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Abstract
Localization by a broken particle–hole (PH) symmetry in a random system of
non-interacting quantum particles is studied on a d-dimensional lattice. Our
approach is based on a chiral symmetry argument and the corresponding invari-
ant measure, where the latter is described by a Grassmann functional integral.
Within a loop expansion we find for small loops diffusion in the case of PH
symmetry. Breaking the PH symmetry results in the creation of random dimers,
which suppress diffusion and lead to localization on the scale

√
D/|μ|, where

D is the effective diffusion coefficient at PH symmetry and μ is the parameter
related to PH symmetry breaking.
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1. Introduction

There is strong evidence that disordered systems with particle–hole (PH) symmetry can
avoid Anderson localization in any spatial dimension. Such a behavior was observed for one-
dimensional systems at the band center of a one-dimensional tight-binding model with random
hopping some time ago [1–3]. There is also numerical evidence for extended states at the band
center in disordered two-dimensional lattice models [4, 5]. A renewed interest in this problem
appeared with the discovery of two-dimensional Dirac-like materials, such as graphene [6–8].
Graphene is a semimetal with a very robust conductivity at the PH-symmetric Dirac point. On
the other hand, after breaking the PH symmetry by doping, its conductivity changes substan-
tially; it is either enhanced for weak disorder or reduced for strong disorder [9–12]. The effect
of disorder on topological materials, based on Dirac-like models, has also been the subject of
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some recent theoretical research [13–15]. Despite of a substantial effort, there was no conclu-
sive confirmation of localization away from the PH-symmetric Dirac point, neither from the
theory side [16, 17] nor from the experiment [9–12].

While in the PH-symmetric case diffusion was identified as the dominant behavior of non-
interacting Dirac particles in a random environment, the breaking of the PH symmetry was
accompanied with the creation of random dimers [18]. A preliminary work, based on a pertur-
bative renormalization group analysis, did not reveal localization, though [19]. In the follow-
ing we will analyze the competition of diffusing quantum particles and randomly distributed
dimers on a d-dimensional lattice without employing a perturbation theory.

Starting from a PH-symmetric random Hamiltonian H, a symmetry-breaking term is defined
by a uniform shift μ of the PH-symmetric Hamiltonian. The resulting Hamiltonian is still
invariant under a chiral transformation. This invariance is relevant for the analysis of spon-
taneous chiral-symmetry breaking and the corresponding long-scale behavior of the model,
such that we reduce our description to the corresponding invariant measure (IM). Then the IM,
written in terms of a Grassmann functional integral [20], is represented by a loop expansion,
which consists of graphs with four-vertices. Only the smallest loops are taken into account,
which is known as the nonlinear sigma model approximation. This is used as the starting point
for the analysis of the spatial correlations. As mentioned above, there is diffusion in the pres-
ence of PH symmetry with a diffusion coefficient D, which depends on the scattering rate η
and the average Hamiltonian 〈H〉. After breaking the PH symmetry with μ �= 0, we create
small loops with two sites on the lattice which represent repulsive lattice dimers. They act
as obstacles for the diffusion and suppress the latter on large scales, which leads to an expo-
nential decay of the particle correlation. Since the density of the dimers is proportional to
|μ|, this localization effect increases with this parameter. An estimation of the decay length
gives

√
D/|μ|.

2. Model: IM

We briefly recapitulate the main ideas which were developed in the previous work on the loop
expansion and the IM for non-interacting particles in a random environment [21, 22]. For this
purpose a random Hamiltonian matrix H on a lattice Λ is considered. It is assumed that this
Hamiltonian has an internal spinor structure; its matrix elements are of the form Hr j,r′ j′ , where
r, r′ ∈ Λ and j, j′ = 1, 2, . . . , N is a spinor index, where the latter can also be a band index
of a multiband Hamiltonian. We further assume that there is an N × N unitary matrix U that
(i) acts only on the spinor or band index and (ii) for which the Hamiltonian matrix obeys the
relation

UHTU† = −H. (1)

This relation implies a PH transformation in the following sense: since H is Hermitian, we have
HT = H∗ and the relation (1) implies for the eigenstate ΨE of H with the real eigenvalue E

H∗U†ΨE = −U†HΨE = −EU†ΨE.

Complex conjugation of this equation yields

H(U†ΨE)∗ = −E(U†ΨE)∗,

such thatΨ−E = (U†ΨE)∗ is eigenstate of H with eigenvalue−E. Thus, there is a PH symmetry
for E = 0. The PH symmetry of H is broken by μ for H± :=H ± μσ0, where σ0 is the N × N

 



                                          

unit matrix. In the following we will analyze the effect of a shift of E = 0 by μ, using the
nonlinear sigma model approach.

