
Universität Augsburg

Relational Geometry

Modelling Execution of Structured

Programs

Bernhard Möller, Tony Hoare

Report 2022-03 October 2022

Institut für Informatik
D-86135 Augsburg

Copyright © Bernhard Möller, Tony Hoare
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
https://www.uni-augsburg.de/de/fakultaet/fai/informatik/
— all rights reserved —

Relational GeometryModelling Execution of
Structured Programs

Bernhard Möller1 and Tony Hoare2

1 Universität Augsburg
2 University of Cambridge

Abstract. We discuss some twists around Concurrent Kleene Algebra
(CKA). First, a new model of CKA represents a trace of a concurrent
program as a diagram in a two-dimensional non-metric finite geometry,
namely, program actions by points, objects and threads by vertical lines,
transactions by horizontal lines, communications and resource sharing
by sloping lines. While we had already sketched this earlier, we fully
formalise it here in terms of the algebra of binary relations. Second,
we present a new definition technique for partial operators, namely an
assume/claim style akin to rely/guarantee program specification. This
admits a general refinement order with Top and Bottom as well as proofs
of the CKA laws. Finally, we give a short perspective on the geometric
representation of some standard concurrent programming concepts.

1 Introduction

A trace of the execution of a concurrent object-oriented program can be displayed
in two dimensions as a diagram of a non-metric finite geometry. The actions of
the program are represented by points, its objects and threads by vertical lines,
its transactions by horizontal lines, its communications and resource sharing by
sloping arrows, and its partial traces by rectangular figures. These observations
went into the predecessor paper [16], where it was shown semi-formally that the
geometry satisfies the laws of Concurrent Kleene Algebra (CKA). In the present
paper we give a formalisation of the mentioned geometry in terms of the algebra
of binary relations; on this basis the CKA laws can be proved fully formally.
These laws describe and justify the interleaved implementation of multithreaded
programs on computer systems with a lesser number of concurrent processors.
More familiar forms of semantics (e.g., verification-oriented and operational)
can be derived from CKA. Programs are represented as sets of all their possible
traces of execution, and non-determinism is introduced as union of these sets.
The single traces are not linear sequences but rather general graphlets. The
geometry is extended to multiple levels of abstraction and granularity; a method
call at a higher level can be modelled by a specification of the method body,
which is implemented at a lower level. The methodology is illustrated with a
small-scale examples and an outlook on further applications.

Most proofs are deferred to Appendix B.

Part I: Graphlets and Geometry

All our specifications and programs will be modelled using relations with a geo-
metric interpretation as program graphs.

2 Relational Notions

As usual, a (binary) relation over some set M is a subset of M ×M . The identity
relation is denoted by I, the empty relation by {} and the universal relation by
U . Since relations are sets, we may form their union and intersection. Relational
composition of R,R′ is denoted by the juxtaposition RR′. We follow the usual
convention that composition binds tighter than the set theoretic operators ∩ and
∪. Further material on relations can be found in Appendix A.

3 Graphlets

As mentioned in the introduction we use non-linear traces consisting of events
from a set EV that may be connected by arrows and hence are a particular form
of graphs which we call graphlets. The basic ideas were already sketched in [14]
and studied in more detail in [20]. However, the relational formulation presented
here is new. The algebra comprises operators for combining smaller graphlets
into larger ones; conversely they can be used to state that a larger graph may
be decomposed into smaller ones.

To emphasise our geometric view of traces and programs, we call events now
points. We use binary relations R ⊆ EV × EV to encode the arrows and points
of directed graphs. Since we do not consider graphs with self-loops on points we
can represent a point a as the pair (a, a) ∈ I.

Definition 3.1. We call elements of I points and all other pairs arrows. Hence
the points and arrows of a relation R are points(R) = R ∩ I and arrows(R) =
R − I, where − is set-theoretic difference. A relation is uniquely determined
by its points and arrows, since R = points(R) + arrows(R), where + denotes
disjoint union. To emphasize the connection with graph theory we call relations
now graphlets. Define tail(a, b) = (a, a), head(a, b) = (b, b), and ends(a, b) =
{tail(a, b),head(a, b)}. An arrow will preferably be drawn or imagined with its
tail on the left (or above) and its head on the right (or below).

Let headR, tailR be the range-restrictions of head and tail to points(R), i.e.,
headR(a, b) is head(a, b) when head(a, b) ∈ points(R) and undefined otherwise,
and analogously for tailR. The quadruple (points(R),arrows(R),headR, tailR)
satisfies the standard definition of a directed graph, with the important exception
that the headR and tailr functions may be partial rather than total functions on
arrows(R). This exception facilitates simple definitions of operators for graphlet
composition.

2

Example 3.2.

The set points(R) is indicated by bullets. Those
tails/heads of arrows that lie outside points(R)
are not shown. ◻

R ∶
�� //● //

��
● //

��//●
��

//●
��

Definition 3.3. The two functions tails(R) and heads(R) are the element-
wise liftings of the head and tail functions from pairs to the set R. Therefore
they distribute through arbitrary unions of graphlets. Relation-algebraically they
coincide with the domain and range operators; hence

tails(R) = RU ∩ I , heads(R) = UR ∩ I ,

where U =df EV×EV is the universal graphlet. By this,

points(R) ⊆ tails(R) ∩ heads(R) . (1)

Generally equality does not hold, since arrows may lead into or out of the graph
represented by graphlet R; the end points of these do not lie in points(R).

Remark 3.4.
Our model of graphs comprises also ones with a so-called N shape, i.e.,
a particular combination of a fork and a join. Such N shapes cannot
be produced in standard pomset semantics [9] where only “context-
free” sequential and parallel composition of pomsets are available.
For more interesting examples we refer to [20]. A recent related but
much more complex approach to N shapes was presented in [7].

a

�� ��

b

��
c d

⊓⊔

Remark 3.5. So far our arrows do not carry labels. However, frequently these
are essential. Assume a set L of labels. Then a graphlet with labelled arrows can
be modelled as a relation R such that R = ⋃l∈LRl, where (Rl)l∈L is a family of

relations. For events e, e′ and label l one can then write e
l→ e′ when (e, e′) ∈ Rl.

In the sequel we therefore freely use labels whenever appropriate. ⊓⊔

4 Dependence

Let Dep be a relation, where each of its arrows represent a direct causal depen-
dence between its tail and its head, which are actions performed by a computer
in a single execution of a program.

Requirement 4.1. We stipulate that points(Dep) = {(a, a) ∣ a ∈ EV} and that
all our graphlets are subsets of Dep.

Definition 4.2.
1. R is point-closed if every point which is the head of one arrow in R and the

tail of another is also in R:

heads(R) ∩ tails(R) ⊆ R . (2)

2. R is arrow-closed if every arrow with head or tail in R is also in R.

3

3. R is doubly closed if it has both properties. Thus Dep is doubly closed.

An arrow-closed graphlet has full information about how it Dep-connects to
its environment. A counterexample is the following.

Example 4.3.

Let points(R) = {(a, a), (b, b)}, arrows(R) = {(a, b), (a, d)} and
points(S) = {(c, c), (d, d)}, arrows(S) = {(c, b), (c, d)}. The ar-
rows of R are drawn solid, the ones of S dashed. Both R and
S are not arrow-closed, since the diagonal arrows violate the
condition w.r.t. their heads. Adding the down-left arrow to R
and the down-right arrow to S yields arrow-closed graphlets.
The overall graph contains two instances of N shapes. ◻

R

a

�� ��

c

����
b d

S

To formalise arrow-closedness we use that composition with a set P of points
restricts an arrow set A: the relation PA (AP) consists of those arrows in A
whose tail (head) is in P . For graphlet R restrictions have additional effect:

PR = (P ∩ points(R)) ∪ P arrows(R) , RP = (P ∩ points(R)) ∪ arrows(R)P .

If R is a point set Q then these formulas simplify to PQ = P ∩ Q = QP . In
particular, PP = P .

Now we can give a formal definition.

Definition 4.4. Relation R is arrow-closed if, with P =df points(R),
P Dep ∪ DepP ⊆ R . (3)

The following properties show that arrow-closed graphlets are tightly coupled.

Lemma 4.5. Let R be arbitrary and S arrow-closed.
1. With P =df points(R), Q =df points(S) we have PRQ ⊆ PSQ.
2. Hence, if also R is arrow-closed then PRQ = PSQ and QSP = QRP . This

means that R and S agree in their interconnecting arrows.

Proof. By Req. 4.1 of Sect. 4 we have R ⊆ Dep and hence Part 1 is shown by
PRQ ⊆ P DepQ = P DepQQ ⊆ PSQ. Part 2 is immediate from that. ⊓⊔

For the further discussion we need additional relational notions. The basic
idea of relational composition, namely to combine two short steps into one longer,
can be iterated to cover arbitrarily many elementary steps. This applies, in
particular, to the dependence relation Dep.

Definition 4.6. The transitive closure S+ of relation S is defined as usual.
1. Graphlet R is intransitive if (arrows(R)+arrows(R)+) ∩ arrows(R) = {}.

Then R is a parsimonious way of representing arrows(R)+, since it does
not contain arrows that could be inferred by transitivity. This reduces clut-
ter in the diagrammatic representation of arrows(R)+ considerably. In the
literature then R is called a Hasse diagram for arrows(R)+.

2. Graphlet R is called acyclic if it does not admit a proper path from any
point to itself, i.e., if arrows(R)+ ∩ I = {}.

4

We assume Dep to be intransitive: this is what is meant by the directness
of the dependence. General causal dependence is represented by the transitive
closure Dep+. We do not require Dep to be acyclic. Any cycle in Dep represents
a transaction, whose actions all must occur simultaneously (or appear to do so).
A programming language will usually place severe restrictions on the choice of
which transactions it will accept; all other cycles will be defined as programming
errors (deadlocks).

5 Interfaces

Definition 5.1. Graphlets R,R′ are point-disjoint if points(R)∩points(R) = {}.

However there may be interface arrows between the two graphlets.

