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Abstract

This thesis extends the emerging field of multimodal sentiment analysis of real-life videos,
taking two components into consideration: the emotion and the emotion’s target.

The emotion component of media is traditionally represented as a segment-based in-
tensity model of emotion classes. This representation is replaced here by a value- and
time-continuous view. Adjacent research fields, such as affective computing, have largely
neglected the linguistic information available from automatic transcripts of audio-video
material. As is demonstrated here, this text modality is well-suited for time- and value-
continuous prediction. Moreover, source-specific problems, such as trustworthiness, have
been largely unexplored so far. This work examines perceived trustworthiness of the source,
and its quantification, in user-generated video data and presents a possible modelling path.
Furthermore, the transfer between the continuous and discrete emotion representations is
explored in order to summarise the emotional context at a segment level.

The other component deals with the target of the emotion, for example, the topic the
speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently
extracted based on automatic transcripts without limiting a priori parameters, such as the
expected number of targets. Furthermore, alternatives to purely linguistic investigation in
predicting targets, such as knowledge-bases and multimodal systems, are investigated.

A new dataset is designed for this investigation, and, in conjunction with proposed
novel deep neural networks, extensive experiments are conducted to explore the components
described above. The developed systems show robust prediction results and demonstrate
strengths of the respective modalities, feature sets, and modelling techniques. Finally,
foundations are laid for cross-modal information prediction systems with applications to the
correction of corrupted in-the-wild signals from real-life videos.
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Introduction





1 Introduction

1.1 Motivation

The internet has become the port of call in almost every aspect of our lives. We communicate
with family and friends on social networks, search for information, go shopping online,
and entertain ourselves with music and films. The almost five billion people online1 are
not just passive consumers, but interact with each other and continually contribute new
user-generated content. Along with the increasing number of participants, the duration and
forms of interaction have led to rapid growth in the amount of data. The transition from
text-based to multimodal content, especially in social networks such as YouTube, Instagram,
and TikTok, plays a central role in this growth. This more complex content evokes a deeper
willingness to engage and blurs the boundaries between the digital and the physical worlds.
YouTube, for example, has become the second-largest social network, with nearly two billion
active users and one billion hours of video watched each day2.

Extracting, processing, analysing, and understanding relevant information from vast
amounts of unstructured, user-generated data remains a challenge [1]. Sentiment analysis
is a well-established method of managing and structuring this data. It allows opinions
and sentiments (positive, neutral, and negative) on topics to be extracted and automatically
measured on axes such as customer interest, satisfaction, and brand perception. Text-based
sentiment analysis is now widely adopted in industry; however, the evident transition from
text to video modalities also demands that available methods evolve.

A video is composed of three core modalities: a visual signal, an audio signal, and,
derived from that, a textual transcription of the spoken word. Multimodality poses new
challenges and, simultaneously, opens new avenues for processing and analysing this diverse
information. The reasons for this are manifold: On the one hand, the individual modalities
have specific strengths depending on the prediction target. For example, the visual component
enables extraction of facial expressions and gestures to, for instance, recognise finger-pointing
towards an object [2]. Voice is strongly associated with arousal-related emotions [3], and
content can be extracted from the text [4]. On the other hand, robust intermodal dynamics can
give a richer picture of a scene. The absence of one modality can be compensated by another.

1https://www.statista.com/statistics/617136/digital-population-worldwide/ accessed August 1, 2021.
2https://www.statista.com/statistics/272014/global-social-networks-/ranked-by-number-of-users/ accessed

September 16, 2019.
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For example, the person of interest’s face might be obscured, but their voice may still be
perceived [5, 6]. Fusing different modalities is often utilised to capture more fine-grained and
complex aspects of emotion than just the sentiment, as in the field of Affective Computing
(AC) [7, 8]. As a result, multimodal approaches often lead to superior prediction results than
unimodal ones do [9].

From these insights emerges Multimodal Sentiment Analysis (MSA) [10]. Datasets are
the cornerstones supporting the development of new methods for analysing multimodal inter-
actions between emotions and topics in real-life, user-generated media (“in the wild”) [11].
Despite the recent efforts that construct larger datasets [12], many in-the-wild paradigms
remain unexplored to this day. These gaps lead to a lack of robustness and generalisation
capabilities needed to develop and employ these techniques in real-world applications, which
is still an ongoing challenge [13, 14]. Furthermore, two disciplines with differing computa-
tional backgrounds approach the topic from different angles. The sentiment (and opinion)
mining community specialising in Natural Language Processing (NLP) methods for symbolic
information analysis leverages the text modality and focuses on predicting discrete sentiment
label categories [15]. At the same time, the field of affective (and behavioural) computing,
specialising in intelligent signal processing, mainly focuses on one or both of the audio and
visual modalities in order to predict the continuous-valued arousal and valence dimensions of
emotion according to the Circumplex Model of Affect (CA) [16], while often disregarding the
potential contribution of textual information [17–20]. Both communities have very similar
objectives and highly influence each other, but nevertheless maintain separate points of view.

The aim of this work is to foster the desirable first steps towards unifying these communi-
ties [21–23], and to facilitate their convergence. On this path, the foundation is first laid by
a newly collected and annotated multimodal dataset that integrates aspects of both worlds
and goes beyond previous scopes. Then, through a combination of signal processing and the
latest machine learning methods, new approaches are explored to extract meaningful repre-
sentations from the vast amounts of data. These serve as the input to develop state-of-the-art
prediction systems, expand previous knowledge, explore technological limits, and open new
directions in the emerging research field of multimodal learning techniques.
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Figure 1.1: Illustration of a multimodal example to show how multiple features naturally com-
plement each other for predicting arousal, valence, and the object of interest in multimodal
sentiment analysis.

1.2 Problem Statement and Research Questions

The thesis’s central task is to extend the frontiers of Multimodal Sentiment Analysis on
user-generated video content. Given a collection of videos, the aim is to develop ma-
chine learning methods to investigate the multimodal interaction between an opinion
holder’s communicated emotional response and the objective context in which it is
triggered. While (perceived) emotions are inherently subjective, their target is rather
objective.

An example of Multimodal Sentiment Analysis is given in Figure 1.1. Here, the statement
“This feels absolutely unreal” has no target because “this” is ambiguous. As shown by the
multiple modality dimensions, the context can be inferred from hand gestures and objects that
indicate that the “autonomous driving” feature has been turned on. The emotional perspective
is also inconclusive. Given the textual information (of the spoken word) alone, it can indicate
either an “expectation exceeded” (positive valence) or an “anxious uncertainty” (negative
valence). In addition, the paralinguistic features of the vocal apparatus in this example
indicate high arousal. Furthermore, the facial muscles, indicating attentive frowning and, at
the end, a broad smile, further regulate the emotional outcome. All modalities together give
a complete picture. For such a complex comprehension, however, the temporal appearance
of the features must be robustly extracted and represented, temporally aligned and fused, and
the intermodal context learned. This highlights the technical challenges that computational
methods face when attempting to perform the task in an automated way.
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As described, the focus of this thesis is to develop a set of novel computer-based meth-
ods for analysing user-generated videos from the real world in terms of subjective and
objective dimensions. With this scenario in mind, the formulated Research Questions (RQ)
investigated in this thesis are as follows:

RQ-1: To what extent and in what form can complex emotional states be effectively
modelled by machine learning methodologies for Multimodal Sentiment Analy-
sis? Furthermore, can these emotion representations be exploited for novel tasks
specific to Multimodal Sentiment Analysis? To gain an understanding of this, the
established primitives’ arousal and valence, as well as the novel dimension of trustwor-
thiness, are proposed and predicted in time- and value-continuous form. Additionally,
a number of experiments are outlined to derive data-driven, discrete summary classes
linked to the thematic boundaries of the objective dimension. Finally, the perceived
emotion is utilised to estimate the popularity of user-generated videos.

RQ-2: How can the emotion’s target be automatically extracted from vast amounts
of user-generated videos without making a priori assumptions? Additionally,
how can the coherent, annotated speaker topics be predicted? To explore this, an
unsupervised graph-based machine learning method, particularly suited for automatic
transcriptions of the spoken word in real-world settings, is proposed and experimentally
evaluated. Furthermore, in a series of experiments, proposed supervised models
utilising knowledge bases and multimodal representations are evaluated.

RQ-3: How can the subjective and objective dimensions of Multimodal Sentiment
Analysis be predicted most effectively? How do audio, text, and video modali-
ties perform as unimodal inputs and in multimodal fusion? To evaluate this, a
multimodal dataset is designed including user-generated videos in complex settings.
Furthermore, a variety of representations are extracted from several modalities, suitable
deep neural network architectures are proposed, and, in combination, their robustness
is experimentally evaluated.

RQ-4: Can cross-modal dynamics be useful to infer individual modalities? Given
the often flawed representations in real-life recordings, understanding cross-modal,
temporal dependencies is the cornerstone for more effective modality co-learning
and robust multimodal representations. To investigate cross-modal interaction at a
fundamental level, a series of experiments are conducted applying several proposed
sequence-to-sequence networks that predict facial muscle activity from the voice alone.
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1.3 Contributions

A broad spectrum of MSA topics is addressed in this work and in prior publications of
the author. However, this thesis does not aim to cover all aspects at the same level of
granularity. Instead, it focuses on specific challenges within these subtasks, making the
following contributions:

Corpus and gold standard: The scope of the problem stated is specifically extended by a
new collection of user-generated videos and novel gold standard methods.

• Introducing the selection, collection, and annotation process of the novel dataset Multi-
modal Sentiment Analysis in Car Reviews (MuSe-CaR) [24] — the most extensive
annotated multimodal sentiment analysis dataset featuring continuous emotions and
speaker topics.

• Presenting the novel gold standard annotator fusion method Rater Aligned Annota-
tion Weighting (RAAW) as part of the Multimodal Sentiment Analysis Continuous
Annotation Fusion and Discrete Class Transformation Toolbox (MuSe-Toolbox) [25],
alongside a developed procedure to extract time series features from these gold stan-
dards and create emotional classes for video segments of varying length.

Both were open-sourced to the research community through the international Multimodal
Sentiment Analysis challenges (MuSe) [26, 27] and will continue to advance the field, while
providing a standardised benchmark for novel methods. They are also at the core of this
work’s experiments.

The following new approaches and findings for insufficiently researched aspects of MSA
contribute to answer RQ-1 and RQ-2, directly incorporating RQ-3, as well as addressing
modality inference towards cross-modal systems (RQ-4).

Subjective dimensions:

• Proposing new Deep Learning (DL) architectures to demonstrate effective modelling
of time-continuous emotion gold standards (e. g. , RAAW). In particular, providing new
findings regarding modelling techniques; prediction strength of the individual audio,
text, and video modalities and representations; the combination of these modalities for
multimodal prediction; and benchmarking against other models found in the literature.

• Proposing and evaluating architectures for the classification of summary emotion
classes on the same aspects as for continuous emotions. The main focus is on compar-
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ing the intensity classes naïvely created from the annotations continuous in time and
value with the emotion classes learned by the proposed new method.

• Demonstrating the value and predictability of the novel dimension of perceived trust-
worthiness proposed for quantifying trust in online videos. A particular effective model
is proposed in this context and the individual functional elements are evaluated.

• Developing an experimental setting and methods to extract features from the sub-
jective dimension, estimate relationships between these features and the popularity
of a YouTube video, and predict popularity in terms of views, likes, and other user
engagement criteria.

Objective dimensions:

• Proposing a novel unsupervised Graph-based Topic Modelling approach for Transcripts
(GraphTMT) to model content and context understanding in videos without needing
human-generated annotations. The semantic topic coherency and the performance are
quantitatively and qualitatively compared to common benchmark models.

• Demonstrating Transformer and SenticNet-based Learning (SNL) approaches for
predicting human-annotated topics of video segments and validating the multimodal
use.

Cross-modal:

• Proposing stacked sequence-to-sequence and encoder-decoder DL architectures for
cross-modal prediction of Facial Action Units (FAUs) from speech.

• Investigating these architectures in combination with context and local attention mech-
anisms to enhance the robustness of such systems.

1.4 Thesis Structure

This thesis is structured as follows:

• Chapter 2 lays the foundation for a common understanding of MSA by discussing its
origins and current characteristics. Underlying principles and typical approaches are
further broken down into the subjective and objective dimensions, providing important
background information about state-of-the-art techniques and highlighting limitations.
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• Chapter 3 introduces the extraction and representation methods employed on the raw
data from the three modalities of audio, text, and video, along with the components
necessary to develop Deep Neural Networks (DNNs).

• Chapter 4 describes the collection methodology, annotation process, and gold standard
approaches for this thesis’s central dataset.

• Chapter 5 introduces individual developed architectures and presents experimental
results on the subjective dimensions for emotion regression and classification, trustwor-
thiness recognition, and video popularity, as well as on the objective dimensions for
target extraction and detection. The chapter further explores cross-modal prediction
from speech to facial muscles as a potential future tool for correcting incomplete or
corrupted visual data.

• Chapter 6 concludes the thesis with a summary, a review of the ethical implications of
this research, a discussion of the limitations of the utilised methods, and directions for
future work.





Background





2 Background
This section provides the reader with background and definitions of the key concepts under-
lying this work.

2.1 Characteristics of Multimodal Sentiment Analysis

Multimodal Sentiment Analysis (MSA) is a rapidly growing research field with influences
from various research communities, each of which offers distinct perspectives and research
directions, leading to divergent understandings of relevant characteristics and terminology.

The first work claiming to have coined the term MSA [28] argues that its origins lie in the
vast availability of unstructured information through the world wide web [29]. Derived from
textual sentiment analysis, the goal of MSA is to automatically query multimodal content
to gain insights into subjective states specifying sentiments, emotions, and opinions. The
demonstrated proof of concept emphasises the challenges of natural language use. Similarly,
other early work interprets the field as extending textual sentiment analysis, transforming its
application to the multimedia web, as well as unlocking multimodal sources for a variety
of research fields [9, 30]. The definition arising from these works encompasses an opinion
holder, an object of interest, and the disposition of polarity, rather than just an opinion [31].
Service and product reviews [30] from social media platforms [32] are often mentioned as
preferred domains.

In recent studies [12, 33], albeit partly controversial [10], automatic audio-visual emotion
recognition from human-avatar and human-human interaction via video is also envisioned as
a part of MSA. This also initiates the extension from simple positive, neutral, and negative
sentiment polarities towards emotional classes and affective signals. In combination with
automatic contextual inference, the broadened analysis can reveal deeper attitudes of a person
towards entities [10]. The rationale behind this is that analyses of both polarity and emotion
use linguistic, acoustic, and visual information extracted from videos, and the steps and
methods for further processing and prediction are almost identical for both [29]. Lately,
more MSA studies have explored the idea of predicting emotion intensities [11], emotion
classes [13, 15, 34], and even emotionally complex emojis [35].

In this context, the estimation of continuous emotion primitives such as valence can be a
valuable addition. Consequently, MSA and AC can be seen as overlapping. One example
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Seite 1Thema | Abteilung | Datum

continuous transition

lab-controlled close-to-real-world in-the-wild
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static controlled free

Person of interest

Acting:
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+ shot size, face-to-human angle, etc.
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white almost static cluttered

Text (transcripts)

Accuracy:

Language:

+ intonation, etc.

high (hand-transcribed) medium (mix) varying (automatic)

formal domain-specific colloquial

Figure 2.1: Examples of the different disturbing influences on the individual modalities
with increasing naturalness of the data source. An example of laboratory data are designed
studies with defined speech dialogues and actors. At the other extreme are people in natural
situations.

is distilling emotional responses to product promotional videos during human-to-human
interaction via video communication [12]. The computational linguistics community [36],
however, sees a distinction in that emotions tend to be short-lived and sentiments develop
over a longer period of time. Regardless, both communities see the extraction and fusion of
multimodal information as a core component of their work [9, 28–30, 32].