Following references [18, 19], we extend H to the random Hamiltonian matrix

Ĥ =

⎛
⎜⎜⎝

H+ 0 0 0
0 H− 0 0
0 0 HT

+ 0
0 0 0 HT

−

⎞
⎟⎟⎠ ≡

(
H̄ 0
0 H̄T

)
. (2)

At the PH symmetric point (μ = 0) it satisfies the relation ĤŜ0 = −Ŝ0Ĥ for

Ŝ0 =

⎛
⎜⎜⎝

0 0 ϕ3U ϕ1U
0 0 ϕ2U ϕ4U

ϕ′
3U† ϕ′

2U† 0 0
ϕ′

1U† ϕ′
4U† 0 0

⎞
⎟⎟⎠ (3)

with some general parameters ϕ j. For a broken PH symmetry (μ �= 0) it satisfies ĤŜ = −ŜĤ
for

Ŝ =

⎛
⎜⎜⎝

0 0 0 ϕ1U
0 0 ϕ2U 0
0 ϕ′

2U† 0 0
ϕ′

1U† 0 0 0

⎞
⎟⎟⎠. (4)

The PH-symmetric case was studied previously, such that we can focus subsequently on
the broken PH symmetry. Then the relation ĤŜ = −ŜĤ implies for Ĥ the chiral symmetry
eŜĤeŜ = Ĥ of the extended Hamiltonian defined in equation (2). The chiral symmetry reveals
some interesting properties, which will be discussed next.

Some general remarks on the IM: the goal is to calculate average quantities, such as the
average Green’s function or the average product of two Green’s functions, with respect to
the random matrix elements of the Hamiltonian Ĥ [21]. This should be seen as an alternative
to studies, where the distribution of the random Hamiltonian and its spectrum is considered
[23–25]. Average quantities are sufficient to discuss many physically motivated questions, such
as transport [18, 22]. Although simpler than the analysis of the random distribution, the aver-
aging with respect to the random Hamiltonian is a tedious task for a large lattice Λ. A common
and often successful approximation to this problem is to perform a saddle-point integration
(also known as the method of steepest descent) [26]. Then another problem occurs when there
is no unique saddle-point solution but a manifold of saddle points due to some symmetry of
the Hamiltonian. A typical example is the Hamiltonian (2) with the chiral symmetry. Since all
the saddle points of the manifold are equally important, we must integrate over all of them.
The resulting saddle-point integral leads to the IM. This will be discussed in detail for the spe-
cific example of Ĥ subsequently. The saddle-point integral can be performed in this case and
leads to a sum that is characterized by loops with increasing size. There is no problem with
convergence on a finite lattice, since the loops are strictly repulsive and the size of the loops is
restricted by the size of the lattice. The loop expansion was previously developed for the PH-
symmetric case in references [21, 22] and will be adopted to the PH-symmetry broken case in
the following.

First, we construct the IM that is associated with the chiral symmetry. For the matrix Ŝ and
the graded determinant (cf equation (A.1)) we get

 



                                          

det g(e2Ŝ) = exp[Trg(log e2Ŝ)] = exp[2 Trg(Ŝ)] = 1,

since the graded trace vanishes: Trg(Ŝ) = 0. Together with the chiral symmetry of Ĥ this
implies immediately

det g(Ĥ + iη) = det g(Ĥ + iη)det g(e2Ŝ) = det g(eŜĤeŜ + iηe2Ŝ)

= det g(Ĥ + iηe2Ŝ), (5)

where det g(Ĥ + iη) = 1, according to the definition of the graded determinant. Thus,
det g(Ĥ + iηe2Ŝ) is invariant under the chiral transformation.