Definition 5.2.
1. Let P =df points(R). The sets in(R) of input arrows of R, out(R) of output

arrows of R, hid(R) of hidden arrows of R and loose(R) of loose arrows of
R are characterised by

(a, b) ∈ in(R) ⇔ a /∈ P ∧ b ∈ P , (a, b) ∈ out(R) ⇔ a ∈ P ∧ b /∈ P ,
(a, b) ∈ hid(R) ⇔ a ∈ P ∧ b ∈ P , (a, b) ∈ loose(R) ⇔ a /∈ P ∧ b /∈ P .

With A =df arrows(R) these sets can be described algebraically as follows.

in(R) =df ¬PAP , out(R) =df PA¬P ,
hid(R) =df PAP , loose(R) =df ¬PA¬P ,

where ¬P is the relative complement of P in the set I of all points, viz.
¬P =df I − P . These sets are pairwise disjoint.

2. We call R loose-free if loose(R) = {}.
3. The perimeter of R is perimeter(R) =df in(R) + out(R).

Example 5.3.
In the graphlet from Ex. 3.2 we now draw the
input arrows dashed and the output arrows dot-
ted; the internal arrows remain solid. Moreover,
we add some wiggly lose arrows. ◻ R′ ∶

��

//

//● //

��

● //

��//●

��

//●

�� ��//

For loose-free R one has the decomposition

arrows(R) = in(R) + out(R) + hid(R) = perimeter(R) + hid(R) . (4)

We will assume all graphlets considered to be loose-free unless stated otherwise.
We state some properties of interfaces.

Lemma 5.4. Let R,S be point-disjoint, P =df points(R) and Q =df points(S).
1. in(R) ∩ in(S) = out(R) ∩ out(S) = hid(R) ∩ hid(S) = {}.
2. in(R) ∩ hid(S) = {} = out(R) ∩ hid(S).
3. in(R) ∩ out(S) = Q(R ∩ S)P and out(R) ∩ in(S) = P (R ∩ S)Q.
4. R ∩ S = (in(R) ∩ out(S)) ∪ (in(S) ∩ out(R)). This means R ∩ S consists

only of shared interface arrows; no internal arrows are involved.

5

5. hid(R) ∪ hid(S) ∪ (R ∩ S) ⊆ hid(R + S). This means that in connecting R
and S using their interface arrows these become internal and hence are not
connected to further graphlets.

6. in(R)in(R) = {} = out(R)out(R).

6 Disjoint Union

A number of our further composition operators on graphlets are variants of the
union R + S of point-disjoint graphlets R,S. This reflects that each event of a
composite program is in the union of the events of its two operands, but no event
occurs in more than one of them.

Definition 6.1. For doubly closed graphlets R,S we set R + S =df R ∪ S
provided points(R)∩points(S) = {}. Then points(R+S) = points(R)+points(S)
and arrows(R + S) = arrows(R) ∪ arrows(S).

Example 6.2.

R ∶
● //

��

●

��
R′ ∶

�� ��● //●
R +R′ ∶

●

��

//●

��● //●
⊓⊔

Lemma 6.3. Let R and S be arrow-closed.
1. in(R + S) = (in(R) − out(S)) + (in(S) − out(R)).

in(R + S) = (in(R) − out(S)) + (in(S) − out(R)).
2. in(R + S) = (in(R) + in(S)) − (out(R) + out(S)).

out(R + S) = (out(R) + out(S)) − (in(R) + in(S)).
3. perimeter(R + S) = perimeter(R)∆ perimeter(S).

Part 1 says that the inputs of R + S consists of all inputs of R that are not
already ‘satisfied’ by the outputs of S, together with all the similarly unsatisfied
inputs of S (a third equation for outputs is similar).

7 Lines

Henceforth we restrict attention to point-closed graphlets (cf. (2)).
A fork is a relation {(a, b), (a, c)} where b ≠ c. A relation R is fork-free if it

contains no forks or equivalently, if it is a partial function, i.e., R⌣R ⊆ I. Join-
freedom is defined similarly, by interchanging R with R⌣.
If R is both fork-free and join-free and
arrows(R) is acyclic then R is called multilin-
ear. If points(R) is finite then R can be pictured
as a forest of trees without branches, i.e., only
trunks which form straight lines.

��

��

●

�� ��⋯ ●

��

●

��

●

��

⋯

●

��

●

��

6

Lemma 7.1. Let R be acyclic. If additionally R is fork-free or join-free then
R is intransitive.

The informal reason is that a “transitive” arrow, like the
one from x to z, that “bridges” the composition of two other
arrows, like the ones from x to y and from y to z, necessarily
induces a fork or a join at one of its ends (or at both).

x // !!
y // z

By Lm. 7.1 all multilinear relations are intransitive.
For relation R, as usual R∗ is the reflexive-transitive closure of R, i.e., R∗ =

R+ ∪ I. Then the R-interval between a, c ∈ EV with (a, a), (b, b) ∈ points(R) is
[a, c]R =df {(b, b) ∣ (b, b) ∈ points(R) ∧ (a, b) ∈ R∗ ∧ (b, c) ∈ R∗c}

A line is a multilinear relation R which is bounded and connected : this means
that there are a, b ∈ points(R) with points(R) = [a, b]. For similar relational
characterisations of lines see [2,6]. In this case, R∗ is a linear lax order on the
points of R such that a is a least element and b is a greatest element.

Hence, if R∗ is even a partial order, we set least(R) =df a and greatest(R) =df
b when [a, b] = points(R). Since for intransitive and acylic R the relation R+ is a
strict order, R∗ then is indeed a partial order. Connectedness serves to exclude
strange relations like

//● //● // ⋯ //● //● //

A line is called open if it has exactly one input and exactly one output arrow:

//● //● //● //● //● //● //● //

Open line R satisfies least(R) = head(in(R)) and greatest(R) = tail(out(R));
moreover, points(R) is non-empty.

We define a concatenation operator >> on open lines R,S:

R >> S =df {
R + S if out(R) = in(S) ∧ out(S) ∩ in(R) = {} ,
undefined otherwise .

Without the condition out(R) = in(S) the result would have an extra input
arrow and an extra output arrow and hence would not be a line. Without the
condition out(S) ∩ in(R) = {} the result would have no inputs or outputs and
would form a cyclic chain.

Example 7.2.

//● //● //// >> //● //● //● // =
//● //● //● //● //● //

⊓⊔

Theorem 7.3. When defined, R>>S is again an open line with points(R>>S) =
points(R) + points(S) as well as in(R >> S) = in(R) and out(R >> S) = out(S).
Moreover, the operator >> is associative.

We also use closed lines which are lines without input and output:

● //● //● //● //● //●

7

They represent, for instance, the behaviour of a single object by itself, from its
creation to its deletion. When embedded in a larger system, ingoing and outgoing
arrows may be present, reflecting communication with other objects.

● //● //● //● //● //
**
● //●

8 Figures and Traversals

We now explore topological properties shared between graphlets, viewed as fig-
ures of our discrete geometry, and those of the more familiar Euclidean geometry.

A line is said to pass through a set A of arrows if it contains at least one arrow
of A, and any such arrow is said to lie on the line. These definitions entail an
analogue of the Jordan theorem of standard geometry. To formulate it we need an
auxiliary notion. The set of inner points of an open line R is tails(arrows(R)) ∩
heads(arrows(R)); this definition is reasonable by assumption (2) of closedness
and ensures that tails(in(R)) and heads(out(R)) are not inner points of R:

//● //● //● //● //● //

Only the inner points are depicted as bullets. The set of inner points of a graphlet
R is the union of all inner points on open lines contained in R. All other points
are called outer points of R. The distance between two inner points a, b of a
line R is the number of R-arrows needed to get from a to b provided aR+ b;
mathematically it is the least natural number n such that aRn b.

Theorem 8.1. Every open line from an outer point of R to an inner point of
R passes through in(R). Similarly, a line from an inner point to an outer point
passes through out(R).

Proof. By induction on the distances between the points in question. ⊓⊔

Pursuing further our analogy with standard geometry, we will define a graph-
let R to be convex if each of its arrows and points lies on a line which begins
with an input arrow of R and ends with an output arrow. Such a line is called a
traversal of R. A convex graphlet cannot have sources or sinks in its inner. We
define a figure as a convex and cycle-free graphlet.

Example 8.2.
1. Every open line is a figure.
2. The empty graphlet (hereafter called 1) is a figure. Since it has no points, it

is trivially convex and acyclic.
3. Of the following graphlets, the first is a figure whereas the others are not;

we mark with circles the points at which convexity fails:

//● //● //● //

//● //

��

??

●

??

��

● //

●

??

● //

//● //● //● //

//●

��

??

○

??

��

● //

●

??

● //

//● //○ ● //

//● //

��

??

●

??

��

● //

●

??

● // ⊓⊔

8

An antichain is a relation R such that heads(R) ∩ tails(R) = {}. Therefore
no two pairs in R connect. In particular, by (1), points(R) = {}. This means
that all arrows of an antichain are loose and that the events of an antichain do
not lie on lines passing through it. Hence antichains are not convex. Henceforth
R and S stand for figures.

In conventional geometry, a convex figure may be split by any straight line
from one point on its perimeter to another. Both sides of the split are obviously
convex. Further, to specify the way in which the figure R+S has been split into
its components R and S, it suffices to specify just the way in which its perimeter
has been split into a left side (taken from R) and a right side (from S).

Part II: Syntax and Semantics

9 Terms

Following [17], we take a syntax-oriented view of programs, namely in the form
of abstract syntax trees. These correspond to the completely quadrangulated
tracelets in [16]. We define program terms first by a context-free grammar and
then impose restrictions to distinguish the valid ones for which a semantics can
reasonably be defined. In a later section we define the semantics of a term as a
program graph consisting of events in a computer linked by causality arrows.

We assume a set of base terms that are supposed to represent atomic com-
mands or actions; it must contain the term {} that represents the empty program
graph. Furthermore we assume a set of binary composition operators, among
them +, denoting some form of disjoint union. Then the set of terms is given by
the context-free grammar

⟨term⟩ ∶∶= ⟨base term⟩ ∣ (⟨term⟩ ⟨operator⟩ ⟨term⟩) .
Usually we will omit the outermost pair of parentheses. The operators may
denote partial functions of their arguments; hence the value of certain terms
may be undefined. If defined, terms denote program graphs as defined in Sect. 3
below. Definedness is expressed by claims and assumptions, which also allow a
general treatment of faults and violations.

