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Abstract. In this note, we prove that below the first critical energy level, a proper
combination of the Ligon-Schaaf and Levi-Civita regularization mappings provides a
convex symplectic embedding of the double cover of the energy surfaces of the planar
rotating Kepler problem into R* endowed with its standard symplectic structure. This
convex embedding extends to the bounded component of the planar circular restricted
three-body problem around the heavy body outside a small neighborhood of the col-
lisions. This opens up new approaches to attack the Birkhoff conjecture about the
existence of a global surface of section in the restricted planar circular three-body
problem using holomorphic curve techniques.
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1. Introduction

The restricted three-body problem describes the motion of a massless
particle in the presence of two massive primaries whose masses we denote
by 1 — 1 and p, and which move along an orbit in the two-body problem.

In this article, we will consider the circular, planar restricted three-
body problem (RTBP), which means that we assume that the primaries
move in circular orbits around each other and the particle is coplanar with
them. Remarkably, with these assumptions, one can describe this problem
in proper uniformly-rotating coordinates with an autonomous Hamiltonian.
This Hamiltonian, sometimes referred to as Jacobi integral, is the function
H :T*R?\ {(—u,0),(1 — u,0)} — R given by

Sl f 1)

1
H(g,p) = 5lIpll* + (q1p2 — g2p1) — - '
(@p) = 3lPI" + (0P = @2p0) = = G51 ~ o=@ =m0yl

See [14, Chapter 5.1-5.3] for a derivation of this Hamiltonian. For a mass
ratio p € (0, 1), the Jacobi Hamiltonian has five critical points, commonly
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referred to as Lagrange points, see [14, Chapter 5.4] or [1, Chapter 10.2].
As explained in these references, three of these critical points have Morse
index equal to 1, and two of them have index equal to 2. Some references,
such as [16, Definition 7.6], refer to the critical points of index 1 as Euler
points (these are limits of three-body Euler central configurations when one
body becomes massless); we will follow the more conventional labeling as
Lagrange points. A detailed explanation of the relation of the Lagrange
points with the topology of the level sets can be found in [14, Chapter 5.4].
In this paper we will be concerned with level sets

{H=c)

where ¢ is smaller than the first critical value L;(u). In this case, the level
set

e i=H ()

has three components for p € (0, 1), all of which are non-compact and non-
convex. This is explained in Appendix A.

Our goal is to describe the dynamics on one of the components, namely
the one around the heavy primary by a conver Hamiltonian on R* and in
this paper we achieve this outside a small neighborhood of the collisions.
Note that such a description by a convex Hamiltonian is of great help in
understanding the dynamics, since convex Hamiltonians enjoy many good
properties. For instance, one can apply Morse theory as for example in Eke-
land’s book [11]. More recently, Hofer-Wysocki-Zehnder showed, using holo-
morphic curve techniques, that convex Hamiltonians admit disk-like global
surfaces of section [20]. We will review some recent results in this direction
in Section 4.

To find a description with a convex Hamiltonian, one needs a suitable
regularization scheme. For the Kepler problem, some of the best known
schemes are Levi-Civita, Ligon-Schaaf and Moser regularizations. The first
scheme directly provides a Hamiltonian defined on R* with level sets having
a component diffeomorphic to S3. Unfortunately, this component turns out
to be non-convex in general as was shown in [3, Theorem 1.2]. The other two
schemes also regularize collision orbits, but they compactify one component
of the level set to the unit cotangent bundle of S? rather than S3. Hence by
doing so we cannot obtain a convex set in R* since the unit cotangent bundle
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of S? does not even embed in R* as a topological manifold. Appendix D
of [8] contains three different proofs of this fact. For an older reference, see
Satz II from [21].

We will hence consider, similar to Levi-Civita regularization, the double
cover p : §3 — ST*S?, the unit cotangent bundle of the 2-sphere, but we
will use a different embedding i : S — R?* and a different Hamiltonian H,
than the one coming from Levi-Civita regularization. The embedding that
we construct has the following properties for p = 0.

e the image of the embedding i : S — R* bounds a strictly convex set.

e there is a Hamiltonian H, : R* — R such that i(S®) is a component
of H1(0)

e furthermore, the Hamiltonian vector field X projects under p to
the Hamiltonian vector field of the Ligon-Schaaf regularization.

Our strategy is the following. We first consider the limit case u = 0 of the
restricted three-body problem, which is just the rotating Kepler problem.
We show that the Ligon-Schaaf regularization scheme can be combined with
the Levi-Civita map and find that, for all energies below the first critical
value, a component of the level set of the rotating Kepler problem is strictly
convex. This is done by explicitly computing the Gauss-Kronecker curva-
ture, which turns out to be a polynomial that factorizes surprisingly well.
This allows us to show that the curvature is positive. Outside a neighbor-
hood of the collisions, the perturbing function is smooth, which allows us
to extend the convexity result to this case as well. Due to the singularity of
the perturbing function at the collisions we haven’t been able to show that
such a convexity result holds in a neighborhood of the collisions for small
w> 0.

To state the theorem, we introduce the following notation. Write 7 :
(q,p) — q for the footpoint projection, and define EZ,C as the component of

the level set X, . for which the closure of the projection Tr(wa) contains the

b
phe

containing the primary with mass 1 — . We write the 2-fold cover of ZZ,C
as iz,c. We then have

point (—pu,0). In more intuitive language, X7 . is the bounded component

Theorem A  For all ¢ below the first critical value L1(0) = —3/2 of the

rotating Kepler problem, there is an embedding map @ : ZSVC — R*, and a

Hamiltonian H, with the following properties:
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(1) the image i(f]&c) is contah}ed in a component of H='(c).

(2) the closure of the image (3 .) bounds a smooth, strictly convez set.

(3) the Hamiltonian wvector field Xy is tangent to i(f)g}c) and is a re-
parametrization of Xy in the sense that the local diffeomorphism p pulls
back the Hamiltonian vector field of H to a positive multiple of Xp ,

p*Xg =aXg fora>0.

