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Abstract. In this note, we prove that below the first critical energy level, a proper

combination of the Ligon-Schaaf and Levi-Civita regularization mappings provides a

convex symplectic embedding of the double cover of the energy surfaces of the planar

rotating Kepler problem into R4 endowed with its standard symplectic structure. This

convex embedding extends to the bounded component of the planar circular restricted

three-body problem around the heavy body outside a small neighborhood of the col-

lisions. This opens up new approaches to attack the Birkhoff conjecture about the

existence of a global surface of section in the restricted planar circular three-body

problem using holomorphic curve techniques.
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1. Introduction

The restricted three-body problem describes the motion of a massless

particle in the presence of two massive primaries whose masses we denote

by 1− µ and µ, and which move along an orbit in the two-body problem.

In this article, we will consider the circular, planar restricted three-

body problem (RTBP), which means that we assume that the primaries

move in circular orbits around each other and the particle is coplanar with

them. Remarkably, with these assumptions, one can describe this problem

in proper uniformly-rotating coordinates with an autonomous Hamiltonian.

This Hamiltonian, sometimes referred to as Jacobi integral, is the function

H : T ∗R2 \ {(−µ, 0), (1− µ, 0)} → R given by

H(q, p) =
1

2
∥p∥2 + (q1p2 − q2p1)−

1− µ

∥q + (µ, 0)∥
− µ

∥q − (1− µ, 0)∥
. (1)

See [14, Chapter 5.1–5.3] for a derivation of this Hamiltonian. For a mass

ratio µ ∈ (0, 1), the Jacobi Hamiltonian has five critical points, commonly
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referred to as Lagrange points, see [14, Chapter 5.4] or [1, Chapter 10.2].

As explained in these references, three of these critical points have Morse

index equal to 1, and two of them have index equal to 2. Some references,

such as [16, Definition 7.6], refer to the critical points of index 1 as Euler

points (these are limits of three-body Euler central configurations when one

body becomes massless); we will follow the more conventional labeling as

Lagrange points. A detailed explanation of the relation of the Lagrange

points with the topology of the level sets can be found in [14, Chapter 5.4].

In this paper we will be concerned with level sets

{H = c}

where c is smaller than the first critical value L1(µ). In this case, the level

set

Σµ,c := H−1(c)

has three components for µ ∈ (0, 1), all of which are non-compact and non-

convex. This is explained in Appendix A.

Our goal is to describe the dynamics on one of the components, namely

the one around the heavy primary by a convex Hamiltonian on R4 and in

this paper we achieve this outside a small neighborhood of the collisions.

Note that such a description by a convex Hamiltonian is of great help in

understanding the dynamics, since convex Hamiltonians enjoy many good

properties. For instance, one can apply Morse theory as for example in Eke-

land’s book [11]. More recently, Hofer-Wysocki-Zehnder showed, using holo-

morphic curve techniques, that convex Hamiltonians admit disk-like global

surfaces of section [20]. We will review some recent results in this direction

in Section 4.

To find a description with a convex Hamiltonian, one needs a suitable

regularization scheme. For the Kepler problem, some of the best known

schemes are Levi-Civita, Ligon-Schaaf and Moser regularizations. The first

scheme directly provides a Hamiltonian defined on R4 with level sets having

a component diffeomorphic to S3. Unfortunately, this component turns out

to be non-convex in general as was shown in [3, Theorem 1.2]. The other two

schemes also regularize collision orbits, but they compactify one component

of the level set to the unit cotangent bundle of S2 rather than S3. Hence by

doing so we cannot obtain a convex set in R4 since the unit cotangent bundle
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of S2 does not even embed in R4 as a topological manifold. Appendix D

of [8] contains three different proofs of this fact. For an older reference, see

Satz II from [21].

We will hence consider, similar to Levi-Civita regularization, the double

cover p : S3 → ST ∗S2, the unit cotangent bundle of the 2-sphere, but we

will use a different embedding i : S3 → R4 and a different Hamiltonian H̃r

than the one coming from Levi-Civita regularization. The embedding that

we construct has the following properties for µ = 0.

• the image of the embedding i : S3 → R4 bounds a strictly convex set.

• there is a Hamiltonian H̃r : R4 → R such that i(S3) is a component

of H̃−1
r (0)

• furthermore, the Hamiltonian vector field XH̃r
projects under p to

the Hamiltonian vector field of the Ligon-Schaaf regularization.

Our strategy is the following. We first consider the limit case µ = 0 of the

restricted three-body problem, which is just the rotating Kepler problem.

We show that the Ligon-Schaaf regularization scheme can be combined with

the Levi-Civita map and find that, for all energies below the first critical

value, a component of the level set of the rotating Kepler problem is strictly

convex. This is done by explicitly computing the Gauss-Kronecker curva-

ture, which turns out to be a polynomial that factorizes surprisingly well.

This allows us to show that the curvature is positive. Outside a neighbor-

hood of the collisions, the perturbing function is smooth, which allows us

to extend the convexity result to this case as well. Due to the singularity of

the perturbing function at the collisions we haven’t been able to show that

such a convexity result holds in a neighborhood of the collisions for small

µ > 0.

To state the theorem, we introduce the following notation. Write π :

(q, p) 7→ q for the footpoint projection, and define Σb
µ,c as the component of

the level set Σµ,c for which the closure of the projection π(Σb
µ,c) contains the

point (−µ, 0). In more intuitive language, Σb
µ,c is the bounded component

containing the primary with mass 1 − µ. We write the 2-fold cover of Σb
µ,c

as Σ̃b
µ,c. We then have

Theorem A For all c below the first critical value L1(0) = −3/2 of the

rotating Kepler problem, there is an embedding map i : Σ̃b
0,c → R4, and a

Hamiltonian H̃r with the following properties:
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(1) the image i(Σ̃b
0,c) is contained in a component of H̃−1

r (c).

(2) the closure of the image i(Σ̃b
0,c) bounds a smooth, strictly convex set.

(3) the Hamiltonian vector field XH̃r
is tangent to i(Σ̃b

0,c) and is a re-

parametrization of XH in the sense that the local diffeomorphism p pulls

back the Hamiltonian vector field of H to a positive multiple of XH̃r
,

p∗XH = aXH̃r
for a > 0.

Furthermore, the flow of XH̃r
is complete.

In this theorem, the regularized Hamiltonian H̃r is actually the same

for all energy levels. For positive mass ratio µ we have the following weaker

statement.