10 Partialities: Assumptions and Claims

A partial definition of an operator ○ is one which is qualified by an assump-
tion that must be satisfied by the context of its use. If so, the application of

○ is guaranteed to produce a value; otherwise the use of ○ is erroneous. A def-
inition may also be accompanied by a formula, called a claim, that describes
some property of the result which is true of every valid use. If the result of the
application of ○ fails to satisfy the claim it is called faulty and otherwise valid. A
faulty use is called a counterexample to the claim. It should be reported to the

9

author of the claim, to assist in removal of the error. Assumptions and claims
form also the basis of the familiar require/ensure and rely/guarantee approaches
to program correctness.

An example is the definition of integer division div:

y div z =df x assuming y and z are integers and z is non-zero
claiming x is an integer and z×x ≤ y < z×(x + 1)

The above notions about terms are similar to ones used in “blame logics”.
An assuming/claiming specification can be viewed as a contract between user
and implementer. An erroneous term means a violation of that contract by the
user (user error), while a faulty term hints at an implementation error (the user
kept their part of the contract while the implementation did not). However, one
has to beware of unimplementable specifications such as

xmysum y =df z, assuming x and y are non-negative integers
claiming z = x + y and z < 0 .

Every term x mysum y is faulty, but neither user nor implementer can be blamed.
Conventional assertions and assumptions of a Boolean expression B are basic

commands of many programming languages. Their partial definitions read

assert B =df claiming B = true ,
assume B =df assuming B = true .

One application of these constructs is in method declarations of a modern pro-
gramming language: the assumed predicate is called a precondition and the
claimed predicate is called a postcondition. The task of a debugging compiler
is to produce counterexamples that will help the programmer to correct a viola-
tion, either in the calling program or in the method body.

We now propagate the notions of being erroneous, faulty and valid from
operators inductively to composite terms. Moreover, given a set V of values we
define a partial function val from the set of terms to V . In the case of graphlets
V is the set of all binary relations over the set EV of events. We assume that
for every non-erroneous term p a value val(q) ∈ V can be defined. Then the
semantics of term p is given by

[[p]] =df {
val(p) if p is valid
undefined otherwise

In the above example of the operator myplus we have val(xmyplus y) =
val(x) + val(y) while [[xmyplus y]] is undefined.

For the mentioned inductive definitions we assume for each binary operator

○ a binary assumption predicate ○-assu and a unary claim predicate ○-claim; the
latter may involve the function val . These describe the “increment” in assump-
tion/claim by the top level operator ○ of a given term. Since they take terms
and not values as arguments, they may access the components of these.

In the div example we have

div-assu(y, z) ⇔df val(y) ∈ int ∧ val(z) ∈ int ∧ val(z) ≠ 0 ,
div-claim(y div z) ⇔df w ∈ int ∧ v×w ≤ u < v×(w + 1) ,

10

where u = val(y), v = val(z) and w = val(y div z). Here it is essential that y div z
is a term and not a value, because this still allows a unique extraction of the
operand terms p and q.

We assume that the semantics of every operator ○ is given by a binary partial
function ○-func on values. The requirements on val and ○-func are detailed below
in Req. 12.2.

To express the assumptions and claims for the base terms we additionally
assume two unary predicates atom assu and atom claim on these. For instance,
atom assu or atom claim might require a relation to be acyclic. We stipulate
that atom assu({}) and atom claim({}) are true.

Now we inductively define assu and claim for composite terms. The idea
is that a term with partially defined operators has as assumption/claim the
conjunction of the assumptions/claims of all the operators that it contains, aug-
mented by the assumption/claim of the operator itself.

Definition 10.1.
1. For atomic term p we set assu(p) ⇔df atom assu(p). When atom assu(p)

holds, we set claim(p) =df atom claim(p).
2. For a composite term p ○ q we set

assu(p ○ q) ⇔df assu(p) ∧ assu(q) ∧ ○-assu(p, q) ,
claim(p ○ q) ⇔df claim(p) ∧ claim(q) ∧ ○-claim(p ○ q) .

3. We stipulate that ○-assu behaves well w.r.t. the empty relation, i.e., that
assu(p) ⇒ (○-assu({}, p) ∧ ○-assu(p,{})). Then {} composed with a non-
erroneous term yields a non-erroneous term again.

11 Errors, Faults and Refinement

For the reader’s benefit we repeat the definitions. Term p is erroneous if ¬assu(p)
holds. p is faulty if assu(p) ∧ ¬claim(p) holds. A term p that is neither erroneous
nor faulty is called valid ; this is the case iff assu(p) ∧ claim(p) holds. Clearly,
the sets of erroneous, faulty and valid terms are pairwise disjoint.

We want to compare terms w.r.t. their degrees of definedness. A lax order
(also known as a preorder) is a reflexive and transitive relation ⊑. It induces an
equivalence relation ∼≤ by p ∼≤ q ⇔df p ≤ q ∧ q ≤ p.

On valid terms p, q we assume a basic lax order p ⊑ q. This might, for instance,
be just equality of val(p) and val(q), as in the example of the div operator. But
there are also instances where actually the syntactic structure of p and q plays a
role. Below we use the internal flow of communication to distinguish sequential
and parallel composition, using inclusion as the relation ⊑.

Based on this we now define a refinement relation between general terms.

Definition 11.1. We say that term p refines term q, in signs p ≤ q, if the
assumption of p implies that of q (which entails that if p is non-erroneous then
so is q) and then if q is non-faulty then so is p and p ⊑ q holds. Formally,

p ≤ q ⇔ (assu(p) ⇒ (assu(q) ∧ (claim(q) ⇒ (claim(p) ∧ p ⊑ q))) . (5)

11

From this it is clear that we can proceed as follows to show p ≤ q.
– Assume assu(p), because otherwise the refinement holds trivially.
– Show assu(q) and then assume claim(q), because otherwise the refinement

holds trivially.
– Show claim(p) ∧ p ⊑ q.

Theorem 11.2.
1. ≤ is a lax order.
2. All erroneous terms are least elements of the lax order ≤ and hence equivalent

w.r.t. ∼≤ . Hence we may define � =df {p ∣ ¬assu(p)}, i.e., as the equivalence
class of all erroneous terms. By slight abuse of notation we also write �
instead of an arbitrary term in �.

3. All the faulty terms, i.e., the terms p with assu(p)∧¬claim(p), are equivalent
and greatest elements of the lax order ≤. Hence we may define ⊺ =df {p ∣
assu(p) ∧ ¬claim(p)}, i.e., as the equivalence class of all faulty terms. By
slight abuse of notation we write ⊺ instead of an arbitrary term in ⊺. By
definition of ∼ we have ⊺ ≤ q ⇔ q ∼ ⊺.

4. For all operators ○ and terms p we have � ○ p ∼ � ∼ p ○ �.
5. For all operators ○ and terms p, if ⊺ ○ p is non-erroneous then ⊺ ○ p ∼ ⊺.

Likewise, if p ○ ⊺ is non-erroneous then p ○ ⊺ ∼ ⊺.
6. On valid terms ≤ coincides with ⊑.
7. The equivalence relation ∼≤ satisfies

p ∼≤ q ⇔ (¬assu(p) ∧ ¬assu(q)) ∨
(assu(p) ∧ assu(q) ∧
((¬claim(p) ∧ ¬claim(q)) ∨ (claim(p) ∧ claim(q) ∧ p ∼⊑ q))) .

By these properties, � and ⊺ play the roles of the statements abort and miracle
in the refinement calculi of [1,22,23,24]. In our present approach there is no
need to introduce � and ⊺ as extra syntactic constructs; they can be defined
semantically as derived constructs.

To formulate the basic refinement relation ⊑ for the concrete case of relations
we introduce a unary function com from relation terms to relations. It collects
all the communications which pass within its parameter. To define com induc-
tively, we require for each operator ○ a unary function ○-com on terms and set
com(p ○ q) =df com(p) ∪ com(q) ∪ ○-com(p ○ q) for valid terms p, q. Moreover,
for base relation term p we set com(p) =df {} We require ○-com({} ○ p) = {}
and ○-com(p○{}) = {} for all p, since the empty set of events cannot create any
communication. If nothing else is mentioned, ○-com(p ○ q) will be {}. With this
we can now set

p ⊑ q ⇔df com(q) ⊆ com(p) .

12 Modularity and Interchange

As mentioned in Sect. 6 many combination operators ○ on graphlets are variants
of the basic commutative and associative operator + of union of point-disjoint

12

graphlets, differing just in their assumptions and claims. We assume for our gen-
eral treatment of violations and refinement that there is an analogous operator
⊕ on terms whose ⊕-func is associative and commutative.

Definition 12.1. An operator ○ is a variant of ⊕ if
– ○-assu ⇒ ⊕ -assu,
– assu(p ○ q) ⇒ val(p ○ q) = val(p ⊕ q).

Next, we detail the requirements on the val and ○-func functions.

Requirement 12.2.
1. For atomic term p we assume val(p) to be given.
2. For a composite term p ○ q we set val(p ○ q) =df ○-func(val(p), val(q))

provided assu(p ○ q).
3. The equivalence ∼≤ is a congruence for all operators ○, i.e.,

p ∼≤ q ⇒ p ○ r ∼≤ q ○ r .

4. Generally we require for non-erroneous terms p and q that val(p) = val(q) ⇒
(claim(p) ⇔ claim(q)).

To prove further laws, we need an additional notion. A predicate ○-assu is
modular if it “distributes” through ⊕, i.e., if for all terms p, q, r with ⊕-assu(p, q),

○-assu(p ⊕ q, r) ⇔ ○-assu(p, r) ∧ ○-assu(q, r) and

○-assu(r, p ⊕ q) ⇔ ○-assu(r, p) ∧ ○-assu(r, q) .
Likewise, a function ○-com is submodular if it subdistributes through ⊕, i.e., if
for all terms p, q, r with ○-assu(p, q),

○-com((p ⊕ q) ○ r) ⊆ ○-com(p ○ r) ⊕ ○-com(q ○ r) and

○-com(r ○ (p ⊕ q)) ⊆ ○-com(r ○ p) ⊕ ○-com(r ○ q) .
If the inclusions strengthen to equations then ○-com is modular. If ○-com(p, q) =
{} for all p, q then ○-com is trivially submodular and modular.