Furthermore, the flow of Xg is complete.

In this theorem, the regularized Hamiltonian H, is actually the same
for all energy levels. For positive mass ratio u we have the following weaker
statement.

b
e

double cover iz’c can be reqularized, i.e. can be extended to a complete

flow on a compact manifold, which we denote by EN]ZTC Furthermore, for all
¢ < L1(0) = —=3/2 and for all e(c) > 0, there is uo(c) > 0 such that for all
w € [0,uo(c)], there is an embedding EZ,C \ Ueey = R*, where Ue(e) is an

Theorem B  After a proper time change, the flow on ¥ . and on its

e(c)-neighborhood of the set of collisions, and a Hamiltonian H, :R* 5 R
with the following properties:

(1) the image i(iz,c) is contained in a component of H='(c), and the flow
of X s complete on this component.

(2) the Gauss-Kronecker curvature ofz'(i]i’hc \ Ue(e)) is strictly positive.

(3) the Hamiltonian vector field Xz is tangent to i(f]fhc) and is a re-
parametrization of X g in the sense that the local diffeomorphism p pulls
back the Hamiltonian vector field of H to a positive multiple of X g ,

p* Xy =aXg fora>0.

In contrast to Theorem A, the regularized Hamiltonian of Theorem B
depends on ¢; this phenomenon also happens when using Levi-Civita regu-
larization and Moser regularization [26], [30].

Theorem A implies that the rotating Kepler problem is dynamically
convex up to the first critical value, see Section 4 for the definitions. In
particular, it reproves Theorem 1.1 in [3] avoiding direct index calculations.
Furthermore, for T" sufficiently large, Theorem A implies that for sufficiently
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small g > 0, the regularized bounded component is T-dynamically convex,
i.e. all periodic orbits with period smaller than 7" have Conley-Zehnder
index at least three. By the theory of holomorphic curves in symplectizations
as established by Hofer, Wysocki and Zehnder [20], this implies the following
corollary.

Corollary 1.1  There is a continuous function c(u) with ¢(0) = —3/2 such
that for all ¢ < ¢(u), the bounded component of the regularized, restricted
three-body problem around the heavy body, i.e. the flow of H, on i}z’;’:, admits
a global disk-like surface of section after reqularization.

Details are given in Section 3.1. This particular corollary was already
proved by McGehee with perturbative methods [29]. To motivate our alter-
native proof and indicate why one might care, we want to point out that our
line of reasoning can work for other mass ratios as well; for example, see [2]
or [28] for other work where convexity is applied to the restricted three-body
problem. By contrast, McGehee’s argument and also the argument in [3]
relies on having an explicitly integrable flow, which one does not have for
w> 0.

Seen from this point of view, Theorem A and Theorem B and the results
in [2] make it seem reasonable to try to prove the general Birkhoff conjecture
with holomorphic curves and convexity. This conjecture asserts that for all
mass ratios p € [0, 1) and for all Jacobi energy below Lj (i), the regularized
restricted three-body problem admits a global disk-like surface of section in
any bounded component of the energy hypersurface with double collisions
regularized. The Birkhoff conjecture is already a hundred years old, and we
briefly review some relevant background material in Section 4. The proof
of Theorem A is given in Section 2. In Section 3 we extend this to the
restricted three-body problem for small positive p outside a neighborhood
of the collisions, thus establishing Theorem B.

2. Proof of Theorem A: The rotating Kepler problem

In this section we will consider the Ligon-Schaaf regularization of the
rotating Kepler problem, which we pull back with the Levi-Civita map. By
computing the tangential Hessian, we will verify that this gives indeed a
convex energy surface in R*, which proves Theorem A. We first review
some special features of the rotating Kepler problem and the Ligon-Schaaf
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regularization.

2.1. A review of the Ligon-Schaaf regularization
The limit case g = 0 of the Jacobi Hamiltonian is known as the rotating
Kepler problem, given by the Hamiltonian

2
H(q,p) = ||l72H - ‘é” + (q1p2 — q2p1)-
This is the sum of the usual Kepler Hamiltonian in a fixed reference frame
with an angular momentum term (qi1p2 — g2p1) generating the rotation of
the reference frame. These two terms Poisson commute with each other, or
put differently, this problem is rotationally invariant. Hence the rotating
Kepler problem is completely integrable in the sense of Arnold-Liouville!.

We note that the Hamiltonian of the rotating Kepler problem is singu-
lar due to two-body collisions: these correspond to orbits t — (q(t),p(t))
with lim;_,4, ¢(t) = 0 for some ty,. We will now recall the Ligon-Schaaf reg-
ularization scheme as a way to regularize these collisions. Ligon and Schaaf
discovered their regularization mapping [27] (anticipated by Fock [12]) in
their attempt to understand the symmetries of the Kepler problem by the
theory of moment maps. This regularization mapping can also be thought
of as a global version of the Delaunay coordinate transformation. The some-
what mysterious properties of the Ligon-Schaaf regularization method still
continue to fascinate mathematicians, see for example [10], [18].

Let us define this regularization. We will do this for the general n-
dimensional Kepler problem, but shall only need the case n = 2 later. De-
note the cotangent bundle of the n-sphere S™ by

T =T*S" = {(u,v) € T*"R" ™ |jul| = 1,u- v = 0}
and the deleted cotangent bundle of S by
T" = {(u,v) € T;v # 0}.

The latter is sometimes called the Kepler manifold. Denote by P_ the subset

n the slightly generalized sense that the gradients of the integrals are linearly inde-
pendent almost everywhere rather than everywhere.
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of T*R™ with negative Kepler energy

2
1
Ho(p,q) = Il 1 <0

2l

and
T_ ={(u,v) € T*;u# (0,...,0,1)}.

