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In this chapter, the dynamics of magnetic skyrmions is reviewed. Starting 
with a topological definition of what we call a magnetic skyrmion, we describe 
the topology and discuss the resulting general properties. To stabilize chiral 
skyrmions, we introduce a chiral exchange interaction and we present the 
spin canting that leads to a given handedness for chiral  skyrmions. Based 
on the statics, we next describe the dynamics based on a one-dimensional 
model and then discuss the steady-state dynamics for instance in wire geom-
etries as well as the gyrotropic relaxation eigenmodes. Finally, we present an 
experimental demonstration of both these types of dynamics and give a brief 
outlook on future challenges and opportunities in this field. 
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8 .1  Topological Definition of a Skyrmion
By definition, a vector field is called a skyrmion or said to be skyrmionic 
if it has a spherical topology. In the following, we will explain the con-
cept of topology, illustrate how the mathematical definition is applied 
to a magnetic spin configuration, and discuss the implications of a spin 
structure being a skyrmion. 

Topology is a mathematical concept to classify geometrical proper-
ties of continuous structures (where structures can be real-space objects, 
vector fields, momentum space functions, etc.). Two structures are con-
sidered equivalent if a continuous map from one to the other exists. 
There are many possible definitions of continuity inheriting from the 
large variety of possible complete sets of open subsets of the structure 
under consideration. Physical constraints, such as energy barriers or 
forbidden intermediate states, define allowed deformations and the set 
of prohibited or strongly suppressed transformations. They, therefore, 
specify meaningful topological distinctions. In physics, topologies are 
often classified according to homotopic transformations between spaces 
with Euclidian metric and a Euclidian definition of neighborhood and 
open sets. A homotopy is a continuous deformation, not necessarily 
bijective. In contrast, homeomorphisms—defining another possible 
topological classification—are bijective. For instance, a line and a point 
are homotopically equivalent, but they are not homeomorph.

To deduce implications of the topology on the physics of a system, 
the choice of topological classification has to be based on physical 
arguments. In magnetism, the following three arguments apply. First, 
in most magnetic systems, the magnetization profile varies on length 
scales much larger than crystal lattice constants due to the exchange 
mechanism. Hence, the associated vector field is well described in a 
continuum model, a prerequisite for a topological classification. Second, 
exchange interactions, which scale with the gradient of the magnetiza-
tion, set a natural energy barrier for discontinuous deformations, justi-
fying the concept of homotopy. And third, magnetostatic interactions 
(anisotropy and stray fields) stabilize the boundary of the structure. 
Hence, homotopy transformations are allowed, provided that they do 
not modify the boundary of the structure. This set of allowed transfor-
mations (all others are strongly suppressed) defines topological equiva-
lence classes. 

One example of a topologically nontrivial structure in real space 
is the skyrmion. Skyrmions, in general, refer to vector fields with a 
spherical topology, first identified by T. Skyrme in the field of nuclear 
physics.61 Through topological arguments, Skyrme could show the 
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existence of confined fermionic particle-like solutions of a nonlinear 
bosonic meson field theory. Specifically, he constructed a field opera-
tor that maps the three-dimensional (3D, or 3 + 1 to include the time 
dimension) domain space to the surface of a sphere.61 Similarly, the 
macrospin in micromagnetism is a vector in 3�  with a constant modu-
lus, or, equivalently, a point on the two-dimensional (2D) surface of a 
sphere S2. Of particular interest are skyrmionic spin structures in thin 
films (2 + 1 domain space), i.e., vector fields →2 2S�  that are homo-
topically equivalent to the identity map on a sphere 2idS . In these struc-
tures, the domain space can be continuously deformed to a spherical 
shape such that the map to the spin space changes continuously, and 
the boundary of the domain space always maps to the same spin. This 
homotopy between such so-called magnetic skyrmion and the vector 
field of a sphere is visualized in Figure 8.1.

The homotopy between a vector field and the identity map on a 
sphere is described by the topologically invariant skyrmion number N. 
This counts the number of times the sphere is covered in the homotopi-
cal deformation (although if N is not equal to 1, the transformation is 
much more complicated than illustrated in Figure 8.1 and more diffi-
cult to visualize). In two dimensions, the skyrmion number N of a vec-
tor field ∋ → ∈( , ) m2 2x y S�  can be calculated by ∫= π −(8 ) d d1N x yn 

with the topological density2 n = 2(∂xm × ∂ym) · m. Note that the sign 
in this formula is not consistently defined in the literature, and the defi-
nition used here is adapted from Belavin and Polyakov (the first pub-
lished application of this formula in the field of magnetism that we are 
aware of).2

FIGURE 8 .1 Homotopy between a skyrmion in a disk and the identity map of the 
sphere. The hue of the color represents the azimuthal angle of the spins, and the 
black/white level symbolizes the polar angle. The images show a continuous defor-
mation of the skyrmion (left) to a spherical shape (right). All spins of the skyrmion 
boundary (black spins) are mapped to the north pole of the sphere, which is only 
possible because they all point in the same direction. The white spins of the inner 
domain are all mapped to the south pole. (From Büttner, F., Topological mass of 
magnetic skyrmions probed by ultrafast dynamic imaging. Dissertation, University 
of Mainz, Mainz, 2013. With permission.) 
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For our definition and axially symmetric structures (or structures 
that can be deformed homotopically into axially symmetric shapes) 
with polarity p and winding number W, the skyrmion number can be 
calculated by the simplified formula N = pW/2.39 This formula is use-
ful to calculate the skyrmion number “by hand,” because the wind-
ing number is strictly quantized and it is therefore easy to determine 
from a picture of the magnetization configuration. The winding num-
ber is most conveniently calculated by expressing the 3D macrospin in 
spherical angles (φ, θ). The winding number of a closed loop is given 
by the normalized difference of the azimuthal angle φi of the spin at 
an arbitrary point of the loop and the angle φf of the spin after going 
around the full loop once in positive orientation: W = (φf − φi)/(2π). 
Naturally, the loop must not cross regions where φ is not well defined 
(singularities), such as points or areas with pure out-of-plane mag-
netization or points where two spins are pointing head to head. The 
winding number is always an integer, and it has nonzero value only 
if the loop encloses a singularity.64 Often, only when W = 1 (and thus 
N = ±1),  skyrmionic spin structures are called skyrmions. Note that the 
magnetization orientation m(r,φ) of circular W = 1 skyrmions can be 
described in polar real-space coordinates (r,φ) by m(r,φ) = (mx, my, mz) = 
(sin(θ)cos(φ + ψ), sin(θ)sin(φ + ψ), cos(θ)), where θ = θ (r) describes the 
cross-sectional domain wall profile and the constant ψ is the domain 
wall angle. Skyrmions with ψ = 0 (spins pointing outwards) and ψ = π 
(spins pointing inwards) are called Néel skyrmions (sometimes in the 
literature the term hedgehog skyrmion is also used), whereas  skyrmions 
with ψ = π/2 (spins rotating counterclockwise) and ψ = 3π/2 (spins 
rotating clockwise) are called Bloch skyrmions. The polarity is defined 