Given the lack of a common, mature definition, it is worthwhile to explain the understand-
ing of MSA for the present work. The source domain provides review videos comprising
user-generated, opinion-charged, multimodal content. This real-life media is at the end of
the in-the-wild spectrum as shown in Figure 2.1. To exploit the modalities for modelling in a
meaningful way, advanced approaches must be developed that deliver robust results despite
the manifold interference.

The statements of an individual opinion holder are analysed for subjective and objective
insights. This thesis follows the recent trend towards advanced emotional representations,
reflected in prior publications, which attempt to bridge the gap between the communities. A
terminological differentiation between short-term emotions and long-term sentiment appears
reasonable from a psychological point of view. However, from a practical point of view, a
model must pick up emotional cues from the same set and type of input data, regardless
of the granularity and representation of the target. Following [12, 29], this thesis maps
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the subjective dimension as affective traces, e. g. , arousal and valence (see Section 2.2).
The primary focus here is the fine-grained representation of both value and time continua.
This seems to do better justice to the medium of video, itself sequential, fine-grained, and
malleable. Moreover, it is (at least, technically) feasible to convert fine-grained to coarse-
grained representations, unlike the other way around. Another essential element of MSA is
an objective dimension wherein the topic of a given conversation is a core interest of this
work.

2.2 Subjective Emotion Dimensions

This section explains the subjective component of MSA in more detail, introducing funda-
mental emotional concepts, trade-offs between uni- and multi-modal input, and classification
and regression approaches. The section rounds up with a brief background overview of one
potential future subtask of the field: estimating popularity of social media videos.

As defined in the previous section, the subjective dimension encompasses more than
simple positive-negative sentiments. The conceptual mapping of complex emotions is still
the subject of ongoing research, with several research strands being pursued in parallel.
Below are brief descriptions of the most prominent ones:

• Discrete emotion theories: Based on the understanding of innate, basic emotions
hardwired in brain regions, these theories have several individual emotion expressions,
each of which is represented by intensities. Ekmann and Friesen [37] conclude from
their studies of facial expressions that there are six basic emotions, namely happiness,
surprise, anger, disgust, fear, and sadness, which can be detected across cultures and
are distinguishable from bio-psychological and physical reactions.

• Dimensional emotion theories: These theories describe the interplay of a few code-
pendent primitive dimensional groupings reflecting an affective state. It is suggested
that these are interconnected but have non-stationary locations in the nervous system.
Therefore, they are seen rather as a reaction to the context and events of the environ-
ment, which are conceptualised and classified by our individual human understanding.
Russell’s Circumplex Model of Affect (CA) [16] is a popular advocate of this dis-
cipline. It is based on self-reported internal affective states in the form of emotion
adjectives, which are represented in a two-dimensional circular order. Hereby, it maps
a variety of affects on two axes of principal components, the arousal (vertical) and
valence (horizontal) dimensions (see Figure 2.2a):
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(a) The circumplex model of affect is an ex-
ample of dimensional emotion representations
including 28 affect words; illustration taken
from Russell [16]. The vertical axis represents
arousal and the horizontal, valence. The middle
is seen as largely neutral. The intensity of both
components corresponds to an affective state.

(b) The Hourglass of Emotions model is an
example of a dyadic, categorisational emotion
model typical for text sentiment analysis; illus-
tration (revisited version) taken from [40].

Figure 2.2: Illustration of (a) dimensional and (b) dyadic emotion representation models.

– Arousal describes the degree of attention and alertness. It is activated by sensory
impulses and can be measured by the central nervous system. For example, anger
and astonishment show a very high degree of arousal, whereas sleep shows the
opposite.

– Valence describes the spectrum between very negative and very positive. For
example, frustrated is a highly negative state compared to satisfied, which is
highly positive.

In theory, a specific emotion and the transition between emotions can be modelled
through a combination of these primitives.

• Dyadic theories: Some attempts have been made to bring both of the above approaches
together. The Hourglass of Emotions [38] is a mixture of discrete and dimensional
approaches, inspired by the idea of emotional dyads [39]. Similar to CA, a circular
representation of 24 complementary categories has been developed (see Figure 2.2b).
Primitive emotions are on the inside of the circle, and emotions become more complex
towards the outside. The representation reflects different emotional intensities.

These research directions are also reflected in computer-aided emotion and affect recognition.
Ekman [37] is mostly applied in the field of sentiment analysis to predict several emotion
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classes on segments. This origin can be traced back to two factors: First, the original simple
understanding of sentiment as a class with a positive, neutral, or negative expression. Second,
the unavailability of other human signals beyond symbolic text representation of words
and symbols, for example, prosodic features from the voice. Russell [16], on the other
hand, is more prevalent in the AC and Signal Processing (SP) community, which has often
been concerned with the analysis of signal-based data, such as acoustic or biological cues.
Therefore, these emotions are often annotated as dimensional feel-traces, for instance arousal,
in parallel to the (audio-video) signal and predicted as a sequence of continuous regression
points [12, 41]. Although previous work has fused symbolic text and (quasi-)continuous
audio-video signals to predict continuous affects, textual context information is still strongly
underrepresented in the literature.

This thesis attempts to close this gap. In line with a large body of literature [13, 14, 34, 42],
text is prioritised as an equal modality alongside audio-video signals — but with the difference
that CA dimensions are continuously predicted instead of categorical basic emotion classes
for predefined video segments.

Several attempts have been made to explore additional focal dimensions beyond arousal
and valence, depending on the individual intention of the collected dataset and research
direction [12, 41, 43, 44]. For example, value- and time-continuous likeability has been
studied in human-human interaction [12, 18, 45]. Since the dawn of the internet age, the
credibility of a trustee and the information provided from online sources has been an ongoing
issue [46]. In the context of social media, trust is highly relevant when it comes to self-
disclosure [47] and consumer decisions [48]. Previous studies have shown that social media
protagonists who regularly convey content in a trustworthy way are more successful in
attracting and interacting with online audiences [49, 50]. Understanding the mechanisms of
how users gather, adopt, and trust information, and how this trust is reflected externally in a
measurable way, is an open challenge [51]. A completely new approach could be to measure
trustworthiness continuously as a new dimensional component.

Trustworthiness: Previous works have not yet settled on a final definition of trustworthi-
ness [52–54] and sometimes found it non-trivial to quantify [53]. In Colquitt, Scott
and LePine [55], analogous to the understanding in this thesis, trustworthiness is
characterised as a trustee’s capacity, benevolence, and honesty.

No previous study has attempted to quantify trust in videos from multimedia portals, such
as YouTube, using a fine-grained, human-generated annotation of perceived trust. Through
a continuous representation similar to arousal and valence, it is also possible to accurately
identify relevant segments and build cross-domain recognition systems.
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Table 2.1: Comparison of datasets focusing on at least one of three types of prediction
targets: Sentiment (classes), Primitive (emotions), and Object of Interest (OoI) compared
to the proposed dataset MUSE-CAR from Stappen et al. [56] (see Chapter 4 for a thorough
introduction of the creation methodology). Modal(ities) available; Language: MULTI 1 =
CN, DE, EN, GR, HU, SE & MULTI 2 = DE, ES, FR, PT; An(notation) Du(ration) (hh:mm)1;
# (Number of minimum) Anno(tations per target). Subjectivity includes Sentiment: #
(number of) sent(iment classes) (* intelligently derived from primitives); # (number of basic)
Emo(tions); Cont(inuous), Primitive: Dim(ensions): V(alence), A(rousal), T(rustworthiness),
L(ikability), I(ntensity), P(ower), E(xcitation), D(ominance); # (number of) Inc(rement)
St(eps), T(race) annotations; O(bject) o(f) I(nterest): classes of topics or entities. Table
adapted from Stappen et al. [24].

Name Modal Language AnDu # Anno Sentiment Primitive OoI
# Sent # Emo Class # IncSt Cont

MuSe-CAR [24] V,A,L EN 40:12 5 3* 5* V,A,T ✘ ✔ ✔

Text-centred
UR-FUNNY [57] V,A,L EN 90:23 2 ✘ 1 ✘ ✘ ✘ ✘

MOSEAS [34] V,A,L MULTI 2 68:49 3 7 6 ✘ V,A ✘ ✘

MOSEI [58] V,A,L EN 65:53 3 7 6 ✘ ✘ ✘ ✘

ICT-MMMO [59] V,A,L EN 13:58 2 5 ✘ ✘ ✘ ✘ ✘

Ext. POM [60] V,A,L EN 15:40 1 5 ✘ ✘ ✘ ✘ ✘

CH-SIMS [61] V,A,L CN 2:20 5 5 ✘ ✘ ✘ ✘ ✘

AMMER [62] V,A,L DE 1:18 1 ✘ 5 V,A 11 ✘ ✘

Youtubean [63] V,A,L EN 1:11 2 3 ✘ ✘ ✘ ✘ ✘

MOUD [64] V,A,L ES 0:59 2 3 ✘ ✘ ✘ ✘ ✘

YouTube [28] V,A,L EN 0:29 3 3 ✘ ✘ ✘ ✘ ✘

Audio-video-centred
SEWA [12] V,A MULTI 1 4:39 5 ✘ ✘ V,A,L ✘ ✔ ✘

HUMAINE [41] V,A EN 4:11 6 ✘ ✘ V,A,I 7 ✔ ✘

RECOLA [65] V,A FR 3:50 6 ✘ ✘ V,A 9 ✔ ✘

AFEW-VA [66] V,A EN 2:28 ✘ ✘ ✘ V,A 21 ✘ ✘

VAM [67] V,A EN 12:00 6-8 ✘ 5 V,A 5 ✘ ✘

IEMOCAP [43] V,A,L EN 11:28 5 ✘ 9 V,A,D 5 ✘ ✘

SEMAINE [44] V,A EN 6:30 6 ✘ 7 V,A,I,P,E ✘ ✔ ✘

Belfast [68] V,A EN 3:57 6 ✘ ✘ V,A 3 ✘ ✘

Motivated by the importance of trust and emotion to engage users, this thesis proposes
the novel continuous dimension of trustworthiness to study if and to what extent trust is
another vital dimension in the emotional spectrum of user-generated content. The continuous
dimensional representation is used as this is the only way to analyse the transition from
content perceived as trustworthy to untrustworthy.

For the development of methods that automatically analyse content regarding subjec-
tive information, data is needed. According to Soleymani et al. [10], sentiment analysis
using multiple modalities mostly emerges from audio-video content from social media
platforms [69], e. g. , video reviews [34, 59, 70] and human-machine and human-human
interactions [12]. Table 2.1 gives an overview of common datasets, which are briefly ex-
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plained below. First, datasets where the text modality plays a major role and that mostly
follow the discrete theory are discussed, followed by audio-video datasets which ground their
understanding in dimensional theory.

Text-centred datasets: Multimodal Opinion Sentiment and Emotion Intensity (MOSEI) [58]
contains 250 clips annotated with six basic emotion classes and seven sentiment classes
expressing polarity. Some video material was removed due to alterations in the camera
position during recording. The extension of the review database Persuasive Opinion
Multimedia (POM) [71] by Garcia et al. [72] includes 600 audio-visual clips of peo-
ple with visible faces talking about six facets of films. The average duration of the
video snippets is one and a half minutes. The opinions are summarised in terms of
segment-level annotation. Multi-Modal Movie Opinion (ICT-MMMO) [59] is similarly
constructed with video material depicting reviewers looking into the camera. With this
and the help of the subjects’ voices, the aim is to be able to determine the sentiment of
user-generated review videos. The Chinese MSA Dataset (CH-SIMS) [61] contains
only Mandarin speakers. The 60 raw clips with fragments of 8–10 seconds in length
were taken from TV shows, movies, and TV programmes. Again, only scenes where
the voice and face are available at the same moment were included. Youtubean [63]
includes mobile phone product reviews regarding seven typical product aspects which
were made available in combination with sentiment annotations. Multimodal Opinion
Utterances Dataset (MOUD) [64] also focuses on YouTube as a source and covers
people facing the camera describing ideas in 30-second clips. Clips including back-
ground music were excluded. A broad spectrum of YouTube product reviews is offered
by the YouTube corpus [28], which is labelled according to basic sentiment. The
Automotive Multimodal Emotion Recognition (AMMER) [62] is a recently published
dataset containing a simulation of a car ride with conversations in German. The object
of observation here is the emotional relationships of the passengers.

Audio-Video-centred datasets: The following are datasets that focus more about the use
of audio-video information than transcripts and provide some degree of dimensional
annotation. Automatic Sentiment Estimation in the Wild (SEWA) [12] is one of the
largest human-human interaction datasets. However, only four hours of the entire
dataset have been fully annotated. In the interaction, participants converse via various
webcams over advertisements presented to them beforehand. The recording is done
statically, often in front of a white wall. In addition to the step-wise annotated arousal
and valence, HUMAINE [41] provides continuous intensity annotations of various dis-
crete emotions in a set of recordings of natural and played situations. Forty-six French
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participants interacting in a controlled laboratory environment and showing natural
and spontaneous emotions are mapped in the REmote COLlaborative and Affective
(RECOLA) dataset [65]. Arousal and valence are annotated via feel-traces. Besides
visual input, the dataset also contains electro-dermal activity and electro-cardiogram
traces. The Affect in-the-wild Valence-Arousal (AFEW-VA) dataset [66] covers a
collection of video snippets extracted from feature films. Three raters annotated the
clips with arousal and valence dimensional emotions on a scale from -10 to 10 with
a one-step granularity. In addition to emotions, facial landmarks and seven facial
gesture annotations are available. Vera am Mittag (VAM) [67] is composed of clips
extracted from a German talk show. Parts of the recordings contain annotations of the
six basic emotions. However, the main focus is on annotations for arousal, valence, and
dominance, each on a 5-point scale. All three modalities are provided in the Interactive
Emotional dyadic MOtion CaPture (IEMOCAP) dataset [43]. The record includes
dyadic sessions in which 10 actors replicate controlled content. The SEMAINE [44]
corpus includes 24 human-agent interaction sessions that were richly annotated. For the
Belfast [68] recordings, emotions were actively stimulated and annotated in continuum.

Several observations can be drawn from this review of the latest datasets. Many datasets
feature discrete emotions. The datasets with dimensional emotion theory aim to be generally
applicable to many domains [73]. However, only recently have static experimental setups,
e. g. , in laboratories, begun to be abandoned in order to collect noisy, large-scale, real-world
data. In particular, this applies to the visual modality, which continued to be subject to
defined specifications even though other parameters, such as recording equipment, have been
made more flexible [12, 66]. User-generated videos from online sources that are particularly
exposed to these challenges remain largely unexplored. Moreover, datasets with dimensional
emotion annotations have so far shown little effort to provide content-related annotations,
such as topic of conversation. This goes hand in hand with the fact that no attempt has yet
been made to aggregate the dimensional annotations over the time period a specific topic is
covered. With the improvements of models through deep learning and its efficient utilisation
on large-scale data, giving up control of the data is the next plausible step to make models
robust against various influences. Also, the properties of continuous traces might be helpful
when dynamically breaking down a large sequence of audio-visual emotional annotations
into shorter segments, e. g. , sentences, aspects, or noun-adjective pairs.

The mining of emotional information from input modalities has been an active research
area within the Machine Learning (ML) and AC communities for more than a quarter
century [74], and thus a comprehensive summary of this research area is beyond the scope of
this thesis. The following discussion briefly introduces the unimodal perspective and then
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narrows the focus to the intramodal enhancement and the multimodal aspects. For further
information, the interested reader is directed to the recent survey articles [75–77].

