,,_; is an
element of GF(g""'), we obtain

D()W,) =7 Wy

Therefore, the series (w,/r"),-o naturally satisfies what is called trace-

compatible in [13]. There, some examples of such series are given.
Before we turn to explicit constructions, we need the following result on

the multiplicative order of ¢ modulo r”. This is essentially Theorem 6.52

in [1].

THEOREM 2.8. Let q > 1 be a prime power, r a prime number which
does not divide q and let s := ord,(q) be the multiplicative order of q
modulo r. Furthermore, let p(q°) be the largest positive integer N = 1 such
that g° — 1 is divisible by r™. Then the following holds for the multiplicative
order of q modulo r", where n = 1 is any integer:

(2.8.1) Assume that r is odd or that r = 2 and g = 1 mod 4 (in which
case s = 1). Then

if1=n=p(").
ord,»(q) = h o
Lsr if n=p@q)
Furthermore, for any integer t = 0, p(qsr’) = p(q*) + 1.
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(2.8.2) Assume that r = 2 and that ¢ = 3 mod 4. Then s = 1,
p(q) =1, and

1, if n=1,
ordy+(q) = 2, if2=n=p(q?),
2=, if = p(g?).

Furthermore, for any integer t = 0, p(¢®) = p(g?) + ¢t — 1.

3. ExprLicit CoNSTRUCTIONS OF FREE AND COMPLETELY FREE ELEMENTS

in this section, again, for any integer n = 1, we consider the fieid exten-
sions of degree r* over a finite field GF(g). But we assume here that r is
a prime divisor of g — 1. Due to Theorem 2.8, in the case where r = 2, we
must handle the cases g = 1 mod 4 and ¢ = 3 mod 4 separately. In this
section, we therefore additionally assume that g = 1 mod 4, if r = 2. The
case where g = 3 mod 4 is essentially different and is dealt with in Section 4.

As in Theorem 2.8, we define p(q) to be the largest positive integer
N =1 such that g — 1 is divisible by r”¥ (observe that the parameter s is
equal to 1 here).

Under these assumptions, for any n = 1, the field GF(g"") is easily

obtained by adjoining a suitable root of unity to the ground field GF(q).
A nrnnf of the fnl]nwmo lemma can be found in [9] (see Corollary 23 6\

RS LR L S B

LeEmMA 3.1.  Let q be a prime power, r a prime divisor of ¢ — 1 and let
p(q) be defined as above. Assume that g = 1 mod 4 in the case where r = 2.
Furthermore, let { be a primitive r"Pth root of unity and let n = 0 be
an integer.

Then the polynomial x™" — { is irreducible over GF(q). Any root m of this
polynomial is a primitive r**?@th root of unity and GF(q"") is obtained by
adjoining n to GF(g).

Next, having Fact 2.1 and Fact 2.2 in mind, we explicitly describe the
complete factorization of the r”th cyclotomic polynomial over the field
GF(q).

LemmA 3.2.  Let g be a prime power, r a prime divisor of g — 1. Assume
that ¢ = 1 mod 4, if r = 2. Furthermore, let { be a primitive r"Vth root of
unity. For a given integer n = 1, let a := min{n, p(q)}.

Then, over GF(q), the complete factorization of the r"th cyclotomic poly-
nomial is given by
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ra

| N G}

=1, ged(r.j)=1

Proof. It is well known, see, e.g., [9, Theorem 1.5.4] or [10, Theorem
2.47], that the r"th cyclotomic polynomial over GF(g) splits into the product
of r"~'(r — 1)/ord,»(q) =: b irreducible polynomials of degree ord, »{q) each.
As ord,«(q) by (2.8.1) is equal to r" ¢ (observe that s = 1 by our general
assumption), we obtian that b = r*"!(r — 1). This coincides with the number
of factors of the product above.