as = = − = ∞1
2

( ( 0) ( ))p m r m rz z .

The skyrmion number provides direct information about the domain 
structure. The only way to map a planar geometry continuously to a 
sphere is by contracting its boundary to one single point of the sphere 
(defining one of the poles). Therefore, all spins on the boundary of an 
N = 1 configuration must have the same orientation, forming a domain. 
Somewhere in the interior of the configuration, a connected area exists 
in which the spins point antiparallel to the outer domain (this inner 
domain can be arbitrarily small down to a single point). The transition 
between these two domains is a smooth domain wall winding around 
the inner domain to ensure that the whole sphere is represented. That 
is, the fact that a spin vector field has N = 1 implies the existence of 
the inner domain, the outer domain, and the domain wall, of which 
only the outer domain touches the boundary (thus confining the inner 
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domain and the domain wall). The confined inner domain together 
with the domain wall has quasiparticle properties, which has led to the 
name skyrmion. 

8 .2  General Topological 
Properties of Skyrmions

The special topology of skyrmions has directly measurable implications; 
we will discuss four of the key ones here. First, skyrmions are protected 
against creation or annihilation by a topological energy barrier, as long 
as they do not move towards the edge of the sample. Due to this topo-
logical stability, there is an extended region in the phase diagram where 
skyrmions and the ferromagnetic state (uniform, parallel spin alignment) 
have a hysteretic coexistence.52 In this regime, the number of skyrmions 
in a given area is a free parameter, which is very important when using 
skyrmions for data storage technologies. Still, it has been shown that there 
are ways to create and annihilate skyrmions artificially in this regime of 
the phase diagram. This can be achieved, for instance, by (1) locally inject-
ing a spin-polarized current,48,52 (2) locally heating the sample,31 (3) local 
magnetic fields,31 (4) sending a current through a wire with an appro-
priately shaped constriction,24,31 (5) high-frequency bipolar excitations in 
combination with pinning sites,70 or (6) moving two domain walls76 or a 
stripe domain26 from a constricted area to an extended area. In addition, 
skyrmions with a finite lifetime,  so-called dynamic skyrmions, can be 
created uniformly in z-direction in a magnetized film by the combined 
action of the Oersted field and the Slowncewski spin torque of a local cur-
rent in z-direction that is spin-polarized in z-direction.75 

A second universal property of magnetic skyrmions is that elec-
trons moving adiabatically across a magnetic skyrmion collect a Berry 
phase. This phase can be expressed through the Aharonov–Bohm 
effect caused by an “emergent” magnetic field of the skyrmion. This 
emergent magnetic field is proportional to the topological density n, 
and the Berry phase is proportional to the integrated enclosed flux, i.e., 
to the skyrmion number. The interference of different paths around 
the skyrmion leads to a deflection of the overall electron propagation 
direction, i.e., to a transverse current. This leads to a transverse voltage, 
the so-called topological Hall voltage.42,53

A third interesting property of magnetic skyrmions is their outstand-
ing insensitivity to magnetic pinning, at least in the collective motion 
of densely packed skyrmions, so called skyrmion lattices. One scenario 
that is particularly interesting for technological applications, such as the 
racetrack memory proposed by Parkin et al.,46 is the displacement of 
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nontrivial magnetic textures by spin-polarized currents. Such nontrivial 
textures, of which skyrmions are one example, can potentially be used to 
encode information. The underlying phenomenon for the displacement 
of spin structures is the so-called spin-transfer torque of conduction elec-
trons on localized spin moments, predicted by Berger3 and Slonczewski.62 
The investigation of this effect is a subject of intense research nowadays, 
with a strong focus on the motion of straight domain walls.5 However, 
extrinsic magnetic pinning of domain walls has been found to be sig-
nificant, and mostly no motion has been observed for regular domain 
walls driven with current densities smaller than 1011 A/m2. In contrast, 
for skyrmion lattices, this critical current density is five orders of magni-
tude smaller.53 So far, no complete theoretical explanation of the particu-
larly low pinning of skyrmions has been published, and it remains to be 
seen if these low critical current densities can be realized also for isolated 
skyrmions. However, the confinement of skyrmions intuitively leads to 
lower pinning compared to extended domain walls. This is firstly because, 
for topological reasons, skyrmions never touch the edge of the sample, 
reducing the sensitivity to edge roughness and thus to the main source of 
pinning. And second, a fully confined structure is flexible to deform and 
to move around obstacles (provided the obstacles are not attractive).25,41

A fourth phenomenon that is directly associated with the skyrmionic 
topology is a force that acts on a moving skyrmion, pointing perpen-
dicular to its velocity vector. The spherical topology of a skyrmion leads 
to an intrinsic angular momentum in the quasiparticle equation of 
motion of a skyrmion,45 expressed by a gyro term ×G R� , where G = 
(0,0,G) is the gyrocoupling vector and R�  is the velocity of the center of 
mass R of the skyrmion.67 The gyrocoupling strength 4G NT Ms= − π γ  
(where T is the material thickness, Ms its saturation magnetization, 
and γ = 1.76 × 1011 As/kg the gyromagnetic ratio) is proportional to the 
topological charge N of the skyrmion. Note that the intrinsic angular 
momentum is zero for skyrmions in antiferromagnets where Ms = 0. 
Intrinsic angular momentum is also found in structures with fractional 
skyrmion numbers, such as N = ±1/2 vortices,23 but generally not in 
straight domain walls with N = 0. 