Unimodal: Using video data, three modalities are useful as a source to exploit emotional
information. Each modality reflects unique aspects of human perception and is captured
and stored in distinct ways. This also means that distinct expertise and tools are required
for machine processing of each modality. For example, frequency (pitch range, contour
slope), temporal (speech rate, stress), voice quality, and energy (loudness, breaks)
characteristics are extracted from the audio signal, while changes in facial muscles
and gestures are obtained from sequences of images. While in the past, filters to
recognise these features were mainly developed by experts in these domains [78],
potential inputs to recognition systems are now often learned by presenting large
amounts of data to an Artificial Neural Network (ANN) [79]. For the text modality,
which represents spoken language, there is no continuous signal; instead, there is a
sequence of discrete string symbols. Due to computational limitations arising from the
sparse representation of such information, those symbols need to be vectorised [80].
For this purpose, the context—the surrounding words and sentences in which a word
appears—is considered [80, 81].

Recognition systems for prediction are based on the vectorised representations. While
in the past, statistical Hidden Markov Models (HMMs) [82, 83] and Support Vector
Machines (SVMs) [20, 26, 84] were the most common models trained to retrieve
meaningful patterns, nowadays, ANNs are almost exclusively deployed. Networks that
are able to feed in information in a sequential manner enjoy particular popularity due to
their ability to learn temporal information [26, 85, 86]. However, Convolutional Neural
Networks (CNNs) [87, 88] that lead to sparse extraction and end-to-end learning
methods [88–90] by learning from raw image and audio material directly are also
becoming increasingly popular.

Although these methods have led to considerable advancement in the predictive power
and robustness of emotion models, the steadily increasing results on benchmark datasets
suggest that the technological leeway is far from exhausted. Further progress is also needed
for practical and in-the-wild data applications. Recently, a new ANN mechanism called
attention [91] has greatly improved the learning of intramodality dynamics [13]. This
often involves weighting information from a sequence step in relation to the surrounding
information context. In terms of MSA, for example, this is very useful for spoken language,
which is significantly disturbed by noise due to colloquial utterances (e. g. , “hmmm”, “it
is like, you know, like”, “yeah”) and translation errors in the automatic speech-to-text
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pipeline (“bra” instead of “car”) [92, 93]. This mechanism is widespread in ML tasks using
text [82, 94–96], and its adoption in domains such as emotion recognition is accelerating [13,
97, 98]. In the text domain, more and more architectures that fundamentally rely on attention
mechanism, namely Transformers [91, 99], are finding their way into mainstream research
and beating previous benchmark results in unseen dimensions. Overall, paving the way for
the exploitation of attention mechanisms at various levels would be beneficial to improve
prediction quality. In particular, due to the strong intramodal properties, the representations
of text from Transformer networks are predestined for a deep exploration.

In addition to unimodal intramodality, multimodal analysis focuses on facilitating inter-
modality dynamics.

Multimodal: The simultaneous use of multiple modalities, e. g. , trimodal, has been studied
intensively in recent research [7, 100]. In this context, the linking of different modalities
can be achieved through early fusion of input features [13, 98, 101] or fusion of the
predictions at a later point [8, 20, 101]. The first approach, often called feature-
level fusion, concatenates the inputs before they are fed into the ANN. This allows
finding relationships from the earliest level, but leads to a high-dimensional feature
space [42] that can contribute to overfitting. The second approach semantically models
the independent modalities and fuses the result shortly before or after a prediction
(decision-level).

Even though these techniques are gaining more and more traction, fusion of audio-video cues
with the spoken word for predicting time-continuous emotions is still underrepresented in
the field. This is caused primarily by the lack of suitable datasets (see above). In addition,
small, hand-crafted feature sets are commonly preferred to much larger, ANN-learned
representations to save computational resources [13]. As a result, the potential of combining
information from multiple modalities is not fully exhausted and is an ongoing research
challenge [42].

The conceptualisation of emotional information into discrete emotion classes and time-
continuous primitive emotion dimensions almost naturally leads to the prediction tasks
of classification and sequences of value-continuous regression points, respectively (for
details, see Sections 3.2 and 4.3).

Target transformation: Even though a generalisable self-concept of emotion, e. g. , Rus-
sell’s [16], may be better represented by dimensional axes, there is the challenge
of interpretability of this abstract concept. People also often express themselves in
concrete emotion classes, such as “I am disappointed” or “I was really happy”. For
better interpretability by humans, or to simplify the problem, continuous-time values
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are therefore transformed into classes. A naïve transformation would be to average the
time-continuous values on fixed segment lengths and map them by hand to classes. A
target transformation from discrete emotions to the dimensional emotion space [16]
has been attempted by [102]. Similarly, clustering emotion tags was proposed [103] to
find clusters corresponding to the four quadrants of the arousal-valence dimensions. In
addition, transforming a continuous real-value annotation to time-continuous discrete
annotation by using signal quantisation has been achieved [104]. However, this method
fails to provide the possibility to summarise continuous emotion annotations to a
certain class over a variable-length segment duration.

Little research has so far been undertaken to map more complex changes in the time-
continuous signal to classes. For example, a rapid drop of arousal level within a short
sentence is not reflected in an average value, as low and high values balance each other out,
causing this characteristic to be lost. In addition, a flexible definition of segment length
would render it possible to tailor the length rather than keeping to natural boundaries, such
as sentences or self-contained thematic levels. This is especially relevant in the context of
the objective dimension of MSA, which tries to achieve a thematic relation to the context of
emotion (see Section 2.3).

The recognition of emotions in user-generated video content also opened up new avenues
of subtasks and applications.

Popularity estimation: It is known that perceiving the transported emotional message from
a video influences the viewer’s feelings and thus their reactive behaviour [105]. User
behaviour on (video) platforms, such as YouTube, is expressed in user engagement
indicators such as the popularity of the video through likes, views, and comments.
Social media network providers, in particular, could benefit from a deeper under-
standing of popularity through closer user engagement [106] and more meaningful
recommendation systems [107]. Both still pose significant challenges today [108–110].
The dissemination of critically charged videos, such as fake news and hate speech, has
also become a problem in both the virtual and real worlds. Finer control of distribution
algorithms through an enhanced emotional understanding of a video could be a new
path to a solution. Content creators may also be interested in applying this idea for
marketing purposes to explicitly tailor communication content to customer groups.

Previous studies have shown that a portrayal of emotion [111], trust in the video pro-
tagonist [50], and positively reinforced content [112] influence viewers’ engagement
with the video [113, 114]. This has been investigated in relation to the consumption
of traditional media, where it was found that emotional messages lead to consumers
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remembering content to a greater extent [115]. Emotional talk shows are also more
popular than less emotional ones, a trait particularly recognisable through an analysis
of audio characteristics [116]. In addition to the conventional understanding of prim-
itive emotions, intricate emotions such as trustworthiness are also highly influential
in this context. Influencers take advantage of this by portraying themselves as a close
friend rather than a presenter in order to specifically build a parasocial relationship
with the viewer [117].

The relationship between video platform metadata is the subject of a considerable
body of research [118–123] e. g. , on user comments. It has been shown through
correlation analysis [124] that the frequency, content, and sentiment of YouTube
comments are indicators of user engagement with the video and viewer retention [125,
126]. Comments can also be used to predict the type and popularity of products
in videos [127]. Furthermore, there have already been first attempts to transfer the
reactions of individual users to comments into discrete emotions and to predict those
emotions [128]. Such studies have also been conducted with regard to other platforms
and social media reaction forms [129, 130]. For example, attempts have been made to
map Facebook posts to the CA to predict the sentiment of future messages [131].

However, previous studies have not yet explored implicit emotional content and, hence,
the relationships between time- and value-continuous arousal, valence, and trustworthiness
annotations in combination with value-continuous popularity prediction (regression).

2.3 Objective Target Dimensions

The target dimension addresses understanding the content of a video in order to add context to
an emotion [10, 132, 133]. Predicting an object of interest, such as a topic or aspect, is firmly
rooted in conventional sentiment analysis. A topic represents a collection of semantically
coherent aspects [134]. Aspects are a list of words that convey the topic’s semantics. For
example, given the aspect representatives {radio, screen, entertainment}, the topic could
be “infotainment”. Likewise, in the multimodal medium, the linguistic component takes a
predominant role in thematic understanding. Spoken language influences accuracy and form,
e. g. , through the intensive use of colloquialisms, automatic speech recognition errors, and
long, convoluted statements [92, 93].

In the following, two approaches are discussed that focus on a) topic modelling for
extracting aspect words without human guidance and b) targeted prediction of human-labelled
relevant speaker topics.
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Target extraction: Originating from the information retrieval community, target or topic
modelling deals with automatically extracting topics from unstructured text data. The
goal is to extract coherent topics and aspect representatives. Typical use cases are topic-
and aspect-based sentiment analysis wherein, in addition to sentiment, representations
(also called aspects or aspect terms) or name entities [135] are extracted from a text
snippet. Improving topic modelling is therefore vital to enhance the fine-grained
extraction of verbalised content and contextual nuances in sentiment analysis. From a
multimodal perspective, the focus is on transcripts [92]. Here, the aim is to understand
the significant themes discussed in one or more videos. The latent semantic structure
thereby has to be inferred exclusively through the content. Potential applications
include understanding of a video’s content without watching, and finding suitable
topics in preparation for human annotation for supervised prediction. In addition to
understanding the ever-growing collection of video product reviews [136], related
fields with a similar starting point, such as multimodal video indexing [137] and
summarisation [138] are also increasingly dealing with this matter.

Due to the proximity to NLP and the early stage of work on multimodal corpora, user-
generated online text data are included in the following discussion; however, this should be
understood as a supplement and not as a comprehensive listing. For a deeper dive, the reader
is directed to the surveys for text-based topic extraction [139], aspect mining [132, 133] and
concept-level analysis [140]. In earlier approaches to topic modelling from transcripts, the
subjectivity and high word-error rate of speech recognition systems posed a considerable
challenge [93]. These problems can be partially mitigated by rigorous preprocessing, for
example, by including only spell-checked, non-colloquial words [141]. Although semantic
connections are lost, this approach has proven robust for extracting topic representatives [142,
143].

A methodological starting point for learning semantic latent structures without labels is
clustering. Clustering on text aims to group semantically linked words together. While in the
past, these were often based on a traditional text representation in the form of TF-Inverse
Document Frequency (TF-IDF) matrices, current research is increasingly focusing on vector
representations [144].

Word embeddings: Word-embedding topic models are based on vectorised text (see
Section 3.1.2 for a detailed explanation). These embeddings are semantically related
to each other, which is manifested in that related embeddings have a shorter distance
to each other. Clustering methods exploit this property to group semantically similar
words and discover the semantic structure of the underlying corpus [144–146]. This
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strategy outperforms traditional approaches for processing noisy online data from
social media platforms, e. g. , Twitter or Reddit [144]. Word-based topic models
calculate an embedding per word of a given vocabulary corpus, resulting in meaningful,
self-contained topics, thereby reducing overlap and increasing topic coherence [145].
In this setting, it has been shown that classical word embeddings like word2vec (one
vector, one word) are more effective than dynamically computed contextual word
embeddings like Bidirectional Encoder Representations from Transformers (BERT)
(see Section 3.1.2) [145–147].

Clustering: The word-embedding representation of text opens up a high degree of flexibil-
ity, as it can be used by all sorts of clustering methods. K-means [148, 149], which
assigns each point to a cluster centre, is widely utilised. It assumes consistent cluster
sizes and the absence of outliers. This, in conjunction with limiting specifications
needing to be done in advance by the user, such as the number of clusters, which
would require a precise estimation of semantically related word groups, often leads
to a lack of accuracy [150]. Density-based clustering algorithms are also becoming
increasingly popular. They assume that good clusters have a high density, and be-
tween them lie areas of low point density [151]. The best known representative is
the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-
SCAN) [152, 153], which requires the definition of the minimum cluster size for
clustering word embeddings [154]. Another widely used method is Latent Dirichlet
Allocation (LDA) [141, 144, 155]. Here, a topic probability is assigned to each word
in a document. By iteratively optimising the probabilities, robust topics of selected
words are formed.

Several more methods have been proposed for this task in the past. However, due to their
lack of topic coherence and the need for most clustering algorithms to specify the number of
expected clusters beforehand [149, 139], no standard method has been established to date
and new ways to approach this challenge are needed. A promising direction is graph-based
methods [156, 157], which are becoming increasingly popular due to the intensive adoption
of semantic network modelling of social media data [158].

Graph-based topic models: A graph consists of a set of nodes (vertices) and edges [159],
wherein a graph node usually represents the text, and the edges represent the similarity
between the connected nodes. Starting from a complete graph where all nodes are
in the same cluster, connections are dropped, e. g. , if the connectivity is low and
the remaining nodes are clustered. Clustering algorithms form k-components by
extracting subgraphs representing individual clusters from the graph [157, 156]. One
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advantage of this is that the number of cluster topics does not need to be defined
in advance. An early evaluation of graph clustering on text [160] employed a fixed
number of clusters and a threshold-logic-based TermCut algorithm to group short
Chinese texts. For this purpose, TF-IDF representations were retrieved from Chinese
short text snippets. Similarly, in another work, nouns were extracted to cluster crime
reports [143]. Another use case involves patient incident records [161]. Here, the
results of the graph connectivity algorithm proved superior to K-means for topic
extraction [161].

In the context of multimodal sources and transcripts, graph methods have not yet been
developed, and in light of recent findings, further research is needed.

Supervised prediction is another way to identify the target of a sentiment by using
knowledge provided by a human via annotations.

Target detection: Target detection is a core task of text-based sentiment analysis [31, 162],
wherein a reference target is detected [10, 36, 163] for later linkage to an emotional
disposition. A target emerges in various granularities [36], such as an entity, topic,
aspect, or physical object. In general, the goal is to train an algorithm to learn patterns
indicative of a target from sample data in the domain of study to recognise them on
unseen data. For this to be possible, topics have to be deemed relevant a priori to the
automatic analysis [134]. Targets that humans have not annotated in advance cannot be
predicted. The application is often particularly relevant in the case of customer reviews
and social media data [164]. Typical supervised methods on text are rule mining [165]
and lexicon methods [166, 167].

An explicit transfer from a textual perspective to a multimodal one in relation to target
concepts has not yet been carried out [10].

Speaker topic: A natural target in the context of videos seems to be speaker topics, as the
analysis in a video (segment) always refers to the perspective of an opinion leader. A
speaker topic can be seen as an utterance with a defined start and end point within a
discourse or a monologue [24, 26, 56]. In this understanding, the utterance on a topic
goes beyond the conventional sense of an isolated visually similar scene or language
separated by the means of sentences. It comprises a coherent section that enables the
interplay of image, sound, and text from an opinion-centred perspective.

Similar to textual sentiment analysis, it is likely the targets will be refined over the years [163,
168], and more research has to be carried out.

Content and context understanding is gaining momentum in the analysis of video data.
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Datasets: Using a variety of modalities, datasets are widely applied in human action and
motion recognition [169–171], semantic scene segmentation [172], and video activity
recognition [173]. One of the most extensive available datasets, MOSEI, provides
videos covering 250 topics [58]. Each video covers only a single high-level topic;
16.2 % of the videos were labelled as reviews, 2.9 % as debate, and 1.8 % as advice. The
humour dataset UR-FUNNY [57] covers more than 400 topics from TED Talk videos
to examine humour and punchlines in context to topics. Here, the topic tags, such as
technology, culture, and science, are very generic. Furthermore, the subjective and
objective dimensions are contextualised for affect measurement in film scenes [174].
The dataset is very small, with only 14 video clips. Other datasets in the domain cover
a large set of topics but do not provide annotations [64, 175].