Theorem B After a proper time change, the flow on Σb
µ,c and on its

double cover Σ̃b
µ,c can be regularized, i.e. can be extended to a complete

flow on a compact manifold, which we denote by Σ̃b,r
µ,c. Furthermore, for all

c < L1(0) = −3/2 and for all ϵ(c) > 0, there is µ0(c) > 0 such that for all

µ ∈ [0, µ0(c)], there is an embedding Σ̃b
µ,c \ Uϵ(c) → R4, where Uϵ(c) is an

ϵ(c)-neighborhood of the set of collisions, and a Hamiltonian H̃r : R4 → R
with the following properties:

(1) the image i(Σ̃b
µ,c) is contained in a component of H̃−1

r (c), and the flow

of XH̃r
is complete on this component.

(2) the Gauss-Kronecker curvature of i(Σ̃b
µ,c \ Uϵ(c)) is strictly positive.

(3) the Hamiltonian vector field XH̃r
is tangent to i(Σ̃b

µ,c) and is a re-

parametrization of XH in the sense that the local diffeomorphism p pulls

back the Hamiltonian vector field of H to a positive multiple of XH̃r
,

p∗XH = aXH̃r
for a > 0.

In contrast to Theorem A, the regularized Hamiltonian of Theorem B

depends on c; this phenomenon also happens when using Levi-Civita regu-

larization and Moser regularization [26], [30].

Theorem A implies that the rotating Kepler problem is dynamically

convex up to the first critical value, see Section 4 for the definitions. In

particular, it reproves Theorem 1.1 in [3] avoiding direct index calculations.

Furthermore, for T sufficiently large, Theorem A implies that for sufficiently
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small µ > 0, the regularized bounded component is T -dynamically convex,

i.e. all periodic orbits with period smaller than T have Conley-Zehnder

index at least three. By the theory of holomorphic curves in symplectizations

as established by Hofer, Wysocki and Zehnder [20], this implies the following

corollary.

Corollary 1.1 There is a continuous function c(µ) with c(0) = −3/2 such

that for all c < c(µ), the bounded component of the regularized, restricted

three-body problem around the heavy body, i.e. the flow of H̃r on Σ̃b,r
µ,c, admits

a global disk-like surface of section after regularization.

Details are given in Section 3.1. This particular corollary was already

proved by McGehee with perturbative methods [29]. To motivate our alter-

native proof and indicate why one might care, we want to point out that our

line of reasoning can work for other mass ratios as well; for example, see [2]

or [28] for other work where convexity is applied to the restricted three-body

problem. By contrast, McGehee’s argument and also the argument in [3]

relies on having an explicitly integrable flow, which one does not have for

µ > 0.

Seen from this point of view, Theorem A and Theorem B and the results

in [2] make it seem reasonable to try to prove the general Birkhoff conjecture

with holomorphic curves and convexity. This conjecture asserts that for all

mass ratios µ ∈ [0, 1) and for all Jacobi energy below L1(µ), the regularized

restricted three-body problem admits a global disk-like surface of section in

any bounded component of the energy hypersurface with double collisions

regularized. The Birkhoff conjecture is already a hundred years old, and we

briefly review some relevant background material in Section 4. The proof

of Theorem A is given in Section 2. In Section 3 we extend this to the

restricted three-body problem for small positive µ outside a neighborhood

of the collisions, thus establishing Theorem B.

2. Proof of Theorem A: The rotating Kepler problem

In this section we will consider the Ligon-Schaaf regularization of the

rotating Kepler problem, which we pull back with the Levi-Civita map. By

computing the tangential Hessian, we will verify that this gives indeed a

convex energy surface in R4, which proves Theorem A. We first review

some special features of the rotating Kepler problem and the Ligon-Schaaf
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regularization.

2.1. A review of the Ligon-Schaaf regularization

The limit case µ = 0 of the Jacobi Hamiltonian is known as the rotating

Kepler problem, given by the Hamiltonian

H(q, p) =
∥p∥2

2
− 1

∥q∥
+ (q1p2 − q2p1).

This is the sum of the usual Kepler Hamiltonian in a fixed reference frame

with an angular momentum term (q1p2 − q2p1) generating the rotation of

the reference frame. These two terms Poisson commute with each other, or

put differently, this problem is rotationally invariant. Hence the rotating

Kepler problem is completely integrable in the sense of Arnold-Liouville1.

We note that the Hamiltonian of the rotating Kepler problem is singu-

lar due to two-body collisions: these correspond to orbits t 7→ (q(t), p(t))

with limt→t0 q(t) = 0 for some t0. We will now recall the Ligon-Schaaf reg-

ularization scheme as a way to regularize these collisions. Ligon and Schaaf

discovered their regularization mapping [27] (anticipated by Fock [12]) in

their attempt to understand the symmetries of the Kepler problem by the

theory of moment maps. This regularization mapping can also be thought

of as a global version of the Delaunay coordinate transformation. The some-

what mysterious properties of the Ligon-Schaaf regularization method still

continue to fascinate mathematicians, see for example [10], [18].

Let us define this regularization. We will do this for the general n-

dimensional Kepler problem, but shall only need the case n = 2 later. De-

note the cotangent bundle of the n-sphere Sn by

T = T ∗Sn = {(u, v) ∈ T ∗Rn+1; ∥u∥ = 1, u · v = 0}

and the deleted cotangent bundle of Sn by

T× = {(u, v) ∈ T ; v ̸= 0}.

The latter is sometimes called the Kepler manifold. Denote by P− the subset

1In the slightly generalized sense that the gradients of the integrals are linearly inde-
pendent almost everywhere rather than everywhere.
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of T ∗Rn with negative Kepler energy

H0(p, q) =
∥p∥2

2
− 1

∥q∥
< 0

and

T− = {(u, v) ∈ T×;u ̸= (0, . . . , 0, 1)}.

To define the Ligon-Schaaf mapping, we put

ϕ = −
√

−2H0(q, p)⟨q, p⟩,

u =
(√

−2H0(q, p)∥q∥p, ∥p∥2∥q∥ − 1
)
,

v =
(
−∥q∥−1q + ⟨q, p⟩p, ϕ

)
.

The vectors u and v are orthonormal vectors in Rn+1, as can be checked

with a direct computation. We treat the vector u as the base point in Sn
and the vector v as a unit cotangent vector at u. The Ligon-Schaaf mapping

is then given by

ΦLS : P− −→ T−

(q, p) 7−→

 r = (cosϕ)u+ (sinϕ)v,

s =
1√

−2H0(q, p)
(−(sinϕ)u+ (cosϕ)v)

 .

It has been shown in [27], [10], [18] that this map is symplectic with respect

to both canonical symplectic structures on cotangent bundles. Furthermore,

it transforms H0(p, q) into the “Delaunay Hamiltonian”

Hk = − 1

2∥s∥2
.