8 .3 Chiral Exchange Interactions
The spin structures present in a system generally result from the mini-
mization of the relevant micromagnetic energy terms. In addition to the 
Heisenberg exchange that favors spin structures with random chirality, 
chiral skyrmions can be stabilized by chiral exchange interactions that 
can be found in systems with inversion asymmetry and strong spin–orbit 
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coupling (SOC). The so-called Dzyaloshinskii–Moriya interaction (DMI) 
is a symmetry-breaking (antisymmetric) exchange interaction that is 
present in addition to the Heisenberg exchange. The DMI between two 
spins in a magnetic material is mediated via the SOC of an adjacent heavy-
metal atom with strong spin–orbit interaction, as shown schematically 
in Figure 8.2. Taking into account SOC, Moriya found that the effective 
Hamiltonian for the interaction between two (macro-)spins M1 and M2 
contains a term D12 · (M1 × M2).38 As shown schematically in Figure 8.2, 
a DMI coupling can arise at the interface of a heavy metal layer and a 
ferromagnetic layer (FL) in a multilayer stack due to the broken inversion 
symmetry in z-direction and the strong SOC of the heavy metal. The 
resulting DMI vector, D12, points in the plane of the layers and perpen-
dicular to the vector connecting M1 and M2. The magnitude and the sign 
of D12 are properties of the interface and the involved materials. The DMI 
leads to a favored chirality of a spin spiral state.12,51 For sufficiently strong 
DMI, a spin spiral state is favored with the spiral axis in the plane.47 For 
lower values of D, a skyrmion lattice is the ground state.40 While DMI is 
not necessary to obtain skyrmion spin structures with a given topology 
as they can be stabilized by dipolar interactions for instance in thin films, 
the DMI modifies the spin structure.30 In general, in thin film multi-
layers, both dipolar interactions and DMI will be present as it has been 
shown that even for nominally symmetric stacks, DMI is present due to 
the different growth at the interfaces.20

Overall, strong DMI will increase the stability of spin structures and 
favor skyrmions with a certain topology (W = 1 winding number) and 
a fixed product ψp of domain wall angle ψ and polarity p, which, how-
ever, is not a topological quantity in a homotopic classification. 

Heavy
metal layer

Ferromagnetic layer

M 1

M 2

D 12

Atoms with large SOI

FIGURE 8 .2 Illustration of the Dzyaloshinskii–Moriya interaction. In multilayer 
stacks with broken inversion symmetry, chiral coupling between two spins M1 and 
M2 is mediated by a heavy atom (dark gray) in one of the nonmagnetic layers (HL). 
The sign and strength of the resulting DMI (vector D12) are interface/materials’ 
properties that lead to one favored chirality of the spin structure. 
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8 .4 Quasiparticle Equation of Motion
Here, we present the general quasiparticle equation of motion of a 
W = 1 rigid circular skyrmion, including the effects of spin-polarized 
electrical currents and uniform spin injection due to the spin Hall 
effect (SHE) in an adjacent heavy metal layer. An electrical current 
flowing through a ferromagnetic material gets polarized along the local 
magnetization direction. The spin-polarized current is parametrized 
by the spin drift velocity u = JPμB/(eMs), where J is the electron current 
density, P is the spin polarization of the material, μB = 9.27 × 10−24 J/T is 
the Bohr magneton, and e = 1.602 × 10−19 C is the electron charge. At a 
gradient of the magnetization, the re-orientation of the conduction 
electron spins requires the transfer of angular momentum to the local 
magnetization. This transfer of angular momentum can be due to adia-
batic or nonadiabatic spin-transfer torques, but the torque on the local 
magnetization is always proportional to the gradient of the magnetiza-
tion and as such it is a function of position in the sample. In contrast, 
a heavy metal layer above or below the ferromagnetic layer becomes 
a source of a uniform (position-independent) spin current when it is 
transmitted by an electrical current jHM. The spin current flows per-
pendicular to jHM and is polarized perpendicular to both jHM and to 
the spin current direction. The injection of angular momentum leads 
to a torque on the magnetization, which can be described by a sum of 
the two terms: a contribution that acts like a uniform magnetic field 
along the polarization of the injected spins (field-like term) and one 
term that resembles the damping term of the Landau–Lifshitz–Gilbert 
equation (damping-like term). Here, we only consider the damping-
like term because a uniform field does not cause motion if we assume 
the skyrmion to be rigid. Taking into account all these contributions, 
the resulting quasiparticle equation of motion for the center of mass 
position R reads17,24,34,52,66,68:

− + × − − α −β + π ψ + =( ) ( ) 4 ( ) 0,HMM D BRR G R u R u j F�� � � � �  (8.1)

where M is the effective mass of the skyrmion, ∫ ( )= γ ∂d d 2D TM x ys x m�

is the dissipation constant, α is the Gilbert damping, β is the non-

adiabaticity parameter, = γ θ
2

2
SHB

e
I�  is a coefficient that depends on 

the spin configuration (with the reduced Planck constant ħ = 6.63 × 

10−34 Js, the spin Hall angle θSH, and 1
4

d sin cos d
d0

I r r
r∫= θ θ + θ





∞

) 
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( )
cos sin
sin cos

ψ =
ψ ψ

− ψ ψ









R�  is the rotation matrix corresponding to 

the domain wall angle ψ, jHM is the current density of an adjacent spin 
Hall heavy metal, and F is a driving force acting on the skyrmion for 
instance due to a gradient of the out-of-plane effective field. The  center 
of mass of a skyrmion is determined from an average position of its spins 
(the spins enclosed by the loop of spins with zero out-of-plane moment) 
weighted by their out-of-plane component. Note that Equation 8.1 is 
written in a form that each term is given in units of force. Sometimes, 
another form is found in the literature, where the whole equation is 
divided by TMsγ, thus giving each term the units of velocity.24,52,68 
In that form, the gyrocoupling constant and the dissipation constant 
reduce to Gʹ = −4πN (or sometimes Gʹ = 4πN) and �D x y x md d ( )2∫′ = ∂ , 
respectively.