To define the Ligon-Schaaf mapping, we put

¢ = _\/W<Q7p>v
u = (vV=2Ho(aplale. o]l 1)
v=(~llgll "¢+ (¢ p)p, ®) -

The vectors w and v are orthonormal vectors in R"*!, as can be checked
with a direct computation. We treat the vector w as the base point in S™
and the vector v as a unit cotangent vector at u. The Ligon-Schaaf mapping
is then given by

g P — T

r = (cos ¢)u + (sin @)v,

(q’p)'—> _;—sin U COoS Q)v
- —2Ho(q,p)(( o (eoso

It has been shown in [27], [10], [18] that this map is symplectic with respect
to both canonical symplectic structures on cotangent bundles. Furthermore,
it transforms Hy(p, ¢) into the “Delaunay Hamiltonian”

1
Hy=——.
202
2.2. Application to the rotating Kepler problem
As we will only study the bounded component of the Hill’s region (see
Appendix A for a quick definition and overview) in which all motions are
bounded, and thus with negative Keplerian energy, we may well restrict the



294

rotating Kepler problem

Ipl*> 1
= — o + (@p2 — @2p1)
2 lql
to P_, as its dynamics is the composition of the dynamics of Hy composed
with a rotation. With the mapping ®¢, the Hamiltonian H is transformed
into

1
Hr =———5 t (7’182 — 7"281).
2|s[?

Both terms —ﬁ and 1189 —ras1 of H,. extend smoothly to the north pole
(0,...,0,1) of S™ which represents the collisions, and the extensions are thus
smoothly defined on T*.

On the other hand, in terms of the semi major axis a and the eccentricity
e of the elliptic orbit, the Keplerian energy takes the value Hy = —i, with
the norm of the angular momentum |p;g2—p2q1| = /av'1 — e2. Moreover, as
the bounded component of the Hill’s region lies inside the circle {||¢|| = 1},
for all elliptic motions in this component we have ¢ < 1. In conclusion, in
the bounded component, we have

|rise —rasy| < ||s|| < 1.

From now on, we shall only consider the planar problem with n = 2.
We have

T*S? = {(r1,7r2,73, 81, 2, 83) € R3 x R3; vl =1,7-s=0}

a point (r1,r2,73, 81, S2,83) which is projected by stereographic projection

to
(r1,22,Y1,Y2) € R2xR?2~2CxC> (x =21 +ixe,y = y1 + iy2)
such that
||:EH2+1 = _ 2.1,‘12
§10 = | 21—~ — Re(zy) - x s3 = Re(x 2= 5,
1,2 ( 5 Y1,2 (Zy) - 21,2 3 (Zy) 1,2 2l + 1
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with the north pole projected to “the point at infinity” co. A computation
shows that

(ll* + 1)
4

Is|* = lyll?  ris2 —res1 = z1y2 — 2oy

Having in mind the switch in positions and momenta in the Moser regular-
ization, see [30], which served as an intermediate step in Heckman-de Laat’s
interpretation [18] of the Ligon-Schaaf regularization, we take the following
as our Levi-Civita mapping (conformally symplectic with a factor of 4)

G :T*(C\0) - T"C (z,w) = (x = w/Z,y = 22%)

which can be smoothly extended to a mapping T7*C\{(0,0)} — T*(CU{oo}).
The pull-back of H, by & thus reads

- 1
H, =¥, H, = —
ke 2([lwll* +11=112)

5 + 2(w1z2 — waz1)

By the Ligon-Schaaf construction, see [27], [18] and [14, Chapter 4.3], and
the fact that Levi-Civita regularization is a conformal symplectic map with
constant factor 4, this Hamiltonian satisfies the claimed property (3) of
Theorem A.

The corresponding energy level with energy c is therefore

1
r.= {— + 2(w1z9 —wezy) = c}.
2(flwl? + [12]1)?

Note that the angular momentum is 2(wj 2o — wa21).

To verify property (1) of Theorem A, we make the following observa-
tions.

e By Proposition A.1, we know that H~1(c) N P_ has two components,
Eg’c and X . N P

e The set H,!(c) has two components, namely one component corre-
sponding to the regularization of 2876, and one component homeo-
morphic to X5 . N P—. We will call the regularized component Eg’;.
As a topological space, 28’; is homeomorphic to RP3.

e The map ®r¢ is a 2 — 1-covering map.
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=b —1 /b :
e The cover (X, := (I)Lé(EO:Z)7<DLC|§~Jg’T) is a connected cover. To

see this, consider a point of the form (z,0) € f)gz Then the path
t — (e™2,0) connects (2,0) to (—z,0), showing the claim.

e The same argument shows that 35 .M P_ has a connected cover, so I'.
has two connected components?, one compact (diffeomorphic to S?)
and one non-compact.

The fourth point shows that property (1) holds.

For property (2), we would like to understand if the bounded component
I'p,. (which corresponds to 2870) of T'. bounds a convex domain in C2. In
order to show this, we calculate the Gauss-Kronecker curvature of I'g . and
we show that this curvature is positive, which then implies that I'g . bounds
a convex domain in C? (see e.g. [14]).

For this purpose, it is enough to calculate the Hessian of the function

Fi= 1+ 4(wizg —woz1) ([w]* + [[2%)* — 2e([lwl® + [|2]%).

restricted to the tangent space of I'g. and show that its determinant is
positive. The set T, is just the pre-image F~1(0) of 0.

To determine the normal direction of points on I'., we calculate the
gradient VF' of F. We have

VE = (([wl® +121*)g1, (Il + [121%) g2, (1wl + 121%)gs, (lwl]]® +[]*)g4)
with

g1 = —4w%w2 + 16wy 2129 — 4w§’ — 20’[1]22% — 4wgz% — 8¢z

g2 = 4w‘(13 + 4w1w§ + 4wlzf + 20wlz§ — 16w9gz129 — 8czy

g3 = 2010%252 — 16w waze + 4w§zz + 4zfzz + 4z§’ — 8cwy

g4 = —4w%zl + 16w woze — 20w§zl — 4zi)’ — 42123 — 8cws.