2.2. Application to the rotating Kepler problem

As we will only study the bounded component of the Hill’s region (see

Appendix A for a quick definition and overview) in which all motions are

bounded, and thus with negative Keplerian energy, we may well restrict the
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rotating Kepler problem

H =
∥p∥2

2
− 1

∥q∥
+ (q1p2 − q2p1)

to P−, as its dynamics is the composition of the dynamics of H0 composed

with a rotation. With the mapping ΦLS , the Hamiltonian H is transformed

into

Hr = − 1

2∥s∥2
+ (r1s2 − r2s1).

Both terms − 1
2∥s∥2 and r1s2− r2s1 of Hr extend smoothly to the north pole

(0, . . . , 0, 1) of Sn which represents the collisions, and the extensions are thus

smoothly defined on T×.

On the other hand, in terms of the semi major axis a and the eccentricity

e of the elliptic orbit, the Keplerian energy takes the value H0 = − 1
2a , with

the norm of the angular momentum |p1q2−p2q1| =
√
a
√
1− e2. Moreover, as

the bounded component of the Hill’s region lies inside the circle {∥q∥ = 1},
for all elliptic motions in this component we have a < 1. In conclusion, in

the bounded component, we have

|r1s2 − r2s1| ≤ ∥s∥ < 1.

From now on, we shall only consider the planar problem with n = 2.

We have

T ∗S2 = {(r1, r2, r3, s1, s2, s3) ∈ R3 × R3; ∥r∥ = 1, r · s = 0}

a point (r1, r2, r3, s1, s2, s3) which is projected by stereographic projection

to

(x1, x2, y1, y2) ∈ R2 × R2 ∼= C× C ∋ (x = x1 + ix2, y = y1 + iy2)

such that

s1,2 =

(
∥x∥2 + 1

2

)
y1,2−Re(x̄y) ·x1,2 s3 = Re(x̄y) r1,2 =

2x1,2

∥x∥2 + 1
,
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with the north pole projected to “the point at infinity” ∞. A computation

shows that

∥s∥2 =
(∥x∥2 + 1)2

4
∥y∥2 r1s2 − r2s1 = x1y2 − x2y1.

Having in mind the switch in positions and momenta in the Moser regular-

ization, see [30], which served as an intermediate step in Heckman-de Laat’s

interpretation [18] of the Ligon-Schaaf regularization, we take the following

as our Levi-Civita mapping (conformally symplectic with a factor of 4)

ΦLC : T ∗(C \ 0) → T ∗C (z, w) 7→ (x = w/z̄, y = 2z2)

which can be smoothly extended to a mapping T ∗C\{(0, 0)} → T ∗(C∪{∞}).
The pull-back of Hr by ΦLC thus reads

H̃r := Φ∗
LCHr = − 1

2(∥w∥2 + ∥z∥2)2
+ 2(w1z2 − w2z1)

By the Ligon-Schaaf construction, see [27], [18] and [14, Chapter 4.3], and

the fact that Levi-Civita regularization is a conformal symplectic map with

constant factor 4, this Hamiltonian satisfies the claimed property (3) of

Theorem A.

The corresponding energy level with energy c is therefore

Γc =

{
− 1

2(∥w∥2 + ∥z∥2)2
+ 2(w1z2 − w2z1) = c

}
.

Note that the angular momentum is 2(w1z2 − w2z1).

To verify property (1) of Theorem A, we make the following observa-

tions.

• By Proposition A.1, we know that H−1(c)∩P− has two components,

Σb
0,c and Σu

0,c ∩ P−
• The set H−1

r (c) has two components, namely one component corre-

sponding to the regularization of Σb
0,c, and one component homeo-

morphic to Σu
0,c ∩ P−. We will call the regularized component Σb,r

0,c.

As a topological space, Σb,r
0,c is homeomorphic to RP 3.

• The map ΦLC is a 2− 1-covering map.
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• The cover (Σ̃b,r
0,c := Φ−1

LC(Σ
b,r
0,c),ΦLC |Σ̃b,r

0,c
) is a connected cover. To

see this, consider a point of the form (z, 0) ∈ Σ̃b,r
0,c. Then the path

t 7→ (eπitz, 0) connects (z, 0) to (−z, 0), showing the claim.

• The same argument shows that Σu
0,c∩P− has a connected cover, so Γc

has two connected components2, one compact (diffeomorphic to S3)

and one non-compact.

The fourth point shows that property (1) holds.

For property (2), we would like to understand if the bounded component

Γ0,c (which corresponds to Σb
0,c) of Γc bounds a convex domain in C2. In

order to show this, we calculate the Gauss-Kronecker curvature of Γ0,c and

we show that this curvature is positive, which then implies that Γ0,c bounds

a convex domain in C2 (see e.g. [14]).

For this purpose, it is enough to calculate the Hessian of the function

F := −1 + 4(w1z2 − w2z1)(∥w∥2 + ∥z∥2)2 − 2c(∥w∥2 + ∥z∥2)2.

restricted to the tangent space of Γ0,c and show that its determinant is

positive. The set Γc is just the pre-image F−1(0) of 0.

To determine the normal direction of points on Γc, we calculate the

gradient ∇F of F . We have

∇F =
(
(∥w∥2+∥z∥2)g1, (∥w∥2+∥z∥2)g2, (∥w∥2+∥z∥2)g3, (∥w∥2+∥z∥2)g4

)
with

g1 = −4w2
1w2 + 16w1z1z2 − 4w3

2 − 20w2z
2
1 − 4w2z

2
2 − 8cz1

g2 = 4w3
1 + 4w1w

2
2 + 4w1z

2
1 + 20w1z

2
2 − 16w2z1z2 − 8cz2

g3 = 20w2
1z2 − 16w1w2z2 + 4w2

2z2 + 4z21z2 + 4z32 − 8cw1

g4 = −4w2
1z1 + 16w1w2z2 − 20w2

2z1 − 4z31 − 4z1z
2
2 − 8cw2.

Note that we may naturally identify (g1, g2, g3, g4) with the quaternion

g := g1 + g2i + g3j + g4k. With this identification, we may thus find an

2For the restricted three-body problem one can, depending on the energy level, also

get additional non-compact components around the other primary whose covers are not
connected.
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orthogonal frame of TΓ0,c by (right) multiplications with the quaternions

i, j, k. Specifically, we may choose

v1 = (−g2, g1, g4,−g3) ∼= g · i

v2 = (−g3,−g4, g1, g2) ∼= g · j

v3 = (−g4, g3,−g2, g1) ∼= g · k.

to form a basis of the tangent space at the point (w1, w2, z1, z2) provided

the gradient

∇F = (∥w∥2 + ∥z∥2)(g1, g2, g3, g4)

is non-vanishing. We now calculate the determinant DH of the restricted

Hessian of F to the tangent spaces of Γ0,c and show it is positive. Note that

this will also imply that ∇F is non-vanishing. Using the matrix representa-

tion (v1, v2, v3)
THess(F )(v1, v2, v3) for the tangential Hessian up to a factor

of ∥g∥6, we directly compute the determinant

DH = Det
(
(v1, v2, v3)

THess(F )(v1, v2, v3)
)
.