The overall dynamics of skyrmions are well described by Equation 8.1. 
However, some details of the trajectories that are visible in micromag-
netic  simulations cannot be explained by this equation. Therefore, a 
number of modifications to Equation 8.1 were suggested. These include 
adding a gyrodamping55 and making the parameters of the equation 
dependent on the excitation type (thermal, spin current, or field gradi-
ent) and the excitation frequency.55 Yet, the magnitude and significance 
of such corrections still have to be determined from experiments. The few 
existing experiments are described well by Equation 8.1, and we there-
fore discuss the dynamics of skyrmions based on this equation in the 
following section.

8 .5 Dynamics of Skyrmions
In this section, we discuss the dynamics of magnetic skyrmions 
in three distinct scenarios: (1) the steady-state motion, which 
skyrmions will enter if the excitation is constant or varies only 
very slowly, (2) the gyrotropic eigenmodes in a parabolic poten-
tial, and (3) the translational motion along a nanowire using pulsed 
forces.

8.5.1 Steadgy-State  otion
Due to the gyro term in Equation 8.1, the x and y position coordinates, 
Rx and Ry, are canonically conjugate variables,25 similar to position 
and transverse spin angle for straight domain walls36 (the transverse 
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spin angle is the angle of the spins with respect to the plane formed 
by the set of all spins in the domains and in the domain wall at 
rest). Therefore, in the absence of confining potentials (and pinning, 
i.e., F = 0), the steady-state motion of a skyrmion is a linear trajectory 
with a characteristic angle with respect to the direction of the driv-
ing force, the skyrmion Hall angle. The velocity depends linearly on 
the excitation strength, i.e., there is no intrinsic pinning, which is in 
stark contrast to the dynamics of nontopological domain walls. The 
steady-state velocity for a spin current in x-direction (u = (u,0,0)) is 
given by25:

= β
α

+ α −β
α + α





( / )

,3 2R
D G

ux� �  (8.2)

= α −β
α +
( )( / )

( / ) 1
.2 2R D G

D G
uy�

�
�  (8.3)

Often, α ≪ 1 and ≤/ 1D G� , which means that Equations 8.2 and 8.3 
can be simplified to25: 

�R ux ≈ , (8.4)

≈ α −β( )( / ) .R D G uy� �  (8.5)

Hence, within this approximation, the velocity in the direction of 
the current flow Rx�  does not depend on α or β; only the skyrmion 
Hall angle ( )ξ =tan R Ry x� �  is influenced by these material parameters. 
Remarkably, the skyrmion Hall angle for current-driven skyrmion 
motion scales inversely with the topological charge N (remember 
G ∝ N), whereas in cases of skyrmion motion driven by a finite force 
Fx ≠ 0 (as, for instance, due to a magnetic field gradient), the spin Hall 
angle scales linearly with N36: 

tan( ) 2 ,0N
R

ξ = − ∆
α

(8.6)

where Δ0 is the domain wall width parameter of the skyrmion domain 
wall and R is the skyrmion radius. 

If the skyrmion is driven by a constant spin injection due to a spin 
Hall current jHM = (jHM,0,0) instead of a spin current u, then the steady-
state velocity depends on the chirality of the skyrmion. Essentially, the 
skyrmion is dragged in the direction where the spins in its domain 



221                        

wall are parallel to the injected spins.68 The steady-state velocity for an 
|N| = 1 skyrmion in this case reads:

�
�

� �R DB
G D

GB
G D

jx cos( ) sin( ) ,2 2 2 2 2 2 HM= α
+ α

ψ +
+ α

ψ








  (8.7)

�
�

� �R DB
G D

GB
G D

jy sin( ) cos( ) ,2 2 2 2 2 2 HM= − α
+ α

ψ +
+ α

ψ








  (8.8)

indicating that a Néel skyrmion with low damping α ≪ 1 moves per-
pendicular to the spin Hall current, whereas a Bloch skyrmion moves 
in the direction of the injected spin Hall current.68 

In case of a confining potential in y-direction and a spin current in 
x-direction (as experienced by a skyrmion in a nanowire), the current-
driven skyrmion dynamics change drastically. Here, the skyrmion 
first moves on a diagonal line towards higher potential energy regions 
(towards the edge of the wire) before entering a steady-state longitudi-
nal motion. The angle between the diagonal line of the initial motion 
and the x-axis is again the skyrmion Hall angle, and the velocity of 
the subsequent longitudinal motion of the skyrmion follows the same 
equations as that of a straight domain wall.24 

8.5.2 Ggyrotrooic Eioenoodes
The dynamics of skyrmions is particularly rich in the case of non-
steady-state motion, for instance due to pulsed spin currents or due 
to pinning (F ≠ 0). In those cases, inertia of the skyrmion becomes 
important. The simplest case is the motion of a skyrmion in a radi-
ally  symmetric parabolic potential in the absence of currents or field 
gradients, i.e., for F = −KR and u = 0. Here, K is the potential stiffness. 
In reality, most potentials can be locally approximated by a parabola, 
which makes this analytically solvable approximation applicable to 
experimental situations. Therefore, we will discuss the solution of the 
equation of motion for this particular case in more detail. 