In summary, current datasets do not support development of state-of-the-art MSA models.
They focus primarily on detecting emotional characteristics, but lack suitable size and
annotations. Many datasets centered on MSA cover a broad range of topics. Thematic
understanding at a generic, high level of abstraction, e. g. , the theme of an entire review
video is ”housing" or ”finance" [58], is desirable to increase the generalisability of models but
does not serve an understanding of individual video segments in an opinion-topic structure,
e. g. , a person is concerned about the leaking pipe in the loft. Moreover, the generalisation
capabilities of general language models [176] have improved enormously in recent years and
will continue to do so [177]; therefore, the research focus can and should now shift towards
fine-grained, complex understanding. Furthermore, multimedia datasets that directly target
speaker topics or aspects for prediction are clearly in the minority [63, 72]. This confines
(supervised) context comprehension to language analysis nearly entirely. No approaches
that rely solely on the spoken word will ever be able to provide a full understanding of
interaction, for example, when verbal language is not accessible or is only partially so.
Evidence shows that modalities such as the image play a crucial role in understanding aspects
of an entity [178], and all complementary modalities should be integrated for an optimal
outcome.

Without adequate data, only limited research has been done to develop suitable methods.
The supervised recognition of targets in opinionised texts is a very intensively researched
field [132] with diverse methodological approaches, for example, lexicon-based [179], graph-
based [180], and neural learning [96, 181]. The added value of images has been demonstrated
by developing an ANN on a bimodal, text-image sentiment analysis dataset [178, 182]. In
relation to video-related textual information, initial research has been conducted. By creating
a dataset consisting of seven videos for closed captions from YouTube, an attention Recurrent
Neural Network (RNN) network was trained to extract and classify the sentiment and aspects
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of product videos [63]. Methods such as bag of features and LDA were elaborated using
video representations to extract topics from promotional videos [134]. State-of-the-art ANN
architectures such as Transformer [183] and end2end [184] multimodal learning methods
have been neglected so far.

Although the linguistic component is given a high priority in previous work, the adoption
of knowledge-base approaches [185–187], which have been successful in [188, 189], is also
under researched in this context.

Knowledge-base approaches: As explained above, topics are superordinate to aspects.
Likewise, aspects are not the smallest atom of human language. Knowledge-base
approaches rely on this logic to construct a taxonomy of common-sense knowledge
and part-of relationships [190, 191]. They also factor in social norms that play an
essential role in contextualising words into knowledge [192]. This understanding
has been created from the contexts of words in the language and stored symbolically.
Since a manual specification of such would imply extensive domain knowledge and
expenditure of time, this is often automated. Using multi-term keyword analysis
of the content, context concepts can be extracted and further processed. The most
comprehensive framework to date contains over 200 000 related concepts that map a
word to subconcepts of life [179].

In summary, further investigations on video recordings using both unimodal and mul-
timodal methods are warranted to specifically elicit the value of the individual modalities,
the representations extracted from them, and the modelling methods for predicting human-
prescribed targets.
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3 Methodology
This chapter familiarises the reader with the most fundamental methodology used in this
work. To enable algorithms to learn from multimodal behaviour data, it has to be converted
into a machine-readable form. The techniques and common frameworks for this are presented
in the first section, and the second section presents different modelling methods to perform
predictions from these representations.

3.1 Modality Representations

In the following, the types of hand-crafted and data-driven representations relevant for this
work, and their corresponding extraction frameworks are introduced. To use raw audio, text,
or video in Deep Learning (DL) (see Section 3.2), both hand-rafted and learnt representations
are extracted and exploited [193]. However, they differ in their origin and composition:

• Hand-crafted representations: The majority of conventional machine learning algo-
rithms require specifically crafted data representations that have been meticulously
constructed [77, 78, 194]. Specialists obtain distinguishing traits, properties, and
attributes, commonly referred to as expert-designed representations, from raw data
while employing domain expertise in combination with mathematical methods, e. g. ,
from statistics or signal processing. The types of unstructured data with which this
work is concerned include the following: Signal processing techniques can retrieve
audio representations, such as the fundamental frequency (F0), jitter, and shimmer of
an audio signal [77]. In text analysis, the term frequency-inverse document frequency
is often applied when it comes to analysing content [195]. As a numeric statistic,
it counts the frequency with which a term appears in a document, weighted by the
number of documents within the corpus that include the term. In computer vision,
edges and corners are retrieved from pictures for training edge detectors [194]. More
specifically, they find areas that where the picture’s luminance changes abruptly.

• Data-driven representations: Various machine learning domains today employ Arti-
ficial Neural Networks (ANNs) as their primary method of problem-solving [196, 197],
as explained in detail in Section 3.2. DL, in particular, is an umbrella term for tech-
niques and Deep Neural Network (DNN) architectures with many layers (thus “deep”)
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that have surpassed human capabilities in complex pattern recognition tasks [193].
Unlike traditional approaches, these robust representations are learned automatically
from processing (almost) raw data. Instead of relying on engineered representations
requiring human involvement, they find generalisable patterns from the data itself by
passing it through DNN architectures. The neuronal activations of individual layers of
these networks can subsequently be exported as a fixed vector and further exploited as
a representation of the previously unstructured data, as with hand-crafted features.

The terms feature, feature set, and representation are often used interchangeably. The term
“representation” was originally coined for a vector consisting of several features, where each
represents a vector dimension, that are learned by a DNN. Hence, a feature is often equivalent
to a single, activated neuron output (see Section 3.2). Various types of representation are
often summarised as feature sets. For this reason, the terms feature and feature set are
used in this work regardless of their origin, and representations are explicitly referred to as
hand-crafted or data-driven to emphasise the type of creation.

3.1.1 Audio

Many tools have been proposed for making raw audio workable with machine learning
methods. In the following, two methods are briefly presented each for hand-crafted [78, 198]
and data-driven representation [199, 200] extraction that have a proven track record in audio
processing and emotion recognition [199–201].

• ComParE Low-Level Descriptors (ComParE LLDs): ComParE LLDs are the un-
derlying base for calculating the INTERSPEECH COMPARE functionals [202]. Both
are widely used in computational paralinguistics [198]. Composing six voice-related,
four prosodic- and energy-related, and 55 spectral LLDs and their first order derivatives
results in a 130-dimensional vector, which can be extracted using the open-source
framework Open-source Speech and Music Interpretation by Large-space Extraction
Toolkit (openSMILE) [203]. For detailed descriptions, the interested reader is referred
to Eyben et al. [203].

• Geneva Minimalistic Acoustic Parameter Set (GeMAPS): The GeMAPS was de-
veloped for speech analysis research [78] and is specifically successful in the context
of emotion recognition from speech [204]. The feature set is made up of a collection
of statistical functions based on acoustic spectral, cepstral, and prosodic LLDs. Due
to their theoretical relevance and simplistic computation, they are selectively picked
by hand. The basic version has only 28 low-level descriptors, while the extended
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Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [78] has 88, which can be
represented by a vector with the same number of dimensions. Both show robust pre-
diction quality in various settings and tasks [8, 20, 84, 201]. As with ComParE LLDs,
the open-source openSMILE toolkit [203] can assist in extracting these hand-crafted
representations.

• Spectrograms Feature Extraction from Audio Data with Pre-trained Convolu-
tional Neural Networks (Deep Spectrum): The Deep Spectrum representation ex-
traction toolkit1 provides deep representations from spectral images. After converting
the audio input signal into mel spectrograms, pretrained Convolutional Neural Net-
works (CNNs) (see Section 3.2.3) can be fine-tuned with these images [199]. Alter-
natively, the images can also exclusively be processed through the network without
fine-tuning. With either option, the final result is the network output of one of the final
network layers, representing a compressed visual representation of an audio signal.
These representations are effective for a wide range of audio-related tasks, including
speech processing [79].

• CNN Architectures for Large-Scale Audio Classification (VGGish): As a deep
acoustic representation extractor, VGGish also relies originally on a CNN architec-
ture [200]. This VGGNet [205] is trained for auditory event recognition using log
spectrograms from a large-scale audio dataset (70M training videos), crafted from
10-second YouTube snippets, called AudioSet [206]. Specifically, snippets used for
pretraining were selectively picked through the probability of having acoustic events
while making use of content analysis and metadata. Based on this, the more than
two million identified audio recordings were categorised by human labelling into 632
audio event classes. This makes it a versatile training ground when it comes to robust
generation of in-the-wild representations. The representation of the fully trained VG-
GNet has 128 dimensions. Although relatively small for DNN representations, e. g. ,
compared to the more than four thousand dimensions of Deep Spectrum, it has shown a
high semantic expressiveness in numerous studies and often outperforms hand-crafted
acoustic representations [207]. A framework which comes with pretrained models is
available as open source.2

1https://github.com/DeepSpectrum/DeepSpectrum accessed January 15, 2021
2https://github.com/tensorflow/models/tree/master/research/audioset/ accessed July 5, 2021.
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(a) The Continuous Bag of Words Model
(CBOW) uses the context to predict the centre
target word.

(b) The Continuous Skip-gram Word Model
(CSG) uses the centre word to predict the con-
text target words.

Figure 3.1: An abstraction of the underlying principles (a) CBOW and (b) CSG of Word to
Vector (Word2Vec) training. Figure is taken from [80].

3.1.2 Text

Transcripts are the codependent, linguistical output of the spoken word and are reliant on
the auditory signal. Due to the symbolic representation, efficient processing of raw text
directly by ANNs is infeasible. Thus, it is a prerequisite to remould the word symbols to a
vector. A straightforward way to represent words is to assign one position of a binary vector
to each unique word of a corpus. Representing each word with a hot-encoding leads to a
sparse vector of large dimensionality, which grows linearly to the number of unique words
of the underlying text. This negatively influences memory and computational requirements.
Furthermore, these equidistant vectors miss semantic information since the vector position
does not have any deeper meaning.

These issues have motivated real-valued distribution representations within a semantic
vector space of definite dimensions. There are two kinds of these so-called (static) word
embeddings relevant to this work:

• Word to Vector (Word2Vec): Word2Vec [80] is a standard model that learns a vector
for each term by employing a three-layered ANN in two ways: CBOW and CSG (see
Figure 3.1). The CBOW model takes the context of each target word and learns to
predict the encoding of the centre target word from the context window. A comparison
is made from this encoding to the actual one-hot encoding of the target word to
determine the output error. During the training process, this error is reduced step by
step by tweaking the network weights. The CSG functions oppositely. It takes the
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Figure 3.2: Training concept of Bidirectional Encoder Representations from Transformers
(BERT), where the left side shows the general language pretraining approach using Next-
Sentence Prediction (NSP). Two masked sentences (light red) are feed into the model,
embedded (yellow), and processed through the Transformer network (blue) before they
predict the masked words and the NSP target (arrows). The right side shows the subsequent
downstream fine-tuning tasks. Figure is taken from [81].

target word and predicts the one-hot encoding of each word in the context window.
The most effective and efficient version has a 300-dimensional embedding vector.

• Fast Text Classifier (FastText): FastText [208] is based on the CSG version of
Word2Vec. In contrast, the constituents of a word, rather than the whole words, serve
as input. A vector representation is associated to each character n-gram to enhance
effectiveness. In addition, these subword pieces make word evaluation representation
possible for out-of-vocabulary terms that did not appear in the initial training corpus.
This appears advantageous when dealing with technical phrases and words from a
domain-specific corpus. Like Word2Vec, this representation usually has also 300
dimensions. Several pretrained embeddings, for example, trained on the English
Common Crawl corpus (600B tokens), are provided by Facebook’s non-proprietary
FastText Toolbox.3

The limitation of static word embeddings is that all senses of a polysemous word are trained
to share a single embedding vector, discounting the contextual appearance of a word. Recent
advances have resulted in models capable of generating contextual word embeddings based
on Transformer architectures [209] (see Section 3.2.5):

• Bidirectional Encoder Representations from Transformers (BERT): Surpassing
a set of Natural Language Processing (NLP) benchmarks [210], BERT became the

3https://fasttext.cc/docs/en/english-vectors.html accessed July 5, 2021
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most commonly applied NLP Transformer base [81]. The main novelty of BERT is its
context dependence enabled by considering the position and context of each word in a
sequence. Besides the architecture, the training is different to previous embeddings.
First, the words are segmented and tokenised using a WordPiece tokeniser. For this,
the tokeniser initially starts with the individual characters of a corpus, iteratively fusing
the most occurring character combinations to new tokens. Second, the language model
is taught to predict around 15 % of the input tokens, which were masked beforehand, in
a so-called masked language modelling task. The idea behind this is that the model has
to use the tokens surrounding the input to predict the original token. From a high-level
perspective, this is similar to static word embeddings; however, here the context is
captured and incorporated in the network representations. Improving the context under-
standing further, BERT is indirectly instructed to learn the relation between the words
and logically subsequent sentences by a NSP task as depicted in Figure 3.2. Next, it can
be fine-tuned for typical NLP tasks, such as the Stanford Question Answering Dataset
(SQuAD). Compared to static word embeddings, these word vectors are dependent
on context, and therefore, the calculations are performed at run-time. Ultimately,
final layer representations are extracted and concatenated, for example, the last token
representations from the last four decoder layers. Pretrained BERT derivatives are
available from Hugging Face.4 The weights are pretrained on English Wikipedia (2.5B
words) and BooksCorpus (800M words) [211] for representations extracted for this
work.

• A Lite BERT for Self-Supervised Learning of Language Representations (AL-
BERT): An evolution of the BERT architecture is ALBERT [212], focusing on su-
pervised fine-tuning ability. Using almost the same architecture as BERT for the
Transformer encoder, it comes with two novel design choices to improve parameter
efficiency: First, it proposes to separate the size of the WordPiece embedding layer
from the hidden layer size. This coupling has the unwanted effect of blocking substan-
tial memory, even though most parameters in the input layer are only updated rarely.
By refactoring the embedding encoding from one large embedding matrix to two
separate ones, it first projects the one-hot vectors into a lower dimensional embedding
before propagating to the hidden space, making updates more frequently while having
lower memory requirements. Second, it allows global weight-sharing, wherein all
layers across the entire architecture share the parameters of the two Transformer layer
components (Section 3.2.4.3). Sharing smooths interlayer transition and stabilises the
network. Furthermore, it changes the intersequence modelling from the NSP loss (and

4https://huggingface.co/ accessed August 15, 2021
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their associated tasks) to a sentence-order prediction loss, which forces the network
to focus primarily on fine-grained coherence modelling. These changes lead to a
parameter reduction of almost a factor of 20 while, at the same, time improving the
capabilities of downstream supervised fine-tuning, leading to state-of-the-art results in
several benchmarks. The final architecture is equipped with 12 blocks, each using 64
attention heads, and is also available from Hugging Face.

While word embeddings capture semantic and even contextual information of words and
sentences using probabilistic, word-frequency models, natural language can provide even
more conceptual insights [38, 40]. However, translating words into high-level language
concepts requires common-sense knowledge, which is still difficult to learn, store, and access
in its entirety by machines. One approach to this challenge is SenticNet, a knowledge base
of 200 000 common-sense concepts, which offers a set of semantics, sentics, moodtags, and
polarities associated with natural language representing fundamental human concepts [179,
187, 213]:

• SenticNet: SenticNet concepts capture evocative, indicative, and affective information
associated with entities and phrases [140]. It employs two methods to establish its
knowledge base — DL methods and symbolic approaches, such as ontologies — in
a unified fashion [179]. The first identifies word and multiword expressions. The
latter infers syntactic patterns to get reduced into primitives and superprimitives, as
illustrated in Figure 3.3. Hence, it becomes less challenging to chart phrases and words
into semantic representations linked to specific concepts [187]. Further following
the hourglass model [38, 40], primary and secondary moodtags become existent. In
addition, moodtags appear beneath the sentics and come with labels including delight,
ecstasy, and bliss. Concept clusters associated with the segment are extracted as
semantics and have an identical lexical function. All these high-level concepts can be
exploited as representations for subsequent tasks [56]. For a more detailed elaboration
on sentic computing, the reader is referred to the book by Cambria and Hussain [140].