Modularity was called bilinearity in [12], but this would conflict with our
notion of multilinearity.

Lemma 12.3. The conjunction of modular predicates is modular.

Theorem 12.4. Let ○1-assu and ○2-assu be modular predicates and ○1-com and

○2-com functions such that for all p, q with ⊕-assu(p, q) satisfy ○1-assu(p, q) ⇒
○2-assu(p, q) and ○1-com(p, q) ⊆ ○2-com(p, q). Then ○1 and ○2 satisfy the small
interchange laws

(p ○2 q) ○1 r ≤ p ○2 (q ○1 r) , p ○1 (q ○2 r) ≤ (p ○1 q) ○2 r .

Corollary 12.5. If ○-assu is modular then ○ is associative up to ∼.

Theorem 12.6. Consider operators ○1 and ○2 such that
– ○1-assu, ○1-assu and ○2-com are modular and ○1-com is submodular,
– all p, q with ⊕-assu(p, q) satisfy (○1-assu(p, q) ⇒ ○2-assu(p, q)) as well as

○1-com(p, q) ⊆ ○2-com(p, q),

13

– ○2-assu is symmetric, i.e., ○2-assu(p, q) ⇔ ○2-assu(q, p), and ○2-com is
commutative, i.e., ○2-com(p, q) = ○2-com(q, p).

Then ○1 and ○2 satisfy the full interchange law

(p ○2 q) ○1 (r ○2 s) ≤ (p ○1 r) ○2 (q ○1 s) .

13 Concrete Composition Operators

13.1 Union

To allow flexible generation we also admit a general binary union operator ∪O on
graphlet terms and give it a formal partial definition in the sense of Def. 10.1.
We set, for terms p, q,

∪O-assu(p, q) ⇔df true
∪O-claim(p) ⇔df true ,
∪O-com(p, q) ⇔df val(p) ∪ val(q) ,
∪O-func(R,S) =df R ∪ S .

This definition may appear cyclic, since val(p) and val(q) are used although it
is not clear that p and q are non-erroneous. However, since assu(p ∪O q) ⇔
assu(p) ∧ assu(q) ∧ ∪O-assu(p, q), the definition of ∪-assu(p, q) occurs in a con-
text where assu(p) and assu(q) hold.

Example 13.1. We assume that there are atomic terms denoting the events.
To save notation we simply use the event names for these. Let a, b, c be event
terms let ; denote sequential composition (details are given in Sect. 13.3). Then
the N shape of Rem. 3.4 is, for instance, denoted by the term

((a ; c) ∪O (a ; d)) ∪O (b ; d) .
⊓⊔

13.2 Disjoint Union

In Sect. 5 we have defined graphlets to be point-disjoint if their intersection
contains no points. In that case their union was denoted by R + S.

To give a formal partial definition of the operator ⊕ on graphlet terms in the
sense of Def. 10.1 we set, for terms p, q,

⊕-assu(p, q) ⇔df points(val(p)) ∩ points(val(q)) = {}
⊕-claim(p) ⇔df true ,
⊕-com(p, q) ⇔df val(p) ∩ val(q) ,
○-func(R,S) =df R + S .

By Def. 12.1 every operator ○ that that is a variant of ⊕ on graphlets satisfies

○-func(R,S) = R + S .

By this and Def. 10.1.3, {} is the unit of every such ○.
Note that the analogue of the term in Ex. 13.1 with ⊕ instead of ∪O is erro-

neous, since the graphlets formed using ; are not point-disjoint.

14

13.3 Sequential Composition

For example, we define the operator ; of sequential composition. This is designed
to ensure that its first argument can be executed in its entirety before starting
the second argument. Formally, we use the predicates

;-assu(p, q)⇔df ⊕-assu(p, q) ∧ in(val(p)) ∩ out(val(p)) = {} ,
;-claim(p) ⇔df true ,
;-com(p) ⇔df out(val(p)) ∩ in(val(p)) .

The assumption ;-assu(p, q) reflects that if there is a causal dependence arrow
pointing from p to q, then it is physically impossible to complete execution of p
before beginning q.

Theorem 13.2. Over loose-free graphlets the predicate ;-assu is modular, and
hence for such graphlets ; is associative up to equivalence.

The proof just uses distributivity of intersection over +.

13.4 Disjoint Concurrent Composition

Our first variant ∣∣∣ of concurrent composition of graphlets is designed to ensure
that that its two arguments can be executed on separate computers, with no
communication between them. Its assumption and claim are

∣∣∣-assu(p, q)⇔df ⊕-assu(p, q) ∧ in(val(p)) ∩ out(val(q)) = {} =
in(val(q)) ∩ out(val(p)) ,

∣∣∣-claim(p) ⇔df true ,
∣∣∣-com(p) ⇔df {} .

Theorem 13.3. Up to equivalence, ; and ∣∣∣ have the same unit {}.

The definition implies ∣∣∣-assu(R,S) ⇔ ;-assu(R,S) ∧ ;-assu(S,R) and hence
∣∣∣-assu is modular as a conjunction of modular predicates, which by Cor. 12.5
implies the following.

Theorem 13.4. ∣∣∣ commutes and is associative, up to equivalence.

Lemma 13.5.
1. in(R1 ∣∣∣R2) = in(R1) + in(R2).
2. out(R1 ∣∣∣R2) = out(R1) + out(R2).
3. hid(R1 ∣∣∣R2) = hid(R1) + hid(R2).

An alternative form ∣ of concurrent composition permits internal communi-
cation between its operands, but weakens the claim condition to require only
that there is no cyclic chain of arrows that crosses between them.

∣-assu(p, q)⇔df ⊕-assu(p, q) ∧ cyclefree(val(p)) ∧ cyclefree(val(q)) ,
∣-claim(p) ⇔df cyclefree(val(p)) ,
∣-com(p, q) ⇔df ⊕-com(p, q)

15

13.5 Concatenation

The concatenation operator p >> q can be extended from lines to more general
figures by weakening the definition: the outputs of val(p) do not have to be the
same as the inputs of val(p).

More precisely, call lines R ⊆ val(p) and S ⊆ val(q) concatenable if R >> S is
defined. Then >>-func(p, q) consists of all concatenations of concatenable lines
from val(p) and val(q) together with all other lines from val(p) and val(q). The
formal definition is as follows.
>>-assu(p, q)⇔df ⊕-assu(p, q) ∧ ∧ cyclefree(val(p)) ∧ cyclefree(val(q))∧

in(val(p)) ∩ out(val(p)) = {} ,
>>-claim(p) ⇔df cyclefree(val(p)) ,
>>-com(p) ⇔df out(val(p)) ∩ in(val(p)) .

Acyclicity of the result is assured by acyclicity of the operands and by continuing
to insist that that the inputs of val(p) are disjoint from the outputs of val(q);
thus no cyclicity can arise in their concatenation.

Since >>-assu coincides with ;-assu, the same proof technique can be used to
show that it is modular.

Theorem 13.6. >> on figures obeys the same laws as those in Th. 7.3 for lines.

13.6 Concurrent Composition

A further weakening of the definition of sequential composition leads to a con-
current composition operator p ∣∣ q. The weakening removes the restriction that
the inputs of p must be disjoint from the outputs of q. The result can therefore
contain a cycle, even when both val(p) and val(q) are acyclic. And of course, if
the operands are not point-disjoint, the result will be undefined.

We define ∣∣ formally by using the predicate ∣∣-assu(p, q) ⇔df +-assu(p, q)
and by ∣∣-com(p, q) =df val(p) ∩ val(q), i.e.,

com(p ∣∣ q) = com(p) ∪ com(q) ∪ (val(p) ∩ val(q)) .
By distributivity of intersection over disjoint union ∣∣-com is modular.

This definition implies that ∣∣ and ⊕ coincide.

Theorem 13.7. If p ∣∣q is valid and val(p) and val(q) are figures then val(p ∣∣q)
is a figure.

Proof. (Sketch) We show that every traversal of p or q can be extended to a
traversal of p ∣∣ q. Take a traversal T of p. If its last arrow does not pass through
the perimeter shared by p and q then it is an output arrow of p ∣∣q, so that T is a
traversal of p ∣∣q as well. Otherwise its last arrow leads into q and we can chain it
with a traversal of q starting with that arrow, which again yields a traversal of
p ∣∣ q. Since p and q are figures, all their points and arrows are contained in their
traversals, so that the above process covers all points and arrows of p ∣∣ q. ⊓⊔

By the properties mentioned in Sect. 11 the following theorem is immediate.

Theorem 13.8. ∣∣ is associative, commutative and isotone, up to ∼. Moreover,
>> and ∣∣ satisfy the full interchange law and hence the small interchange laws,
as do ∣∣∣ and ∣∣ as well as ; and ∣∣.

16

14 Programs

14.1 From Graphlets to Programs: Lifting

So far we have dealt with single graphlets. A program is identified by and with
the set of all terms denoting possible graphlets of its execution. This section
explains how operators on graphlets can be lifted to sets of graphlets in such a
way that the laws proved for the graphlet operators are preserved.

14.2 Elementwise Lifting

As in [15] we do not consider arbitrary sets of graphlet terms. A set G of graphlet
terms is a program if it is downward closed w.r.t. the lax refinement order ≤, i.e.,
if p ∈ G and p′ ≤ p imply p′ ∈ G as well. Downward closure codifies our intention
that any program that can validly be executed concurrently can also be validly
executed more sequentially.

If ○ is a binary, possibly partial, operator on graphlet terms then its element-
wise lifting to programs G,G′ is defined as the downward closure of the set of
all defined compositions between G and G′, i.e., the set of all graphlet terms q
such there are p ∈ G and p′ ∈ G′ with valid term p ○ p′ and q ≤ p ○ p′.