As a reminder, the equation of motion for a skyrmion in a parabolic 
potential without current reads: 

− + × + α − = 0.M D KR G R R R�� � � �  (8.9)

By using the convenient complex parametrization = +R R iRx y of the 
location vector, we obtain: 

− + α + − =( ) 0,MR D iG R KR�� � �  (8.10)
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which is a simple harmonic oscillator with solution:

= ω + ω( ) exp( ) exp( )1 2R t A i t B i t  (8.11)

with: 

ω = η± ω − η ,1,2 0
2 2i  (8.12)

η = − α +1
2

( ),
M

D iG�  (8.13)

/ .0ω = K M  (8.14)

The two terms of the sum in Equation 8.11 are called gyrotropic 
eigenmodes of the skyrmion. They describe a left-handed and a right-
handed spiraling motion, respectively. The complex frequencies 
ω = ω + τ/1,2 1,2 1,2i  combine the real frequencies of the spiraling motion 
ω1,2 and the damping τ1,2 in one number. When both modes are excited 
simultaneously, the resulting trajectories can have distinctly different 
shapes depending on the relative amplitude of the modes, see Figure 8.3. 
If the lower frequency mode has a smaller amplitude than the higher 
frequency mode, the trajectory looks like a deformed spiral, which 
rotates clockwise if N is positive, and counterclockwise if N is negative 
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FIGURE 8 .3 Micromagnetically computed trajectories of a skyrmion in a parabolic 
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of the higher frequency mode is initially four times smaller than that of the lower 
frequency mode. The trajectory is a hypocycloid with 5 = −ω1/ω2 + 1 cusps per turn, 
rotating clockwise. 
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(Figure 8.3a). If the lower frequency mode has a larger amplitude than the 
higher frequency mode; however, the trajectory becomes a  hypocycloid 
and the rotation is reversed (counterclockwise if N is positive and clock-
wise if N is negative). The number of cusps is given then by −ω1/ω2 + 1 
(Figure 8.3b). Note that the damping scales linearly with the frequency.34 
Therefore, a trajectory as in Figure 8.3a will at a later time transform into 
a motion that resembles Figure 8.3b (and thereby changing the sense of 
rotation). Even later, the amplitude of the lower frequency mode will be 
so small that the trajectory cannot be distinguished from that of a mass-
less skyrmion within the experimental resolution.

Only |N| = 1 skyrmions show the previously discussed gyrotropic 
eigenmodes. Skyrmions of other topological charges show com-
plex dynamics within their domain wall during the motion, which 
means that the spin structure no longer behaves like a rigid particle. 
Hence, Equation 8.1 is no longer able to describe the dynamics of the 
skyrmion as a whole on the time scale of the domain wall fluctuations. 
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Phys., 11, 225–228, 2015. With permission.)
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The resulting trajectories are visualized in Figure 8.4 for N = 0,1, ..., 5. 
For  the dynamics on timescales much slower than the domain wall 
fluctuations, however, Equation 8.1 has been found to be very accurate 
even up to N = 90.36 

The eigenfrequencies ω1,2 and the corresponding damping terms τ1,2 
can be measured in an experiment, for instance by resonant excitations43,57 
or by imaging the trajectory.11 Figure 8.5 shows the 2D relaxational trajec-
tory of a skyrmion after displacement in a parabolic potential, measured 
with 3 nm spatial precision and 50 ps temporal resolution. 

The experimental skyrmion trajectory in Figure 8.5 is in excellent 
agreement with the theoretical prediction of Equation 8.11 if both 
gyrotropic eigenmodes are considered. The existence of two gyrotropic 
eigenmodes is an unambiguous indicator for an |N| = 1 spin structure 
topology. Furthermore, the frequencies can be used to calculate the 
mass of the skyrmion: 

ω + ω = ω + ωRe( )1 2 1 2  (8.15)

= Re(G/M − iDαM) (8.16)

= G/M. (8.17)
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FIGURE 8 .5 Gyrotropic trajectory of an N = 1 skyrmion, with (a) and (b) showing 
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extracted from dynamic imaging of its relaxational motion after excitation in a para-
bolic potential. Colored lines represent a fit of the data points with the theoretical 
model of Equation 8.11. Gray lines depict the best fit with Equation 8.11 when setting 
the mass to zero. (From Büttner, F. Nat. Phys., 11, 225–228, 2015. With permission.) 
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In the experiment, the frequencies were of the order of 1 GHz. The 
corresponding mass of the skyrmion has been found to exceed the iner-
tia of its domain wall, the so-called Döring mass,14 by at least a factor 
of 5.11 In brief, the Döring mass of a domain wall originates from the 
fact that a domain wall can only move if its spins tilt out of their equilib-
rium position, which increases the magnetostatic energy. The increase 
in energy by tilting the spins is described by an effective anisotropy9 K⊥ 
and the Döring mass of a domain wall of width Δ0 reads: 

= + α
γ ∆⊥

(1 ) ,D
s
2 2

2
0

m M
K

(8.18)

where γ = 1.76 × 1011 As/kg is the gyromagnetic ratio. Skyrmions, how-
ever, posses a mass that is significantly larger than expected from the 
domain wall theory, thus indicating further contributions to their 
inertia. It was suggested that the expansion and shrinking of the 
skyrmion, the so-called breathing mode, constitutes another source 
of  inertia as this mode can store energy.54 This source of inertia is 
only  found in skyrmionic spin structures because the skyrmions are 
the only completely confined spin structures in magnetism, i.e., the 
only structures that can continuously grow and shrink. The large mass 
of the skyrmion has hence been called topological mass.11 

8.5.3  otion aoono Nanowires
The dynamics of skyrmions in fully confining potentials as discussed 
before is best suited for studying their quasiparticle properties as well 
as for applications in radio-frequency technology, where the skyrmions 
are excited at their resonance frequency.57 Most other possible applica-
tions, however, rely on skyrmions being displaced to a new equilibrium 
position. In this complicated scenario, Equation 8.1 has to be solved 
numerically. Research in this field has just started and a more complete 
picture is still emerging. Here, we first demonstrate that inertia of a 
skyrmion does not impact how far the skyrmion is displaced but that 
the trajectory of the motion in between depends on the magnitude of 
the mass. Subsequently, we discuss the first experimental observation 
of the propagation of skyrmions. 