This learnt conjunction of a given text to their common-sense concepts can be accessed by
an application programming interface. When called, it returns a set of semantics, sentics,
and polarity associated with the respective concept in a vectorised form. Several knowledge-
base versions incorporating some evolution of this method have been made available. For
example, in version five, the four sentics provided are introversion, temper, attitude, and
sensitivity [187], while for version six, they are pleasantness, attention, sensitivity, and
aptitude [179].
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Figure 3.3: SenticNet 6’s reliance graph, showing the structure and source from name entities
to primitives and superprimitives via concepts. Figure is taken from [179].

3.1.3 Video

Most visual extractors are designed to localise regions (e. g. , face), extract specific character-
istics (e. g. , joint movement), or create discriminatory representations from an image. In the
following, the representation frameworks relevant to this work are separated into human- and
environment-focused (the visual context). Automatic extraction of visual information related
to people is mostly practiced for emotion detection:

• Multi-task Cascaded Convolutional Network Framework (MTCNN): Before ex-
tracting facial representations, frameworks that locate the person of interest’s face,
such as MTCNN [214], come to play. It employs a three-phase cascaded structure in
real-time for the automatic localisation of faces and facial landmarks. The datasets
WIDER FACE [215] and CelebA [216] provide sufficient training material to learn the
prediction from photos of real-faces.

• Facial Action Units (FAUs): FAUs are structured descriptions of perceived facial
movements [37]. Derived from the Facial Action Coding System (FACS), they are
considered an essential component of many emotion recognition systems that capture
nonverbal cues using graphical perceptual methods. Facial cues are deconstructed into
17 specific modules related to muscle movement. The intensity of each is indicated
on a scale from 0 to 5, with higher numbers reflecting higher intensities. The pres-
ence and the intensity can be automatically obtained from the OpenFace recognition
toolkit [217], which aims to detect and analyse facial changes using cropped faces,
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e. g. , extracted by MTCNN as introduced before. This is exemplified by 2D (136
features), 3D (204 features), and other related features such as 288 gaze points and six
head-pose positions.

• Open Multi-person System to Jointly Detect Human Body, Hand, Facial, and
Foot keypoints (OpenPose): An effective representation extractor to recognise var-
ious sequences of people’s movements by automatically identifying their joints5 is
provided by OpenPose [218]. As an automatic human-pose estimator, it is utilised
in various fields, such as action recognition. It yielded the best results in several
challenges such as the COCO 2016 Keypoints Challenge [219]. The underlying model
consists of two branches of stacked CNNs, one of which identifies Part Affinity Fields
that encode pairwise relationships between body parts. The other branch predicts 2D
confidence maps for the vital points in question. On each layer, the outputs of each
branch are concatenated and serve as input for the higher layer. Ultimately, the 2D
coordinates for each of the 18 keypoints are available, as well as the corresponding
confidence value for the presence of a keypoint.

• Very Deep Convolutional Networks for Large-Scale Face Recognition Descriptor
(VGGFace): Originally intended for facial recognition tasks, VGGFace can be used
for deep facial representations [220]. Its main advantage is its performance equivalence
compared to other face recognition representations while using less data for training.
The Oxford Visual Geometry Group developed the dataset, consisting of an excess
of 2.6 million faces from 2 500 identities, used to train the deep CNN [205]. The top
layer of the VGG16 network outputs a representation vector of 512 dimensions. Unlike
other frameworks, for instance, OpenFace, the representations are not deterministic
and do not model explicit intensity or presence scores.

Furthermore, for a better understanding of the environment and object interaction, the
following information can be extracted:

• Depthwise Separable Convolutions Network (Xception): A state-of-the-art DNN,
trained on a general image corpus, can extract general vision representations from
an environment. The Xception [221] network uses residual blocks to stabilise its
very deep network architecture. Given this greater depth, the architecture won 1st
place on the ImageNet Large Scale Visual Recognition Challenge 2015, from which
the well-known ImageNet benchmark dataset emerged. The dataset covers images

5The keypoints are: Nose, Neck, Right/Left Shoulder, Right/Left Elbow, Right/Left Wrist, Right/Left Hip,
Right/Left Knee, Right/Left Ankle, Right/Left Eye, and Right/Left Ear.
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Figure 3.4: Examples of Generic, Optical Car Part Recogniser and Detector (GoCaRD)’s
automatic detection of automotive parts with human interaction in vehicle environments from
the video dataset Multimodal Sentiment Analysis in Car Reviews (MuSe-CaR) presented in
Stappen et al. [24]. A), B), and C) show gestures and finger pointing. In A) the predicted
bounding box around the part excludes the body parts, while in B) and C) the parts are fully
recognised despite occlusion. D.I) shows the complete vehicle interior without people, while
II) and III) compare the same situation with and without autonomous driving (hands on/off
the steering wheel). Figure is taken from Stappen et al. [2].

structured in a hierarchical order of natural concepts. By relying on such a broad and
deep dataset, a pretrained Xception network can be used as a representation extractor
on images regardless of the domain. The last fully connected layer is extracted to
obtain the deep representations, resulting in a 2048-dimensional vector for each image.

• Generic, Optical Car Part Recogniser and Detector (GoCaRD): Stappen et al. [2]
introduced the GoCaRD framework, specifically designed for the automotive domain
and capable of localising 27 different car parts. By doing so, it aims to provide a
deeper understanding of how a person interacts with the interior and exterior of a car,
for instance, a hand localised by a third party framework (e. g. , OpenPose) overlapping
the detected infotainment systems in video frames as depicted in Figure 3.4. The
training material stemmed from combining a real-world photo database and video
frames extracted from the MuSe-CaR database (see Chapter 4), wherein the former
only depicts cars and the latter depicts human-vehicle interactions in YouTube car
reviews [2, 24]. The material features several car makes and models. In total, more
than 15 003 images were available for multi-label, multi-class labelling. The large scale
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and high variations within the dataset were deemed necessary to train a robust visual
detector that can work with a variety of purposes in mind. In addition, the automotive
domain has one of the highest variations in its products, such that a single model
can achieve up to 1024 feature combinations [222], many of which affect the visual
appearance. The underlying CNN, a Darknet-53 architecture, is trained in a two-step
domain-adaptation procedure. First, the database without human involvement is used,
followed by a specific fine-tuning using the videos depicting humans. As a result,
a Mean Average Precision (mAP) of 67.57 % across all classes could be achieved;
individual classes range from 14 % mAP for less distinctive car components, such as
rooftop windows, to 94 % mAP for very distinctive ones, such as front grills. The
prediction system uses the fully trained model as a backbone in a YoloV3 framework
[223]. However, since the number of detected parts varies, the output’s size had to be
extended. In the implemented logic, the outputs are converted into a fixed-size vector,
where only the ten objects with the highest confidence are included. By representing
every object with a confidence value, the x and y coordinates, and the width and height,
the representation vector is bounded to 134 dimensions (10 objects * (27 classes + 7
object-related data points).

3.1.4 Emotional

In previous publications introducing Multimodal Sentiment Analysis Continuous Annotation
Fusion and Discrete Class Transformation Toolbox (MuSe-Toolbox) [25, 224], Stappen et al.
proposed extracting a 24-dimensional feature set reflecting the distribution and temporal
changes of an emotionally human-annotated video segment, as discussed in Section 4.1, to
make them more workable for further analysis. Generally, these hand-crafted representations
can be separated in two groups: statistical measures and measures describing the changes in
a time series of data.

• Statistical measures: Given the ability to summarise data quantitatively, numerical
measures can provide easily understandable insights into the distribution of data.
Typical measures are the standard deviation (std), and 5 %, 25 %, 50 %, 75 %, and 95 %
quantiles (q5,q25,q50,q75,q95), which have been shown useful in related works [116].

• Time series measures: To generate a deeper understanding of changes within a time
series, time series statistics can be extracted following previous work in a similar
field [225], such as speech emotion recognition where energy-related measures have
been highly effective [226]. In the following, relevant measures are briefly described;
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however, the reader is referred to the original sources for in-depth explanation and
formalisation.

Using the adjusted Fisher-Pearson standardised moment coefficient, the dynamic
sample skewness (skew) of a time series can be calculated to describe the strength and
direction of the time series’s asymmetry [227, 228]. Another measure of shape is the
Kurtosis (kurt) as a descriptor of the “flatness”, derived from the fourth standardised
moment of a time series [229]. Energy-related descriptors are potent measures broadly
applied in signal processing. A discrete-time signal’s absolute Energy (absE) can
be defined as the sum over the squared values [230]. The Sample Entropy (SaEn) is
a measure of complexity. It is a variation of the approximate entropy that measures
entropy independently of the time series length and has found widespread use in
physiological applications [231, 232].

Several change-related features can be computed to assess a time series signal: The
Relative Sum Of Changes (ASOC) can be obtained through the sum over the absolute
value of subsequent changes. Similarly, the absolute difference between subsequent
data points is called the Mean relative Absolute Change (MACh). The Mean Change
(MCh) is defined as the general difference between consecutive points over a time
series. The duration of a normalised consecutive subsequence is expressed by the
measures strike above (LSAMe) and below (LSBMe) the mean. Lastly, higher-order
changes of a time series signal can be calculated, such as the Mean value of a central
approximation of the Second Derivatives (MSDC).

Taking the number of data points occurring more than once divided by the number
of total points determines the normalised percentage of Percentage of Reoccurring
Data points of non-unique single points (PreDa), a summary measure of a sequence of
discrete-time distribution similarity. In addition, events relative to time can give deeper
insights into the time series course. The first (F) and last (L) locations of the minimum
(Mi) and maximum (Ma), FLMi, LLMi, FLMa, and FLMa can be specified relative to
the length of the series. Furthermore, these events can also be counted in dependence
to a constant m: The number of number of Crossings of a point (CrM), m = 0, tallies
the number of crossings of m with two successive time series steps, the first of which
is lower (higher) than m and the second is higher (lower) than m [230]. In the same
way, the relative (to the length) number of peaks of a time series can be determined.
Hereby, m is equal to the support, describing a subsequence of a series where a value
larger than m occurs relative to its neighbours [230, 233].
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3.2 Deep Learning

As a subset of Artificial Intelligence (AI), Machine Learning (ML) specialises in indirect
problem-solving [193]. Its algorithms effectively instruct a system to generalise patterns
seen in sample data (examples) and locate them again on unfamiliar data. These algorithms
are used in a wide range of applications, including diagnosing medical disorders [234, 235],
segmenting customers [236], and optimising robot movements [193]. ML employs two
fundamental learning methods: unsupervised and supervised learning.

• Supervised learning: The goal of supervised learning is to model the relationship
(mapping) between given input (X) and output (y) data. To do so, the approximation
error, which is the sum of the differences between the ground truth class yi ∈ y
and the estimated class ŷi of each output, is iteratively reduced by a ML algorithm.
The model improves when this disparity is reduced. The process of improving the
algorithm’s performance is called training, which uses a training set (Xtrain, ytrain) for
tweaking parameters θ of a model M and measures its generalisability capabilities on
a development set (Xdevel , ydevel), both subsets of (X ,y). After training, the performance
of the trained M is assessed using a test set (Xtest , ytest), also a subset of (X , y). Based
on the prediction task, the type of ground truth varies:

– Classification: The ground truth y of a classification task is represented as k
discrete values, each representing a category:

f : Rn →{1, ...,k}. (3.1)

For example, in a binary (k = 2) sentiment classification scenario, “negative” = 0
and “positive” = 1.

– Regression: The ground truth y of a regression is a continuous real value: [193]

f : Rn → R (3.2)

This can be a sentiment regression scenario, with an intensity value in [−1,1]
where “negative”= −1 and “positive”= 1. In many tasks, classification is a
coarse-grained formalisation of a regression task [237].

Furthermore, this task can be extended to a sequence of regression points when
not one but multiple regression targets are predicted through time. An example is
a transition of the regression sentiment value every 10 seconds, starting with a
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rather negative state of −0.3, changing to a neutral of 0 (10 seconds later), and
ending with a rather positive final state of 0.7 after 20 seconds.

• Unsupervised learning: The goal of unsupervised learning is to discover structures
and regularities in X . For these algorithms, y is absent from the input data so that no
target can be used, and model training relies solely on X . Clustering algorithms are the
most common type of unsupervised learning.

Algorithms for the two supervised tasks can measure success directly. Classification often
relies on a confusion matrix using the unique labels. Each data point is classified as to
whether the prediction was true positive (TP), true negative (TN), false positive (FP), or false
negative (FN). From these, further metrics can be derived, most commonly:

Accuracy(ACC) =
T P+T N

T P+T N +FP+FN
, (3.3)

precision =
T P

T P+FP
, (3.4)

recall =
T P

T P+FN
, (3.5)

F1− score(F1) = 2∗ precision∗ recall
precision+ recall

=
2∗T P

2∗T P+FP+FN
, (3.6)

where ACC reflects the proportion of correct classifications; precision, the proportion of
positive predictions that were truly positive; recall, the proportion of all positive samples
that were correctly predicted as positive; and the F1 score is the summary harmonic mean of
precision and recall. An unweighted measure (also called a macro calculation) first collects
the metric for each label and then calculates the mean. This avoids classes with larger data
points having more weight in the final result, which is especially relevant for unbalanced
classes. For regression, loss is usually taken as a measure (see loss function below).

With the shift to Deep Learning, the input X has also evolved. Traditional ML algorithms,
such as Support Vector Machine (SVM), frequently employ hand-crafted features for X , while
DL tends to either use or produce representations, as explained in Section 3.1. Nevertheless,
ANNs are also employed to use hand-crafted representations, and a distinction between DL
and shallow learning is not always apparent [197].

The following section provides an overview of the most fundamental ANN (layer) types,
state-of-the-art mechanisms, and architectures, along with their mathematical equations.
Note that in the following equations, the bias term is dropped for clarity, and capital letter
variables represent trainable parameters. The first sections also include many underlying
techniques, relevant to other sections, regardless of the network architecture. Naturally, this
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Figure 3.5: A network unit with inputs x which are weighted by w and summed to be
squashed by an activation function ψ . For training, potential outputs ŷ could be compared
with ground truths y using a loss function L.

should only be understood as a narrow insight into methods relevant for this work, given
the broad spectrum that has been developed over the last few years. For a more in-depth
description of the methodologies, the interested reader is referred to Goodfellow, Bengio and
Courville [193].

3.2.1 Artificial Neural Networks

Neurons are the basic elementary units of an ANN. Loosely inspired by a human brain, a
neuron receives many inputs x0, . . . ,xn and outputs a single value o. These inputs are weighed
w0, . . . ,wn for each n inputs, added together, then passed through an activation function ψ:

o = ψ

(
n

∑
i=0

wixi

)
(3.7)

This concept is also called a perceptron. A Fully connected Feed-Forward Layer (FFL) is
made up of many neurons which receive the same input simultaneously.

The simplest, rudimentary type of network is a Feed-Forward Neural Network (FNN),
which transmits information from the input layer forward through an arbitrary number
of hidden layers h [193] as depicted in Figure 3.5. Generally speaking, the FNN is an
approximator of a differentiable non-linear function that defines the following mapping:

y = F(X ;θ), (3.8)

with F being a ANN where the trainable parameters (weights) are indicated by θ .
To optimise these trainable parameters, the network is treated as a step-wise optimisation

problem using an objective function. For this, the input has to first be propagated through
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the network with respect to the parameters θ in a forward pass until it reaches the last layer.
There, the final outcome prediction is carried out. A loss function L calculates the error
between the approximated output target ŷ and the expected real value y. Next, backward
propagation of errors uses gradient methods to compute the error gradient with respect to the
parameters θ and adjusts them accordingly in the backward pass. The forward and backward
pass of all data X is called an epoch. As explained in this section’s introduction, there are
several types of ground truth, and the loss function varies accordingly. Classification tasks
target a set of finite categorical values predicted as the output of a pseudo-probability between
0 and 1, while regression tasks target a continuous value.