This gives a somewhat unwieldy polynomial expression, which we will not

write out here. Instead, we give the factorization of this multivariate poly-

nomial, which can be obtained manually, as we shall do in Appendix B,

or with a computer algebra program, such as Maple 18. The results we

obtain either way agree of course. Indeed, in terms of ā = ∥w∥2 + ∥z∥2,
b = w1z2 − z1w2 and c, we find the factorization

DH = 524288ā6f1f2f3f
2
4

where

f1 = −2c+ ā+ 4b

f2 = −2c− ā+ 4b

f3 = −4c3 + 28bc2 − (88b2 − 7ā2)c+ 96b3 − 15ā2b

f4 = 4c2 − 24bc+ ā2 + 32b2.
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Remark 2.1 Computer algebra programs include a multitude of factor-

ization algorithms. Some simple versions of these algorithms are detailed in

[15]: these algorithms have a completely mechanical nature. The derivation

in the appendix relies more on ad hoc substitutions.

With the conditions 2|b| ≤ ā < 1 and −c > 3/2, it is direct to see that

f1 > 0, f2 > 0, f4 ≥ 4(3b− c)2 > 0.

We now show that under the same conditions, we also have f3 > 0. For

this, we substitute the relationship b = 1
4ā2 + c/2 among ā, b and c in the

expression of f3 and get

f3 =
12c2ā4 − 2cā8 − 15ā6 + 14cā2 + 6

4ā6
.

In this expression the numerator is a quadratic function in c, whose graph

is a parabola opening upward with as axis of symmetry the line c = − 7−ā6

12ā2 .

For ā2 ≥ 7/18, we have

7− ā6

12ā2
<

7

12ā2
<

3

2
,

and hence this quadratic function is monotonically decreasing for c < −3/2.

Its evaluation at c = −3/2 reads

3ā8 − 15ā6 + 27ā4 − 21ā2 + 6 = 3(ā2 − 1)3(ā2 − 2)

which is clearly positive for 0 < ā < 1. For 0 < ā2 < 7/18, we find that the

evaluation of the numerator of f3 at c = − 7−ā6

12ā2 reads

− ā12

12
− 83ā6

6
+

23

12
,

which, as a quadratic equation in ā6, is seen to be monotonically decreasing

when ā6 > 0. Moreover, its evaluation at ā2 = 7/18 is seen to be positive

(it is approximately 1.1028). This shows that f3 is also a positive factor in

the factorization of DH.

We have thus obtained the conclusion that Γ0,c bounds a convex domain
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for any energy c up to the first critical value −3/2. This proves Theorem A.

3. Proof and Discussions on Theorem B

To prove Theorem B, we will use that strict convexity is an open prop-

erty, i.e. it is preserved under small perturbations. Unfortunately, the above

construction involving the Ligon-Schaaf and Levi-Civita maps cannot be ex-

tended directly to perturbations of the rotating Kepler problem due to lack

of smoothness of the perturbation term after Ligon-Schaaf regularization,

and we are forced to leave out a neighborhood of the collisions.

Indeed, the Ligon-Schaaf regularization procedure does not involve a

change of time parametrization, so we see directly that the Delaunay vari-

ables (L, l,G, g), defined by

L =
√
a circular angular momentum

l mean anomaly

G = ±L
√
1− e2 angular momentum, sign determined

by the direction of motion

g argument of pericentre,

serve as a set of local coordinates in a neighborhood of collisions for the

Ligon-Schaaf regularized (rotating) Kepler problem. A recent, detailed de-

scription of the Delaunay coordinates can be found in [1, Chapter 9.3] or in

[32, 36]. The variables L,G, g depend only on the Keplerian orbit, and thus

extend smoothly through collisions. The angle l now agrees with an angle

parametrizing the great circle orbit of the geodesic flow on T× and there-

fore extends smoothly. The neighborhood should be chosen not to contain

circular motions on which the Delaunay variables are not all well-defined.

Now note that in the restricted planar circular three-body problem with

mass ratio 0 < µ ≪ 1, the Hamiltonian of the system can be decomposed

as K1−µ + P , where the rotating Keplerian Hamiltonian K1−µ with mass

1− µ reads

K1−µ :=
∥p∥2

2
+ (q1p2 − q2p1)−

1− µ

∥q∥

and the (singular) perturbation is given by
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P = −µp2 −
µ

∥q − 1∥
.

A couple of observations are in order.

Lemma 3.1 After the Ligon-Schaaf mapping and Levi-Civita regulariza-

tion, the bounded component of the rotating Kepler Hamiltonian with mass

1− µ is convex below its critical value.

Proof. Indeed, apply the linear transformation f1−µ : (q, p) 7→
(
(1−µ)1/3q,

(1 − µ)1/3p
)
. This map rescales the symplectic form and the Hamiltonian

by a constant. In particular, level sets of K1−µ are transformed to level sets

of K1, at a different energy level. The formula is K1−µ ◦ f1−µ(q, p) = (1 −
µ)2/3K1(q, p). As the level sets of the latter are convex after the procedure

we described, so are the level sets of K1−µ. □

The second observation concerns the non-smoothness of the perturba-

tion term at collisions near q = 0.

Once we switch to the Delaunay variables for the above-mentioned Ke-

pler Hamiltonian, the dependence of the function P in the perturbing func-

tion on the mean anomaly l is not smooth at the collisions. This can be

seen by the fact that the perturbing function is an analytic function of the

Delaunay variables (L,G, g) and the eccentric anomaly u, via

q = eig
(
a(cosu− e) + ia

√
1− e2 sinu

)
,

with

a = L2, e =
√

L2 −G2/L.

We get from the Kepler equation

l = u− e sinu

that

dl

du
= 1− e cosu =

∥q∥
a

,

which does not have a smooth inverse at the collisions ∥q∥ = 0.
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To make an extension to the collision locus at q = 0 possible, it is

necessary to change time from t to s according to the relation dt/ds = ∥q∥.
Making this Hamiltonian on a fixed energy surface is a standard procedure

going back to Poincaré, [31] and a more recent description can be found in

[30]. For completeness, we include this procedure here.