On the other hand, applying Lemma 3.1 to the case where n = p(g), we
know that the binomial x” ““ — « is irreducible over GF(q), provided that
« is a primitive r*@th root of unity. Furthermore, all its roots are primitive
r"th roots of unity. Thus, this polynomial is a divisor of ®,~. Since {'|1 <
j = rf9 ged(r, j) = 1} is exactly the set of primitive r*9’th roots of unity
and has cardinality r"9-!(r — 1), we obtain that the above product is a
divisor of ®,». Furthermore, since both polynomials are monic of the same
degree, they must be equal.

If n = p(q), then GF(q) contains the primitive r"th roots of umty, whence
®,» over GF(q) splits into linear factors. Now, since (g =g s

r", ged(r, j) = 1} is exactly the set of primitive r"th roots of unity, we
similarly as above obtain the desired factorization. =

So far, we are able to give an explicit polynomial presentation (see [3})
of the field extension GF(q’") by adjoining certain roots of unity to the
field GF(g). In Corollary 3.4 we are going to describe a particular normal
basis generator in GF(q"") over GF(q) in terms of these roots while all
free elements are characterized in Theorem 3.5 below. In fact, slightly
weaker results may be derived from Lemma 2.1 and Theorem 2.2 in [14],
where, more generauy uegree-m -extensions of GF \q) are considered under
the assumption that any odd prime divisor of m divides ¢ — 1 and where
g =1 mod 4, provided that m is even. However, in view of constructing
completely free elements, in contrast to [14], we have to explicitly determine
the q—uxdcl of each such root of unny This is done in Theorem 3.3 and
its proof, using the factorization of the r"th cyclotomic polynomial given

in Lemma 3.2.

THEOREM 3.3. Let q be a prime power and let r be a prime divisor of
q — 1. Assume that ¢ = 1 mod 4, if r = 2. Let p(q) be the largest integer N
such that g — 1 is divisible by r" and for an integer n = 1, let a := min{n,
p(q)}. Furthermore, let n be a primitive r"**9th root of unity.

Then the following hold:

(3.3.1) For any integer t which is not divisible by r, the g-order of 7'
is an irreducible divisor of the r"th cyclotomic polynomial over GF(q).
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(3.3.2)

’0

J:=1, ged(j.r)=1

is an element in GF(q"") having g-order ® .

Proof.  As in the statement, let a := min{p(q), n}, where n = 1 is some
given integer. From Theorem 2.8, we know that

p(g"") = p(q) + n — a = max{p(q), n} =: A.

Hence, there exists an integer u which is not divisible by r and satisfying
1+ urt=q"" =: Q. Now, let £ := 5’". Then { is a primitive 7*@th root
of unity and thus an element of GF(q). If j := u mod r* then 1 < j < r?
and r does not divide j. Thus, using Theorem 3.2, we see that

X = g =i,

is an irreducible divisor of ®,»in GF(q)[x]. Now, with o being the Frobenius
automorphism of GF(g"") over GF(g), we obtain

PN n-a, . Aa)-a e L ol@)-a
A =0 (n)—-¢  n=n7 -
pol@)-a u PA9)-a
=02 ="y =g - ")
-n irP(q9)-a wr®a)-a irP(q)-a
= (" = g7y = (e - g

=0.

The last equation holds since the multiplicative order of 7" is equal to
r® and since j = u mod r? by definition of ;.

Therefore, the g-order of ndivides f,. But since 1 # 0 and f, is irreducible,
we obtain that the g-order of 7 is equal to f,.

Next, we are going to generalize the above argument. If 7 is any integer
which is not divisible by r, then 7 likewise is a primitive r#9*"th root of
unity with the property that n”" = ' is a primitive “?th root of unity.
With u as above, we define the mapping ¢ by «(f) := ut mod r°. Doing a

similar calculatio

221 (23 F3

ag ahove we obhtain that the
as above, we oD

a-order of v i< eanal tn
............. e g-oraer of 7 18 1o

Tyual

X e {L(t)r"(q)_“,

which by Theorem 3.2 is an irreducible divisor of ®,» over GF(g). This
completes the proof of (3.3.1).
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In order to prove (3.3.2), we observe that the mapping ¢ used in the first
part of the proof induces a bijection on the set of units modulo r¢. Thus,
by Theorem 3.2, every irreducible divisor of ®,» over GF(gq) occurs exactly
once as the g-order of some 7, where 1 < r < r“ and r is not a divisor of
t. Since 2ll these nnlvnnmmlq are rel;mvelv nnme and since their nrnduot

by Theorem 3.2 is equal to ®,n, applymg Fact 2.2, we conclude that the
element v, in (3.3.2) indeed has g-order ®,~. This completes the proof of