Since we use inequational laws, we need to define a refinement relation be-
tween programs if we want to lift laws to programs. There are several ways to
extend a lax order like ≤ to sets. We choose the following definition: G ≤ G′ holds
iff every term in G is below some term in G′. For downward closed sets (and hence
programs) ≤ coincides with inclusion ⊆. Hence we can define non-deterministic
choice as set union in our program algebra.

Let p, p′ be graphlet terms. A sufficient condition for lifting a law p ≤ p′ law
from graphlets to programs is linearity, viz. that every variable occurs at most
once in p, p′ and that all variables in p also occur in p′. Examples are the frame
and exchange laws. For equations a sufficient condition is bilinearity, meaning
that both inequations that constitute an equation are linear. Examples are asso-
ciativity, commutativity and neutrality; a counterexample is distributivity. The
main result is as follows (cf. [15]).

Theorem 14.1. If a linear law p ≤ p′ holds for graphlet terms then it also
holds when all variables in p, p′ are interpreted as variables for programs and the
operators are interpreted as the elementwise liftings of the corresponding graphlet
operators.

14.3 Errors, Recursion and Iteration

There are further useful consequences of our definition of programs. The set
G of all programs forms a complete lattice w.r.t. the inclusion ordering; it has
been called the Hoare power domain (e.g. [26,18,4]). The least element of G is
the empty program {} which can also serve as an error element, modelling a
completely faulty module without any sensible graphlet. A more detailed, ele-
mentwise, error handling is already contained in the definition of the elementwise

17

lifting of operators: all erroneous, undefined combinations of graphlets are ruled
out from the combination of the containing programs. The greatest element
of G is the program consisting of all graphlet terms. Infimum and supremum
in G coincide with intersection and union, since downward closed sets are also
closed under these operations. Thus we can define (unbounded) choice between
a set Q ⊆ G of programs as ⌈⌋Q =df ∪Q with binary choice as the special case
G ⌈⌋G′ =df G ∪G′. This means that an implementation can make an arbitrary
choice between non-deterministic variants allowed by the program under execu-
tion, giving our intended interpretation of non-determinism a demonic flavour.

The lifted versions of isotone graphlet operators are isotone again (see [15]),
but even distribute through arbitrary choices between programs.

Isotony of the lifted operators, together with completeness of the lattice of
programs and the Tarski-Knaster fixed point theorem, guarantees solutions of
recursion equations. More precisely, let f ∶ G → G be an isotone function. Then
f has a least fixed point µf and a greatest fixed point νf , given by

µf = ∩{G ∣ f(G) ⊆ G} , νf = ∪{G ∣ G ⊆ f(G)} .
With our operator ; this can be used to define the Kleene star (see e.g. [5]), i.e.,
unbounded finite sequential iteration, of a program G as G∗ =df µfP , where
fP (X) =df skip ⌈⌋ (G ;X) and skip =df {◻} is the idle program. Since by the
above remark fP distributes through arbitrary choices, it is even continuous and
Kleene’s fixed point theorem tells us that G∗ has the iterative representation
G∗ =∪{Gi ∣ i ∈ IN} with G0 =df skip and Gi+1 =df G ;Gi. Infinite iteration Gω

can be defined as the greatest fixed point νgP where gP (X) =df G ;X.
Along the same lines, unbounded finite and infinite concurrent iteration of a

program can be defined. For further forms of iteration we refer to [15].
We conclude this section with a brief description how pre-post-condition se-

mantics can be integrated into our approach. As in [12] one can define, for
programs G,G′ and Q, the Hoare triple

G {{Q}} G′ ⇔df G ;Q ⊆ G′ .

It expresses that, after any graphlet in “pre-history” G, execution of Q is guar-
anteed to yield an overall graphlet in G′. This implies the standard properties
of Hoare logic and separation logic; for further details we refer to [12,13].

15 Outlook: Concrete Programming Concepts

We now briefly describe how our geometric notions can be used to model concepts
from current programming languages.

The points in a diagram represent events in a computer, such as assignments
or communications.

Using lines we can define coordinate systems and how points are placed in
them. We use two coordinate directions: vertical for succession in time (flowing
downwards) and horizontal for distribution in space. To avoid clutter arrows are
drawn as simple line segments. As labels we use, for instance, variable/value
associations, channel names with input/output actions etc.

18

Using diagrams of this kind, a number of characteristic programming ideas
and intuitions can be conveyed, namely
– assignments to local memory,
– transactions (atomic events, Petri net transitions),
– allocation and disposal of objects,
– variables (in stack or heap), input and output ports, threads,
– distribution and concurrency,
– buffered communications on reliable channels,
– synchronous communications and fences,
– shared memory with resource ownership,
– release and acquisition of resources between threads,
– message-sequence charts.

Example 15.1. We consider the following simple program. The two parallel
vertical lines in the centre of the program are a parenthesis-avoiding form of the
operator ∣∣ from Sect. 13.6. The program uses objects, like the variables t,u,x,y,
channels c,d and memory locations c[84],d[37] within c,d.

{ new x ; { y := y + 1 ;
c[84]?x ; acq x ;
rel x ; } d[37]!(y + x) ;

disp x ; }

The left parallel branch of the program allocates x as a new variable and claims
ownership of it, subsequently executes a read command ? putting the value
from channel location c[84] into x and then releases ownership of x. The right
parallel branch first increments the global variable y, then acquires ownership of
x, executes a write command ! putting the value y+x into channel location d[37]
and finally deallocates x.

A diagram representing the case of an initial value of 3 for y is shown in
Fig. 15. The solid vertically oriented lines depict threads exhibiting the sequential
behaviours of single objects. Points connected by horizontal dashed lines stand
for events that occur simultaneously, at the same instant of time. The sloping
arrow in the diagram centre stands for a transfer of ownership of the variable x
from one object thread to the other. The other two sloping arrows represent the
input and output channels. ⊓⊔

More details are given in the companion paper [21].

19

3

c[84]

8
●

new x
●

● ●
c?x

●

8

●
y ∶= y+1

4

●

●
rel x

●

●
acq x

8

●

● ● ● ●
d[37]

12
●

disp x
●

Fig. 1. Graphical representation of the sample program

Acknowledgment The authors would like to thank the Isaac Newton Institute
for Mathematical Sciences, Cambridge, for support and hospitality during the
programme Verified Software where work on this paper was undertaken, partially
funded by EPSRC grant no EP/R014604/1. Helpful comments were provided by
Roland Glück and Phil Wadler.

References

1. R. Back: A calculus of refinements for program derivations. Acta Inf. 25(6), 593–
624 (1988)

2. R. Berghammer, H. Furusawa, W. Guttmann, P. Höfner: Relational characteri-
sations of paths. CoRR abs/1801.04026 (2018), http://arxiv.org/abs/1801.04026

3. C. Brink: Power structures. Alg. Univ. 30(2), 177–216 (1993)
4. C. Brink, I. Rewitzky: A paradigm for program semantics: power structures and

duality. CSLI Publications (2001)
5. J. Conway: Regular Algebra and Finite Machines. Chapman and Hall (1971)
6. H.-H. Dang, B. Möller: Transitive separation logic. In: W. Kahl, T. G. Grif-

fin (eds.): Relational and Algebraic Methods in Computer Science. LNCS 7560.
Springer 2012, 1–16. Extended version: H.-H. Dang, B. Möller: Extended transi-
tive separation Logic. J. Log. Algebr. Meth. Program. 84(3): 303–325 (2015)

7. U. Fahrenberg, C. Johansen, G. Struth, R. Bahadur Thapa: Generating posets
beyond N. In U. Fahrenberg, P. Jipsen, M. Winter (eds.): Relational and Algebraic
Methods in Computer Science LNCS 12062. Springer 2020, 82–99

8. N. Gautam: The validity of equations of complex algebras. Arch. Math. Logik
Grundl. Mat. 443, 117–124 (1957)

9. J. Gischer: The equational theory of pomsets. Theo. Comp. Sci. 61, 199–224 (1988)
10. R. Goldblatt: Varieties of complex algebras. Ann. Pure Appl. Logic 44, 173–242

(1989)
11. Grätzer, G., Whitney, S.: Infinitary varieties of structures closed under the for-

mation of complex structures. Coll. Math. 48, 1–5 (1984)
12. T. Hoare, B. Möller, G. Struth, I. Wehrman: Concurrent Kleene Algebra and its

foundations. J. Log. Algebr. Program. 80(6): 266–296 (2011)

20

13. T. Hoare, A. Hussain, B. Möller, P. O’Hearn, R. Petersen, G. Struth, G.: On
locality and the exchange law for concurrent processes. In: J. Katoen, B., König,
B. (eds.) CONCUR — Concurrency Theory. LNCS 6901. Springer 2011, 250–264

14. T. Hoare, S. van Staden, B. Möller, G. Struth, J. Villard, H. Zhu, P. O’Hearn.
Developments in Concurrent Kleene Algebra. In P. Höfner, P. Jipsen, W. Kahl, M.
E. Müller (eds.): Relational and Algebraic Methods in Computer Science. LNCS
8428. Springer 2014, 1–18

15. Hoare, T., van Staden, S., Möller, B., Struth, G., Zhu, H.: Developments in Con-
current Kleene Algebra. J. Log. Algebr. Meth. Program. 85(4), 617–636 (2016)

16. B. Möller, T. Hoare, M.E. Müller, G. Struth: A discrete geometric model of con-
current program execution. In J. Bowen, H. Zhu (eds.): Unifying Theories of
Programming. LNCS 10134. Springer 2016, 1–25

17. T. Hoare, G. Struth, J. Woodcock: A calculus of space, time, and causality: its
algebra, geometry, logic. In P. Ribeiro, A. Sampaio (eds.): Unifying Theories of
Programming. LNCS 11885. Springer 2019, 3–21

18. M. Main: A powerdomain primer. Tech. Rep. CU-CS-375-87 (1987). Paper 360,
Univ. Colorado at Boulder, Dept of Computer Science (1987), http://scholar.
colorado.edu/csci_techreports/360