On a fixed energy surface {H−c = 0}, we multiply the shifted Hamilto-

nian H−c by ∥q∥ to obtain the new Hamiltonian ∥q∥(H−c). The associated

Hamiltonian vector field gives rise to a smooth reparametrization of the flow

on {H − c = 0} outside ∥q∥ = 0; the reparametrization is singular on the

collision locus at q = 0. We can now regularize the collisions by pulling back

this Hamiltonian ∥q∥(K1−µ + P − c) under the Levi-Civita regularization

mapping

ΦLC : T ∗(C \ 0) → T ∗C (z, w) 7→ (p = w/z̄, q = 2z2)

The resulting system is

Kreg := Φ∗
LC

(
∥q∥
2

(K1−µ + P − c)

)
=

∥w∥2

2
− c∥z∥2 + 2∥z∥2(z1w2 − z2w1) + ∥z∥2P (z2)− 1− µ

2
.

Note that ∥z∥2P (z2) is a smooth function of z near the regularized point

z = 0, so this Hamiltonian is smooth on a neighborhood of z = 0. The

non-smooth points of H correspond to z = 1 and any w. For the energy

range that we consider, namely c less than the first critical value, we see

that these points do not lie in the closure of the connected component of

interest. We refer to [14, Chapter 5] for a detailed discussion of the topology

of level sets of the restricted three-body problem. The upshot is that we

may now extend the flow of the hypersurface {Kreg = 0} through {z = 0}
to get a regular flow, meaning a flow generated by a non-vanishing vector

field, on a closed manifold.

With this in mind, we conclude.

Proposition 3.1 On its zero-energy surface, the Hamiltonian system de-

fined by the Hamiltonian Φ∗
LC(∥q∥(K1−µ+P−c)) extends to a regular system

through collisions.
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Finally, as the Ligon-Schaaf regularization mapping ΦLS is a symplec-

tomorphism from P− to T−, and outside a neighborhood of the collisions,

ΦLS and Φ−1
LS have bounded C2 norms. Thus outside the image of this

neighborhood, ΦLS(Σ̄µ,c) is a smooth O(µ)-deformation of ΦLS(Σ̄0,c). In

particular, this image is therefore also convex for µ > 0 small enough. This

proves Theorem B.

3.1. Proof of Corollary 1.1

We first give a proof of the statement using known facts from the litera-

ture. Following [3] or more classically [31], there is a smooth family of peri-

odic orbits (γ0,c, τc) parametrized by c consisting entirely of non-degenerate

orbits for µ = 0, known as retrograde periodic orbits. For fixed c, the or-

bit τc has strictly minimal action3 on the energy hypersurface Σ̃b,r
0,c. Since

non-degeneracy is an open condition, this family can be extended to small,

positive µ: we write this two-parameter family as (γµ,c, τµ,c). The property

of minimal action of each γµ,c on each energy hypersurface Σ̃b,r
µ,c also remains

true, provided µ is sufficiently small and c < L1(µ). Combining these ob-

servations we obtain µ0, and c(µ) such each µ ∈ [0, µ0] and c < c(µ) lies in

the Birkhoff set B as defined in [14, Chapter 8.3.3]. To extend this func-

tion to larger µ, we observe that if c is very negative, then the Levi-Civita

Hamiltonian is a convex function on a small ball as can be shown with the

methods of [2]. Applying Theorem 4.3 and Theorem 4.1 gives us then a

global disk-like surface of section for Σ̃b,r
µ,c provided c is very negative. On

the other hand, we can apply the proof of [14, Corollary 17.1.4] to obtain a

global disk-like surface of section for Σ̃b,r
µ,c as long as c < c(µ) and µ < µ0.

After extending the function c(µ) while combining the two statements, we

obtain the claim of the corollary.

3.1.1 Sketch of an alternative argument using the convexity re-

sult

As in Theorem A we denote the the double cover of Σb
µ,c ⊂ H−1(c) by

Σ̃b
µ,c. After regularization, Theorem B gives us a Hamiltonian H̃r : R4 → R.

For c < L1(µ), the level set H̃−1
r (c) has a compact component Σ̃b,r

µ,c, and

the embedding i constructed in Theorem B sends Σ̃b
µ,c into this compact

component Σ̃b,r
µ,c.

3Recall that the action of a periodic Reeb orbit (γ, τ) of a contact form α is given by∫ τ
0 γ∗α.
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For µ = 0 we can directly apply Theorem 4.1 and the methods involved

to obtain a finite energy foliation of the symplectization of Σ̃b,r
0,c. In par-

ticular, we obtain a binding orbit γ0 with period T0 (for a Reeb orbit the

period equals the action). By the remarks following Theorem B, we know

that all periodic Reeb orbits with period less than a sufficiently large pe-

riod bound T (note that T can be increased arbitrarily by decreasing the

parameter ϵ(c)) have Conley-Zehnder index at least 3. We choose T > 2T0,

so by non-degeneracy of the so-called retrograde orbit (as classically proved

in [31]; see [3] or [14] for more modern expositions), we know that this set

of orbits is non-empty, i.e. there are periodic orbits with index at least 3 for

sufficiently small µ > 0. We now push this finite energy foliation obtained

for µ = 0 to positive µ. No breaking to orbits of index less than 3 can occur

for action and energy reasons following the arguments of the proof of [14,

Theorem 16.3.1]. We once again obtain a finite energy foliation, and the

same arguments as in proof of [14, Corollary 17.1.4] imply the existence of

a global disk-like surface of section for the regularized problem, i.e. for the

flow of H̃r.

Remark 3.1 This rather complicated argument has the advantage that

it could potentially be applied to other setups.

4. Outlook: The Birkhoff conjecture

Birkhoff writes on page 328 of his seminal work on the restricted three-

body problem [5]

“This state of affairs seems to me to make it probable that the re-

stricted problem of three bodies admit of reduction to the transfor-

mation of a discoid into itself as long as there is a closed oval of zero

velocity about J(upiter) ...”

In modern mathematical language, “a transformation to a discoid” is

referred to as the existence of a disk-like global surface of section. The as-

sumption that there is a closed oval of zero velocity means that a bounded

component of the restricted three-body problem for energies below the first

critical value is considered. When Birkhoff referred to the restricted three-

body problem, he assumed that it is regularized by Levi-Civita regulariza-
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H(L1)
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-2.0

0 0.5 1.0µ

Figure 1. The gray-shaded regions indicate the parameters (µ, c), where the
Birkhoff conjecture is known. Note that explicit values are not known, except
for µ = 0. We don’t know whether there is any positive µ for which the Birkhoff
conjecture is known up to the first critical value.

tion.4 Therefore, when the energy is below the first critical value, the two

bounded components are each diffeomorphic to a three dimensional sphere.

For small energies the Birkhoff conjecture is proved by Conley [9] and

Kummer [23] for all mass ratios.