Theorem 3.3. =

By the results of Section 2, we may now explicitly construct a series
(Up)n=o Of elements in GF(q" ") := U, GF(g"") with the property that
2o v; is free in GF(g"") over GF(q).

Coro11ARY 3.4, Under the assum nptions 01" Theorem 33. forn = 1. let

sia TP o (1204 4 e Jedy gUT = A4 ¥T

1, be a primitive r"P*"th root of unity. Furthermore, let vy := 1 and

ymin{p(q).n}

> M

ji=l.ged(r.j)=1

U,:
Then
n
= 2 v
i:=0

is free in GF(q"") over GF(g). ®

At this stage, we are able to describe explicitly all free elements in
GF(q"") over GF(q) in terms of a primitive »"*@th root of unity 7.

THEOREM 3.5. Let q be a prime power and let r be a prime divisor of

SO L Pl U [Ao2 2 P awisor <

q — 1. Assume that g = 1 mod 4, if r = 2. Let p(q) be the largest integer N
such that g — 1 is divisible by r™ and let m be a primitive r"9*"th root of
unity, where n = 1 is an integer. Then the free elements in GF(q"") over
GF(q) are exactly the elements of the form

ymin{p(g).}

ot S S o)),

=1 j:=1,gcd(r.j)=1

where wq is any nonzero element of GF(q), f; is any nonzero polynomial
over GF(q) of degree less than ri=™™AD3 and o denotes the Frobenius
automorphism in GF(q"") over GF(q).

Proof. Letl =i=nandletl<j= yminda? with gcd(r, j) = 1. Then
7/ is a primitive %49 ~ith root of unity. By Theorem 3.3, its g-order is an
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irreducible divisor of the r'th cyclotomic polynomial, say g;. The degree
of g;; is equal to ord,(q) = r"" ™™« Now, by the irreducibility of g,;, the
elements of g-order g;; are exactly the nonzero elements of the irreducible
GF(q)G"9-submodule of (GF(q""), +) which is annihilated by g;;. There-
fore, the elements having g-order g;; are exactly the elements of the form
fi{a@)(n7"") where f; is a nonzero polynomial with coefficients in GF(g)
and degree less than the degree of g;;.

From Fact 2. é 1[ IOMOWb [l’ld[ any element of the above form is a gCHBI’dlUl’
of a normal basis in GF(g"") over GF(g). On the other hand, likewise by
Fact 2.2, any free element actually is a sum of elements whose g-orders
are exactly the irreducible divisors of x”* — 1. This completes the proof. =

For the remainder of this section, we turn to the construction of com-
pletely free elements in GF(q”") over GF(q). We have pointed out in
Section 2 (see Problem 2.6 and Theorem 2.7) that, besides the exceptional

race thig nt Aiffhrnlt tha gtriiptin fra ala nt whirh wa
\/ao\r, llllo ln) llU'- lllulb ullllbult lllall \/Ulloll U\-Lllls a. ll\-/‘— blblll\.{‘l‘-’ Wlll\-ll YY o

already are able to do. So, we first prove that the exceptional case does
not hold under our general assumptions:

Assume that r = 2, n = 3 and ord,«(g) = 2. Since the elements of order
2 in the group of units modulo 2" by Theorem 2’ in Chapter 4 of [7] are
~1 + 27Z, 57 + 2"Z and -5 + 2"Z (where Z denotes the ring of
integers), we have that g + 2"Z 3 Is equal to one of them. If the exceptional
case would hold, then g # 57" mod 27, leaving the possibilities g = —1
mod 2" and ¢ = —5% ~ mod 2". But both are contradictions to our assump-
tion that g = 1 mod 4. Therefore, indeed, the exceptional case does not
hold here.