Note that we may naturally identify (g¢1,92,93,94) with the quaternion
g = g1 + g2t + g3j + gak. With this identification, we may thus find an

2For the restricted three-body problem one can, depending on the energy level, also
get additional non-compact components around the other primary whose covers are not
connected.
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orthogonal frame of TT . by (right) multiplications with the quaternions
1, J, k. Specifically, we may choose

v1 = (—92,91, 94, —93) = g - i
Vo = (—93,—94,91,92) = G- J
v3 = (—9g4,93,—92,91) = g - k.

to form a basis of the tangent space at the point (wq,ws, 21, 22) provided
the gradient

VEF = (|wl* +121*)(91, 92, 93, 94)

is non-vanishing. We now calculate the determinant DH of the restricted
Hessian of F' to the tangent spaces of I'g . and show it is positive. Note that
this will also imply that VF' is non-vanishing. Using the matrix representa-
tion (vy, va,v3)T Hess(F)(vy, v, v3) for the tangential Hessian up to a factor
of ||g]|®, we directly compute the determinant

DH = Det((vl, va,v3) T Hess(F) (v1, vg, vg)).

This gives a somewhat unwieldy polynomial expression, which we will not
write out here. Instead, we give the factorization of this multivariate poly-
nomial, which can be obtained manually, as we shall do in Appendix B,
or with a computer algebra program, such as Maple 18. The results we
obtain either way agree of course. Indeed, in terms of a = |w||? + |22,
b = w129 — z1w2 and ¢, we find the factorization

DH = 524288a° f1 fo f3 /2

where
fi=—2c+a+4b
fo=—2c—a+4b
f3 = —4c® + 28bc? — (88b* — 7a?)c + 96b% — 15a°b
f1 = 4c® — 24bc + a* + 3207,
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Remark 2.1 Computer algebra programs include a multitude of factor-
ization algorithms. Some simple versions of these algorithms are detailed in
[15]: these algorithms have a completely mechanical nature. The derivation
in the appendix relies more on ad hoc substitutions.

With the conditions 2[b] < a < 1 and —¢ > 3/2, it is direct to see that
f1>0,f2>0,f>4(3b—¢)* > 0.

We now show that under the same conditions, we also have f3 > 0. For
this, we substitute the relationship b = ﬁ + ¢/2 among a,b and ¢ in the
expression of f3 and get

12¢2a* — 2¢a® — 15a8 + 14ca? + 6
Js = 4ab '

In this expression the numerator is a quadratic function in ¢, whose graph
“6
is a parabola opening upward with as axis of symmetry the line ¢ = —71575“2.

For a* > 7/18, we have

< <
1242 12a2

7—al 7 3
2 )

and hence this quadratic function is monotonically decreasing for ¢ < —3/2.

Its evaluation at ¢ = —3/2 reads

3a® — 15a° + 27a* — 21a® + 6 = 3(a* — 1)*(a* — 2)

which is clearly positive for 0 < @ < 1. For 0 < @ < 7/18, we find that the
7—a’

evaluation of the numerator of f3 at ¢ = — 555 reads

a'? 83a5 23

12 6 12

which, as a quadratic equation in @, is seen to be monotonically decreasing

when a% > 0. Moreover, its evaluation at a®> = 7/18 is seen to be positive
(it is approximately 1.1028). This shows that f5 is also a positive factor in
the factorization of DH.

We have thus obtained the conclusion that I'g . bounds a convex domain
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for any energy ¢ up to the first critical value —3/2. This proves Theorem A.

3. Proof and Discussions on Theorem B

To prove Theorem B, we will use that strict convexity is an open prop-
erty, i.e. it is preserved under small perturbations. Unfortunately, the above
construction involving the Ligon-Schaaf and Levi-Civita maps cannot be ex-
tended directly to perturbations of the rotating Kepler problem due to lack
of smoothness of the perturbation term after Ligon-Schaaf regularization,
and we are forced to leave out a neighborhood of the collisions.

Indeed, the Ligon-Schaaf regularization procedure does not involve a
change of time parametrization, so we see directly that the Delaunay vari-
ables (L,l, G, g), defined by

L=\/a circular angular momentum
l mean anomaly

G = £LV1 —e? angular momentum, sign determined
by the direction of motion

g argument of pericentre,

serve as a set of local coordinates in a neighborhood of collisions for the
Ligon-Schaaf regularized (rotating) Kepler problem. A recent, detailed de-
scription of the Delaunay coordinates can be found in [1, Chapter 9.3] or in
[32, 36]. The variables L, G, g depend only on the Keplerian orbit, and thus
extend smoothly through collisions. The angle [ now agrees with an angle
parametrizing the great circle orbit of the geodesic flow on T and there-
fore extends smoothly. The neighborhood should be chosen not to contain
circular motions on which the Delaunay variables are not all well-defined.

Now note that in the restricted planar circular three-body problem with
mass ratio 0 < p < 1, the Hamiltonian of the system can be decomposed
as Ki_, + P, where the rotating Keplerian Hamiltonian K;_, with mass
1 — p reads

_ lpl?

Kl—u: 9

1—p
+ (q1p2 — @2p1) — Tl

and the (singular) perturbation is given by
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W
P=—ppy— 1.
llg — 1

A couple of observations are in order.

Lemma 3.1 After the Ligon-Schaaf mapping and Levi-Civita requlariza-
tion, the bounded component of the rotating Kepler Hamiltonian with mass
1 — w is convex below its critical value.

Proof. Indeed, apply the linear transformation fi_, : (¢,p) — ((1—p)'/3q,
(1 — p)'/3p). This map rescales the symplectic form and the Hamiltonian
by a constant. In particular, level sets of K;_, are transformed to level sets
of K1, at a different energy level. The formula is K;_, o fi—_,(q,p) = (1 —
1)?3K1(q,p). As the level sets of the latter are convex after the procedure
we described, so are the level sets of K;_,. Il

The second observation concerns the non-smoothness of the perturba-
tion term at collisions near ¢ = 0.