For sufficiently small mass ratios it was shown by McGehee in [29] that

the Birkhoff conjecture holds true in the connected component around the

heavy primary for an arbitrary energy below the first critical value. More

precisely, he explicitly constructed a disk-like global surface of section for

the rotating Kepler problem for Jacobi energies c < −3/2. For small µ > 0,

McGehee showed that there is a continuous function c(µ) with c(0) = −3/2

such that for all c < c(µ) there is a deformed disk-like global surface of

section for the restricted three-body problem with mass ratio µ and Jacobi

energy c. That similar results hold as well around the light primary was

shown by Albers, Fish, Frauenfelder, Hofer, and van Koert in [2]. Figure 1

summarizes the parameters µ, c, where the Birkhoff conjecture is known to

hold.

The proofs by Conley, Kummer and McGehee used perturbative meth-

4Levi-Civita published his paper on the regularization [26] in 1920, but had already

announced his result in ICM 1904 [25]. Birkhoff referred to this regularization in his
introduction. Goursat already anticipated this in the paper [17] published in 1887.
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ods. By contrast, the proof in [2] is non-perturbative in nature. It uses global

methods of modern symplectic geometry, namely the theory of holomorphic

curves in symplectizations, due to Hofer [19] and Hofer-Wysocki-Zehnder

[20]. Perturbative methods are only applicable if the system considered is

close to a completely integrable system. This holds for small energy val-

ues, where the restricted three-body problem is a perturbation of the Ke-

pler problem, and for small mass ratios around the heavy primary, where

the restricted three-body problem is a perturbation of the rotating Kepler

problem. However, for higher energies and higher mass ratios perturbative

methods do typically not apply. We hope and expect that holomorphic

curves will be the right way to attack the Birkhoff conjecture. For more

information on the relation between the Birkhoff conjecture and the theory

of holomorphic curves, we refer to [14].

In order to construct a disk-like global surface of section via holomorphic

curves, the question about the existence of a convex embedding becomes

crucial. The reasons are as follows. In [20], Hofer, Wysocki, and Zehnder

proved the following result

Theorem 4.1 (Hofer-Wysocki-Zehnder) Assume that Σ is a closed star-

shaped hypersurface in R4 endowed with its standard symplectic structure. If

Σ is dynamically convex, then Σ admits a disk-like global surface of section.

Here a starshaped hypersurface in R4 is called dynamically convex if the

Conley-Zehnder index of each closed characteristic is at least three. In [4],

Albers, Frauenfelder, van Koert and Paternain proved that the Moser regu-

larization of each bounded component of the restricted three-body problem

for energies below the first critical value is fiberwise starshaped. This implies

the following result.

Theorem 4.2 The Levi-Civita embedding of each bounded component of

the restricted three-body problem for energies below the first critical value is

a starshaped hypersurface in R4.

Proof. The argument that follows can also be found in [14, Chapter 4.2].

From [4] we know that the Liouville vector field X = q · ∂
∂q is transverse to

the energy hypersurface of RTBP. Recall that the Liouville vector field X

solves the equation

ιXωc = λc,
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where ωc and λc are the canonical symplectic form and canonical 1-form,

respectively. Due to the switch map from Moser regularization, the roles of

q and p are reversed, so these differential forms are given by

ωc = dq ∧ dp, λc = q · dp.

In complex coordinates we can write

λc = ℜ(qdp̄).

Pulling back λc under the Levi-Civita regularization with y = q and x = p

gives us

Φ∗
LCλc = ℜ(2zdw̄ − 2w̄dz).

This is 4 times the standard Liouville form on C2. We hence also have

Φ∗
LCωc = 4

∑
j dzj ∧ dwj , and we see that the pullback of X under the local

diffeomorphism ΦLC is the standard starshaped vector field

∑
j

zj
∂

∂zj
+ wj

∂

∂wj

It follows that the Levi-Civita embedding is a starshaped hypersurface in

C2 ∼= R4. □

In view of these results, in order to prove the Birkhoff conjecture, it

suffices to show dynamical convexity for each bounded component of the

restricted three-body problem for energies below the first critical value.

However, to check dynamical convexity directly by first determining all

closed characteristics, and then figuring out their Conley-Zehnder indices

is in general not feasible. Instead of that, the following result of Hofer-

Wysocki-Zehnder from [20] gives a much more handy approach (though

other possibilities exist, e.g. [22]).

Theorem 4.3 (Hofer-Wysocki-Zehnder) Assume that Σ ⊂ R4 is a closed

strictly convex hypersurface. Then Σ is dynamically convex.

This theorem explains the term ”dynamical convexity”. While dynami-

cal convexity is a symplectic concept in the sense that it is preserved under

symplectomorphisms, the notion of convexity is not. For a convex hyper-
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surface in R4 there might well be a different starshaped embedding which is

not convex.

Dynamical convexity of the rotating Kepler problem was proved already

in [3] where it was also shown that the Levi-Civita embedding is not always

convex for all energies. This result prompted the question if the rotating

Kepler problem leads to an example of a dynamically convex hypersurface

which does not admit a convex embedding at all. Theorem A answers this

question in the negative. We mention here a recent result due to Chaidez

and Edtmair, [6], which asserts that there are dynamically convex contact

forms on S3 that do not admit a convex embedding into R4.

We conclude this section with some other evidence for the Birkhoff con-

jecture.

(1) The Levi-Civita regularization of the restricted three-body problem is

convex for a wide range of mass ratios and energies. This can be seen

rather directly for very small energy. However, as was shown in [2] it

also holds for energies close to the first critical value provided µ is close

to 1.

(2) Numerically, we can verify the positivity of the tangential Hessian of

the Levi-Civita regularization on a cover of the energy hypersurface.

We then find that the Levi-Civita regularization seems to be convex for

a wide range of energies. However, the Levi-Civita embedding does fail

to be convex for energies very close to the critical energy when the mass

ratio µ is close to 0.

(3) Again on the numerical side, it seems possible to adapt a shooting ar-

gument by Birkhoff into a numerical method to find periodic orbits

carrying a certain reflection symmetry, to construct a parametrization

of the retrograde orbit and a direct orbit. These orbits link as Hopf

fibers, and numerical evidence suggests that it is possible to construct

a global disk-like surface of section from these orbits.

The existence of a global surface of section reveals a lot about the orbit

structure; it allows one to study the full dynamics with the globally defined

return map, which can be shown to be conjugated to an area-preserving

diffeomorphism. Since a lot is known about the dynamics of such maps, see

for instance [13], [24], this provides ample means to better understand the

dynamics.
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Appendix A. Properties of the components of the unregularized

and regularized problem

We consider the unregularized Jacobi Hamiltonian from Equation (1),

which we rewrite as

H(q, p) =
1

2
∥p+ Jq∥2 − 1− µ

∥q + (µ, 0)∥
− µ

∥q − (1− µ, 0)∥
− 1

2
∥q∥2,

where we have defined

J =

(
0 −1
1 0

)
.