Now, applying Theorem 2.7 and Theorem 3.3, we can solve problem 2.6:

THEOREM 3.6. Let g be a prime power, r a prime divisor of ¢ — 1 and
let p(q) be the largest integer N such that ¢ — 1 is divisible by r™. Assume
that p(q) = 2, if r = 2. Consider the field extension GF(q"") over GF(q) for

V41241

some integer n = 1 and let m be a primitive r*¥*"th root of unity.
(3.6.1) Ifn = p(q), then

U,:= z 7/
ji=1ged(r,j)=1

) sausfymg (V, ,q)

n

is an element in GF(q"

(362 Ifn=> af
\~e Ly i Tv = jIy

Ji=lged(r.j)=1

is an element in GF(q"") satisfying (V

n.r,q)-
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Proof. 1f n = p(q), then ord,~(q) = 1 by the definition of p(g). Thus,
the parameter / in Theorem 2.7 is equal to 1 and, since we are not in the
exceptional case, applying (2.7.1), we obtain the following:

The parameter ¢ is equal to 0, and therefore an element v satisfies
(V..q) if and only if its g-order is equal to ®,». Since v, by (3.2.2) has g-
order ®,», the first part is proved.

In the second part, we have n = p(g). Thus, by Theorem 2.8 and our
assumption, the multiplicative order of g modulo r* is equal to r"*@,
Furthermore, the parameters / and ¢ in the statement of Theorem 2.7 and
(2.7.1) are equal to n — p(g) and the integer part of (n — p(g))/2, respec-
tively. By (2.7.1), an element v satisfies (V,,,,) if and only if its g"-order
is equal to ®,-~. We therefore have to consider the field extension
GF(q"") over GF(g") and apply Theorem 3.3 to this situation.

With Q := ¢” and N:= n — t, by (2.8.1), we have p(Q) = p(q) + t and
therefore N + p(Q) = n + p(q). Furthermore, a little calculation shows
that min{V, p(Q)} = p(Q). Therefore, with n being a primitive rV*#(@th
root of unity, applying Theorem 3.3, we obtain that

(@)

>

j:=1gcd(r,j)=1

is an element in GF(Q'N) = GF(q”") having Q-order ®,~ = ®,»-. Since
this element is equal to v, in the statement of (3.6.2), the proof is com-
plete. =

Similar to Corollary 3.4 and Theorem 3.5, we are now able to explicitly
describe all completely free elements in GF(q”") over GF(q) for any
n = 1 in terms of a primitive r"**9th root of unity. The details should now

. o .

be clear and are left to the reader. Nevertheless, we summarize this iterative

construction in the form of an algorithm producing a series (w,),s in
% . . n

GF(gq" ) such that w, is completely free in GF(q" ) over GF(q) for any

n = 0. Here, o denotes the Frobenius automorphism of GF(g"") over GF(q).

ALGORITHM 3.7. Let g be a prime power and assume that the field
GF(q) is given. Let r be a prime divisor of g — 1 and assume that g = 1
mod 4 if r = 2. Let p(q) be the largest integer N such that g — 1 is divisible
by rV and let { € GF(g) be a primitive r*@th root of unity. Finally, let
(x.)n=1 be a series of indeterminates over GF(q).

Initialization. Choose any nonzero element w, in GF(g). Construct
GF(g") as GF(g)[x:}/(x1 — {)GF(g)[x1].

Induction step. Let n = 1, suppose that w,_; is completely free in
GF(q’""]) over GF(q), and let GF(q'") be given.
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If n = p(q), let

vei= > A,

Ji=1,gcd(r,j)=1

where
1f »

n
AL Fe — (5

V. .>
—
wn
=]
=
=
C
!
N
o
-
o

o o
9
=
o
=
—+

g+t

vai= 2 filo")xh),

Ji=1.gcd(r.j)=1

where f; is any nonzero polynomial with coefficients in GF(q"') and degree
less than 777921,
Letw, := w,; + v,.