Once we switch to the Delaunay variables for the above-mentioned Ke-
pler Hamiltonian, the dependence of the function P in the perturbing func-
tion on the mean anomaly [ is not smooth at the collisions. This can be
seen by the fact that the perturbing function is an analytic function of the
Delaunay variables (L, G, g) and the eccentric anomaly u, via

q=¢€"(a(cosu —e) + iay/1 — eZsin u),
with
a=1L1°% e= \/IfGQ/L
We get from the Kepler equation
l=u—esinu

that

dl
—zl—ecosu:M,
a

du

which does not have a smooth inverse at the collisions ||g|| = 0.



301

To make an extension to the collision locus at ¢ = 0 possible, it is
necessary to change time from ¢ to s according to the relation dt/ds = ||q||.
Making this Hamiltonian on a fixed energy surface is a standard procedure
going back to Poincaré, [31] and a more recent description can be found in
[30]. For completeness, we include this procedure here.

On a fixed energy surface { H —c¢ = 0}, we multiply the shifted Hamilto-
nian H —c by ||¢|| to obtain the new Hamiltonian ||¢||(H —¢). The associated
Hamiltonian vector field gives rise to a smooth reparametrization of the flow
on {H — ¢ = 0} outside ||¢q|| = 0; the reparametrization is singular on the
collision locus at ¢ = 0. We can now regularize the collisions by pulling back
this Hamiltonian ||¢|[(K1-, + P — ¢) under the Levi-Civita regularization

mapping

Grc:T*(C\0)—T"C (z,w) = (p=w/z, q = 22°)

The resulting system is

K,«eg = (I)EC<H2qH(K1M + P — C))
HwHZ 2 2 2 2 1—p
=5 —cllzll” + 2=l (zrwe = zawn) +[2]7P(27) = ——

Note that ||z]|2?P(2?) is a smooth function of z near the regularized point
z = 0, so this Hamiltonian is smooth on a neighborhood of z = 0. The
non-smooth points of H correspond to z = 1 and any w. For the energy
range that we consider, namely c less than the first critical value, we see
that these points do not lie in the closure of the connected component of
interest. We refer to [14, Chapter 5] for a detailed discussion of the topology
of level sets of the restricted three-body problem. The upshot is that we
may now extend the flow of the hypersurface {K,., = 0} through {z = 0}
to get a regular flow, meaning a flow generated by a non-vanishing vector
field, on a closed manifold.
With this in mind, we conclude.

Proposition 3.1  On its zero-energy surface, the Hamiltonian system de-
fined by the Hamiltonian @7 ~(||q||(K1-,+P—c)) extends to a reqular system
through collisions.
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Finally, as the Ligon-Schaaf regularization mapping ®rg is a symplec-
tomorphism from P_ to T_, and outside a neighborhood of the collisions,
®r5 and @Z}g have bounded C? norms. Thus outside the image of this
neighborhood, ®,5(2, ) is a smooth O(u)-deformation of ®15(Z¢ ). In
particular, this image is therefore also convex for p > 0 small enough. This
proves Theorem B.

3.1. Proof of Corollary 1.1

We first give a proof of the statement using known facts from the litera-
ture. Following [3] or more classically [31], there is a smooth family of peri-
odic orbits (yo,c, 7c) parametrized by ¢ consisting entirely of non-degenerate
orbits for ; = 0, known as retrograde periodic orbits. For fixed ¢, the or-
bit 7, has strictly minimal action® on the energy hypersurface igz Since
non-degeneracy is an open condition, this family can be extended to small,
positive p: we write this two-parameter family as (v, ¢, 7u,c). The property
of minimal action of each 7, . on each energy hypersurface ZNIZTC also remains
true, provided g is sufficiently small and ¢ < Lq(u). Combining these ob-
servations we obtain pg, and c(u) such each p € [0, uo] and ¢ < ¢(p) lies in
the Birkhoff set B as defined in [14, Chapter 8.3.3]. To extend this func-
tion to larger p, we observe that if ¢ is very negative, then the Levi-Civita
Hamiltonian is a convex function on a small ball as can be shown with the
methods of [2]. Applying Theorem 4.3 and Theorem 4.1 gives us then a
global disk-like surface of section for f]Z:’"c provided ¢ is very negative. On
the other hand, we can apply the proof of [14, Corollary 17.1.4] to obtain a
global disk-like surface of section for fJZf: as long as ¢ < ¢(p) and p < pp.
After extending the function ¢(p) while combining the two statements, we
obtain the claim of the corollary.

3.1.1 Sketch of an alternative argument using the convexity re-
sult

As in Theorem A we denote the the double cover of EZ,C C H 1(c) by

ifw' After regularization, Theorem B gives us a Hamiltonian H, : R* — R.

For ¢ < Li(p), the level set H-'(c) has a compact component EZ’L and

the embedding ¢ constructed in Theorem B sends 2276 into this compact

b,
component X »7.

3Recall that the action of a periodic Reeb orbit (v,7) of a contact form « is given by
T %
0 Yo
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For ;4 = 0 we can directly apply Theorem 4.1 and the methods involved
to obtain a finite energy foliation of the symplectization of 282 In par-
ticular, we obtain a binding orbit vy with period Ty (for a Reeb orbit the
period equals the action). By the remarks following Theorem B, we know
that all periodic Reeb orbits with period less than a sufficiently large pe-
riod bound 7' (note that T can be increased arbitrarily by decreasing the
parameter €(c)) have Conley-Zehnder index at least 3. We choose T' > 27Ty,
so by non-degeneracy of the so-called retrograde orbit (as classically proved
in [31]; see [3] or [14] for more modern expositions), we know that this set
of orbits is non-empty, i.e. there are periodic orbits with index at least 3 for
sufficiently small p > 0. We now push this finite energy foliation obtained
for i = 0 to positive p. No breaking to orbits of index less than 3 can occur
for action and energy reasons following the arguments of the proof of [14,
Theorem 16.3.1]. We once again obtain a finite energy foliation, and the
same arguments as in proof of [14, Corollary 17.1.4] imply the existence of
a global disk-like surface of section for the regularized problem, i.e. for the
flow of IEIT.