From relation (5) we can construct the IM through substituting the general parameters ϕ j

by a spatial Grassmann field ϕr j. As explained in appendix A, this leads to the lattice version
of the IM with

J j = det (1 + ϕ′
jϕ j − ϕ′

jhϕ jh
†)−1 = det(1 + ϕ jϕ

′
j − hϕ jh

†ϕ′
j) ( j = 1, 2), (6)

where the relation is derived in (A.5), with

h = 1 + 2iηḠ0, Ḡ0 = (H̄0 + iε − iη)−1. (7)

J j is an invariant for a global chiral transformation, provided that h is unitary. This is the case
for ε = 0: hh† = 1 + O(ε) [22]. It is important to realize that the random Hamiltonian Ĥ has
been replaced by its average H̄0 := 〈H̄〉 in the IM. In references [21, 22] this IM was associated
with the correlator KRR′ between the lattice sites R and R′ through the relation

K j;RR′ =
1
N

∫
Λ

J jϕR jϕ
′
R′ j, N =

∫
Λ

J1 =

∫
Λ

J2 (8)

of a two-component Grassmann field ϕr j (r ∈ Λ).
∫
Λ is the functional integral with respect to

the Grassmann field on the lattice Λ. This correlator indicates localization on the localization
length ξ when it decays exponentially on the scale ξ. It is identical for both components of the
Grassmann field j = 1, 2, such that we can drop this index subsequently. Another important
feature of the Green’s function h is that the relation (1) implies for the PH-symmetric case
μ = 0 the relation

Uh†U† = h, (9)

which does not hold for μ �= 0.
The Grassmann field can be expressed by its Fourier components as

ϕr =
∑

k

e−ik·rϕ̃k = ϕ̃0 +
∑
k �=0

e−ik·rϕ̃k ≡ ϕ̃0 + τr, (10)

where the zero mode ϕ̃0 does not depend on r. Then the normalization becomes

N =

∫
Λ

det{1 + [ϕ̃0 + τ − h(ϕ̃0 + τ )h†](ϕ̃′
0 + τ ′)}

and with hh† = 1 − εΓ̄ + O(ε2) we get

ϕ̃0 − hϕ̃0h† = ϕ̃0(1 − hh†) = εΓ̄ϕ̃0 + O(ε2),

 



                                          

since the space-independent ϕ̃0 commutes with h. ε can be absorbed into the Grassmann
integration by rescaling ϕ̃0 → τ̄ /ε. This implies for the normalization

N = ε

∫
Λ

det[1 + (Γ̄τ̄ + τ − hτh†)(ϕ̃′
0 + τ ′)], (11)

where we have neglected terms of order ε inside the integrand. For the unnormalized correlator
this rescaling argument for ϕ̃0 provides a constant term ϕ̃0ϕ̃

′
0 from the external Grassmann

variable ϕRϕ
′
R′ :∫

Λ

JϕRϕ
′
R′ =

∫
Λ

J(ϕ̃0 + τR)(ϕ̃′
0 + τ ′R′ )

=

∫
Λ

Jτ̄ (ϕ̃′
0 + τ ′R′ ) + ε

∫
Λ

JτR(ϕ̃′
0 + τ ′R′ ), (12)

where only the first term on the right-hand side vanishes with ε→ 0. This implies for the
normalized correlator that the second term diverges for ε→ 0, which is a consequence of the
broken translational invariance due to the factor τR.

3. Loop expansion

The IM of equation (6) can be rewritten as

J = exp{Tr([WW†]dϕϕ
′)} det(1 − ϕX†ϕ′ − Xϕϕ′ − WϕW†ϕ′) (13)

when we define h = [h]d + W, X = W[h]†d, where [h]d and [WW†]d are the spatial diagonal
parts of h and WW †, respectively. Here we implicitly assume the limit ε→ 0. Using the deter-
minant identity det(A) = exp[Tr(log A)] this yields for the IM after expanding the logarithm

log J = Tr([WW†]dϕϕ
′) −

∑
l�1

1
l

Tr[(ϕX†ϕ′ + Xϕϕ′ + WϕW†ϕ′)l]. (14)

This sum terminates on a finite lattice Λ for l = |Λ| due to the Grassmann field. The trace term
with the power l represents a sum of loops of length l on the lattice, such that the sum can
be considered as a loop expansion of the IM [21]. Integration with respect to the Grassmann
field yields graphs with four-vertices from the term WϕW †ϕ′ because the non-zero Grassmann
integral requires at each site r the productϕrϕ

′
r. The four-vertex graphs reflect the equivalence

of the expression (14) with the random phase representation of the IM [22].