Construct GF(q’M) as

GF(C]’")[X,,H]/(X;;H - xn)GF(qrn)[an]'

We close this section with two examples in order to demonstrate how
Theorem 3.5 and Theorem 3.6 can be used to check that a given series of
elements in GF(g" ) is a series of free or completely free elements.

ExampLE 3.8. Under the assumptions of this section, using the same
notation as above, let n = 1 be an integer and let n be a primitive r"**(@th
root of unity. An application of Theorem 3.4.1 in [4] (which is proved by
using the results of Semaev mentioned before Theorem 3.3) shows that
(1 — m)!is free in GF(q"") over GF(q). We are going to show that this
element indeed is completely free (see also [15]).

Let ¢ := n”. Then { is a primitive r*@th root of unity lying in GF(g).
Hence, (1 — n)7' is compietely free, if and only if

r"-1

A-pa-n'=3 v

is completely free in GF(g"") over GF(q). Now, all we must do is show that

7

Y= z nj,n‘k
Jji=lged(r.j)=1

is an element satisfying (V,, ) for all k € {1, . . . , n}. For simplicity, let
us concentrate only on the case where k = n.
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If p(g) = n, then vy, is equal to v, in (3.6.1) and we are ready. Assume
therefore that p(g) < n. Let ¢ be the integer part of (n — p(q))/2, let
Q :=q",N:=n — t,and consider the field extension GF(Q"") over GF(Q).
Since, by (2.8.1), p(Q” ") = p(Q) + N — p(Q) = N, there exists an
integer U which is not divisible by r such that 0" =1 + U r". As in
the proof of Theorem 3.3, for any integer 7 = 0 which is not divisible by
r, the Q-order of n? can be derived from the mapping « which is defined
by «(T):= UT mod r*?) and induces a bijection on the set of units mod-
ulo 77(@),

Thus, for 1 = T = r”2) not divisible by r, the set

D(T) :={T + jr @0 = j = r"*@ — 1}

is exactly the subset of {1 = j < r*|ged(r, j) = 1}, which under ¢ is mapped
to «(T). Therefore,

Sri= D,

JEI(T)

is a member of the irreducible GF(Q)G"-submodule of (GF(Q"), +)
which is annihilated by the Q-order of 1. Since this polynomial is irreduc-
ible over GF(Q), we see that either &, has the same Q-order as n7 or
7 = 0. Now, 67 = 77 f(e), where o := g”’(g) is a primitive r*~'th root of
unity and f denotes the polynomial (x”" "¢’ ~ 1)(x — 1)1. Since p(g) = 1,
we have n — p(Q) = n — p(q) — t < n — t. Thus, ®,~+, where « is a root
of, is relatively prime to f. We conclude that &7 is not equal to 0.
As this holds for all 7, we obtain that

#(Q)
Yn = E 67"

T:=1,gcd(T.r)=1

has Q-order ®,~ and therefore satisfies (V,,, ).
We finally mention (see [4]) that the minimal polynomial of (1 — 7)!
up to a GF(g)-scalar is equal to

o= (x— 1"

ExampLE 3.9. This is a generalization of Example 3.8. Under the as-
sumptions of this section, again, let n be a primitive r"**@th root of unity.
Furthermore, let a be any nonzero element of GF(g). It is shown in [13]
that (n — a)”' is a normal basis generator in GF(g"") over GF(q).
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But, since

(nna)l—a'i()

for a suitable nonzero element a in GF(g), proceeding similarly as in
Example 3.8, one can even show that this element is completely free (see
also [16]). We leave the details to the reader.

We finally remark that the theory developed in Sections 2 and 3 gives a
satisfactory answer to the question posed in [13, p. 116], where the author
asks for the existence of trace-compatible series (other than those consid-
ered in Example 3.9) which are built up from roots of unity.