19. W. McCune: Prover9 and Mace4. http://www.cs. unm.edu/~mccune/mace4/

20. B. Möller, T. Hoare: Exploring an interface model for CKA. In R. Hinze, J.
Voigtländer (eds.): Mathematics of Program Construction. LNCS 9129. Springer
2015, 1–29

21. B. Möller, T. Hoare, Z. Hou, J. Song Dong: Geometric Theory for Program Test-
ing. Preprint 2022. DOI: 10.48550/arXiv.2206.02083

22. C. Morgan: The specification statement. ACM TOPLAS 10(3), 403–419 (1988)

23. J. Morris: A theoretical basis for stepwise refinement and the programming cal-
culus. Sci. of Comp. Prog. 9, 287–306 (1987)

24. G. Nelson: A generalization of Dijkstra’s calculus. ACM Trans. Prog Lang. Syst.
11:4, 517–561 (1989)

25. G. Schmidt, T. Ströhlein: Relations and Graphs: Discrete mathematics for com-
puter scientists. EATCS Mon. Theo. Comp. Sci. Springer 1993

26. G. Winskel: On powerdomains and modality. Theo. Comp. Sci. 36, 127–137 (1985)

16 Appendix A: Further Relational Notions

16.1 Converse

The operator ⌣ of converse mirrors all pairs of a relation:

R⌣ = {(b, a) ∣ (a, b) ∈ R} ,

For instance, <⌣ = >.
We recall the fundamental rules of Dedekind and Schröder about binary

relations R,S,T (e.g. [25]):

RS ∩ T ⊆ R(S ∩ R⌣T) , (Dedekind I)

RS ∩ T ⊆ (R ∩ TS⌣)S , (Dedekind II)

RS ⊆ T ⇔ R⌣T ⊆ S ⇔ TS⌣ ⊆ R . (Schröder)

21

http://scholar.colorado.edu/csci_techreports/360
http://scholar.colorado.edu/csci_techreports/360

16.2 Acyclicity and Orders

A relation R is called acyclic if it does not admit a proper path from any point
to itself, i.e., if R+ ∩ I = {}, where R+ is the transitive closure of R. Hence R is
acyclic iff R+ is irreflexive. Since R ⊆ R+, every acyclic relation is irreflexive. If
a relation is cyclic, then every other relation which contains it is also cyclic.

Frequently an order-theoretic view of relations is useful. A relation R is called
a strict-order if it is irreflexive and transitive, i.e., if R ∩ I = {} and RR ⊆ R. It
is called asymmetric if it does not relate elements mutually, i.e., if R ∩ R⌣ = {}.

Lemma 16.1.
1. Every asymmetric relation is irreflexive.
2. Every strict-order is asymmetric.

Proof.
1. It is known that every subrelation of I is symmetric. Hence for arbitrary

asymmetric relation R

R ∩ I = (R ∩ I) ∩ (R ∩ I)⌣ ⊆ R ∩ R⌣ = {} .
2. By neutrality of I, (Dedekind II) with (R⌣)⌣ = R, transitivity if R, irreflex-

ivity of R and strictness of ; :

R ∩ R⌣ = R ∩ I ;R⌣ ⊆ (R ;R ∩ I) ;R⌣ ⊆ (R ∩ I) ;R⌣ = {} ;R⌣ = {} .
⊓⊔

From the definitions and Lm. 16.1 the following result is immediate.

Lemma 16.2. The following statements are equivalent.
1. R is acyclic.
2. R+ is a strict-order.
3. R+ is asymmetric.

For the next result we need an auxiliary notion. A relation R is intransitive if
R∩R+R+ = {}. This means that no arrow of R can be “inferred” as a composition
of at least two arrows of R.

Lemma 16.3. An intransitive relation is irreflexive.

This is immediate from Lm. 16.2.
If R is intransitive and R+ is a strict-order (i.e., if R is also acyclic) then R is

called a Hasse diagram for R+ and represents the immediate successor relation
for R+. It is well known that a dense relation R (defined by R ⊆ RR, such as <
on the rationals or the reals) does not have a Hasse diagram.

Finally, we repeat some well-known properties of reflexive-transitive and tran-
sitive closure.

Lemma 16.4. Consider relations R,S.
1. If SR = {} then SR∗ = S and SR+ = {}.
2. Therefore (R ∪ S)∗ = R∗S∗ and (R ∪ S)+ = R+ ∪R+S+ ∪ S+ = R+ ∪R∗S+ =

R+S∗ ∪ S+.

22

3. If also RS = {} then (R ∪ S)∗ = R∗ ∪ S∗ and (R ∪ S)+ = R+ ∪ S+.

Proof.
1. By a fixpoint equation for ∗, distributivity, neutrality of I with the assump-

tion and strictness with neutrality of {}:
SR∗ = S(I ∪RR∗) = SI ∪ SRR∗ = SI ∪ {}R∗ = S .

2. First, by star of union and Part 1:

(R ∪ S)∗ = R∗(SR∗)∗ = R∗S∗ .

Second, by the definition of plus, the first claim, distributivity, Part 1 and
the definition of plus:

(R ∪ S)+ = (R ∪ S)(R ∪ S)∗ = (R ∪ S)R∗S∗ = RR∗S∗ ∪ SR∗S∗

= RR∗S∗ ∪ SS∗ = R+S∗ ∪ S+ .

The remaining equations are shown by straightforward regular algebra.
3. First, by Part 2, fixpoint equations for ∗, distributivity with neutrality of

I, assumption, strictness with neutrality of {} and Boolean algebra with
fixpoint equations for ∗:

(R ∪ S)∗ = R∗S∗ = (I ∪R∗R)(I ∪ SS∗) = I ∪ SS∗ ∪ R∗R ∪ R∗RSS∗

= I ∪ SS∗ ∪ R∗R ∪ R∗{}S∗ = I ∪ SS∗ ∪ R∗R = S∗ ∪R∗ .

Second, by definition of plus, the first claim, distributivity, Part 1 and defi-
nition of plus with regular algebra:

(R ∪ S)+ = (R ∪ S)(R ∪ S)∗ = (R ∪ S)(R∗ ∪ S∗)
= RR∗ ∪RS∗ ∪ SR∗ ∪ SS∗ = RR∗ ∪R ∪ S ∪ SS∗ = R+ ∪ S+ .

⊓⊔

17 Appendix B: Proofs for the Main Text

We use the following well known facts about point sets P,Q ⊆ I:
PQ = P ∩Q = QP , P = P ⌣ . (6)

Moreover, We frequently use the following interplay between restriction and
intersection, where P is a point sets and A,B are arrow sets:

PA ∩ B = A ∩ PB = P (A ∩B) and AB ∩ P = A ∩ BP = (A ∩B)P . (7)

Consequently, if PQ = {} for point sets P,Q then, by strictness of relational
composition,

PA ∩ QB = {} = AP ∩ BQ .

Since tails and heads coincide with the domain and range functions on rela-
tions, we have

heads(R⌣) = tails(R) , tails(R⌣) = heads(R) ,
heads(RS) ⊆ heads(S) , tails(RS) ⊆ tails(R) ,
heads(R+) = heads(R) , tails(R+) = tails(R) .

(8)

23

Proof of Lm. 5.4. Consider point-disjoint R,S and set P =df points(R), Q =df
points(S). By relational and Boolean algebra,

PQ = {} ⇔ P ∩Q = {} ⇔ P ≤ ¬Q ⇔ P ∩ ¬Q = P .

1. As a sample,

in(R) ∩ in(S)
= ¬PRP ∩ ¬QSQ {[the definitions]}
= ¬PRP ∩ ¬QSQP {[restriction (7)]}
= ¬PRP ∩ ¬QS{} {[point-disjointness of R,S]}
= {} . {[strictness of composition and intersection]}

The other properties are proved analogously.
2. Analogous to Part 1.
3. R ∩ S

= (in(R) + out(R) + hid(R))∩
(in(S) + out(S) + hid(S))

{[(4)]}

= (in(R) ∩ in(S)) + (in(R) ∩ out(S))+
(in(R) ∩ hid(S)) + (out(R) ∩ in(S))+
(out(R) ∩ out(S)) + (out(R) ∩ hid(S))+
(hid(R) ∩ in(S)) + (hid(R) ∩ out(S))+
(hid(R) ∩ hid(S))

{[distributivity]}

= {} + (in(R) ∩ out(S))+
{} + (out(R) ∩ in(S))+
{} + {} + {} + {} + {}

{[Parts 1 and 2]}

= (in(R) ∩ out(S)) ∪ (in(S) ∩ out(R)) . {[neutrality of {}]}

4. By the definitions, (7) and point-disjointness of R,S with Boolean algebra:

in(R) ∩ out(S) = ¬PRP ∩ QS¬Q = ¬PQ(R ∩ S)P¬Q = Q(R ∩ S)P .

The second equation is proved symmetrically.
5. By the definitions and distributivity:

hid(R + S) = (P +Q)(R + S)(P +Q)
= (P +Q)R(P +Q)(P +Q)S(P +Q) .

We only continue with the first summand, the second being symmetric.

(P +Q)R(P +Q)
= PRP + PRQ +QRP +QRQ {[distributivity]}
= hid(R) + PRQ +QRP + {} {[the definitions with Part 2]}
⊇ hid(R) + P (R ∩ S)Q +Q(R ∩ S)P {[neutrality of {} with

Boolean algebra]}
= hid(R) + (in(R) ∩ out(S))+
(out(R) ∩ in(S))

{[Part 2]}

= hid(R) +R ∩ S . {[Part 4]}

The analogous calculation for the second summand yields hid(R + S) ⊇
hid(S), which establishes the claim.

⊓⊔

24

Proof of Lm. 6.3.
1. Let P =df points(R), Q =df points(S), A =df arrows(R) and A =df

arrows(R). We only show the first claim, the second being symmetric.

in(R + S)
= {[definition of in]}
¬(P +Q)(A ∪B)(P +Q)
= {[relation algebra]}
¬P¬Q(AP ∪ AQ ∪ BP ∪ BQ)
= {[distributivity and commutativity of point sets]}
¬Q¬PAP ∪ ¬Q¬PAQ ∪ ¬P¬QBP ∪ ¬P¬QBQ

= {[definition of in with Q ⊆ ¬P , P ⊆ ¬Q and loose-freeness of R,S]}
¬Qin(R) ∪ {} ∪ {} ∪ ¬P in(S) .