3.1. Nonlinear sigma model

As a special case of the loop expansion (14) only the smallest loops are considered, namely
only loops that contain at most two hopping matrices, either X or W. This approximation is
known as the nonlinear sigma model [27] and becomes in the present case

log JNLSM =

Tr([WW†]dϕϕ
′) − Tr(WϕW†ϕ′) − Tr(ϕX†ϕ′ + Xϕϕ′)

−Tr[(ϕX†ϕ′ + Xϕϕ′)(ϕX†ϕ′ + Xϕϕ′)],

 



                                          

where the third term vanishes due to the trace of an off-diagonal matrix X, such that the IM
reduces to

log JNLSM = Tr([WW†]dϕϕ
′) − Tr(WϕW†ϕ′)

+ Tr(X†ϕϕ′X†ϕϕ′ − Xϕϕ′Xϕϕ′). (15)

The first two terms represent a diffusion propagator

TrN([WW†]rr)δrr′ − TrN(Wrr′W
†
r′r)

=
∑

r′′
TrN(Wrr′′W

†
r′′r)δrr′ − TrN(Wrr′W

†
r′r), (16)

where TrN is the trace with respect to the spinor index. The quartic term reads

Tr(X†ϕϕ′X†ϕϕ′ − Xϕϕ′Xϕϕ′) =
∑
r,r′

βrr′ϕrϕ
′
rϕr′ϕ

′
r′ .

β is an imaginary matrix due to

βrr′ :=TrN(X†
rr′X

†
r′r − Xrr′Xr′r). (17)

Relation (9) implies that β vanishes in the presence of the PH symmetry (i.e., for μ = 0). This
was also observed in references [18, 19].

Next, we represent the functional integral with a quadratic form in the Grassmann field,
using a coupling of the latter to a real Gaussian field Qr. This can be achieved by exploiting
the relation

mrβ̄rr′mr′ − (Qr + Vrr′′mr′′ )V
−1
rr′ (Qr′ + Vr′r′′′mr′′′ ) = −QrV

−1
rr′ Qr′ − 2mrQr (18)

with the sum convention for paired indices and with the correlation matrix V = iα1 + β̄
and β̄ = β/i|μ|. We note that mrVrr′mr′ = mrβ̄rr′mr′ for Grassmann variables mr. Then we
introduce the Gaussian integral

〈· · · 〉Q :=
(i|μ|/π)|Λ|/2

√
det V

∫
Q

exp

⎛
⎝−i|μ|

∑
r,r′

QrV−1
rr′ Qr′

⎞
⎠ . . .

∏
r∈Λ

dQr, (19)

where we have set the free positive parameter α such that V is non-singular and its eigenvalues
have positive real parts. The Grassmann integration can be performed because the argument of
the exponential function is a quadratic form of the Grassmann field: "

KRR′ =
1
N

〈∫
Λ

exp

⎧⎨
⎩γ̃0

∑
r

ϕrϕ
′
r −
∑
r,r′

γrr′ϕrϕ
′
r′

− 2i|μ|
∑
r∈Λ

Qrϕrϕ
′
r

}
ϕRϕ

′
R′

〉
Q

=
1
N 〈adjRR′ (γ̃0 − γ − 2i|μ|Q)〉Q (20)

with γrr′ = TrN(Wrr′W
†
r′r) and γ̃0 =

∑
r′ γrr′ . The adjugate matrix can be expressed by the

determinant as

adjRR′ (γ̃0 − γ − 2i|μ|Q) = det(γ̃0 − γ − 2i|μ|Q)(γ̃0 − γ − 2i|μ|Q)−1
RR′ , (21)

 



                                          

provided that γ̃0 − γ + 2i|μ|Q is not singular. The latter can always be arranged by a defor-
mation of the Qr path of integration in the complex plane. The deformation moves the poles of
the inverse matrix away from the real axis, which results in an exponential decay with respect
to |R − R′|.

3.2. Estimation of the localization length

To analyze the spatial behavior of the inverse matrix we use the plane wave eigenvector
Φk = (exp[ik · r]) of the translational invariant matrix γ with eigenvalue γ̃k:

(γ̃0 − γ − 2i|μ|Q)Φk = (γ̃0 − γ̃k − 2i|μ|Q)Φk (22)

with a diagonal matrix on the right-hand side. Since we have

Φk = (γ̃0 − γ − 2i|μ|Q)−1(γ̃0 − γ − 2i|μ|Q)Φk

= (γ̃0 − γ − 2i|μ|Q)−1(γ̃0 − γ̃k − 2i|μ|Q)Φk, (23)

we get for Φ′
k := (γ̃0 − γ̃k − 2i|μ|Q)Φk the equation

(γ̃0 − γ − 2i|μ|Q)−1Φ′
k = Φk = (γ̃0 − γ̃k − 2i|μ|Q)−1Φ′

k. (24)

Then we consider the basis {Φ′
k} and define the vector φ′

R :=
∫

k φk,RΦ
′
k. This gives with

equation (24)