4. THE CaAseq =3 mod4 aANDr =2

In this section, for any integer n = 1, we give an explicit recursive
construction of free and completely free elements in GF(g%") over GF(q)
provided that g = 3 mod 4 by solving Problem 2.6 for that instance.

Assume first that n = 1. The field GF(g?) is obtained by adjoining a
primitive 4th root of unity, say A, to the field GF(g). Since x* + 1 is the

minimal nnlvnnmm] of A and since ¢ = 3 mod 4, we obtain

............ mial of nce g obta
M+ A=X+A=2A+1)=0.

Therefore, the g-order of A is equal to x + 1. Hence, using Fact 2.2 and
observing that the nonzero elements of GF(q) are exactly the elements of
g-order x — 1, we see that the free (and completely free) elements in
GF(q*) over GF(q) are exactly the elements of the form

a + BA,

where « and 8 are any nonzero elements of GF(g).

From now on, we assume that n = 2. As ¢ = 3 mod 4. we have ¢° = 1
modulo 8 and therefore, considering GF(g*") as extension of degree 27!
over GF(q?), we may apply the results from Section 3:i.e.. we may construct
all free and all completely free elements in GF(¢%") over GF(¢°) for any
integer n = 2. So here it remains to study whether the normality is lost by
reducing the ground field from GF(g?) to GF(g). By doing so, we also have
to consider the exceptlonal case, i.e., the case where r = 2, ord»:(q) = 2.
n =3, and g # 5 mod 2" This case is secparated from all others by the
following lemma.
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Lemma 4.1. Let g = 3 mod 4 be a prime power and let n = 2 be an
integer. Then exactly one of the following cases holds:

(4.1.1) ordy(q) = 2 - ordy-1(q),
(4.1.2) the exceptional case.

Proof. 1f n = 2, the exceptional case does not hold, but we have
ordy(q) = 2 = 2 - ordx(g);

hence (4.1.1).
From now on, we assume that n = 3. Let p(g?) be the largest integer N
such that g% — 1 is divisible by 2V.

b 7 VAN QAN o i
urz—p\q)-rl U)’(LOL}WC de

ordy(g) =2"#49* = 4 = 2 - ordy-i(g).

Therefore (4.1.1) holds, but not (4.1.2).
If n > p(q?) + 1, by (2.8.2) we obtain

ordy, (g) = 2n~p(q2)+l =72 znﬁl—p(qz)ﬂ =2 - ord,»1(q).

Again, (4.1.1) holds, but (4.1.2) does not.

If n = p(g?), then ordy(q) = 2 = ordy=1(q), whence (4.1.1) is not satisfied.
Furthermore, ¢ # 1 mod 4 implies ¢ # 52"~ mod 2". This is the exceptional
case and therefore everything is proved. ®

In the following, we handle these two cases separately. The next theorem

says that Problem 2.6 can alreadv be solved in the field extension

A AUVl LU vaAal duavanay Un OWL VLA LI LIV ddVial vALwLLSAV

GF(g%") over GF(g?), where the assumptions of Section 3 are satisfied,
provided that ord,~(q) = 2 - ord,~1(q).

THEOREM 4.2. Let g = 3 mod 4 be a prime power and let n = 2 be an
integer. Assume that ord»«(q) = 2 - ordy-1(q). Then the following hold:

(4.2.1) Ifv € GF(q*") has g*-order ®-, then v has g-order ®,n.
(422) v € GF(q*) satisfies (Vu2q) if and only if it satisfies
(Vnﬂ.z.qz)'

Proof. The proof is a direct consequence of Theorem 3.6 in [5]. We
therefore will only roughly describe how the assumption is used.

Let g be any irreducible divisor of ®,~1 over GF(g). The assumption
assures that g(x?) is an irreducible divisor of ®;+ over GF(q). Now, if w,
is any element of g2-order g, then the g-order of w, is a divisor of g(x?).
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Since wy is not equal to 0 and since g(x?) is irreducible, we obtain that W,
has g- order g(xz) Now (4.2.1) follows from Fact 2.2 since any element v
in GF(¢*") of g*order ®,+1 can uniquely be written as 2 w,, where the
sum runs over all 1rreduc1ble divisors g of ®,»1 with coefficients in GF(q)
and where w, has g*-order g for any such g.