• Cross-entropy (CE): CE is the most prevalent classification loss. It increases when
the predicted probability deviates from the actual label by multiplying actual probability
with the log of the predicted probability for the ground truth class. Cross-entropy loss
gives significant penalties when it comes to predictions that tend to be definite yet
incorrect:

LCE =−1
n

n

∑
i=1

yi · log(ŷi) , (3.9)

When it comes to multi-class classification, a distinct loss is determined for every class
per observation and the result is summed up.

• Mean Square Error (MSE): A frequently applied regression loss is the MSE, mea-
sured as the average of the squared difference between predictions and real observations.
It focuses on the average magnitude of the error values, notwithstanding the direction
in which they occur. Predictions deviating from the exact values are clearly disfavoured
owing to the square, in contrast to less deviating predictions:

LMSE =
∑

n
i=1 (yi − ŷi)

2

n
. (3.10)

• Mean Absolute Error (MAE): The MAE is similar, however, the average of sum
of absolute differences is measured. In terms of mathematical characteristics, MAE
differentiates in respect where gradients must be calculated using linear programming:

LMAE =
∑

n
i=1 |yi − ŷi|

n
. (3.11)

• Concordance Correlation Coefficient (CCC): The CCC condenses both preciseness
and accuracy of a sequence of regression points. It is often taken in the context of
sequential emotion recognition as a metric for repeatability and efficiency. Further, it
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could come in handy as a loss function considering its resistance to changes in scale
and location [238], whereas its theoretical features are comparable to those of other
regression measures and losses [239]. Let o j be a series of m ground truth labels and
ô j a series of n corresponding prediction labels. The CCC is defined as follows:

LCCC =
2×COV (ô j,o j)

σ2
ô j
+σ2

o j
+(µô j −µo j)

2 =
2× [(ô j −µô j)(o j −µo j)]

σ2
ô j
+σ2

o j
+(µô j −µo j)

2 , (3.12)

where COV denotes the covariance, σ the standard deviation, and µ the mean.

The loss is reduced to obtain the global minimum of the function, irrespective of the ML
task. This is accomplished through the use of gradient descent optimisation. To propagate
the error of the last layer backwards through the network as gradients and adjust each
parameter by computing the derivative of the fully differentiable network using the chain rule,
backpropagation is used. These gradients are the error partial derivatives δE

δθ
of the loss

function L with respect to any trainable parameter θ (e. g. , weights or bias) which update
the parameters with regard to a learning rate (lr):

θ
i+1 = θ

i −α
δL
δθ i (3.13)

This process is performed iteratively rather than for the complete dataset. Therefore, instead
of genuine gradients, a stochastic approximation is calculated on a subset of the data termed a
batch, of a given number of randomly picked points of data, called the batch size (bs). Adam
is a popular variant of this stochastic gradient descent approach [240]. It is computationally
effective, resilient within noisy data domains that result in sparse gradients, and its initial
parameters, such as lr, are autonomously modified depending on adaptive estimates, requiring
minimum adjustment.

To approximate these highly complex, non-linear functions [241], the activation function
ψ of the layers likewise has to be non-linear [242]. There are four widely adopted activation
functions.

• Rectified Linear Unit (ReLU): Presently, the ReLU [243] is the most common ac-
tivation function due to its effective computing properties, which merely involve
comparison, multiplication, and maximisation (max):

ReLU(x) = max(0,x). (3.14)

It can be differentiated anywhere other than zero, where the derivative’s number is
picked at random.
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• Sigmoid: For the last layer that predicts the target y, a softmax or a sigmoid function
is frequently chosen. It is differentiable, saturates, and is bounded between 0 and 1 for
every real-valued input. If employed individually for every output neuron, it can also
be utilised for multi-label, multi-class classification:

sigmoid(x) =
1

1+ e−x . (3.15)

• Softmax: Conversely, the softmax function generates a probability distribution over
all neurons K throughout the final layer. The neuron with the highest value is set
equivalent to the projected class:

so f tmax(x) =
ex

∑
K
k=1 exk

(3.16)

• Hyperbolic Tangent Function (tanh): Another previously typical activation function
is the tanh, which has very similar properties. Nonetheless, nowadays, it is not
frequently utilised outside Long Short-Term Memory Recurrent Neural Networks
(LSTM-RNNs) (see Section 3.2.2) given its sluggish computation speed [242].

The ability to include additional layers and neurons in a deep and wide ANNs has led to
issues with generalisation. Generalisation fails if the patterns observed in the finite set of
training data cannot be applied to new data. This is caused by too many training epochs or
when the complexity of the selected model is too high. Then the network covers the data
by eventually lowering every bias and boosting the variance until it is too tightly fitted to
the sample. A scenario in which non-generalisable noise and outliers are also taken into
account in the decision boundary is called overfitting. The opposite, underfitting, occurs
when the training error is excessively large due to a too-brief training period or a low degree
of polynomial model complexity.

Since a shallow ANN is already capable of capturing an astounding amount of variance
in the data, overfitting is generally a significant issue, and counterstrategies are usually
applied during training. This procedure is called regularisation of the network, adjusting
the training approach or model when updated to avoid overfitting.

• Dropout: Dropout is a simple, yet effective, and often utilised approach [244]. It
prevents complex co-adaptations of neurons by performing model averaging that results
in multiple independent internal representations. As a result, the network becomes less
sensitive to the weights of individual neurons. To do so, at each step during training,
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input signals are randomly set to 0 and other inputs are scaled to keep the sum over all
inputs unchanged.

• Early stopping: Another training strategy widely used is early stopping [245], in
which the error within the validation set, e. g. , the loss or a measure, is tracked as a
proxy for generalisation. Early stopping waits for a fixed amount of epochs before
ending the whole training once this monitoring error grows, which would result in
overfitting. The rationale for delaying multiple epochs is that occasionally, the model
recovers because the optimiser slows the rate of learning, or discovers minor but
novel and generalisable patterns. Alternatively, it could be because the gradient has
accidentally gone into the wrong direction.

The peculiarities of the underlying data, for instance, the sequence pattern of text and audio
or the grid-like architecture of pictures, are ignored by an FNN. This has prompted the
development of more sophisticated network designs, which will be discussed next.

3.2.2 Recurrent Neural Network

An Recurrent Neural Network is a type of ANN that takes into account temporal dependencies,
and, as a result, Recurrent Neural Networks (RNNs) are especially suitable for sequence
modelling, e. g. , speech recognition and language modelling. Input sequences passed to the
RNN are processed one at each time step t, while maintaining in their hidden units a “state
vector” h that implicitly contains the passed-through information of the sequence’s previous
steps, thus incorporating previous states at each step [193, 246]. This can be formalised as:

ht = ψ(ht−1,xt ;θ), (3.17)

where for a given time step t, an input xt , the previous hidden state ht−1, and non-linear
function ψ are shown. Figure 3.6 depicts the internal dynamics of an RNN. It also maintains
the input order while exchanging parameters from previous time steps via functioning in an
auto-regressive way, absorbing information from the preceding step together with the current
step.

When the causal structure of sequence data is of minor relevance, information from the
beginning to end of the sequence, as well as from the end to the beginning, could be fed
into such network layers. For this reason, bidirectional RNNs were invented to achieve this
goal. One direction forwards information across the network in a chronological order, and
the other utilises the information in a backwards fashion.
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Figure 3.6: RNNs processing information from x through time by incorporating it into
the state h, while o reflects the output, which can be squashed by a softmax function to
unnormalised log probabilities. The loop indicates a delay of a single timestamp. The right
side shows the unfolded computation graph. Figure adapted from [193].

As with FNNs, sequential models are trained with backpropagation. Due to the order
dependency of the internal state on the previous inputs for each timestamp, an adapted
version, backpropagation through time, has to be used. It differs insofar as the network
has to be enrolled along the time axis for weight updating. Based on a pair of sequences for
the current input and the corresponding output of a timestamp, the errors can be accumulated
and the weights updated. This is repeated until all timestamps are updated. Since several
iterations are required for a single update of the weights, the required computing power
increases with increasing number of time steps.

In addition to the expensive computation, unwanted effects can occur while training RNNs
when dealing with long sequences. The primary difficulties are vanishing and exploding
gradients [247]. Exploding gradients refer to situations where the gradients grow excessively,
causing unstable learning and highly fluctuating weights. On the other hand, vanishing
gradients become extremely tiny, inhibiting the network from either learning completely
or causing it to learn extremely slowly. To prevent the gradients growing out of control, a
technique known as gradient clipping was developed, in which the gradients are rescaled
when they reach a specified threshold.

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN): To further over-
come vanishing gradients, a new type of cell — the Long Short-Term Memory (LSTM)
cells — advancing the previous hidden logic, are incorporated into an RNN layer to
form an LSTM-RNN [85]. It has additional self-loops to create routes in which the
gradient can be flowed over extended sequence lengths, extending the RNN’s ability
to preserve reoccurring patterns longer. The self-loops are implemented in a way that
information can be removed or added to a cell state, regulated by structures known as
gates. Gates consist of a pointwise multiplication operation together with a sigmoid
bounding function. This logic is illustrated in Figure 3.7. On the right side, the inner
structure of such an LSTM-RNN state is depicted. There are three types of gates:
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Figure 3.7: LSTM recurrent cell. The input feature is gated by a sigmoidal input gate. The
state unit has a linear self-loop, where the value can be event-based “forgotten” through
a weight controlled by a sigmoidal forget gate. Finally, the state gets squashed by a tanh
function and the output gate regulates by a sigmoidal output gate. Figure adapted from [193].

the input gate, forget gate, and the output gate. The input gate specifies which of the
new information needs to be added to the cell state, whereas the forget gate decides
what information is deleted. The output gate, in the end, decides which information is
valuable from the context and outputs it.

3.2.3 Convolutional Neural Network

In computer vision, the handling of extremely wide, correlated inputs is required, which FNN
cannot manage efficiently [248]. For that reason, the visual context apparatus became the
architectural muse of the CNN. A simple example is illustrated in Figure 3.8. Hierarchical
topologies, employed by CNNs, extract spatial relationships efficiently from separated
features, such as for object and facial recognition from images. Key components of this
architecture are the pooling layer and convolution layer. They lead to sparse feature maps for
detecting intricate patterns. In recent years, this powerful ability to efficiently condense large,
correlated inputs into sparse feature maps has also found application in numerous other DL
disciplines, e. g. , processing of raw audio [89].

A typical design can employ either one-, two-, or three-dimensional inputs. In the subse-
quent formalisation, an image source I is assumed, with the dimensions of height nH , width
nW , and channels nC. Normally, RGB pictures are used, leading to nC = 3. The number of
filters per layer is specified as l, while K filters are trained during the convolutional operation.
Given an image which is convolved across the nH and nW dimensions, a convolutional
product CVop is carried out between the receptive input field and the filters, where each
matrix element is the sum of the element-wise multiplication:
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Figure 3.8: Basic functionality of a CNN including convolution and maximum pooling
operations. Figure adapted from [193].

CVop(I,K)x,y =
nH

∑
i=1

nW

∑
j=1

nC

∑
k=1

Ki, j,kIx+i−1,y+ j−1,k. (3.18)

This results in the dimensions:

d =

(⌊
nH +2p− f s

s
+1
⌋
,

⌊
nW +2p− f s

s
+1
⌋)

; s > 0, (3.19)

with the filter size ( f s), strides (s) steps taken, and p, which specifies the padding type, so
that a valid convolution that does not use padding leads to p = 0, and a same convolution
pads the input matrix to ensure that the outputs have the same shape (p = f−1

2 ). In general, a
small stride increases the size of the output, and conversely. A complete convolutional layer
performs the convolutional process with several trainable filters

(
f [l]× f [l]×n[l−1]

C

)
×n[l]C

together with a broadcasted bias b= (1×1×1)×n[l]C , accompanied by an activation function
ψ that is frequently a ReLU function (see Section 3.2.1) or one of its derivatives:

CVL

(
a[l−1],K(n)

)
x,y

= ψ
[l]
(

CVop(a[l−1],K(n))+b[l]n

)
, (3.20)

where a[0] indicates the input picture. The convolutional step is often followed by a
pooling step, which downsamples the input by merging the outputs of neuron clusters from
one CNN layer to a single neuron, most often by selecting either the maximum or mean value
of the neuron cluster. These reductions also enhance shift invariance and can be expressed as:

POOL
(

a[l−1]
)

x,y,z
= λ

[l]
(

a[l−1]
x+i−1,y+ j−1,z

)
; (i, j) ∈

[
1,2, . . . , f [l]

]2
, (3.21)

where λ is an average or maximum pooling operation.
These layers can be combined in a variety of ways to create blocks, which then get replicated
identically and are arranged in a series for a deep feature extraction. When feature extraction
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by the CNN blocks is completed, the features are flattened to a data-driven representation
and passed to a FFL as described before.

3.2.4 Attention Mechanisms

Attention can be seen as a building block capable of enhancing the internal network represen-
tations of each of the previously presented ANN architectures in different ways. Originally,
it was introduced to support the memorialisation of long source sentences in Sequence to
Sequence (S2S) models, common in language processing [249]. Similar to the LSTM-RNN
cells, it strengthens the capabilities of modelling the context by focusing on one time step
in respect to the surrounding ones. Intuitively, this is similar to a human focusing attention
on relevant parts of a visual scene depending on the context [250]. This comparison shows
the closeness to the computer vision domain [63, 251, 252]. Over the past years, several
manifestations of this mechanism were found to generally improve representations, and hence
it became a predominant concept in various domains [253, 254]. Furthermore, it is commonly
used when aligning and fusing modalities in multimodal emotion recognition [101], as well
as aligning them across modalities [254].

In the following, several concepts of attention are introduced that are relevant to this work
and describe the slight differences between the various mechanisms. All have in common
that the overall aim of the attention mechanism is to perform a linearly weighted sum of
a sequence of input vectors. Hereby, the network should learn the optimal weights itself
through a scoring function, and the resulting output derived from the input vectors should
not be scaled in any manner.

3.2.4.1 Context Attention

Let us assume a typical scenario in neural machine translation where a sentence of a language
A must be transformed into a sentence of a language B [255]. Formally speaking, the input
sequence A must be encoded to a hidden representation, which is then decoded to the output
sequence B. In this setting, the encoder and decoder are often RNNs [256]. Figure 3.9 depicts
a comparison of an encoder-decoder architecture without (left) and with context- attention
mechanism (right). Through compression, an information bottleneck naturally occurs in
this transition between the input encoder and output decoder, causing the network to forget
information of the input sequence when decoding. As a result, additive context attention
[249] was created to get around the bottleneck through employing a weight distribution upon
the input A that is primarily connected to a decoder output step of B. This can as well be
thought of as a learned alignment function between two sequences. Due to this property,
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Figure 3.9: Encoder-decoder architecture with traditional information bottleneck after encod-
ing (left), with local attention setting the window = 1 in each direction (middle), and, finally,
context-attention mechanism, considering the entire encoding sequence in dependency to a
decoding state (right). Figure adapted from [249].

the method is frequently applied to weight steps in sequence modelling to enhance the
representation [193] as is done for textual question-answering [257]. For the formalisation of
the additive attention, introduced in this context, let ht represent the latent state of a network
at time t with ht ∈ RF as the input to the attention layer. The input is transformed with one
FFL sharing the weights Wa and ba in the attention layer. Furthermore, a tanh activation
introduces non-linearity:

ut = tanh(Waht +ba). (3.22)

This score function can vary, as will be shown in the course of this section. To ensure the
resulting score is still normalised, a softmax activation function is usually used, bounding the
resulting values to a [0,1] range so that the sum is equal to 1:

αt = softmax(ut) =
exp(ut)

∑
T
t=1 exp(ut)

. (3.23)

Finally, the input is weighted through the attention weights derived from Equation 3.23,
allowing the network to attend certain steps and resulting in the context representation c:

c =
Ta

∑
t=1

αtht . (3.24)

3.2.4.2 Window Attention

Window or local attention is a version of context attention in which the dependencies are
confined within a local attention window as depicted in Figure 3.9 (middle). Based on
additive attention [258], an attention matrix L is introduced in the scoring operations [204]
similar to [259]. It aims to limit the context of the decoder states g to the steps to a non-
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parametric window w. For this, it converts the encoder’s hidden state representation ht into a
positioned hidden state g:

αt,t ′ = softmax((Wagt,t ′)∗L), (3.25)

where the weight matrices of the hidden states are element-wise multiplied with L, a matrix
of the shape [batch size, time steps, time steps]. The matrix comprises binary values of
the chosen window size w across all time steps of a sequence. Thereby, w either takes into
consideration the w−1 past steps or the previous and past w/2 steps. This step is followed
by the usual normalisation procedure of the weighted summation to receive the hidden state
representation of the current token.