A typical potential application of propagating skyrmions is in a 
magnetic shift register.18 In this application, skyrmions are placed in 
a nanowire. A pulsed current or a pulsed magnetic field gradient are 
applied in the direction of the wire in order to move the skyrmions 
by a well-defined distance. Ideally, there is no other force along the 
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direction of the wire (i.e., no pinning), and the potential perpen-
dicular to the wire can be approximated by a parabola. The trajecto-
ries of a massive and a massless skyrmion in such an ideal scenario 
for the case of a pulsed force (and without current) are compared in 
Figure 8.6. The mass of the massive skyrmion, M = 2 × 10−21 kg, is the 
mass found in the experiment in Ref. [11]. Both skyrmions, the mas-
sive and the massless, travel the exact same distance. The massive 
skyrmion, however, needs more time to arrive at the new equilib-
rium position, and the transverse displacement during the motion is 
significantly smaller than for the massless skyrmion. Hence, a mass-
less skyrmion is more likely to be annihilated when touching the 
edge of the wire. 

One advantage of skyrmions is their low susceptibility to external 
fields as uniform fields do not induce skyrmion displacement. The 
dynamics due to field gradients as discussed before is thus difficult to 
implement for devices. Furthermore, field-induced dynamics exhibits 
poor scaling when shrinking the size of a potential device. An alterna-
tive approach is current-induced magnetization manipulation, which 
exhibits favorable scaling.5 Previously, current-induced magnetization 
dynamics due to spin-transfer torque effects has been in the focus of 
research. Here, the transfer of spin angular momentum from conduc-
tion electrons to the magnetization is used to efficiently manipulate 
magnetization in multilayer stacks with potential applications in mag-
netic random access memories27 or to move domain walls,5 which can 
be the basis for racetrack memory devices.46 
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The adiabatic spin-transfer torque arises when an electron that 
traverses a spin structure continuously adjusts its spin orientation to 
match the local magnetization direction. For instance, if an electron 
passes adiabatically across a domain wall, it changes its spin direction 
by 180°. Due to conservation of angular momentum, a total of 1ħ of 
angular momentum is transferred to the local spin structure in the pro-
cess. Even when including nonadiabatic effects, the maximum angular 
momentum that an electron can transfer from its spin degree of free-
dom is 1ħ, and 1ħ/electron is hence a fundamental limit for the spin-
transfer torque efficiency. 

For the transfer of orbital angular momentum, however, there is no 
such fundamental limit and such a process can thus in principle be 
much more efficient. To transfer orbital angular momentum, one makes 
use of spin–orbit coupling in a heavy metal layer adjacent to a mag-
netic layer (Figure 8.8). Due to the SHE and the inverse spin galvanic 
effect (ISGE), the injected charge current jHM leads to two torques acting 
on the magnetization. These two torques are distinct in their symme-
try and are called field-like (FL) (sometimes also called  reactive) and 
damping-like (DL) (sometimes also called dissipative or Slonczewski-
like).7 These torques result from two spin–orbit effects that occur in 
addition to spin-transfer torque: 

1. When a charge current flows in a heavy metal layer, electrons expe-
rience a deflection that is perpendicular to their velocity and to 
their spin orientation. This so-called SHE leads to spin accumu-
lations at all sides of the wire and each side has a different spin 
polarization, see Figure 8.7. Experimentally, a spin current flowing 
in z-direction (polarized in y-direction) is most interesting because 
it can be injected into a ferromagnet on top (or below) the HL, see 
Figure 8.8. The spin orientation in y-direction is called transverse 
polarization, to distinguish it from a longitudinal polarization 
(in the direction of current) and a perpendicular spin polariza-
tion (perpendicular to the interface). The transverse spin current 
that moves across the interface into the ferromagnet then interacts 
with the magnetization in the ferromagnetic layer via spin-transfer 
torque and thus manipulates the magnetization. Different micro-
scopic origins have been proposed to explain this effect, including 
intrinsic band structure effects as well as extrinsic skew scattering 
and side jump effects.60 

2. The ISGE (also termed Rashba–Edelstein effect) results from an 
electric field that originates from the symmetry breaking at the 
interface and then leads to an effective magnetic field for the 
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moving electrons at the interface.59 The sign of this field depends 
on the spin–orbit interaction and is independent of the Oersted 
field. It has a fixed direction at the interface within the sample, 
so that the spins moving at the interface experience a torque and 
a nonequilibrium spin density results. In contrast to the pri-
marily bulk SHE, the ISGE is a pure interface effect only pres-
ent in a multilayer configuration where the interface generates 
the required electric field. However, in such a multilayer con-
figuration, the resulting spin density at the interface then acts by 
exchange on the magnetization in the ferromagnet and can thus 
manipulate it.

The damping-like torque and the field-like torque that can orig-
inate from the SHE or the ISGE are commonly called spin–orbit 
torques (SOTs). It is unclear and discussed controversially as to 
whether the ISGE alone can be responsible for the switching of the 

FIGURE 8 .7 Illustration of the deflection of electrons in a heavy metal wire due to 
the spin Hall effect. Spheres indicate electrons and arrows their spin orientation. The 
dashed black arrows depict the electron trajectories. The electron flow is mostly along 
the wire axis, but due to the spin Hall effect, the electrons experience a deflection 
that depends on their spin orientation. In applications, typically a ferromagnetic layer 
would be placed on top or below the heavy metal layer and then experience an injec-
tion of spins that are polarized in a direction perpendicular to the current flow and 
perpendicular to the normal of the interface. (Reprinted from Pai, C.-F., The spin Hall 
effect induced spin transfer torque in magnetic heterostructures. PhD thesis, Cornell 
University, Ithaca, NY, 2015. With permission.) 
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perpendicular ferromagnetic layer, and the extent of the contribu-
tion from the SHE to the damping-like torque is not well known 
for metal systems. While originally it was predicted that the ISGE 
primarily leads to a field-like torque and the SHE to a damping-
like torque, it is now generally accepted that both can lead to both 
torques.21,33 

The current-driven motion of skyrmions in a thin transition metal 
ferromagnet at room temperature has recently been demonstrated 
experimentally.70 In this experiment, Pt/Co/Ta and Pt/Co60Fe20B20/
MgO multilayer stacks with perpendicular magnetic anisotropy were 
studied with high-resolution magnetic transmission soft X-ray micros-
copy. Pt in contact with Co is known to generate strong DMI,51 while 
Ta generates very weak DMI,16 so that a large net DMI is anticipated 
in this asymmetric stack structure. Pt/Co60Fe20B20/MgO multilayers 
are known for their low pinning due to the amorphous character of 
Co60Fe20B20 and again the asymmetry in the stacking leads to a sizable 
DMI and SOT spin current. 