(γ̃0 − γ − 2i|μ|Q)−1φ′
R =

∫
k
φk,R(γ̃0 − γ̃k − 2i|μ|Q)−1Φ′

k =

∫
k
φk,RΦk. (25)

Using the special local vector φR′ = (δR′r), we get

φR′ · (γ̃0 − γ − 2i|μ|Q)−1φ′
R =

∫
k
φk,R(φR′ · (γ̃0 − γ̃k − 2i|μ|Q)−1Φ′

k)

=

∫
k
φk,R(φR′ · Φk) =

∫
k
φk,Reik·R′

. (26)

Finally, we define the expansion coefficients as φk,R = e−ik·R/(γ̃0 − γ̃k − 2i|μ|QR) and obtain

φR′ · (γ̃0 − γ − 2i|μ|Q)−1φ′
R =

∫
k

eik·(R′−R)

γ̃0 − γ̃k − 2i|μ|QR
,

φ′
R =

∫
k

e−ik·R

γ̃0 − γ̃k − 2i|μ|QR
(γ̃0 − γ̃k − 2i|μ|Q)Φk.

(27)

The decay of this expression with respect to |R − R′| characterizes the localization even before
averaging, i.e., for any realization of QR. To calculate the decay we choose the contourΓ of the
QR integration as QR = ei sgn(Q̄)ζQ̄ + iη with real −∞ < Q̄ < ∞, η > 0 and 0 < ζ < π/4, as
visualized in figure 1. Moreover, we assume that γ̃0 − γ̃k = Dk2, which is the inverse diffusion

 



                                          

Figure 1. Contour Γ of the QR integration in the complex plane. The angle with respect
to the abscissa is ±ζ (0 < ζ < π/4).

propagator with diffusion coefficient D. Then the k1 integration can be carried out for the decay
along the one-direction of the lattice as

∫
k

eik·(R′−R)

γ̃0 − γ̃k − 2i|μ|QR
=

∫
k⊥

∫ ∞

−∞

eik1(R′
1−R1)

Dk2
1 + Dk2

⊥ − 2i|μ|QR
dk1

= π

∫
k⊥

e−|R′
1−R1|

√
k2
⊥−2i|μ|(ei sgn(Q̄)ζ Q̄+iη)/D

D
√

k2
⊥ − 2i|μ|(ei sgn(Q̄)ζQ̄ + iη)/D

, (28)

where k⊥ is the k vector perpendicular to the one-direction. From the decay of the exponential
function in this expression we extract a localization length as

ξ =
1

Re

(√
k2
⊥ − 2i|μ|(ei sgn(Q̄)ζQ̄ + iη)/D

) � c(η, |Q̄|, ζ)
√

D/|μ|, (29)

where the coefficient c(η, |Q̄|, ζ) of the upper bound is of order 1.

3.3. Higher order terms of the loop expansion

The contribution of large loops can be analyzed for the case when we neglect the string
term WϕW†ϕ′ inside the trace of equation (14), which provides the IM without any string
contribution as

Jloops = det(1 − Xϕϕ′) det (1 + X†ϕϕ′)−1. (30)

The correlator
∫
Λ JloopsϕRϕR′ vanishes for R′ �= R, since only a string formed by WϕW†ϕ′ can

connect ϕR and ϕR′ . On the other hand, in the presence of a string, these loops are obstacles
for the string in the full IM J and resemble the situation of classical percolation by a geomet-
ric restriction of the string formation. Reducing the loop distribution to small loops, we have
found in section 3.2 that this leads to localization. Therefore, a similar localization effect is
anticipated also for a distribution of larger loops, the possibility of percolating strings for the
full distribution of loops cannot be ruled out though.

To understand the interaction between loops and a string, where the latter is created by
WϕW †ϕ′, we consider the spatial off-diagonal elements of the average Hamiltonian 〈H〉 (i.e.,
the hopping terms of 〈H〉). In order to vary the hopping rate we introduce the parameter s
(0 < s < 1) by the rescaling transformation 〈H〉 → s〈H〉. For simplicity, we assume that 〈H〉

 



                                          

consists only of nearest-neighbor hopping terms. Then a reduction of s means a reduction of
the hopping probability. Expanding the effective Green’s function h of equation (7) in powers
of s gives

h =

(
h+ 0
0 h−

)
, h± = e±iφμ1 − 2iη

(±μ− iη)2
s〈H〉+ O(s2)

e±iφμ :=
±μ+ iη
±μ− iη

.

