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In the following, we provide additional experiments and
qualitative results to further validate our design choices.
This includes experiments on upsampling token attention,
multi-stride training, within-batch augmentation and archi-
tecture components. We additionally discuss limitations of
our method and areas of future work.

1. Multi-Stride Training
By default, all our models are trained on multiple input

strides sin simultaneously. We first take a closer look at the
effects of multi-stride training.

1.1. Single- vs. Multi-Stride Models

Multi-stride training has the benefit of a more flexible
model that can operate on different input sample rates of
2D poses. We evaluate, whether this flexibility comes at
the cost of reduced spatial precision. Table 1 compares a
multi-stride model to separate single-stride models that are
trained on one specific input stride sin = sout each. The
results on Human3.6M [1] show that multi-stride training
even improves 3D pose estimates. For small input strides,
single and multi-stride models are on par and show no real
advantage of either training mode regarding spatial accu-
racy. With increasing sin, multi-stride training can con-
sistently outperform the single-stride counterpart, on key-
frame poses as well as all-frame results. Thus, when aiming
for very efficient operation with long input strides, multi-
stride training leads to better uplifting and upsampling in
3D output space.

1.2. Upsampling Token Attention

At the beginning of the very first temporal Transformer
block, none of the upsampling tokens carry any input-
related information. They are only conditioned on their rel-
ative frame index. Therefore, any attention to the upsam-
pling tokens will not lead to meaningful information ex-
change or gain. In contrast, there is even the risk of de-
teriorating the information carried by the actual pose to-

Table 1: Comparison of single- (SS) and multi-stride (MS)
training on Human3.6M. All models are trained with N =
81 and sout = 2. The MS models are trained on all input
strides sin ∈ {4, 10, 20} simultaneously. By default, models
use deferred upsampling token attention (DUTA) within the
temporal Transformer. Results are reported for poses on
key-frames as well as all frames at 50 Hz.

MPJPE / N-MPJPE / P-MPJPE ↓
sin Key-frames All frames

SS, w/o DUTA 4 47.9 / 45.8 / 37.1 47.9 / 45.8 / 37.1
SS 4 47.9 / 45.8 / 37.1 47.9 / 45.8 / 37.1
MS, w/o DUTA 4 59.7 / 54.0 / 43.8 52.7 / 49.0 / 39.6
MS 4 47.6 / 46.0 / 37.3 47.4 / 45.8 / 37.1

SS, w/o DUTA 10 48.0 / 46.1 / 37.4 48.2 / 46.3 / 37.6
SS 10 47.8 / 45.9 / 37.1 48.0 / 46.1 / 37.3
MS, w/o DUTA 10 49.9 / 47.7 / 38.6 48.2 / 46.3 / 37.5
MS 10 47.5 / 45.8 / 37.1 47.9 / 46.1 / 37.4

SS, w/o DUTA 20 49.3 / 47.1 / 38.1 50.6 / 48.4 / 39.3
SS 20 50.1 / 47.4 / 38.4 51.5 / 48.8 / 39.6
MS, w/o DUTA 20 49.4 / 47.4 / 38.5 52.1 / 49.8 / 40.5
MS 20 48.2 / 46.4 / 37.6 49.9 / 48.1 / 39.2

kens. To counter this effect, we only allow attention to
upsampling tokens from the second temporal Transformer
block onward. At this stage, all tokens carry input-related
information to some degree. We refer to this as deferred
upsampling token attention (DUTA). Table 1 shows re-
sults for our multi-stride model on Human3.6M, with and
without DUTA. The results clearly show the necessity for
DUTA, as it outperforms the vanilla variant with uncon-
strained cross-token attention on all inputs strides and met-
rics. The most notable difference occurs when evaluating
with sin = 4. In this setting, training without DUTA leads
to worse key-frame performance compared to all-frame re-
sults. This shows that the pose token representation heavily
suffers from unconstrained attention within the first tempo-
ral Transformer block. The negative effects are less severe
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Figure 1: Token attention of the eight MHA heads in the first temporal Transformer block. Top: With DUTA. Bottom:
Without DUTA. The corresponding models are trained with N = 81, sout = 2 and sin ∈ {4, 10, 20}. The examples are
generated with sin = 4, i.e. with a ratio of pose and upsampling tokens of one.

for larger sin, but there is still a clear performance gap to the
DUTA variant. Thus, delaying the full cross-token attention
is a crucial design choice for stable results over different
input strides. Table 1 also shows the influence of DUTA
on single-stride models. For single-stride training, the ra-
tio between pose and upsampling tokens stays the same for
all training examples. The results reveal no clear advantage
or disadvantage when training with DUTA in this setting.
This shows that DUTA is only required for a variable ratio
of pose and upsampling tokens with multi-stride training.

Figure 1 depicts exemplary token attention within the first
temporal Transformer block of a multi-stride model. With
DUTA, temporal attention shows reasonable token-local in-
formation aggregation as often seen in the early stages of
a temporal Transformer. Without DUTA, temporal atten-
tion is uniformly spread over a distant subset of pose tokens
as well as intermediate upsampling tokens. This seems to
greatly hinder proper information exchange over the tempo-
ral sequence.



