85

Impact of ABO-Mismatching Following HLA-Mismatched Unrelated Donor Hematopoietic Stem Cell Transplantation for AML—a Report From the ALWP of the EBMT

Bipin N. Savani¹, Myriam Labopin², Jonathan Canaani³, Mauricette Michallet⁴, Charles Craddock⁵, Gerard Socié⁶, Liisa Volin⁷, Johan A. Maertens⁸, Charles Crawley⁹ Didier Blaise¹⁰, Per T. Ljungman¹¹, Jan Cornelissen¹², Nigel Russell ¹³, Frédéric Baron ¹⁴, Norbert Gorin ², Jordi Esteve¹⁵, Fabio Ciceri¹⁶, Christoph Schmid¹⁷ Sebastian Giebel¹⁸, Mohamad Mohty¹⁹, Arnon Nagler²⁰. ¹ Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; ² Hopital Saint-Antoine, Paris, France; ³ Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel; ⁴ Department of Hematology, Hopital Edouard Herriot, CHRU Lyon, Lyon, France; ⁵ Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom; ⁶ Saint Louis Hospital, Paris, France; 7 Third Department of Medicine, Stem Cell Transplantation Unit, HUCH Comprehensive Cancer Center, Helsinki, Finland; 8 Department of Hematology, University Hospitals of Leuven, KU LEUVEN, Leuven, Belgium; ⁹ Dept of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom; ¹⁰ Hematology Department, Institut Paoli Calmettes, Marseille, France; ¹¹ Hematology, Karolinska University Hospital, Stockholm, Sweden; ¹² Hematology, Erasmus University Medical Center, Rotterdam, Netherlands; ¹³ Nottingham City Hospital, Nottingham, United Kingdom; ¹⁴ Hematology, University of Liège, GIGA-I3, Liège, Belgium; ¹⁵ Hospital Clínic, Hematology department, IDIBAPS, Barcelona, Spain; ¹⁶ Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan. Italy; ¹⁷ Department of Hematology and Oncology, Klinikum Augsburg, Ludwig-Maximilians-University, Munich, Germany; ¹⁸ Department of Bone Marrow Transplantation and Oncohematology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland; ¹⁹ Clinical Hematology and Cellular Therapy Department, Saint Antoine Hospital, Paris, France; ²⁰ The Bone Marrow Transplantation Department, Division of Internal Medicine, The Chaim Sheba Medical Center, Tel-Hashomer, Israel

Background: ABO incompatibility between donor and recipient is not considered a barrier to successful allogeneic hematopoietic stem cell transplantation (HCT). Nearly one-half of all HCT will involve recipient-donor ABO mismatching (ABO-MM), which can be classified as either major, minor or bidirectional. The analyses of clinical outcomes in ABO-MM HCT have yielded inconsistent results and no large series have studied the impact of ABO-MM in patients (pts) receiving mismatched unrelated donor HCT (MMURD-HCT).

Methods: We identified 1013 pts who underwent MMURD-HCT (876 peripheral blood donors, 137 bone marrow [BM] donors) from January 2005 to December 2014 and studied the long term impact of ABO-MM MMURD-HCT in pts with AML. The comparative analysis was performed between pts receiving ABO-matched vs. ABO-MM for common outcome variables. PB and BM groups were analyzed separately.

Results: Among the PB group, 349 (40%) pts received ABOmatched grafts whereas 527 (60%) underwent ABO-MM MMURD-HCT including 241 (28%) minor ABO-MM (minor-A, 160 [66%]), 215 (24%) major ABO-MM (major-O, 200 [93%]) and 71 (8%) bidirectional ABO-MM (Bidirectional-A, 37 [52%]). Median age was 53 years (range, 18-75) and was not significantly different between ABO groups (P=.27). The median

follow-up period was 34 months (IQR,13-59). More than half of pts were in CR1 and nearly one third of pts were with active disease prior to transplantation. 369 (42%) pts received ablative and 507 (58%) reduced intensity or non-ablative conditioning regimens. The donor graft was HLA-matched at 9/10 in 782 (89%) and at 8/10 in 94 (11%) pts. 785 (90%) pts received either in vivo (87%) or ex vivo T-cell (3%) depletion. There were no significant differences in distributions of pts and transplant characteristics among ABO- groups. 97% pts engrafted and the rate of engraftment (ABO-matched 97%; major-MM 98%, minor-MM 95%, bidirectional 97%) was not different between ABO-groups (P = .32). The cumulative incidences (CI) of day 100 grade II-IV acute GVHD was 30% (III-IV, 13%) and the 3-year CI of chronic GVHD was 37% (95% CI, 33-40), and were not significantly different between the ABOgroups (P = .20 and .39). At 3 years, OS, LFS, RI, NRM and GVHD-free/relapse-free survival (GRFS) for the entire cohort were 43%, 38%, 36%, 26% and 29%, respectively. No significant differences in OS, LFS, RI, NRM, GRFS and chronic GVHD were observed between ABO-groups, in multivariate analysis. The analyses were performed separately for pts receiving BM grafts (ABO matched 57; ABO-MM 80 [minor 39, major/ bidirectional 41]). Similarly, there was no statistical difference between ABO-groups for OS, LFS, RI, NRM, GFRS and chronic GVHD.

Conclusion: Despite the limitation of a retrospective registry based study, our large series shows no significant long term outcome difference between ABO-matched and mismatched groups after MMURD-HCT in current era.

86

Comparable Survival with Organ Toxicity Predicting for Overall Survival (OS) and Non-Relapse Mortality (NRM) in Older Adult Patients after CD34+ Selected Allogeneic Hematopoietic Stem Cell Transplantation (Allo-HCT) Gunjan L. Shah¹, Michael Scordo¹, Satyajit Kosuri¹ Diego A. Adrianzen Herrera², Christina Cho¹, Molly Maloy¹, Jimmy Nieves ³, Sean M. Devlin ⁴, Taylor Borrill ¹, Dean Carlow ⁵, Scott T. Avecilla ⁵, Richard Meagher ⁵, Richard J. O'Reilly⁶, Guenther Koehne¹, Brian Shaffer¹, Miguel-Angel Perales¹, Boglarka Gyurkocza¹, Hugo Castro-Malaspina¹, Sergio A. Giralt¹, Roni Tamari¹. ¹ Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY; ² Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; ³ Department of Nursing, Memorial Sloan Kettering Cancer Center, New York, NY; ⁴ Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY; ⁵ Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ⁶ Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY

Introduction: Ex vivo CD 34 + selection prior to allo-HCT reduces GVHD without increasing relapse, but usually requires myeloablative conditioning. We aimed to identify toxicity patterns in older patients & the association with OS & NRM.

Methods: A retrospective analysis was performed at Memorial Sloan Kettering Cancer Center including 200 pts who underwent CD34+ selection allo-HCT using the ClinicMACS® system between 2006-2012. All grade 3-5 toxicities by CTCAE v4.0 were collected and compared between pts \geq 60 or <60yrs. Individual toxicities were organized into 91 toxicity categories