(31)

In the PH-symmetric case μ = 0 the term linear in the Hermitian matrix 〈H〉 changes its
sign under Hermitian conjugation (i.e., it is anti-Hermitian). Moreover, we write X = sX1 +
O(s2) and W = sW1 + O(s2). This enables us to extract a scaling factor s in (14) and, after
rescaling the Grassmann field ϕ by s, we obtain

log J = Tr(s[W1W†
1]dϕϕ

′) −
∑
l�1

1
l

Tr

⎡
⎣(ϕX†

1ϕ
′ + X1ϕϕ

′

+ sW1ϕW†
1ϕ

′ + O(s2)
)l

⎤
⎦. (32)

Then we treat s as an expansion parameter to separate the terms in log J according to their
scaling dimension with respect to s as

log J = Tr log(1 − X1ϕϕ
′) − Tr log(1 + X†

1ϕϕ
′) + s

{
Tr([W1W†

1]dϕϕ
′)

− Tr(W1ϕW†
1ϕ

′)
}
+ O(s2). (33)

This means that on a scale larger than 1/s we can neglect terms of O(s2). Moreover, since
X†

1 = −X1 in the PH-symmetric case, the term without s vanishes, and the leading term on
large scales 1/s is just the diffusion propagator linear in s. The situation is different when
X†

1 �= −X1 in the PH-symmetry broken case. Then the term without s survives and can dominate
the diffusion term.

4. Discussion and conclusion

The effect of PH-symmetry breaking is characterized by the appearance of small repulsive
dimers in a lattice system that is diffusive at the PH-symmetric point. This means that diffusion,
a classical process, is disturbed by a random distribution of small obstacles. These obstacles
are complex (i.e., they have a phase factor) due to the imaginary matrix β in equation (17).
This effect can be seen as a quantum effect, since for classical diffusion in a random envi-
ronment there are only real obstacles. The dimers are represented by a Gaussian field with a
complex correlation matrix in the Grassmann functional integral, as given in equations (19)
and (20). This reduces the original problem of the IM in equations (6) and (8) to the rather
elementary case of diffusion in the presence of random obstacles. The effect of the latter
has been estimated and gives a localization length, whose upper bound is

√
D/|μ| with the

diffusion coefficient D and the PH-symmetry breaking parameter μ. This surprisingly ele-
mentary result, which depends only on the ratio of the two model parameters, reflects the
competition between diffusion and PH-symmetry breaking. The diffusion coefficient, which

 



                                          

is determined through the expression γ̃0 − γ̃k = Dk2, depends on the average Hamiltonian
H0, the scattering rate η and μ according to the expressions in equation (7). On the other
hand, the localization effect due to PH-symmetry breaking does not agree with the conven-
tional picture of a mobility edge somewhere in the band of the random Hamiltonian and the
related second order phase transition for dimensionality d > 2 [28, 29]. Moreover, our result is
different from the self-consistent approach to Anderson localization by Vollhardt and Wölfle
[30, 31], who found that the diffusion coefficient D vanishes at the transition to Anderson local-
ization but leaves a pole of the effective propagator on the real axis instead of moving it away
into the complex plane. These differences might be related to the fact that we have considered
a special class of Hamiltonians, based on the property (1) and the chiral symmetry. More-
over, the type of PH-symmetry breaking in equation (2) is special. With our results we cannot
rule out that there are other types of PH-symmetry breaking which lead to the conventional
Anderson transition.

The type of Hamiltonian obeying (1) is known in the form of the Dirac Hamiltonian, which
is realized for low-energy quasi particles in graphene. As mentioned in the introduction, this
material has been the subject of intense experimental as well as theoretical research for a
number of years. Our result of a finite localization length in the case of a broken PH sym-
metry might be useful for the characterization of transport in doped graphene. For this system
the diffusion coefficient of the two-dimensional Dirac fermions with finite momentum cut-
off reads D = ( h̄vF)2

η γD [18], where the scalar γD depends on the momentum cut-off. The

Fermi velocity in graphene is typically vF ≈ 106 m s−1 and a typical Fermi energy μ is up
to |μ| ≈ 0.5 eV. Moreover, the typical scattering rate is η ≈ 0.02 eV. Together with the Planck
constant h̄ ≈ 6.6 · 10−16 eV s we get for the localization length ξ ∼

√
D/|μ| ≈ 10−8 m. One

should keep in mind that a finite system size prevents us to distinguish extended states from
localized states whose localization length is larger than the system size. This could be impor-
tant for experiments with graphene flakes and for numerical simulations of the localization
effect away from the Dirac point, especially for a small PH-symmetry breaking parameter μ.
In those cases the localization effect should be observable for localization lengths smaller than
the system size.
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Appendix A. The IM

Since Ŝk = 0 for k > 2 we can write for the matrix of the IM

Ĥ0 + iε+ iηe2Ŝ = Ĥ0 + iε+ iη(1 + 2Ŝ + 2Ŝ2) = Ĥ0 + iε− iη + 2iη(1 − Ŝ)−1

= (1 − Ŝ)−1Ĝ−1(1 − ĜŜ)Ĝ−1
0

  



                                          

with

Ĝ−1
0 = Ĥ0 + iε− iη, Ĝ =

(
h 0
0 hT

)
.