Table 2: Effects of within-batch augmentation (WBA) on
Human3.6M with N = 351, sout = 5, sin ∈ {5, 10, 20}
and batch size 512. Results are shown with and without
pre-training on motion capture sequences from AMASS.

MPJPE / N-MPJPE / P-MPJPE ↓
WBA sin w/o PT w/ PT

7 5 46.0 / 44.4 / 36.5 43.5 / 42.1 / 34.7
3 5 45.7 / 44.3 / 36.4 42.6 / 41.5 / 34.2

7 20 48.2 / 46.7 / 38.6 45.7 / 44.4 / 36.8
3 20 47.8 / 46.4 / 38.4 45.0 / 44.0 / 36.3

2. Within-Batch Augmentation

Next, we evaluate the benefits of within-batch augmen-
tation (WBA). With WBA, each mini-batch contains the
flip-augmented and non-augmented version of a training
example. This promotes invariance to horizontal flipping
within each weight update. Table 2 shows the results on
Human3.6M. WBA leads to a slight performance gain in
all metrics, independent of the input stride. Note that this
benefit comes at no additional cost during training, since all
models in this comparison use a fixed batch size of 512. The
result shows that the benefits of WBA outweigh the effec-
tively reduced variability within each mini-batch. We also
evaluate with additional pre-training on AMASS. This set-
ting reveals a significant boost through WBA, with a reduc-
tion of up to 0.9 mm in MPJPE. We observe that WBA leads
to slightly slower convergence during pre-training, but far
better validation results. This advantage is then translated
over to the fine-tuning on Human3.6M. We also observe
similar benefits when experimenting with Pose Former and,
to a lesser extent, Strided Transformer.

3. Architecture Components

We also evaluate the individual influence of the three
main components of our Transformer architecture: The
joint-wise spatial Transformer, the pose-wise temporal
Transformer and the strided Transformer. Table 3 compares
our full architecture to variants where one component is re-
moved at a time. Starting with the temporal Transformer,
this component is the most crucial part of our and related
architectures [2, 5]. Removing this block disables repeated
self-attention across the entire sequence of pose and upsam-
pling tokens. Additionally, it impedes the full sequence loss
Lseq. In combination, the results show that the temporal
Transformer is a strict requirement for our architecture to
operate properly. Removing the spatial Transformer is less
impactful, but we observe a clear drop in precision across
all input strides. Thus, dedicating a separate Transformer

Table 3: MPJPE (mm) on Human3.6M with N = 81,
sout = 2 and sin ∈ {4, 10, 20}. We compare variants of
our architecture with either the spatial Transformer (SPT),
the temporal Transformer (TT) or the strided Transformer
(ST) removed. The MPJPE is reported relative to the full
architecture results.

SPT TT ST sin = 4 sin = 10 sin = 20

3 3 3 47.4 47.9 49.9

3 3 +1.2 +1.2 +1.5
3 3 +4.2 +4.7 +5.9
3 3 +0.6 +0.7 +0.9

to generate an initial pose representation is beneficial, espe-
cially when input 2D poses are temporally sparse. Finally,
the strided Transformer has the lowest impact compared to
the other two components, but its removal still leads to an
increase in MPJPE by 0.6 - 0.9 mm. It acts as a refinement
component via the center frame loss Lcenter and is again
most helpful for large input strides. Due to the internal
temporal striding, it is computationally less expensive com-
pared to the full temporal Transformer blocks and therefore
a valid addition to our architecture.

4. Qualitative Examples

Figure 2 depicts qualitative examples on Human3.6M
with our method, Pose Former and Strided Transformer at
an input stride of sin = 20. In comparison to Strided Trans-
former, our method typically leads to more precise 3D es-
timates on key-frames an non-key-frames. Pose Former is
more robust to sparse input sequences, but our method still
leads to better results on human motion at non-key-frames,
e.g. during walking motion. Figure 5 depicts additional ex-
amples from our best models and 2D input poses at 2.5 Hz.
We observe plausible human motion even on difficult ex-
amples within Human3.6M and MPI-INF-3DHP. The ex-
amples in rows three and six depict failure cases, which we
discuss in detail next.

5. Error Modes and Limitations

We observe two main error modes for our proposed
method. The first cause of erroneous 3D pose estimates
are missdetections within the 2D pose estimates. Figure 5
(rows three, left) depicts such an example, where the esti-
mated 2D locations of leg joints suffer from self-occlusion.
Note that the dependence on high quality 2D poses is com-
mon to all uplifting methods [4, 6, 2]. Therefore, we see
this error mode as a limitation of single-frame 2D HPE and
the 2D-to-3D pose uplifting approach in general.
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Figure 2: Qualitative examples on Human3.6M, with N = 81 and sin = 20. We compare our method, Pose Former [7] and
Strided Transformer [2]. Top: Examples on key-frames. Bottom: Examples on non-key-frames.