We call

U(q) := − 1− µ

∥q + (µ, 0)∥
− µ

∥q − (1− µ, 0)∥
− 1

2
∥q∥2

the effective potential. We make the following observation: if x = (q, p) ∈
H−1(c), then we have

p = −Jq +
√

2(c− U(q))

(
cosϕ
sinϕ

)
for some ϕ ∈ [0, 2π). We call the set {q ∈ R2 | c−U(q) ≥ 0} the Hill’s region.

By the above observation, we see that H−1(c) has as many components as

the Hill’s region. By [5, Section 7] or [14, Chapter 5.5], the Hill’s region has

three components for c < L1(µ). We denote them as follows.

• we write Rb
−µ for the bounded component of the Hill’s region whose

closure contains the point (−µ, 0)

• we write Rb
1−µ for the bounded component of the Hill’s region whose

closure contains the point (1− µ, 0).

• we write Ru for the unbounded component.

We write the corresponding components of H−1(c) as Σb,−µ
µ,c , Σb,1−µ

µ,c and

Σu
µ,c. In the introduction we restricted ourselves to Σb,−µ

µ,c , which we more

briefly denoted by Σb
µ,c. We claim that all of these components are non-

compact.
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• for Σu
µ,c, this follows from the observation that the q-coordinates on

Σu
µ,c: for example we may consider the sequence

{((
n
0

)
;

(
0
n

)
+
√

2(c− U(n, 0))

(
1
0

))}∞

n=1

which is contained in Σu
µ,c and has unbounded q coordinates.

• for Σb,−µ
µ,c and Σb,1−µ

µ,c we can take the same formula, but we need to

replace n by −µ + 1/n and 1 − µ + 1/n, respectively. This gives us

sequences Σb,−µ
µ,c and Σb,1−µ

µ,c collapsing into the singularity at (−µ, 0)

and (1− µ, 0). In both cases the p coordinate diverges.

We verify non-convexity of each of these three components of H−1(c).

For this, we note that for c < L1(µ) and µ ∈ (0, 1), the equation

U(x, 0) = c

has six distinct solutions. We order these solutions as x1 < x2 < x3 < x4 <

x5 < x6.

• observe that (x1, 0) and (x6, 0) lie in the boundary of Ru. This gives us

points ((xi, 0); (0, xi)) ∈ ∂Σu
µ,c for i = 1, 6. However, the line segment

is not contained in H−1((−∞, c]) nor is it contained in H−1([c,∞)).

Indeed, the line segment is not contained in the domain of definition

of H.

• the same argument can be applied to the points (x2, 0) and (x3, 0),

which lie in the boundary of Σb,−µ
µ,c .

• similarly, this argument works for the points (x4, 0) and (x5, 0).

This shows non-convexity of all three components.

Remark A.1 The above argument constructs a line segment going

through the singularity of H to show non-convexity. This is not the only

way to see non-convexity, and alternatively, with more work we can compute

the tangential Hessian to reach the same conclusion.

A.1. The rotating Kepler problem

We consider the limit case µ = 0. In this case, the Jacobi Hamiltonian

reduces to
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H(q, p) =
1

2
∥p+ Jq∥2 − 1

∥q + (0, 0)∥
− 1

2
∥q∥2,

and the simpler effective potential

UK(q) = − 1

∥q + (0, 0)∥
− 1

2
∥q∥2.

The same analysis as we did above for µ ∈ (0, 1) yields the following. The

equation

UK(x, 0) = c

has four distinct solutions for c < L1(0) = −3/2, which we order as x1 <

x2 < 0 < x3 < x4. We have x1 = −x4 and x2 = −x3.

• for c < L1(0) = −3/2 the set {q ∈ R2 | c − UK(q) ≥ 0} has two

connected components. We write the bounded component as Rb. We

have

Rb = {q ∈ R2 | ∥q∥ ≤ x3, q ̸= (0, 0)}.

The unbounded component is

Ru = {q ∈ R2 | ∥q∥ ≥ x4}.

• similar to our earlier analysis, we have corresponding connected com-

ponents of H−1(c). These are Σb
0,c and Σu

0,c corresponding to Rb and

Ru, respectively.

• for non-convexity of any set bounded by Σu
0,c we consider the points

((x1, 0); (0, x1)) and ((x4, 0); (0, x4)). The line segment connecting

these points goes through the origin in R4, which, as before, is a

singularity of H.

• for non-convexity of any set bounded by Σb
0,c the same argument

applies to the points ((x2, 0); (0, x2)) and ((x3, 0); (0, x3)).

We summarize the above and add a little additional information in the

following proposition.

Proposition A.1 For c < L1(0) = −3/2, the rotating Kepler problem has
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two connected components, namely Σb
0,c and Σu

0,c. This statement remains

true if we restrict H to P−. In fact, we have Σb
0,c∩P− = Σb

0,c and Σu
0,c∩P−

is connected.

Proof. We have shown the first assertion in the above discussion. For the

second assertion, we note the following

• if (q, p) ∈ Σb
0,c, then ∥q∥ < 1, since c < L1(0) = −3/2. It follows that

|L| < 1 (for example by combining Formula 3.8 from [14] with the

bound on ∥q∥)). We see that the Kepler energy 1
2∥p∥

2−1/∥q∥ < −1/2

for points in Σb
0,c, so Σb

0,c ∩ P− = Σb
0,c.

• we show that Σu
0,c∩P− is path-connected. Take a point x in Σu

0,c∩P−.

We find a curve in Σu
0,c∩P− connecting x to x′′ in a standard position

we define below. To do so, we first note from the above discussion

that

x =

(
q,−Jq +

√
2(c− U(q))

(
cosϕ
sinϕ

))
for some ϕ ∈ [0, 2π). The angular momentum at x is

L(x) =

(
qtJ +

√
2(c− U(q))

(
cosϕ
sinϕ

)t
)
Jq

= −∥q∥2 +
√

2(c− U(q))(q1 sinϕ− q2 cosϕ).

We will construct curves with constant Jacobi energy c along which

angular momentum increases. This means that the Kepler energy de-

creases, so the curves lie in Σu
0,c ∩ P−. As a first step, we choose a

curve starting in x with constant q, and for which ϕ changes monoton-

ically, increasing L. The maximum angular momentum for constant

q is achieved at

x′ =

(
q,−Jq +

√
2(c− U(q))

∥q∥
Jq

)
.