The definition of graded trace is

Tr g

(
A B
C D

)
= Tr A − Tr D

and of the graded determinant is

det g

(
A B
C D

)
=

det A
det D

det(1 − BD−1CA−1), (A.1)

where the latter implies

detg(Ĝ) = detg(Ĝ0) = 1.

This gives for the IM

J = detg(1 − Ŝ)−1detg(1 − ĜŜ)).

Moreover, using

Ŝ =

(
0 S̄
S̄′ 0

)
, S̄ =

(
0 ϕ1U

ϕ2U 0

)
=

(
ϕ1U 0

0 ϕ2U

)
σ1,

S̄′ =

(
0 ϕ′

2U†

ϕ′
1U† 0

)
= σ1

(
ϕ′

1U† 0
0 ϕ′

2U†

)
,

we can express the IM via (A.1) in terms of determinants as

J = det(1 + S̄S̄′ − hS̄hT S̄′). (A.2)

With H0 := 〈H〉 and

h =

(
(H0 + μ+ iε− iη)(H0 + μ+ iε+ iη)−1 0

0 (H0 − μ+ iε− iη)(H0 − μ+ iε+ iη)−1

)

we have hh† = 1 + O(ε) and

σ1UhT U†σ1 =

(
(H0 + μ − iε+ iη)(H0 + μ− iε− iη)−1 0

0 (H0 − μ− iε+ iη)(H0 − μ− iε− iη)−1

)
= h†.

This implies for equation (A.2)

J = det(1 + ϕ1ϕ
′
1 − hϕ1h†ϕ′

1) det(1 + ϕ2ϕ
′
2 − hϕ2h†ϕ′

2). (A.3)

Finally, we apply the determinant identity to write

det(1 + ϕ jϕ
′
j − hϕ jh

†ϕ′
j) = exp

⎧⎨
⎩−
∑
l�1

1
l

Tr[(−ϕ jϕ
′
j + hϕ jh

†ϕ′
j)

l]

⎫⎬
⎭. (A.4)

  



                                          

The properties of the Grassmann variables imply∑
l�1

1
l

Tr[(−ϕ jϕ
′
j + hϕ jh

†ϕ′
j)

l] = Tr(ϕ′
jϕ j) −

∑
l�1

1
l

Tr[(ϕ′
jhϕ jh

†)l]

= −
∑
l�1

1
l

Tr[(−ϕ′
jϕ j + ϕ′

jhϕ jh
†)l]

such that

det(1 + ϕ jϕ
′
j − hϕ jh

†ϕ′
j) = det (1 + ϕ′

jϕ j − ϕ′
jhϕ jh

†)−1. (A.5)

This is the relation in equation (6).
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[27] Gell-Mann M and Lévy M 1960 Nuovo Cimento 16 705–26

  