Skyrmion

FM

HL

x

y
z

jHM

FIGURE 8 .8 Schematic depiction of the multilayer stack suitable for spin–orbit 
torque-driven skyrmion motion. The multilayer consists of a heavy metal underlayer 
(HL) and a ferromagnetic layer (FL) where spin–orbit interaction effects, such as DMI 
and spin–orbit torques, occur. The injected charge current in the heavy metal layer 
jHM along the x-direction in the HL splits due to the spin Hall effect, with spin-left 
electrons flowing up and spin-right electrons flowing down. Thus, a spin current in 
the z-direction with polarization in y-direction results. This spin current then acts on 
the magnetization in the FL. Furthermore, for electrons flowing at the interface, the 
inverse spin galvanic effect (sometimes also termed Rashba–Edelstein effect) leads to 
a nonequilibrium spin density and thus to an effective field at the interface that also 
acts on the magnetization in the FL. Both effects (spin Hall and inverse spin galvanic) 
lead to torques that can displace spin structures such as skyrmions (spin structure, see 
inset) along the wire with higher efficiency than the conventional approaches using 
spin-transfer torques.
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Recent simulations suggest that skyrmions in ultrathin films might 
be driven even more efficiently than in previous studies of bulk materi-
als due to the increased efficiency of vertical spin-current injection that 
is only available in thin film multilayers. Pt/FM/Ta multilayer stacks 
with a ferromagnet (FM) are very favorable in that regard because Pt 
and Ta have spin Hall angles of opposite signs, meaning that the spin 
current injected from Pt upwards has the same polarization as the spin 
current injected by Ta downwards. Hence, the spin Hall currents gen-
erated at each interface work in concert to generate a large damping-
like torque.71 As the spin Hall effect direction of motion of a skyrmion 
depends on the skyrmion topology, which in turn is here dominated by 
the DMI, observations of current-induced displacement can serve to 
unambiguously verify the topology and chirality of the skyrmions in 
this system. 

In the experiment, an external magnetic field Bz was applied to a 
2-μm wide magnetic track to shrink the zero-field labyrinth domains 
into a few isolated skyrmions. The track was contacted by Au elec-
trodes at either end for current injection, as shown in Figure  8.9a. 
Figure 8.9b shows a sequence of images of a train of four skyrmions 
stabilized by Bz. Each image was acquired after injecting 20 cur-
rent pulses with a  current-density amplitude of 2.2 × 1011 A/m2 and 
a duration of 20 ns. The pulse polarity is indicated in the  figure. 
Three of the four skyrmions move freely along the track and can 
be displaced forward and backward by current, while the leftmost 
skyrmion (which is highlighted by a white circle) remains immobile, 
evidently pinned by a defect. The propagation direction is along the 
current flow direction (against electron flow), and this same direc-
tionality was observed for skyrmions with oppositely oriented cores. 
Micromagnetic simulations show that the observed unidirectional 
spin-Hall-driven displacement is consistent with Néel skyrmions 
with left-handed chirality, confirming the topological nature of the 
skyrmions in this material.70

The average skyrmion velocity was measured versus current den-
sity in three different devices, shown in Figure 8.9c. The experiment 
yields a critical current density of jcrit = 2.0 × 1011 A/m2, below which 
skyrmions remain largely pinned. Slightly above jcrit the skyrmions 
move at different average speeds in different regions of the track, 
suggesting a significant influence of local disorder on the dynamics. 
Interestingly, pinned skyrmions can be annihilated, as seen in the 
last image of Figure 8.9b, where only three skyrmions remain, and 
the leftmost skyrmion becomes pinned at the same location as was 
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the annihilated skyrmion. At higher current densities, faster  skyrmion 
motion with velocities exceeding 100 m/s has been detected. 

The very large value of the experimentally observed critical current 
density and the skyrmion velocities that are lower than those calculated 
for a defect-free sample are in sharp contrast to recent micromagnetic 
studies that predict high skyrmion mobility even in the presence of 
discrete defects.18,24,52 These micromagnetic simulations suggest that a 
dispersion in the anisotropy energy due to interface disorder has little 
influence on the dynamics. However, a short length scale dispersion in 
the local DMI can cause skyrmion pinning and thus leads to a finite 
critical current and reduced velocities, which is in qualitative agree-
ment with our experiments. This suggests that even higher velocities 
and lower critical currents might be achieved by engineering materi-
als and enhancing interface quality. However, even with the observed 
velocities, fast switching as necessary for devices can be achieved 
already. 
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FIGURE 8 .9 (a) Schematic of a magnetic track on Si3 N4 membrane with  current con-
tacts and skyrmions stabilized by a down-directed applied magnetic field. (b) Sequential 
STXM images showing skyrmion displacement after injecting 20   unipolar cur-
rent pulses along the track, with an amplitude and polarity as indicated. Individual 
skyrmions are outlined in dotted circles for clarity. (c) Average velocity of skyrmions 
in Pt/Co/Ta (closed symbols) and Pt/CoFeB/MgO (open symbols) versus current den-
sity; error bars denote standard deviation of multiple measurements. (From Woo, S. 
et al., Nature Materials, 15, 501–506, 2016. With permission.) 
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These results show that magnetic skyrmions and skyrmion lattices 
can be stabilized in common polycrystalline transition metal ferro-
magnets and manipulated at high speeds in confined geometries at 
room temperature. Since the magnetic properties of thin-film hetero-
structures can be tuned over a wide range by varying layer thicknesses, 
composition, and interface materials, it is now possible to engineer the 
properties of skyrmions and their dynamics using materials that can be 
readily integrated into spintronic devices. 