By construction, the curve connecting x to x′ lies in Σu
0,c ∩ P−. Now

we choose a curve rotating q to the standard point
( ∥q∥

0

)
. The Kepler
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energy is fixed along this curve, so this curve lies in Σu
0,c ∩ P−, too.

We end up with a point in standard position

x′′ =

((
∥q∥
0

)
;
(√

2(c− U(∥q∥, 0))− ∥q∥
)
J

(
1
0

))
If we consider any other point y in Σu

0,c ∩P−, we can bring this point

into standard position, too,

y′′ =

((
∥q̃∥
0

)
;
(√

2(c− U(∥q̃∥, 0))− ∥q̃∥
)
J

(
1
0

))
.

Without loss of generality, we can and will assume that ∥q̃∥ > ∥q∥.
Connect x′′ to y′′ via a curve with increasing ∥q∥. From the above

form for the angular momentum, we see that the angular momentum

is increasing along such a curve, so it lies in Σu
0,c ∩ P−. We conclude

that Σu
0,c ∩ P− is path-connected. □

Appendix B. Factorization of DH by hand

The factorization of DH can be done manually. The approach here was

outlined by the original referee of an earlier version of the paper. Set

α =
1

2
∥w∥2 + 1

2
∥z∥2, β = ⟨iw, z⟩, γ = c/2, ω = β − γ,

and

δ =
1

2
∥w∥2 − 1

2
∥z∥2, ϵ = ⟨w, z⟩

so that

ϵ2 + δ2 = α2 − β2.

We set x = (w, z)∼= w + zj ∈ C2 ∼= H and ρ : C2∼= H → C2 ∼= H is the

involution ρ(w, z) = (w,−z). We have

⟨x, ρ(x)⟩ = 2δ, ⟨x, ρ(x) · i⟩ = 0, ⟨x, ρ(x) · j⟩ = 2ϵ, ⟨x, ρ(x) · k⟩ = 2β.
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Therefore by rescaling by a factor of 1/16

F (x) = − 1

16
+ α2ω, g(x) = 2ωx+ αρ(x) · k.

We thus have

⟨v, ρ(x) · k⟩ = −2ω

α
⟨v,x⟩, v ∈ TxΓ0,c (*)

and

⟨v1,x⟩ = 2αϵ, ⟨v2,x⟩ = 0, ⟨v3,x⟩ = −2αδ. (**)

Moreover introduce

ϕ4 :=
1

2α
∥g∥2 = α2 + 4(ω2 + ωβ),

which is just f4 below, up to some constant.

Differentiating g in the direction v ∈ C2, one gets,

∇g · v = 2ωv + 2⟨x, v⟩ρ(x) · k + ⟨ρ(x) · k, v⟩x+ αρ(v) · k.

Let u := (−ϵ, 0, δ) ∈ R3 and using (*), (**), we compute

U :=
1

2α
(v1, v2, v3)

T
(
2⟨x, ·⟩ρ(x) ·k+ ⟨ρ(x) ·k, ·) ·x

)
(v1, v2, v3) = −12ωu⊗u.

Define the matrix

D =
1

2α
(v1, v2, v3)

T∇g(v1, v2, v3) =
1

2α2
(v1, v2, v3)

T∇2F (v1, v2, v3),

Where the second equality is established with the help of (*), which indicates

that

1

α
∇2F −∇g = 2ω⟨x, ·⟩x+ α⟨x, ·⟩ρ(x) · k = 0.

So D agrees with the Hessian of F up to a positive factor.

The matrix D can be decomposed as
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D = 2ωϕ4Id + U +R,

where

R =
1

2
(v1, v2, v3)

T (ρ(·) · k)(v1, v2, v3) =

 −ϕ5 −ϕ12δ 0

−ϕ12δ ϕ5 −ϕ12ϵ

0 −ϕ12ϵ −ϕ5


in which

ϕ12 = 4ω2 − α2, ϕ5 := βϕ4 + 4ω(α2 − β2). (***)

A computation shows that

detD = d1+12ωϵd2−12ωδd3,

where d1, d2, d3 are respectively the determinants of the matrices

D1 =

2ωϕ4 − ϕ5 −ϕ12δ 0

−ϕ12δ 2ωϕ4 + ϕ5 −ϕ12ϵ

0 −ϕ12ϵ 2ωϕ4 − ϕ5

 ,

D2 =

 −ϵ 0 δ

−ϕ12δ 2ωϕ4 + ϕ5 −ϕ12ϵ

0 −ϕ12ϵ 2ωϕ4 − ϕ5

 ,

D3 =

2ωϕ4 − ϕ5 −ϕ12δ 0

−ϕ12δ 2ωϕ4 + ϕ5 −ϕ12ϵ

−ϵ 0 δ

 .

Using that 2ωϕ4 − ϕ5 = (β + 2ω)ϕ12 and computing these determinants

using Laplace rule of expansion, we get

detD = ϕ2
12(β + 2ω)Φ4−12ϕ12ωϵ

2Φ4−12ϕ12ωδ
2Φ4,

where

Φ4 := (β + 2ω)(2ωϕ4 + ϕ5)− ϕ12(α
2 − β2).
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Using both identities in (***), we find Φ4 = ϕ2
4. Thus we conclude

detD = ϕ12ϕ3ϕ
2
4

where ϕ3 = ϕ12(β+2ω)−12ω(α2−β2) which is equal to f3 up to a constant

factor.
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Beiblatt (Festschrift Rudolf Fueter), 165–177.

[22] Hryniewicz U. and Salomão P., On the existence of disk-like global sections

for Reeb flows on the tight 3-sphere. Duke Math. J. 160 (2011), 415–465.

[23] Kummer M., On the stability of Hill’s Solutions of the Plane Restricted

Three Body Problem. Amer. J. Math. 101 (1979), 1333–1354.

[24] Le Calvez P., Periodic orbits of Hamiltonian homeomorphisms of surfaces.

Duke Math. J. 133 (2006), 125–184.

[25] Levi-Civita T., Sur la résolution qualitative du problème restreint des trois

corps, ICM report, 1904.

[26] Levi-Civita T., Sur la régularisation du problème des trois corps. Acta.

Math. 42 (1920), 204–219.

[27] Ligon T. and Schaaf M., On the Global Symmetry of the Classical Kepler

Problem. Reports on Math. Phys. 9 (1976), 281–300.

[28] Ligon T., The symmetry of the Kepler problem, the inverse Ligon-Schaaf



317

mapping and the Birkhoff conjecture, arXiv:1804.03844.

[29] McGehee R., Some homoclinic orbits for the restricted three-body problem,

Ph.D. Thesis–The University of Wisconsin - Madison, 1969.

[30] Moser J., Regularization of Kepler’s problem and the averaging method on

a manifold. Comm. Pure Appl. Math. 23 (1970), 609–636.
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