Remark 3.1 This rather complicated argument has the advantage that
it could potentially be applied to other setups.

4. Outlook: The Birkhoff conjecture

Birkhoff writes on page 328 of his seminal work on the restricted three-
body problem [5]

“This state of affairs seems to me to make it probable that the re-
stricted problem of three bodies admit of reduction to the transfor-
mation of a discoid into itself as long as there is a closed oval of zero
velocity about J(upiter) ...”

In modern mathematical language, “a transformation to a discoid” is
referred to as the existence of a disk-like global surface of section. The as-
sumption that there is a closed oval of zero velocity means that a bounded
component of the restricted three-body problem for energies below the first
critical value is considered. When Birkhoff referred to the restricted three-
body problem, he assumed that it is regularized by Levi-Civita regulariza-
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Figure 1. The gray-shaded regions indicate the parameters (u,c), where the
Birkhoff conjecture is known. Note that explicit values are not known, except
for p = 0. We don’t know whether there is any positive p for which the Birkhoff
conjecture is known up to the first critical value.

tion.* Therefore, when the energy is below the first critical value, the two
bounded components are each diffeomorphic to a three dimensional sphere.

For small energies the Birkhoff conjecture is proved by Conley [9] and
Kummer [23] for all mass ratios.

For sufficiently small mass ratios it was shown by McGehee in [29] that
the Birkhoff conjecture holds true in the connected component around the
heavy primary for an arbitrary energy below the first critical value. More
precisely, he explicitly constructed a disk-like global surface of section for
the rotating Kepler problem for Jacobi energies ¢ < —3/2. For small p > 0,
McGehee showed that there is a continuous function ¢(u) with ¢(0) = —3/2
such that for all ¢ < ¢(u) there is a deformed disk-like global surface of
section for the restricted three-body problem with mass ratio p and Jacobi
energy c. That similar results hold as well around the light primary was
shown by Albers, Fish, Frauenfelder, Hofer, and van Koert in [2]. Figure 1
summarizes the parameters u, ¢, where the Birkhoff conjecture is known to
hold.

The proofs by Conley, Kummer and McGehee used perturbative meth-

4Levi-Civita published his paper on the regularization [26] in 1920, but had already
announced his result in ICM 1904 [25]. Birkhoff referred to this regularization in his
introduction. Goursat already anticipated this in the paper [17] published in 1887.
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ods. By contrast, the proof in [2] is non-perturbative in nature. It uses global
methods of modern symplectic geometry, namely the theory of holomorphic
curves in symplectizations, due to Hofer [19] and Hofer-Wysocki-Zehnder
[20]. Perturbative methods are only applicable if the system considered is
close to a completely integrable system. This holds for small energy val-
ues, where the restricted three-body problem is a perturbation of the Ke-
pler problem, and for small mass ratios around the heavy primary, where
the restricted three-body problem is a perturbation of the rotating Kepler
problem. However, for higher energies and higher mass ratios perturbative
methods do typically not apply. We hope and expect that holomorphic
curves will be the right way to attack the Birkhoff conjecture. For more
information on the relation between the Birkhoff conjecture and the theory
of holomorphic curves, we refer to [14].

In order to construct a disk-like global surface of section via holomorphic
curves, the question about the existence of a convex embedding becomes
crucial. The reasons are as follows. In [20], Hofer, Wysocki, and Zehnder
proved the following result

Theorem 4.1 (Hofer-Wysocki-Zehnder) Assume that ¥ is a closed star-
shaped hypersurface in R* endowed with its standard symplectic structure. If
> is dynamically convex, then ¥ admits a disk-like global surface of section.

Here a starshaped hypersurface in R* is called dynamically convex if the
Conley-Zehnder index of each closed characteristic is at least three. In [4],
Albers, Frauenfelder, van Koert and Paternain proved that the Moser regu-
larization of each bounded component of the restricted three-body problem
for energies below the first critical value is fiberwise starshaped. This implies
the following result.

Theorem 4.2 The Levi-Civita embedding of each bounded component of
the restricted three-body problem for energies below the first critical value is
a starshaped hypersurface in R*.

Proof. The argument that follows can also be found in [14, Chapter 4.2].
From [4] we know that the Liouville vector field X = ¢ - a% is transverse to
the energy hypersurface of RTBP. Recall that the Liouville vector field X
solves the equation

LXWe = A,
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where w. and \. are the canonical symplectic form and canonical 1-form,
respectively. Due to the switch map from Moser regularization, the roles of
q and p are reversed, so these differential forms are given by

we =dg Ndp, A.=q-dp.
In complex coordinates we can write
Ae = %(qdﬁ)

Pulling back A. under the Levi-Civita regularization with y = ¢ and x = p
gives us

LoAe = R(2zdw — 2wdz).

This is 4 times the standard Liouville form on C2. We hence also have
7 owe =43 dzj Adwj, and we see that the pullback of X under the local
diffeomorphism & is the standard starshaped vector field

ZZAiﬂu.i
]8,2]‘ Jawj

J

It follows that the Levi-Civita embedding is a starshaped hypersurface in
C? @ R%. O

In view of these results, in order to prove the Birkhoff conjecture, it
suffices to show dynamical convexity for each bounded component of the
restricted three-body problem for energies below the first critical value.
However, to check dynamical convexity directly by first determining all
closed characteristics, and then figuring out their Conley-Zehnder indices
is in general not feasible. Instead of that, the following result of Hofer-
Wysocki-Zehnder from [20] gives a much more handy approach (though
other possibilities exist, e.g. [22]).