3.2.4.3 Self-Attention

Vaswani et al. [91] introduced self-attention to simplify the attention concept for non-RNN
encoder-decoder architectures. Self-attention makes attention more generic, in the sense
that it aims to improve the representation of the input sequence independently of a potential
decoder. As a result, it is also applicable for a larger set of task types. This is particularly
relevant when dealing with extremely lengthy sequences. Rather than finding dependencies
between the decoder and encoder, self-attention may be utilised to detect dependencies
between various places in an identical sequence. Hereby, the energy score is not dependent
on a previous decoder hidden state s j−1 (Equation 3.23). Furthermore, the additive attention
is replaced by scaled dot-product attention which assigns the same vector to the query, key,
and value. While looking at Equation 3.26, it can be seen that each input xt appears thrice
but is differently weighted:

• Query (Q): In comparison with every other vector to calculate its own yt ,

• Key (K): In comparison with every other vector to calculate the m-th output vector ym,

• Value (V): Once for each output vector in the weighted sum.

Thus, xt is linearly transformed with trainable weights, each to allow the network to distin-
guish the inputs and learn individual linear transformations:

qt =Wqxt ,

kt =Wkxt ,

vt =Wvxt .

(3.26)
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Equation 3.23 and Equation 3.26 can be rewritten to:

α(Q, K, V) = softmax
(

QKT/
√

dkey

)
V. (3.27)

It is scaled by a factor of 1√
dkey

, where dkey is the dimension of the key. By doing so,

vanishing gradients are prevented through limiting the expansion of the dot product.

3.2.4.4 Multihead Attention

Because self-attention merely estimates the weighted average of the tokens, it cannot distin-
guish the semantic difference of surrounding tokens. For this, multiple self-attention heads
can be coupled, in a structure called the Multihead Attention Layer (MHAL), for learning
the distinction between the surrounding tokens [91]. Specifically, multihead attention is
used to obtain more meaningful sequence representations st , with T being the maximum
number of steps. The multihead softmax dot-product attentions (Equation 3.27) can thus
be computed in parallel. This allows for a block to jointly pay attention to information
from several representation subspaces in each head. A head receives three linear projection
inputs multiplied by an individual trainable query, key, and value weight matrix WQ,WK,WV ,
wherein the division by

√
dk prevents the gradient from becoming minuscule. After scaling,

the results of the individual heads are concatenated and fed into a subsequent linear layer WS:

MultiHead = st = Concat(head1, . . . ,headat)WS, (3.28)

head j = α (QWQ,KWK,VWV ) , (3.29)

where j is a single head with a maximum of at number of heads. Figure 3.10 depicts
the parallel nature of multihead attention. Performing such attention functions in parallel is
very efficient, with a time complexity of order O(T 2 ·F) compared to O(T ·F2) for RNN
(run-time O(1) vs O(T )). This is highly relevant when dealing with large training corpora,
vast representation vector sizes, and complicated sequences [91]. Multi-attention heads are
the key building block of Transformer networks.

3.2.5 Transformer

As explained in Section 3.2.2, there are several issues with long sequences when training
sequence architectures, even when the context-attention mechanism is employed. Since the
information is propagated in a specific order, e. g. , the cell Ct−1 has to be updated before cell
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Figure 3.10: Multihead attention. Value, key, and query (V , K, Q) are processed for each
head j for at attention heads in parallel. Figure adapted from [91].

Ct , parallel computation is not feasible. This prompted the development of the Transformer
architecture, as depicted in Figure 3.11 [91], which can be trained in parallel even while
dealing with sequences. It was originally used only for NLP, but it is now finding ever more
applications in other domains, for example, computer vision [260] and multimodal research
[101, 183]. Transformers are built on the foundation of two distinct layers:

• Multihead self-attention: As explained in Section 3.2.4.4, these layers capture long-
range sequence patterns using a multihead attention mechanism [91].

• Position-wise FFL: This is a block of linear layers with dropout which applies itself
to each position of the multihead output in parallel while sharing weights, so that the
length of the source sequence does not matter.

Furthermore, since the learning signal is not propagated backwards through the time
sequence, a spatial encoding is added to the input to indicate the position of every sequenced
step.

In addition to the position-wise FFL, a Transformer block consists of layer normalisation
and the multihead attention layer. N Transformer blocks are linked in sequence within the
network, each having at attention heads. Furthermore, it can be built in an encoder and
decoder design by stacking multiple blocks independently together.



Page 60 of 214 Methodology

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 3.11: A detailed view of the plain Transformer encoder-decoder architecture. Figure
taken from [91].



4 Data
In Section 2.1, it is pointed out that no previously existing dataset can be applied to answer
the research questions RQ-1, RQ-2, and RQ-3. In Stappen et al. [24] the MuSe-CaR is
introduced to facilitate research in Multimodal Sentiment Analysis (MSA) beyond discrete
modelling, which is introduced in this chapter. It seeks to address the deficits of existing
datasets identified in Sections 2.2 and 2.3 and can be summarised as follows:

• The covered videos must be unconstrained in respect to recording settings and emotions.
This is also valid for the linguistic use; however, some overlapping throughout the
topics and aspects is necessary to enable both unsupervised and supervised algorithm
development.

• Instead of examining short sentences or segments in isolation, it should be possible to
build up a continuous understanding of the context.

• The presenter’s emotion-object interaction should take place in a variety of settings,
such as inside and outside a car, to introduce more setting variety.

• Emotions should be inherently elicited based on the subject and situation, and the
represented person should not be deliberately enacting them.

• The audio-video content should include both spoken and behavioural data. Further-
more, there should be times when one modality only delivers a finite amount of data,
e. g. , the face appears while the conversion from speech to text fails.

Besides being the subject of numerous recent studies [261–263], MuSe-CaR is also the
centrepiece database for this thesis. In the following section, the methodology of the
collection is discussed first. Next, the annotation strategies are introduced, wherein human
raters provide the prediction targets needed to train ML methods (see Section 3.2). The
resulting individual annotations of the raters must be merged into a single target annotation.
In Stappen et al. [25], a novel framework is presented that provides a wide range of state-of-
the-art methods of the emotional gold standard and their transformation to discrete classes,
which are described in Section 4.3.



Page 62 of 214 Data

4.1 Core Database

MuSe-CaR enables the development of MSA algorithms, including but not limited to the
tasks of continuous emotion recognition (see Section 5.1), emotion-target engagement
(see Section 5.1.2 and Section 5.2.2), and trustworthiness recognition (see Section 5.1.3),
by means of comprehensively integrating the audio-visual and language modalities. It is
more than three times larger than any other continuously annotated dataset in the field (see
Section 2.1 and Table 2.1). Additionally, it offers novel annotations, specifically allowing
modelling of the interaction between speaker topics, objects of interest, and emotions. The
data is publicly available and served as the testing bed for the 1st and 2nd Multimodal
Sentiment Analysis Challenge (MuSe 2020/2021) [26]. As in related studies [59, 126],
the dataset videos are acquired in a semi-automatic fashion by feeding manually selected
keywords into an automatic YouTube video crawler.

Acquisition: Contextual interaction with emotions, e. g. , towards physical entities and
topics, can have an infinite number of manifestations. The dataset aims to enable
unsupervised as well as supervised learning, e. g. , unsupervised extraction (see Sec-
tion 5.2.1) and supervised classification (see Section 5.2.2) of topics. For this, it must
be viable to label the videos and divide them into training, validation, and test sets,
all covering a minimum (optimally balanced) number of classes. To ensure this and
that every class occurs at least several times, a certain degree of content consistency is
necessary. For this reason, the coverage of the content considered is limited to vehicle
reviews.

In addition, many previous works neglect legal considerations or refer to the fair use principle
for academic use [11, 34, 58] when crawling data from the internet. The legal situation for
gathering data from internet crawling appears inconclusive in many jurisdictions1.

Licence: Following the principles of an opt-in approach, the creators of videos with high
user engagement (views, likes, etc.) were contacted to solicit their consent to use the
videos for scientific purposes. This allows researchers — regardless of the legal sphere
— to access the database without obtaining additional legal clearance. Over a period of
three months, up to three (follow-up) emails were automatically sent to the creators

1Posting a video on YouTube immediately issues a YouTube licence. With regard to this licence, the data
can only be used by YouTube directly or with the creator’s permission. In the US, as an exception to intellectual
property rights, research can refer to the principle of fair use; however, this does not seem to apply in the EU.
In addition, both YouTube’s general as well as application programming interface (API)’s terms and conditions
have to be considered. Alternatively, videos under the Creative Commons licence only (CC-BY, full use if
the creator is acknowledged) could be used, but would drastically reduce the amount of available data.
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Figure 4.1: Thumbnails showing reviewers in various constellations to the camera and
interacting with the object. Figure taken from Stappen et al. [24].

inviting them to agree to the End User Licence Agreement (EULA). In this process, an
agreement was reached with almost half of the creators contacted, whose content were
then be incorporated into the data set.

In absolute terms, this corresponds to 366 videos for which permission was granted. Example
thumbnails are depicted in Figure 4.1. However, as is customary [11, 34, 59, 126], these
acquired videos are subject to further assessment of their value in answering the research
questions posed. To do this, three people inspected each video, looking at about 10 % of the
content. The inspectors were asked to rate relevant properties (see Section 2.1), such as the
degree of in-the-wild characteristics, emotionality, and video quality, in a survey.

Content characteristics: In summary, about 80 % of the videos were emotional or very
emotional, and 85 % had good or very suitable video quality for the purpose of these
experiments. The survey also supported the goal to quantify and balance uncontrollable
in-the-wild influences and confine properties to enable generalisation for leveraging
state-of-the-art DL methods. These in-the-wild features of MuSe-CaR include:

• Video: shot distance, face angle, occlusion, and camera angles in a wide range of
scenes within a single video.

• Audio: ambient background sounds, dialects and accents, different microphone
equipment, and speaker locations.
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• Text: colloquialisms and terminology unique to the domain.

As an example, it was found that the shooting distances change multiple times in 80 %
of the videos; that reviewers interact more often with parts inside than outside the car;
that inside the car, the face is typically filmed from a slightly lower angle; and that
on average less than 10 % of the duration of an average video is judged to be of poor
sound quality.

Regarding the reviewers depicted in the videos, a predominant share appear to be
(semi-)professional reviewers (e. g. , influencers). As a result, they possess more
sophisticated equipment than casual amateur reviewers, which improves video quality
and consistency of the topics covered. As the cohort of crawled videos was not actively
preselected, the biographical characteristics of the reviewers must be estimated. All
subjects in the dataset have a Caucasian appearance and fall roughly within an age range
of about mid 20s to late 50s. Around a third of them are female, and approximately
30 % of the reviewers wear glasses. Most speakers are from the United Kingdom or
the United States of America, and only a small number appear to be non-native but
fluent English speakers. Although both countries have their accents, their prominence
seems only faint in most of the recordings.

A comprehensive analysis of the characteristics described above can be found in
Stappen et al. [24].

It is well known that spoken language information facilitates extracting content aspects
and enhances understanding of emotions’ meaning in a given context [86, 237, 264, 265].
Therefore, the spoken word in the videos is transcribed to support future studies on the
interaction of speech, visual, and linguistic modalities. For this task, automatic speech-
to-text systems are relied upon instead of human ones for two reasons. First, if linguistic
representations are used for the real-time MSA in future in-the-wild situations, text capturing
must work in the background without human intervention. Second, to develop methods for
such environments, large, even very large, datasets are needed, making human transcripts
prohibitive. This is reinforced by the rapid improvements of speech-to-text systems. In 2016,
Microsoft researchers claimed to have reached human parity in this task on several English
corpora [266].

Automatic transcripts: Two of the most reliable transcript services are Google Cloud’s
speech API2 and Amazon Transcribe3. Both systems were applied to the videos, since
both (individually or in combination) can be interesting for future research purposes.

2https://cloud.google.com/speech-to-text
3https://aws.amazon.com/transcribe/
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The new a1 is Aldys take
on the mini a small car at a
big price and the mini is more
about style than substance let’s
see if that’s the case here Enter-
tainment. was [...]

(a) Google Speech-to-text

The A1 is Audi’s take on
the Mini, a small car at a big
price. Now the Mini is all about
style rather than substance, so
lets see if that’s the case here. En-
tertainment. We’ll [...]

(b) Human transcribed

[theme]. New a one is Audi
is take on the mini. A small car
at a big price on the mini is more
about style than substance. See
if that’s the case here. Entertain-
ment. We’ll [...]

(c) Amazon Transcribe

Figure 4.2: Example snippet out of the selection of videos (id: 265) having the worst Word
Error Rate (WER) compared to the hand-transcribed (b). (a) Google Speech-to-text reaches
37.85 % WER and (b) Amazon Transcribe 39.44 % WER. Figure taken from Stappen et al.
[24].

By randomly selecting and transcribing 10 videos (10 576 words in total) by humans,
the deviation between the automatic and manual transcripts was calculated. For
Google’s Speech-to-text a Word Error Rate (WER) of 25.04 % and for Amazon 28.39 %
was found (lower is better). The worst videos had WER of up to 37.85 % for Google
and 39.44 % for Amazon, displayed in Figure 4.2. Although this WER may seem high
at first, many errors turn out to be small and not content-changing, for example “A1 is
Audi’s” (hand) vs “a1 is Aldys” (Google) vs “a one is Audi” (Amazon).

Google’s Speech-to-text also incorporates non-verbal cues and auditory components,
such as laughing and singing tags. However, the experiments in this work are based
exclusively on the Amazon transcripts, as these can be fine-tuned with an individual
dictionary. In random checks, the Amazon transcripts were found to produce superior
results than Google’s regarding the corpus’s automobile domain-specific terminology.
In addition, the service delivers punctuation and the beginning and ending timestamps
for each word, allowing accurate alignment with extractions from other modalities that
may be sampled at different rates. Previous work often had to use forced alignment [11,
13, 100] based on voice activity detectors. In forced alignment, word boundary
detection can fail to recover after making an alignment error, and thus is more prone
to errors for long sequences [267]. In addition, those methods usually rely on human-
made transcripts, which would be an additional challenge in this setting. In total, the
transcription yielded 28 295 sentences, surpassing the largest English-language MSA
database to date, MOSEI (see Section 2.3 and Table 2.1), by almost 5 thousand records.
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(a) Eudico Language Annotation Tool (ELAN)
illustrating the segment annotations of the
speaker topics. Figure taken from Stappen et al.
[24].

(b) Dual Axis Rating and Media Annotation
Software (DARMA) illustrating the annotation
of time- and value-continuous arousal (lower)
and valence (upper) traces.

Figure 4.3: Screenshots of the (a) segment-level ELAN and (b) value- and time-continuous
ELAN annotation tools utilised to annotate MuSe-CaR (id: 4).