Remembering the definition of (V,.,,) in Problem 2.6, we see that (4.2.2)
is an application of (4.2.1). =

We finally turn to the exceptional case and solve Problem 2.6 for this
instance by explicitly presenting an element v in GF(g?") satistying (V,.,,).

THEOREM 4.3. Let g = 3 mod 4 be a prime power and let n = 3 be an
integer. Assume that ordy(q) = 2 and that ¢ # 5% mod 2”. Let p(q*) be
the largest integer N such that g* — 1 is divisible by 2V. Furthermore, let 7
be a primitive 2n-1+#a)th root of unity. Then

2n-2
vi= X (W)
Ji=lged(2.))=1

is an element in GF(q*") satisfying (V,,,).

Proof. By (2.7. 2) we know that v satisfies (V,,zq) if and only if v has
g-order ®,» and g*-order ®,--:. Having Fact 2.2 in mind, we therefore
consider the decompositions of ®,=1 over GF(g?) and ®,- over GF(q).

Let { be a primitive 2"~'th root of unity. Then GF(¢?) = GF(¢)({) and
therefore ®,n-1 over GF(g?) splits into linear factors while all irreducible
GF(g)-factors of ®,--1 have degree 2. Now

=D~ =x -+ +1=f

r of ®,+-10ver GF(q) (observe that under our assump-

tion, g + 1 is d1v1s1ble by 2"7'). Furthermore, f;(x?) is a GF(q) divisor of
®,» which over GF(g) decomposes into two irreducible factors. Thus, it
can easily be deduced that

2n—2

Ppi= > (= -,

ji=l.ged(2.7)=1
while

2n—2

Py = > fa)

Ji=1lged(2,5)=1
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Now, let n be a primitive 2#~1*4¢)th root of unity. Then GF(¢*)(n) =
GF(q*") and furthermore, by Theorem 3.3, the g*-order of 7 is equal to
an irreducible divisor of ®,+-1 over GF(g?). Without loss of generality, we
assume that 7 has g*-order x — ¢, whence for any odd integer 7 the ¢*-
order of 7' is equal to x — ¢{*. Since x — {is a divisor of f,, it follows that
the g-order of 7 is a divisor of f{(x?). In the proof of Theorem 3.9 in [5],
without using the explicit factorization of f{x?) over GF(q), we have shown
that the g-order of 7 indeed is equal to f{x?).

Now, consider the element n + n?. With o being the Frobenius automor-
phism in GF(¢?") over GF(g), we have n + 77 = ((x + 1)(0))(n). As n =
3, the polynomial x + 1 is relatively prime to f{x?) and therefore, the g-
order of n + 77 likewise is equal to f{x?). Furthermore, by Fact 2.2, the
g*-order of n + 17 is equal to (x — )(x — ') = f;. as »? has g*-order
x—{¢9=x—- .

If we repeat this argument for all divisors in the above factorizations of
®,»-1 and Py, using once more Fact 2.2, we see that the element v in the
statement has g-order ®,» and g*-order ®,»-1 and therefore satisfies (V,,2,).
This completes the proof of the theorem. =

Using Theorem 2.5 and Theorem 2.7, we have reached our goal to recur-
sively construct completely free elements and therefore, in particular, free
elements in GF(g*") over GF(g), where n is any integer and g = 3 mod 4.
Due to the nature of the exceptional case, up until now we have not
described all completely free elements. This would require a deeper analysis
of the factorization of the 2"th cyclotomic polynomial over GF(g).

However, in the context of the description of the corresponding modules,
the complete GF(g)-factorization of x° — 1 is given in [14, Lemma 3.1]
(see also [4, Section 3.3.3]). Indeed, using the results from [14, Section 3],
it is possible to describe all completely free elements in GF(¢*") over GF(q)
in terms of a primitive 27-1+/@9th root of unity. But this should be worked
out In a separate paper.
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