8 .6 Experimental Challenges
Experimental investigations of magnetic skyrmions are difficult 
because of their small size: typically, the diameter of a skyrmion 
is less than 100 nm. Furthermore, confirming the skyrmion topol-
ogy requires either an image of its 3D spin structure close to atomic 
resolution or a measurement of the behavior of the skyrmion with 
unambiguous signatures of the actual skyrmion topology, as illus-
trated for the example of the skyrmion trajectory in Figure 8.4. 
Images of the 3D magnetization can be reconstructed from Lorentz 
transmission electron microscopy (TEM) data, as first demonstrated 
by Yu et al.72 (see Figure 8.10). The technique is very powerful for 
static or quasi-static measurements of skyrmions due to its high spa-
tial resolution. Ultrafast dynamic imaging, however, is challenging 

30 nm

FIGURE 8 .10 Real-space experimental image of a skyrmion. The image was acquired 
using Lorentz transmission electron microscopy. The color denotes the in-plane 
orientation of the magnetization, as indicated also by the arrows. Black areas are 
magnetized in the out-of-plane direction. (Reprinted by permission from Macmillan 
Publishers Ltd. [Nature] [Yu et al., 2010], copyright [2010]).
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(1) because of the limited availability of stroboscopic TEM electron 
sources and (2) because the probing electrons of the TEM inter-
act with the electric and magnetic fields that are normally used to 
excite dynamical behavior in magnetic systems. TEM pump-probe 
imaging of  ferromagnetic domains has been available for decades, 
with nanometer spatial and sub-nanosecond temporal resolution.4 
However, thus far, no dynamic imaging of skyrmions using TEM 
has been reported. 

Other ultra high spatial resolution imaging techniques with capa-
bilities of detecting the spin configuration include scanning tunnel-
ing microscopy with a spin-polarized tip (SP-STM)22 and nitrogen 
vacancy (NV) center magnetometry.13,35 However, despite some 
advances in detecting spin waves with NV center magnetometry,65,69 
both techniques are presently not capable of pump-probe dynamic 
imaging. 

There are several techniques suitable for pump-probe imaging of 
spin dynamics. The most common techniques are using light to probe 
the magnetic state, which is nonperturbative as long as heating of the 
sample is insignificant. Approaches using visible light, such as Kerr 
and Faraday microscopy, are widely accessible and have been success-
fully employed in studying bubble skyrmions for decades.36 However, 
with some exceptions,26 skyrmions in modern research are too small 
for visible light imaging. Therefore, X-ray imaging seems to be a rather 
appropriate method for imaging of skyrmion dynamics. 

Generally, X-ray imaging techniques exploit the X-ray circular mag-
netic dichroism (XMCD)56,63 to obtain X-ray absorption contrast for the 
spin component parallel to the propagation direction of the incident 
X-rays. A strong XMCD is observed when tuning the X-ray energy to 
the L-edge of the magnetic material, i.e., to wavelengths of a few nano-
meters. A weaker XMCD is found at the M-edge, i.e., at wavelengths 
of a few tens of nanometers. X-ray imaging techniques include trans-
mission X-ray microscopy (TXM),19 scanning transmission X-ray 
microscopy (STXM),29 photo electron emission microscopy (PEEM),32 
and X-ray holography.15 All of these techniques have been successfully 
employed in pump-probe imaging of spin dynamics and for imaging of 
skyrmions.6,11,70 

Despite the many tools available for imaging of skyrmion dynam-
ics, reports of such measurements are rare. The main challenge of 
such experiments is that pump-probe imaging requires one to repeat 
the experiment over and over again, and the dynamics of the speci-
men under investigation must be reproduced identically. Typically, 
a full movie with nanometer spatial and sub-nanosecond temporal 
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resolution requires billions of repetitions. Almost any  magnetic 
material grown today, in particular, systems that host magnetic 
skyrmions show some irregularities in the magnetic potential land-
scape, so-called pinning. In such rough potentials, tiny deviations in 
the initial conditions or thermal effects can lead to large changes in 
the subsequent dynamics. Advances on reducing magnetic pinning 
have been reported,10 and individual samples have indeed proven 
suitable for pump-probe imaging.11 However, further advances are 
pivotal for systematic investigations of skyrmion dynamics and for 
their application in devices. 

8 .7 Outlook
In this chapter, we have discussed the topological identity of 
skyrmions and how they manifest in solid-state magnetism. We 
have provided the quasiparticle equation of motion of magnetic 
skyrmions and reviewed theoretical and experimental studies reveal-
ing their dynamics in the three important cases of (1) quasi-static 
motion, (2)  gyrotropic relaxation, and (3) propagation in a wire. 
However, skyrmion research is a rapidly developing field with new 
results appearing all the time. Some of the new research directions 
that have recently emerged include new materials systems beyond 
the well-established B20 bulk inversion asymmetry compounds 
and the multilayer systems with structural inversion asymmetry 
as many other materials are fundamentally inversion asymmetric. 
These include GaV4S8,28,50 Heusler compounds,37 and nitrides (such 
as CoRh0.75Fe0.25Mo3N), and others. Furthermore, while here we 
focus on the dynamics of skyrmions in ferromagnets, other materi-
als’ systems are starting to attract attention. This includes skyrmions 
in synthetic antiferromagnets74 and skyrmions in antiferromagnetic 
single-layer systems.1,73 In Figure 8.6, the trajectories of skyrmions 
can be seen for different effective masses for an effective force act-
ing on the skyrmion. Clearly, in addition to the motion in the direc-
tion of the force, a perpendicular motion is observed. This is often 
termed an effective Magnus force.49 A key advantage of using antifer-
romagnetic or antiferromagnetically coupled layers with skyrmions 
is the opposite action of the Magnus force on both sub-lattices (both 
layers) leading to no transverse motion for the skyrmion and thus a 
reduction in the interaction of a skyrmion for instance with a wire 
edge. Finally, novel manipulation of skyrmions beyond field (gradi-
ents) and currents include optical as well as electric-field excitations 
as some multiferroic systems exhibit DMI and host skyrmions.58
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