https://orcid.org/0000-0001-7050-3883
https://orcid.org/0000-0001-7050-3883
https://doi.org/10.1103/physrev.92.1331
https://doi.org/10.1103/physrev.92.1331
https://doi.org/10.1103/physrev.92.1331
https://doi.org/10.1103/physrev.92.1331
https://doi.org/10.1103/physrevb.13.4597
https://doi.org/10.1103/physrevb.13.4597
https://doi.org/10.1103/physrevb.13.4597
https://doi.org/10.1103/physrevb.13.4597
https://doi.org/10.1103/physrevb.18.569
https://doi.org/10.1103/physrevb.18.569
https://doi.org/10.1103/physrevb.18.569
https://doi.org/10.1103/physrevb.18.569
https://doi.org/10.1103/physrevb.26.1838
https://doi.org/10.1103/physrevb.26.1838
https://doi.org/10.1103/physrevb.26.1838
https://doi.org/10.1103/physrevb.26.1838
https://doi.org/10.1103/physrevb.49.3190
https://doi.org/10.1103/physrevb.49.3190
https://doi.org/10.1103/physrevb.49.3190
https://doi.org/10.1103/physrevb.49.3190
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/revmodphys.81.109
https://doi.org/10.1103/revmodphys.81.109
https://doi.org/10.1103/revmodphys.81.109
https://doi.org/10.1103/revmodphys.81.109
https://doi.org/10.1080/00018732.2010.487978
https://doi.org/10.1080/00018732.2010.487978
https://doi.org/10.1080/00018732.2010.487978
https://doi.org/10.1080/00018732.2010.487978
https://doi.org/10.1038/nphys935
https://doi.org/10.1038/nphys935
https://doi.org/10.1038/nphys935
https://doi.org/10.1038/nphys935
https://doi.org/10.1126/science.1167130
https://doi.org/10.1126/science.1167130
https://doi.org/10.1126/science.1167130
https://doi.org/10.1126/science.1167130
https://doi.org/10.1103/physrevlett.102.236805
https://doi.org/10.1103/physrevlett.102.236805
https://doi.org/10.1103/physrevlett.103.056404
https://doi.org/10.1103/physrevlett.103.056404
https://doi.org/10.1103/physrevb.95.155122
https://doi.org/10.1103/physrevb.95.155122
https://doi.org/10.1103/physrevlett.123.046801
https://doi.org/10.1103/physrevlett.123.046801
https://doi.org/10.1016/j.aop.2021.168455
https://doi.org/10.1016/j.aop.2021.168455
https://doi.org/10.1103/revmodphys.83.407
https://doi.org/10.1103/revmodphys.83.407
https://doi.org/10.1103/revmodphys.83.407
https://doi.org/10.1103/revmodphys.83.407
https://doi.org/10.1103/physrevb.73.125411
https://doi.org/10.1103/physrevb.73.125411
https://doi.org/10.1140/epjb/e2013-40482-7
https://doi.org/10.1140/epjb/e2013-40482-7
https://doi.org/10.1103/physrevb.86.155450
https://doi.org/10.1103/physrevb.86.155450
https://doi.org/10.1103/physrevb.79.195424
https://doi.org/10.1103/physrevb.79.195424
https://doi.org/10.1088/1751-8113/48/5/055102
https://doi.org/10.1088/1751-8113/48/5/055102
https://doi.org/10.1007/s10955-013-0879-5
https://doi.org/10.1007/s10955-013-0879-5
https://doi.org/10.1007/s10955-013-0879-5
https://doi.org/10.1007/s10955-013-0879-5
https://doi.org/10.1002/ctpp.201700111
https://doi.org/10.1002/ctpp.201700111
https://doi.org/10.1002/ctpp.201700111
https://doi.org/10.1002/ctpp.201700111
https://doi.org/10.1103/physrevresearch.2.043375
https://doi.org/10.1103/physrevresearch.2.043375
https://doi.org/10.1007/bf02859738
https://doi.org/10.1007/bf02859738
https://doi.org/10.1007/bf02859738
https://doi.org/10.1007/bf02859738


                                          

[28] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42
673–6

[29] Wegner F 1979 Z. Phys. B 35 207–10
[30] Vollhardt D and Wölfle P 1980 Phys. Rev. B 22 4666–79
[31] Wölfle P and Vollhardt D 2010 Int. J. Mod. Phys. B 24 1526–54

  

https://doi.org/10.1103/physrevlett.42.673
https://doi.org/10.1103/physrevlett.42.673
https://doi.org/10.1103/physrevlett.42.673
https://doi.org/10.1103/physrevlett.42.673
https://doi.org/10.1007/bf01319839
https://doi.org/10.1007/bf01319839
https://doi.org/10.1007/bf01319839
https://doi.org/10.1007/bf01319839
https://doi.org/10.1103/physrevb.22.4666
https://doi.org/10.1103/physrevb.22.4666
https://doi.org/10.1103/physrevb.22.4666
https://doi.org/10.1103/physrevb.22.4666
https://doi.org/10.1142/s0217979210064502
https://doi.org/10.1142/s0217979210064502
https://doi.org/10.1142/s0217979210064502
https://doi.org/10.1142/s0217979210064502

	Localization by particle–hole symmetry breaking: a loop expansion
	1.  Introduction
	2.  Model: IM
	3.  Loop expansion
	3.1.  Nonlinear sigma model
	3.2.  Estimation of the localization length
	3.3.  Higher order terms of the loop expansion

	4.  Discussion and conclusion
	Data availability statement
	Appendix A. The IM
	References