To determine the first summand we calculate

in(R)
= {[neutrality of I]}
I in(R)
= {[relative complements]}
(Q + ¬Q)in(R)
= {[distributivity and definition of in]}
Q¬PAP + ¬Qin(R)
= {[Q ⊆ ¬P]}
QAP + ¬Qin(R)
= {[R,S arrow-closed and Lm. 4.5.2]}
QBP + ¬Qin(R) .

By Boolean algebra this is equivalent to ¬Qin(R) = in(R)−QBP . For this
we calculate further:

in(R) −QBP

= {[P ⊆ ¬Q and lattice algebra]}
in(R) −QB¬QP

= {[definition of out]}
in(R) − out(S)P
= {[definition of difference]}
in(R) ∩ out(S)P
= {[complement of restriction]}
in(R) ∩ (out(S) ∪ out(S)¬P)
= {[distributivity]}
(in(R) ∩ out(S)) ∪ (in(R) ∩ out(S)¬P)
= {[definition of difference and in]}

25

(in(R) − out(S)) ∪ (¬PAP ∩ out(S)¬P)
= {[restriction property (7)]}
(in(R) − out(S)) ∪ {} .

Altogether we have proved ¬Qin(R) = in(R) − out(S). Symmetrically one
shows ¬P in(S) = in(S) − out(R), which establishes the claim.

2. Again we only show the first claim, the second being symmetric.

(in(R) + in(S)) − (out(R) + out(S))
= {[definition of difference]}
(in(R) + in(S)) ∩ out(R) + out(S)
= {[Boolean algebra]}
(in(R) + in(S)) ∩ out(R) ∩ out(S)
= {[distributivity]}
(in(R) ∩ out(R) ∩ out(S)) + (in(S) ∩ out(R) ∩ out(S))
= {[Boolean algebra]}
(in(R) − out(R) − out(S)) + (in(S) − out(S) − out(R))
= {[disjointness of in and out of a graphlet (Def. 5.2)]}
(in(R) − out(S)) + (in(S) − out(R)) .

Now the claim follows from Part 1.
3. perimeter(R)∆ perimeter(S)
= {[definition of symmetric difference]}
(perimeter(R) − perimeter(S)) ∪ (perimeter(S) − perimeter(R))
= {[definition of perimeter]}
((in(R) + out(R)) − (in(S) + out(S)))+
((in(S) + out(S)) − (in(R) + out(R)))
= {[Boolean algebra]}
(in(R) − in(S) − out(S)) + (out(R) − in(S) − out(S))+
(in(S) − in(R) − out(R)) + (out(S) − in(R) − out(R))
= {[by Lm. 5.4.1 and Boolean algebra]}
(in(R) − out(S)) + (out(R) − in(S))+
(in(S) − out(R)) + (out(S) − in(R))
= {[by Part 1 and Boolean algebra]}
in(R + S) + out(S +R)
= {[definition of perimeter]}
perimeter(R + S) .

⊓⊔

Proof of Lm. 7.1. Let S be acyclic and fork-free. By properties of ∗ and +, the
first Dedekind rule, fork-freeness and isotony, properties of ∗ and + and acyclicity

26

of S with strictness:

S+S+ ∩ S = SS∗S+ ∩ S ⊆ S(S∗S+ ∩ S⌣S)
⊆ S(S∗S+ ∩ I) = S(S+ ∩ I) = {} .

The proof for join-freeness is dual. ⊓⊔

Proof of Th. 7.3.
Let points(R) = [u, v] and points(S) = [x, y] with [u, v]∩ [x, y] = {} and assume
the definedness conditions for R>>S. The property points(R>>S) = points(R)∪
points(S) is immediate from points(R >> S) = (R ∪ S) ∩ I and distributivity; it
also entails in(R >> S) = in(R) and out(R >> S) = out(S).

To show that R >>S is a line we first derive a detailed representation of (R∪
S)+. For abbreviation we set iR =df in(R) and oR =df out(R), and similarly
for S,T .

By v = tail(oR) and x = head(iS) we infer from oR = iS and oS ∩ iR = {},
together with fork-freeness of R and join-freeness of S, that oR = iS = {(v, x)} =
T , where T =df R ∩ S. Moreover, R and S satisfy SR = {} and RS = RT ∪ TS.
In the following diagram T is drawn in red:

R ∶ //● // ⋯ //● //

S ∶ //● // ⋯ //● //

From Lm. 16.4.2 we infer (R ∪ S)+ = R+ ∪ R+S+ ∪ S+. We continue with
the middle summand. By definition of plus, above property RS = RT ∪ TS
and distibutivity, definition of plus, splitting R∗ and S∗ with distributivity and
neutrality, idempotence of union

R+S+ = R∗RSS∗ = R∗RTS∗ ∪ R∗TSS∗ = R+TS∗ ∪ R∗TS+

= R+TS+ ∪ R+T ∪ R+TS+ ∪ TS+ = R+T ∪ R+TS+ ∪ TS+ .

Thus,

(R ∪ S)+ = R+ ∪ R+S+ ∪ S+ = R+ ∪ R+T ∪ R+TS+ ∪ TS+ ∪ S+ ,

which simplifies to R+ ∪ R+TS+ ∪ S+, since by definition of T we have T ⊆ R
and T ⊆ S and therefore R+T ⊆ R+ and TS+ ⊆ S+. Altogether,

(R ∪ S)+ = R+ ∪ R+TS+ ∪ S+ . (9)

Now we can prove acyclicity of R ∪ S by showing, according to Lm. 16.2,
asymmetry of (R ∪ S)+. By (9) and distributivity,

(R ∪ S)+ ∩ ((R ∪ S)+)⌣
= (R+ ∪ R+TS+ ∪ S+) ∩ (R+ ∪ R+TS+ ∪ S+)⌣
= (R+ ∩ (R+)⌣) ∪ (R+ ∩ (S+)⌣T ⌣(R+)⌣)
∪ (R+ ∩ (S+)⌣) ∪ (R+TS+ ∩ (R+)⌣)
∪ (R+TS+ ∩ (S+)⌣T ⌣(R+)⌣)
∪ (R+TS+ ∩ (S+)⌣) ∪ (S+ ∩ (R+)⌣)
∪ (S+ ∩ (S+)⌣T ⌣(R+)⌣) ∪ (S+ ∩ (S+)⌣) .

The first and last summands are {} by acyclicity and hence asymmetry of R and
S. For the remaining ones we use that the intersection of two graphlets is empty

27

if the intersection of their heads or of their tails is empty. For instance, using
the laws (8),

tails(R+TS+) ∩ tails((S+)⌣T ⌣(R+)⌣) ⊆ tails(R+) ∩ tails((S+)⌣) =
tails(R) ∩ heads(S) = {} .

For fork-freeness (join-freeness is symmetric) we use

(R ∪ S)⌣(R ∪ S)⌣ = R⌣R ∪ R⌣S ∪ S⌣R ∪ S⌣S .

The first and last summands are ⊆ I, since R,S are lines. For the second sum-
mand we have x (R⌣S)y iff there is a z with z Rx and z S y. This implies
z ∈ tails(R) ∩ tails(S). By the definitions, for open lines this intersection is
{greatest(R)}, and the only arrow starting in that point is the unique one in
oR∩ iS ; hence x = y. Hence R⌣S ⊆ I, as it should be. The third summand is the
converse of the second one and therefore also ⊆ I.

Connectedness holds, since by (9) it is immediate that points(R>>S) = [u, y],
where the interval is taken w.r.t. R ∪ S.

Finally we show associativity. We only need to check that R >> (S >> T) and
(R >> S) >> T have the same assumptions. Assume that R,S,T are arbitrary
pairwise point-disjoint graphlets and R>>(S >>T) and (R>>S)>>T are defined.
We calculate as follows.

assu(R >> (S >> T))
⇔ {[definitions]}
oS = iT ∧ oT ∩ iS = {}∧
oR = in(S >> T) ∧ out(S >> T) ∩ iR = {}
⇔ {[above formulas for in and out]}
oS = iT ∧ oT ∩ iS = {}∧
oR = iS ∧ oT ∩ iR = {}
⇔ {[logic]}
oR = iS ∧ oS = iT ∧ oT ∩ iR = {} ∧ oT ∩ iS = {}
⇔ {[inputs and outputs of open lines are singletons]}
oR = iS ∧ oS = iT ∧ (oS ∩ iR = {} ∨ oS = iR)∧
oT ∩ iR = {} ∧ oT ∩ iS = {}
⇔ {[distributivity]}
((oR = iS ∧ oS = iT ∧ oS ∩ iR = {})∨
(oR = iS ∧ oS = iT ∧ oS = iR))∧
oT ∩ iR = {} ∧ oT ∩ iS = {}
⇔ {[logic]}
((oR = iS ∧ oS = iT ∧ oS ∩ iR = {})∨
(oR = iS ∧ oS = iT ∧ oS = iR ∧ iR = iT))∧
oT ∩ (iR ∪ iS) = {}
⇔ {[second disjunct false by Lm. 5.4.6]}
oR = iS ∧ oS = iT ∧ oS ∩ iR = {} ∧ oT ∩ iR = {} ∧ oT ∩ iS = {} .

A symmetric derivation hows that also assu((R >>S) >>T) is equivalent to that
formula, and we are done. ⊓⊔

28

Proof of Th. 11.2.
1. For reflexivity we reason as follows. Assume assu(p) ∧ claim(p). Then re-

flexivity of ⊑ establishes p ≤ p.
For transitivity we suppose p ≤ q and q ≤ r, and assume assu(p).
– From p ≤ q we infer assu(q).
– From q ≤ r we infer assu(q).
– Now we assume claim(r).
– From q ≤ r we infer claim(q) ∧ q ⊑ r.
– From p ≤ q we infer claim(r) ∧ p ⊑ q.
– By transitivity of ⊑ we infer p ⊑ r.