Theorem 4.3 (Hofer-Wysocki-Zehnder) — Assume that ¥ C R* is a closed

strictly convex hypersurface. Then X is dynamically convex.

This theorem explains the term ”dynamical convexity”. While dynami-
cal convexity is a symplectic concept in the sense that it is preserved under
symplectomorphisms, the notion of convexity is not. For a convex hyper-
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surface in R* there might well be a different starshaped embedding which is
not convex.

Dynamical convexity of the rotating Kepler problem was proved already
in [3] where it was also shown that the Levi-Civita embedding is not always
convex for all energies. This result prompted the question if the rotating
Kepler problem leads to an example of a dynamically convex hypersurface
which does not admit a convex embedding at all. Theorem A answers this
question in the negative. We mention here a recent result due to Chaidez
and Edtmair, [6], which asserts that there are dynamically convex contact
forms on S that do not admit a convex embedding into R*.

We conclude this section with some other evidence for the Birkhoff con-
jecture.

(1) The Levi-Civita regularization of the restricted three-body problem is
convex for a wide range of mass ratios and energies. This can be seen
rather directly for very small energy. However, as was shown in [2] it
also holds for energies close to the first critical value provided p is close
to 1.

(2) Numerically, we can verify the positivity of the tangential Hessian of
the Levi-Civita regularization on a cover of the energy hypersurface.
We then find that the Levi-Civita regularization seems to be convex for
a wide range of energies. However, the Levi-Civita embedding does fail
to be convex for energies very close to the critical energy when the mass
ratio p is close to 0.

(3) Again on the numerical side, it seems possible to adapt a shooting ar-
gument by Birkhoff into a numerical method to find periodic orbits
carrying a certain reflection symmetry, to construct a parametrization
of the retrograde orbit and a direct orbit. These orbits link as Hopf
fibers, and numerical evidence suggests that it is possible to construct
a global disk-like surface of section from these orbits.

The existence of a global surface of section reveals a lot about the orbit
structure; it allows one to study the full dynamics with the globally defined
return map, which can be shown to be conjugated to an area-preserving
diffeomorphism. Since a lot is known about the dynamics of such maps, see
for instance [13], [24], this provides ample means to better understand the
dynamics.
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Appendix A. Properties of the components of the unregularized
and regularized problem

We consider the unregularized Jacobi Hamiltonian from Equation (1),
which we rewrite as

L—p 7
g+ (w0)  flg— 1 —p0)

J:<(1) —01>.

e 1%
lg+ (0 llg— (1 —p0)

1 1
H(g,p) = 5lp+ Jql|* - H - §||q||2,

where we have defined

We call

Ulq) =

1 2
~ Slal

the effective potential. We make the following observation: if x = (¢,p) €
H~1(c), then we have

p=-Jq+2(c-Ulq) (Zﬁfi)

for some ¢ € [0,2). We call the set {g € R? | c—U(q) > 0} the Hill’s region.
By the above observation, we see that H~!(c) has as many components as
the Hill’s region. By [5, Section 7] or [14, Chapter 5.5, the Hill’s region has
three components for ¢ < L;(p). We denote them as follows.

e we write R® ., for the bounded component of the Hill’s region whose
closure contains the point (—pu,0)

e we write RS ,, for the bounded component of the Hill’s region whose
closure contains the point (1 — y, 0).

e we write R* for the unbounded component.

We write the corresponding components of H~!(c) as EZ’;”, EZ’}C_'“ and

Y7 oo In the introduction we restricted ourselves to EZ’;”, which we more

briefly denoted by EZ,C. We claim that all of these components are non-
compact.
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e for 3 ., this follows from the observation that the g-coordinates on

¥, ot for example we may consider the sequence

() - mmmm ()

which is contained in X} . and has unbounded ¢ coordinates.

o for X574 and X1 7# we can take the same formula, but we need to
replace n by —pu + 1/n and 1 — p + 1/n, respectively. This gives us
sequences ZZ’;“ and EZ*}C_“ collapsing into the singularity at (—pu,0)
and (1 — p,0). In both cases the p coordinate diverges.

We verify non-convexity of each of these three components of H~!(c).
For this, we note that for ¢ < Li(u) and p € (0,1), the equation

U(z,0)=c

has six distinct solutions. We order these solutions as x1 < 29 < 23 < x4 <
r5 < Tg.

e observe that (x1,0) and (zg, 0) lie in the boundary of R*. This gives us
points ((4,0); (0,2;)) € 0%} . for i = 1,6. However, the line segment
is not contained in H~!((—o0, ¢]) nor is it contained in H~!([c, 00)).
Indeed, the line segment is not contained in the domain of definition
of H.

e the same argument can be applied to the points (x3,0) and (x3,0),
which lie in the boundary of EZ’;“.

e similarly, this argument works for the points (z4,0) and (x5, 0).

This shows non-convexity of all three components.

Remark A.1 The above argument constructs a line segment going
through the singularity of H to show non-convexity. This is not the only
way to see non-convexity, and alternatively, with more work we can compute
the tangential Hessian to reach the same conclusion.

A.1. The rotating Kepler problem
We consider the limit case 4 = 0. In this case, the Jacobi Hamiltonian
reduces to
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1 1 1
H(g,p) = 5llp+Jq|* = 7 — 5 llall?,
and the simpler effective potential
1 1
Ur(q) = — i — 5llall*
lg+(0,0)] 2

The same analysis as we did above for p € (0,1) yields the following. The
equation

Uk(z,0) =c
has four distinct solutions for ¢ < L;(0) = —3/2, which we order as x; <
ro <0 < x3 < xy. We have r1 = —x4 and z9 = —x3.

o for ¢ < L1(0) = —3/2 the set {¢g € R? | ¢ — Ux(q) > 0} has two
connected components. We write the bounded component as R’. We
have

Rb = {q e R?||q|| < x3,q# (0,0)}.