The second error mode is more unique to our method.
Figure 5 (row six, right) depicts an example of a person
performing boxing punches in quick succession. We ob-
serve that some of the punches are not reconstructed within
the estimated 3D pose sequence. Since we utilize input 2D
poses at only 2.5 Hz for this example, some of the punches
occur so fast that they are completely missing from the sub-
sampled input sequence as well. Consequently, our model
is not able to reconstruct the full motion.

In order to analyze the dependency between 2D pose
subsampling and fast body motion, we define the average
root-relative velocity vt of a pose Pt as

vt =
1

J

J∑
j=1

‖(Pt,j − Pt,r)− (Pt−1,j − Pt−1,r)‖2, (1)

where again the pelvis is used as the root joint r. We use the
relative velocity, since we focus on the speed of within-body
movement. We want to measure fast movement of e.g. the
arms or legs independent of the person standing in place
or walking. Figure 3 shows the MPJPE on Human3.6M in
contrast to the ground truth velocity vgt

t (reported in m/s).
We divide the range of observable velocities into equidis-

tant intervals and report the MPJPE for all estimated 3D
poses within an interval. The results are depicted for the
same model under two different settings: a moderate input
stride of sin = 5 for high spatial precision and a long input
stride of sin = 20 for best efficiency. Under no or very small
movement (< 0.2 m/s), both settings perform equally. Due
to the limited motion, the temporal component of the input
sequence does not offer additional information, no matter
the input stride. For movement in the range of 0.2 - 0.4 m/s
(e.g. walking), both settings show rather stable results, with
only minor losses in precision for sin = 20. Most actions
within Human3.6M fall into this range of relative pose ve-
locity. Only for considerably faster movement, the results
of both settings diverge. While sin = 5 (i.e. 2D poses at
10 Hz) stays relatively stable around 50 mm MPJPE, our
fastest setting with sin = 20 shows increasing difficulties
in reconstructing the true pose sequence in 3D space. This
reveals the main limitation of our method: The choice of ef-
ficiency, which is mainly governed by sin, must not only fit
potential hardware and runtime requirements, but also the
range of expected movement speed. While our most effi-
cient setting with sin = 20 is suitable for regular movement
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Figure 3: The MPJPE on Human3.6M in contrast to the
ground truth pose velocity vgt

t . The velocities are dis-
cretized into equally sized intervals. We additionally show
the cumulative distribution (CDF) over the velocities in the
dataset.

Table 4: Computational complexity and best MPJPE (mm)
on Human3.6M with MoCap pre-training. FLOPs are re-
ported for a single forward pass of the uplifting model. We
also report the poses per second (PPS) for a video frame
rate of 50 Hz on an NVIDIA 1080Ti.

N sout sin FLOPs↓
PPS↑

(w/o CPN)
PPS↑

(w/ CPN) MPJPE↓

81 2
4 564 M 326 105 44.8

10 543 M 334 179 45.5
20 535 M 337 234 47.9

351 5
5 1062 M 704 151 42.6

10 999 M 759 255 43.1
20 966 M 827 399 45.0

in daily life, it will not fit applications in e.g. sporting activ-
ities.

6. Adaptive Input Stride

Finally, we discuss further potential of our method that
is yet to be exploited. One of the main advantages of our
method is that a single instance of our uplifting model (i.e. a
single set of model parameters) can support different input
strides. Thus, a single model can be operated with differ-
ent computational complexity and processing rates (see Ta-
ble 4 for extended runtime and complexity results). For all
experiments in this paper, the input stride is kept constant
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Figure 4: MPJPE on an exemplary ”WalkDog” video from
Human3.6M, with N = 351 and sout = 5. We switch our
model from sin = 20 to sin = 5 for video sections where the
observed relative pose velocity vt surpasses 0.5 m/s (red).

throughout the processing of an entire video. This is no
strict requirement though. A change in input stride only
affects how many video frames are used for 2D pose es-
timation and subsequent pose token generation within the
spatial Transformer. No other reconfiguration of our model
is required. Thus, the input stride can be changed online
while processing a video stream. This enables hardware-
limited devices to dynamically adapt to currently avail-
able shared resources like memory or computational units
(CPUs, GPUs, TPUs).

A second use case of variable input strides is the adap-
tion to the occurring human motion. Based on the discus-
sion about movement speed in Section 5, we can process a
video with long input stride by default, and only switch to a
shorter input stride for increased precision when observing
fast body movement. Figure 4 represents an exemplary Hu-
man3.6M video where a short sequence of running occurs.
By thresholding the pose velocity vt from the 3D pose esti-
mates (orange), e.g. with 0.5 m/s, we can identify this video
section and switch from sin = 20 to sin = 5. Only when the
velocity (red) drops below the threshold for a fixed number
of frames, we switch back to the more efficient input stride.
This way we avoid the otherwise failed 3D pose estimation
with an MPJPE > 80 mm. Note that the relative velocity is
only one of many possible statistics for identifying difficult
video sections. We leave the development and evaluation of
such statistics as a research direction for future work.
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Figure 5: Qualitative examples on Human3.6M (top) and MPI-INF-3DHP [3] (bottom). The results are generated with our
best models and 2D poses at 2.5 Hz. The left column shows results on key-frames, the right column on non-key-frames.
Failure cases are depicted in rows three and six.
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