2. By definition of ∼, p ≤ q holds trivially if ¬assu(p). The second claim holds
for arbitrary lax orders and their least elements.

3. By Part 2 it suffices to show p ≤ q for every non-erroneous p and faulty q.
However, this is immediate from the definition of ≤. The second claim holds
for arbitrary preorders and their least elements.

4. From Part 2 we know � ≤ �○p. Moreover, the definition of assu tells us that
assu(�○p) is false, since assu(�) is false, and again by Part 2 we obtain also
� ○ p ≤ p.
The second equivalence is shown analogously.

5. From Part 3 we know ⊺○p ≤ ⊺. Assume now that ⊺○p is non-erroneous, i.e.,
assu(⊺). From the definition of claim we infer

claim(⊺ ○ p) ⇔ claim(⊺) ∧ claim(p) ∧ ○-claim(⊺ ○ p) ⇔ false ,

since claim(⊺) is false by definition. Therefore ⊺ ≤ ⊺ ○ p is immediate from
the definition of ≤.
The second equivalence is shown analogously.

6. Immediate from (5).
⊓⊔

These proofs are also readily found automatically by Prover9 [19].

Proof of Th. 12.4. We only show the first claim; the second one is symmetric.
Assume assu(lhs), otherwise the refinement holds trivially. Then also assu(p),

assu(q) and assu(r). Then

TRUE

⇔ {[definitions of ○1 and ○2]}
○2-assu(p, q) ∧ ○1-assu(p + q,R)
⇔ {[modularity of ○1-assu]}
○2-assu(p, q) ∧ ○1-assu(p, r) ∧ ○1-assu(q, r)
⇒ {[assumption ○1-assu ⇒ ○2-assu]}
○2-assu(p, q) ∧ ○2-assu(p, r) ∧ ○1-assu(q, r)
⇔ {[modularity of ○2-assu]}
○2-assu(p, q + r) ∧ ○1-assu(q, r) .

29

From this we infer assu(rhs). Now assume claim(rhs), otherwise the refinement
holds trivially. By the definitions and associativity of + we have

val(lhs) = (val(p) + val(q)) + val(r) = val(p) + (val(q) + val(r) = val(rhs)
and hence also claim(lhs) ⇔ claim(rhs).

Moreover,

com(lhs)
= {[definitions]}
com(p) ∪ com(q) ∪ com(r) ∪ ○2-com(p, q) ∪ ○1-com(p + q, r)
= {[modularity of ○1-com]}
com(p) ∪ com(q) ∪ com(r) ∪ ○2-com(p, q) ∪ ○1-com(p, r) ∪ ○1-com(q, r)
⊆ {[assumption ○1-com(p, r) ⊆ ○2-com(p, r)]}
com(p) ∪ com(q) ∪ com(r) ∪ ○2-com(p, q) ∪ ○2-com(p, r) ∪ ○1-com(q, r)
= {[modularity of ○2-com]}
com(p) ∪ com(q) ∪ com(r) ∪ ○2-com(p, q + r) ∪ ○1-com(q, r)
= {[associativity and commutativity of ∪ and definitions]}
com(rhs) .

This establishes the claim. ⊓⊔

Proof of Cor. 12.5. Immediate from Th. 12.4 setting ○2 =df ○1. ⊓⊔

Proof of Th. 12.6. Assume assu(lhs), otherwise the refinement holds trivially.
This implies assu(p), assu(q), assu(r) and assu(s). Then

TRUE

⇔ {[definitions of ○1 and ○2]}
○2-assu(p, q) ∧ ○2-assu(r, s) ∧ ○1-assu(p ⊕ q, r ⊕ s)
⇔ {[modularity of ○1-assu]}
○2-assu(p, q) ∧ ○2-assu(r, s) ∧ ○1-assu(p, r) ∧ ○1-assu(p, s)∧
○1-assu(q, r) ∧ ○1-assu(q, s)
⇔ {[associativity and commutativity of ∧]}
○1-assu(p, r) ∧ ○1-assu(q, s) ∧ ○2-assu(p, q) ∧ ○1-assu(p, s)∧
○1-assu(q, r) ∧ ○2-assu(r, s)
⇒ {[assumption ○1-assu ⇒ ○2-assu]}
○1-assu(p, r) ∧ ○1-assu(q, s) ∧ ○2-assu(p, q) ∧ ○2-assu(p, s)∧
○2-assu(q, r) ∧ ○2-assu(r, s)
⇒ {[assumed symmetry of ○2-assu]}
○1-assu(p, r) ∧ ○1-assu(q, s) ∧ ○2-assu(p, q) ∧ ○2-assu(p, s)∧
○2-assu(R,Q) ∧ ○2-assu(r, s)
⇔ {[modularity of ○2-assu]}
○1-assu(p, r) ∧ ○1-assu(q, s) ∧ ○2-assu(p ⊕ r, q ⊕ s) .

30

From this we infer assu(rhs). Now assume claim(rhs), otherwise the refinement
holds trivially. By the definitions and associativity and commutativity of + ,

val(lhs) = (val(p) + val(q)) + (val(r) + val(s))
= (val(p) + val(r)) + (val(q) + val(s)) = val(rhs)

and hence also claim(lhs) ⇔ claim(rhs). Moreover,

com(lhs)
= {[definitions and associativity and commutativity of +]}
com(p) ∪ com(q) ∪ com(r) ∪ com(s) ∪
○2-com(p, q) ∪ ○2-com(r, s) ∪ ○1-com(p ⊕ q, r ⊕ s)
⊆ {[setting t =df com(p) ∪ com(q) ∪ com(r) ∪ com(s) and

submodularity of ○1-com]}
t ∪ ○2-com(p, q) ∪ ○2-com(r, s) ∪ ○1-com(p, r) ∪ ○1-com(p, s)∪
○1-com(Q,R) ∪ ○1-com(q, s)
= {[associativity and commutativity of ∪]}
t ∪ ○1-com(p, r) ∪ ○1-com(q, s) ∪ ○2-com(p, q) ∪ ○1-com(p, s)∪
○1-com(Q,R) ∪ ○2-com(r, s)
⊆ {[assumption ○1-com(p, s) ⊆ ○2-com(p, s)]}
t ∪ ○1-com(p, r) ∪ ○1-com(q, s) ∪ ○2-com(p, q) ∪ ○2-com(p, s)∪
○2-com(Q,R) ∪ ○2-com(r, s)
= {[assumed commutativity of ○2-com]}
t ∪ ○1-com(p, r) ∪ ○1-com(q, s) ∪ ○2-com(p, q) ∪ ○2-com(p, s)∪
○2-com(R,Q) ∪ ○2-com(r, s)
= {[modularity of ○2-com]}
t ∪ ○1-com(p, r) ∪ ○1-com(q, s) ∪ ○2-com(p ⊕ r, q ⊕ s) .
= {[associativity and commutativity of ∪ and definitions]}
com(rhs) .

This establishes the claim. ⊓⊔

Proof of Th. 13.2. We show modularity of ;-assu in its left argument; the case
of the right argument is symmetric.

For the proof it is convenient to transform ;-assu. We use the shorthands
P =df points(R),Q =df points(S) and A =df arrows(R),A =df arrows(R).

in(R) ∩ out(S)
= {[definitions]}
¬PAP ∩ QB¬Q
= {[restriction (7) and commutativity of point sets]}
¬PQAP ∩ QB¬QP

⇔ {[point-disjointness of R and S and Boolean algebra]}
QAP ∩ QBP

= {[restriction (7)]}

31

Q(A ∩ B)P .

Hence ;-assu(R,S) ⇔ Q(A ∩ B)P ∩ Dep = {}. Now we can adapt the proof
of Theorem 3.6 in [20] for our purposes, setting V =df points(T) and C =df
arrows(T):

;-assu(R + S,T)
⇔ {[definitions]}
V ((A ∪B) ∩C)(P +Q) ∩Dep = {}
⇔ {[distributivity, set algebra]}
V (A ∩C)P ∩ Dep = {} ∧ V (A ∩C)Q ∩ Dep = {}∧
V (B ∩C)P ∩ Dep = {} ∧ V (B ∩C)Q ∩ Dep = {}
⇔ {[by the definitions, and since Q ∩ P = P ∩ V = Q ∩ V = {},

hence V,Q ⊆ ¬P and V,P ⊆ ¬Q, therefore, by the assumption
of no loose arrows, VAQ = VBP = {}]}

;-assu(R,T) ∧ TRUE ∧ TRUE ∧ ;-assu(S,T) . ⊓⊔

Proof of Lm. 13.5.
1. in(R1 ∣∣∣R2)
= {[definition of ∣∣∣]}
in(R1 +R2)
= {[Lm. 6.3.1]}
(in(R1) − out(R2)) + (in(R2) − out(R1))
= {[+-assu(R1,R2) with Boolean algebra]}
in(R1) + in(R2) .

2. Analogous to Part 1.
3. hid(R1 ∣∣∣R2)
= {[decomposition property (4) and Boolean algebra]}
arrows(R1 ∣∣∣R2) − in(R1 ∣∣∣R2) − out(R1 ∣∣∣R2)
= {[Parts 1 and 2]}
(arrows(R1) ∪ arrows(R2)) − (in(R1) + in(R2)) − (out(R1) + out(R2))
= {[Boolean algebra]}
(arrows(R1) − in(R1) − in(R2) − out(R1) − out(R2)) ∪
(arrows(R2) − in(R1) − in(R2) − out(R1) − out(R2))
= {[Boolean algebra]}
(arrows(R1) − in(R1) − out(R1) − in(R2) − out(R2)) ∪
(arrows(R2) − in(R2) − out(R2) − in(R1) − out(R1))
= {[decomposition property (4) with Boolean algebra]}
(hid(R1) − in(R2) − out(R2)) ∪ (hid(R2) − in(R1) − out(R1))
= {[Lm. 5.4.1 and Lm. 5.4.2 with Boolean algebra]}
hid(R1) + hid(R2) .

⊓⊔

32

	Relational GeometryModelling Execution of Structured Programs