The unbounded component is
R*={q € R*| [lgl|l > z4}-

e similar to our earlier analysis, we have corresponding connected com-
ponents of H~1(c). These are ZS’C and g . corresponding to R and
R™, respectively.

e for non-convexity of any set bounded by 35 . we consider the points
((x1,0);(0,21)) and ((x4,0);(0,24)). The line segment connecting
these points goes through the origin in R* which, as before, is a
singularity of H.

e for non-convexity of any set bounded by 2876 the same argument
applies to the points ((z2,0);(0,22)) and ((x3,0); (0, x3)).

We summarize the above and add a little additional information in the
following proposition.

Proposition A.1  Forc < L1(0) = —3/2, the rotating Kepler problem has
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two connected components, namely 28’6 and 3¢ .. This statement remains
true if we restrict H to P_. In fact, we have E&CHP_ = 2876 and X . P_
s connected.

Proof. We have shown the first assertion in the above discussion. For the
second assertion, we note the following

o if (q,p) € ¥f ., then [|¢|| < 1, since ¢ < L1(0) = —3/2. It follows that
|L| < 1 (for example by combining Formula 3.8 from [14] with the
bound on ||g||)). We see that the Kepler energy % ||p||*—1/|lq|| < —1/2
for points in 3§ ., so £f .NP_ = Xf .

e we show that 3§ .NP_ is path-connected. Take a point z in ¥ .NP_.
We find a curve in ¥ .N P_ connecting z to #” in a standard position
we define below. To do so, we first note from the above discussion
that

o= (a-sa+ Vo= T@) (Gt )

for some ¢ € [0,27). The angular momentum at z is
t

L@ﬂ—<¢J+»0@—IH®)c$§)>Jq

—llgll* + v/2(c — U(q))(q1 sin ¢ — go cos ¢).

We will construct curves with constant Jacobi energy ¢ along which
angular momentum increases. This means that the Kepler energy de-
creases, so the curves lie in Xf . N P_. As a first step, we choose a
curve starting in & with constant ¢, and for which ¢ changes monoton-
ically, increasing L. The maximum angular momentum for constant
q is achieved at

o = (o )

By construction, the curve connecting z to 2’ lies in 3§ . N P_. Now

)

we choose a curve rotating ¢ to the standard point ( ”g” ) The Kepler



312

energy is fixed along this curve, so this curve lies in ¥ . N P_, too.
We end up with a point in standard position

o= () (vae= oty - la) s (5))

If we consider any other point y in X .M P, we can bring this point

into standard position, too,

v = (M) (vare=otaron - ) 7 () )

Without loss of generality, we can and will assume that ||| > ||¢||-

Connect z” to y” via a curve with increasing ||¢||. From the above
form for the angular momentum, we see that the angular momentum
is increasing along such a curve, so it lies in 35 . N P—. We conclude
that X5 . N P_ is path-connected. O

Appendix B. Factorization of DH by hand

The factorization of DH can be done manually. The approach here was
outlined by the original referee of an earlier version of the paper. Set

1

1 .
a:§||w”2+§||z||2a ﬁ:<lw7'z>7 726/25 W:B—%

and
1 1
5= Slwl? = S22 €= (w,2)
so that
e +06%=a%- B2

We set x = (w,2)2w+2j € C22H and p : C?2H — C? = H is the
involution p(w, z) = (w, —z). We have

(x,p(x)) =26, (x,p(x)-i) =0, (x,p(x)-j) =26 (xp(x) k) =25.
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Therefore by rescaling by a factor of 1/16

1
F(x) = —— + d*w, g(x) = 2wx + ap(x) - k.

16
We thus have
(v, p(x) - k) = —%(v,x), ve Tyl (*)
and
(v1,x) = 2ae, (vg,x) =0, (v3,x) = —2ad. (**)

Moreover introduce
1
Q4 1= %HQHQ =a’®+ 4(w2 + wp),

which is just f4 below, up to some constant.
Differentiating g in the direction v € C2, one gets,

Vg-v=2wv+2(x,0)p(x) - k+ (p(x) - k,v)x + ap(v) - k.
Let u := (—¢,0,0) € R? and using (*), (**), we compute

U= o (o1, 02,05) (20, )p() K (p(x) K, ) ) (01, 02,05) = 12w

Define the matrix

1 1
D = %(U1,02,U3)TV9(01,02,U3) = ﬁ(vla1)27U3)TVQF(U17'U2’US)7

Where the second equality is established with the help of (*), which indicates
that

1
~V2F Vg = 2uw(x, )x + a(x, )p(a) - k = 0.

So D agrees with the Hessian of F' up to a positive factor.
The matrix D can be decomposed as
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D = 2wh,dd + U + R,

where
1 —¢5  —¢120 0
R = 5(017112,@3)T(/?(') “k)(vi,v2,v3) = | =120 P5  —di2e
0 —¢i2e —¢5
in which
b2 = 4w? — o2, b5 = Bos + dw(a? — ). (**%)

A computation shows that

det D = di+12weds—12wdds,

where d1, ds, ds are respectively the determinants of the matrices

2Why — 5 —P120 0
D, = —¢120  2whs + 5 —pi2€ ;
0 —P126  2wPs — P5
—€ 0 1)
Dy = | =120 2woa+¢p5  —di2e ;
0 —¢126  2wo4 — P5
2Woy — 5 —P120 0
D3 = —0120  2whs + d5 —Pia€
—€ 0 1)

Using that 2w¢y — ¢5 = (B + 2w)¢12 and computing these determinants
using Laplace rule of expansion, we get

det D = (ﬁ%z (,8 + 2w)CI>4—12¢12w62®4—12¢12w52®4,

where

Dy = (B + 2w)(2wes + ¢5) — Pr12(a® — 5°).
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Using both identities in (***), we find ®4 = ¢3. Thus we conclude

det D = ¢19¢302

where ¢3 = ¢12(8+ 2w)—12w(a? — 5?) which is equal to f3 up to a constant
factor.
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