4.2 Annotation

Annotation is a repetitive, time-consuming process that must be managed carefully to
ensure a meaningful, high-quality, and ethical outcome [268]. This section first outlines
the organisational structure, tasks, and software for annotating MuSe-CaR, adapted from
comparable work on new databases [12, 43] to ensure an efficient process in terms of the
defined criteria in the beginning of this section. Then, the focus moves to the definition of
the annotations, derived from Section 2.1.

• Functional roles: The annotator labels data based on the understanding gained from
the annotator protocol, the training sessions, and the audit feedback. The auditor
reviews the annotators’ qualitative and quantitative (e. g. , similarity compared to the
mean of other annotators) performance and provides feedback. The administrator
serves as an overseer for the entire annotation process.

• Tasks: Annotation tasks are assigned sequentially. Each focuses on one particular
annotation type (e. g. , valence) comprising several videos equal to one hour of working
including approximately 40 minutes of video content and 20 minutes of breaks in
between tasks [43]. The bundle is sent to the auditor after completion. A new session is
only assigned if the auditor confirms the old one. Every annotation has to be reviewed,
validated, and approved by at least one auditor. Approximately 10 % of the annotated
videos were found unsatisfactory and had to be annotated again. Progress monitoring
is frequently performed by the administrator. By tracking the annotator’s performance
consistently, the quality of the output can be constantly improved.
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Figure 4.4: Overview of the annotation granularity (sampling rate) of all annotations: 1-3:
continuous real-valued annotations; 4-6: continuous binary annotations; 7: speaker topic
segments; 8: Likert assessment; 9: physical car entity classes; 10: faces; 11: automatic
transcripts. Figure taken from Stappen et al. [24].

• Software and hardware: On the one hand, studies have found that emotions such
as anger are conveyed more intensely via audio, whereas others, such as sadness, by
visual signals [269]. On the other hand, context information is expressed by both
modalities [270], making the need for multimodal annotation tools evident. Annotation
of the entire video was sampled at 0.25 Hz with an axis magnitude between -1 000 and
1 000. Categorical annotations of video sections are done using the program ELAN
4.9.4 [271], which provides the audio wave and a video stream allowing the annotator
to find exact start and endpoints (see Figure 4.3a). DARMA [272] in combination
with a Logitech Extreme 3D Pro Joystick enabled the annotators to record perceived
emotions in very intuitive way [12] as depicted in Figure 4.3b.

With almost 40 hours of user-generated video material, the continuous annotation of the
three subjective dimensions (arousal, valence, trustworthiness) alone required more than 600
hours of human labour work.4 The annotators consisted of 11 employees of the Chair for
Embedded Intelligence for Health Care and Wellbeing of the University of Augsburg (six
female and five male), all fluent in English. Each video dimension was annotated five times.

Next, the annotations that are of primary interest in this thesis’ experiments (see Sec-
tions 5.1 and 5.2) are explained. An overview of the manual and semi-automatic annotation
can be found in Figure 4.4. Whereas with manual annotations the entire data set is annotated
exclusively by humans, this is only partially the case in semi-automatic procedures. Here,
either an automatic annotation (e. g. , face extraction) is tested on a labelled subset of MuSe-
CaR to estimate its quality, or the labelled subset is used to train or fine-tune an algorithm
that subsequently annotates the data automatically (e. g. , physical entities). For a detailed

4Calculation: minimum of 5 independent annotators per video * 3 continuous annotation tiers * 40 hours of
video = 600 hours, plus an additional 33 % of paid rests between annotations.
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Figure 4.5: The three continuous, real-valued arousal, valence, and trustworthiness dimen-
sions for an example video (id: 236), visualising the raw annotations and the gold standard
Evaluator Weighted Estimator (EWE) (bold, red) with a sample rate of 250ms. Figure taken
from Stappen et al. [24].

description of all the different layers, the interested reader is referred to the prior publication
Stappen et al. [24].

The foundation for this work’s derived understanding of MSA, as explained in Section 2.2,
is the manual annotation of emotions in a time- and value-continuous fashion as depicted
in Figure 4.5.

• Arousal and valence: The arousal and valence dimensions originated in the Circum-
plex Model of Affect (CA) theory [16] and are currently the most applied theoretical
concept for time-continuous emotion recognition (see Section 2.2). Two example
situations from the visual perspective can be found in Figure 4.6. As recommended
in previous studies [12], the dimensional annotations are each annotated one at a
time. In the MuSe-CaR data, examples of high arousal are stressful and elated (happy)
situations; the first has a negative valence, while the latter is positively connoted.

• Trustworthiness: Given the social media setting of the dataset, it relies on the assump-
tion that an individual (the video moderator) can objectively evaluate the matter and
communicate their judgement with integrity, thus truthfully. Based on this conceptual
definition (Section 2.2), the annotators rated it from a personal perspective, asking
how truthful and informative the review is perceived over the duration of the video, for
instance, covering specific product aspect addressed by the host. A negative impression
could be that the host seeks to make a commercial profit rather than a genuine analysis
of the product. Of course, similar to emotions, this may be a subjective standard for
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(a) High arousal (b) Positive valence

Figure 4.6: Excerpts of emotional scenes from the MuSe-CaR dataset. (a) High arousal
triggered by the fast acceleration of the car, expressed by verbal and nonverbal cues. (b)
Positive surprise at the beefy rear is expressed non-verbally. Figure taken from Stappen et al.
[24].

annotation. Therefore, the annotators were given multiple video samples and cases to
deepen their common understanding, and as with valence and arousal, five independent
raters annotated this dimension.

To generally familiarise annotators with the concept, they first received instruction from a
15-minute explanatory video on the aspects and interpretations of CA dimensions. This was
followed by an in-person training session. To learn to translate the theoretical understanding
to high-quality annotations, training annotations were done individually and closely moni-
tored. This first-hand experience is crucial to understand the functionality and reaction times
of the joystick. The resulting annotations were compared and discussed in the training’s
group (max. five members) as well as benchmarked to a pre-recorded expert annotation. To
maximise concentration, the annotation process after training was carried out alone in a quiet
atmosphere and with headphones.
Categorical labels are also of particular interest for MSA.

• Speaker topics: These are concepts surrounding a generalised, high-level area of
interest articulated by the moderator. These overarching themes under one definition
can address several aspects within one labelled segment of a video. Therefore, they
can consist of one or many sentences (see Figure 4.3a). Figure 4.7 provides a compre-
hensive overview of the subtopics and aspects covered by each subject and illustrates
the distribution of topics across all sentences.

• Physical entity: The core modality of videos is vision in the form of an image stream.
Automatically observing how a person of interest interacts with physical entities of the
surrounding world can be seen as another source for deeper context understanding.
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To manually label an appropriate amount of frames with bounding boxes would require
an estimated time between 4 800 and 72 000 hours for a single annotator.5 With
this in mind, a semi-automatic annotation process was chosen. For this, a subset
of MuSe-CaR was created containing frames across all channels and speaker topics.
Multimodal Sentiment Analysis in Car Part Frames (MuSe-CaR-Part) is a selection of
1 000 frames extracted and labelled from the MuSe-CaR videos. It is annotated with
more than 8 000 bounding boxes by three human annotators. Due to the image origin
from video recordings, the in-the-wild characteristics are complex. For example, the
camera is in motion and shot sizes are changing, resulting in a portion of the images
being blurred. Slightly blurred frames were kept but others were removed, ending
up with 1 124 frames depicting the 27 cars’ interior and exterior parts mostly in use
by humans, resulting in 6 146 labels in total with an average of 5.47 labels per frame.
These images are used to train GoCaRD, as explained in depth in Section 3.1.3.

The fully trained model is applied to MuSe-CaR, reaching 41.07 % mAP on the labelled
extract. The entire process is explained at length in Stappen et al. [2].

• Face: The human face plays a large role in recognising affect and emotions [216,
217]. These models rely on a robust extraction of the face in order to extract facial
representations (see Section 3.1.3). Complex backgrounds and variations in scale make
such a task non-trivial. To measure the robustness of the later approaches, a random
set of up to a hundred frames per channel was selected and faces occurring in those
frames were annotated by a human labeller.

The annotated faces from Section 4.2 are used to investigate the quality of this approach.
On the basis of the overlap of the prediction and human labelling, the detected bounding
boxes were classified into true and false positives. The detector achieved an accuracy
of 90 %, and an F1 of 86 % on the selection of MuSe-CaR. In addition, the bounding
boxes are visually inspected to control the qualitative performance. Both performances
underline the very good quality of MTCNN face extractions.

A detailed description of the annotations is omitted, as they are not the subject of this work
but are available for future research. A full set is depicted in Figure 4.4

Other annotations: Besides the continuously real-valued emotional states, three annota-
tions are made in a time-continuous, binary-valued fashion (see Figure 4.4): (4) the
turns between the host (a visible person) and the narrator (a speaker from off-camera);

5Estimation: Around 4 frames per second are usually extracted in such a setting [12], resulting in over
576 000 frames for MuSe-CaR. The range is based on a minimum of 1 to a maximum of 15 bounding boxes for
each frame, and the empirical value of an average of two boxes per minute from similar studies [273, 274].
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Figure 4.7: Distribution of speaker topic annotations on sentence-level showing examples of
subtopics and aspects. The percentage reflects the proportion of the sentences; almost 20 %
of sentences have more than one topic.

(5) the appearance of banners; and (6) the appearance of more than one person (one
person is speaking, and the others are there for demonstration reasons). Furthermore,
there is a summary of several questions regarding appealingness to the annotator, host
emotionality, content trustworthiness, and annotation confidence, wherein only one
label for each video per annotator is given on a 10-point Likert scale (8).

4.3 Gold Standards

No framework has yet managed to unify the multitude of fusion methods for different time-
and value-continuous and class-based discrete annotations. In this direction, Stappen et al.
[25] proposes an open-source toolkit, MuSe-Toolbox, for creating a variety of time- and
value-continuous and discrete-emotion gold standards, combining a wide range of fusion
methods into a single framework central to the work at hand. Furthermore, these new methods
are complemented by a novel annotation fusion method. In addition, for the first time, a
procedure is proposed for meaningfully capturing dynamic emotional changes over time and
aggregating them along the time dimension into a single, discrete label of a segmentation.
An overview is displayed in Figure 4.8.



Page 72 of 214 Data

Summary 
Features

absE
MaCh
…

peaks
SaEn

Emotion 
recognition

Create discrete 
classes (2)

Clustering ProfilingSegmented 
gold label

Continuous annotations Alignment + fusion 
(EWE, DBA, CTW, etc.)A

nn
ot

at
io

n 
fu

si
on

D
is

cr
et

e 
cl

as
s 

cr
ea

tio
n

gold standard

Figure 4.8: System overview of MuSe-Toolbox, showing the steps of the fusion process of
value- and time-continuous annotations in the top panel, as well as the feature extraction and
summary class creation in the bottom panel. Figure taken from Stappen et al. [25].

4.3.1 Dimensional Emotions

Personal emotion annotations are, by definition, hardly objective. Several approaches exist to
merge individual subjective ratings of each annotator to form a collective emotion rating. For
dimensional emotions, fused annotation is referred to as a gold standard [3, 184]. Naturally,
one could assume that a mean over the signals could be applied to calculate the gold standard.
However, this comes with two major disadvantages: first, it weights every annotator equally,
independently of individual reliability and (dis-)agreement between annotators, and second,
it ignores that each annotator can have different reaction times. Therefore, multiple gold
standard creation methods were developed to calculate an even more objectively better fitting
“mean”. At its core, the approaches either aim to weight ratings [3, 45, 275] or try to align
the continuous signals using advanced signal alignment methods [12]. Several are provided
in the MuSe-Toolbox; however, due to relevance to this work, only two are focused on in the
following (see Figure 4.9, left):

• Evaluator Weighted Estimator (EWE): Instead of exclusively including objective
criteria in time series fusion [276, 277], Schuller et al. [3] proposed to directly model
human diversity in emotion perception. For this, the reliability of an annotator is
included in the fusion. In the EWE method, it is therefore assumed that the more
similar a situation is perceived by several annotators, the better these opinions can be
generalised and thus predicted. Mathematically, this is calculated through weighting
each annotator or annotation. This is derived from a cross-correlation, hence the
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similarity of the continuous annotation of one rater with regard to the average of all
others. Formally, this can be expressed as follows:

x̂EWE
n =

1

∑
K
k=1 rk

K

∑
k=1

rkx̂n,k, (4.1)

where rk corresponds to the similarity of the kth annotator to the other continuous
annotations. The similarity can be calculated with any time series similarity measure.
EWE is the most prominent fusion approach for dimensional emotion annotation to
date [65, 18, 12].

• Rater Aligned Annotation Weighting (RAAW): In Stappen et al. [25], an extension
of the EWE method is proposed and provided by the MuSe-Toolbox. One problem with
using human annotators is that they have varying delays in absorbing video content,
assessing perceived emotion, and expressing this in joystick movement [278]. The
phenomenon has been termed reaction lag of evaluators and found to be from one
to six seconds. The problem is magnified when fusing annotations from different
people with different reaction times, leading to unwanted smoothing of the fused
annotation. For this reason, this alignment has so far been carried out manually or
by brute force [279]. In the manual procedure, the individual annotations are shifted
by sight. In the brute-force procedure, several models are trained on the basis of
individual annotators, with the entire annotation shifted piece by piece by one to
three seconds while monitoring the prediction results for improvements [18, 279].
The RAAW method eliminates this manual effort. For this purpose, a well-proven
alignment method for time series, Dynamic Time Warping (DTW), is applied first
(see Figure 4.9, right). It is known to condense a high degree of the original structure
of the time series [276]. More specifically, since the complexity of the alignment
computation increases with numerous annotators [280], a resource-efficient DTW
variant, Generic-Canonical Time Warping (GCTW) is adopted from [277]. Then, the
similarity for the individual aligned signals is calculated as done before with EWE to
account for inter-rater agreement (subjectivity).

Besides its use in MuSe-CaR introduced here, this method was also successfully
applied in the creation of emotion-based gold standards that fuse physical-based
arousal (electrodermal activity and beats per minute) with perceived arousal on a Trier
Social Stress Test dataset. The interested reader is referred to Baird et al. [281].

On MuSe-CaR, the annotators achieved moderate correlations of .265 for arousal, .350 for
valence, and .316 for trustworthiness before gold standard fusion, which is in line with
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Figure 4.9: Fusion methods using an example video (id: 100) of MuSe-CaR. (a) shows
the fusion methods including EWE (in red) and RAAW (yellow) applied to the arousal
annotations; (b) illustrates the warping paths and the alignment of the RAAW method. Figure
taken from Stappen et al. [25].

previous datasets in the field [12, 282, 283]. Both methods were applied to MuSe-CaR in
earlier publications [26, 27] and are discussed in Section 5.1.1. If required, the framework
also allows for upstream smoothing of the annotation as well as normalisation to the video or
annotator level.

4.3.2 Summary Emotion Classes

A disadvantage for humans is the more intricate interpretation of continuous emotion signals
compared to categorical emotions. Continuous emotions are also less estimable to deter-
mine a (sentiment) tendency of a segment [10]. An automatic transfer from dimensional
annotations to classes would make precision and ease of interpretation possible as discussed
in Section 2.2. Previous methods fail to provide the possibility to summarise continuous
emotion annotations to a certain class over a variable-length segment duration. In [25],
Stappen et al. proposed a new procedure towards this goal that does this largely automatically
in three steps:

1. Feature extraction: A set of distribution and complex time series, hand-crafted
representations are extracted from the emotion signals, precisely representing the
temporal changes of the continuous emotions within a segment. This is seen as a feature
set of emotional annotations, described in detail in Section 3.1.4. These representations
can be used either collectively or separately for each emotion dimension. The extraction
can be applied from annotation sections of varying lengths, often at sentence or segment
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level. These are often based on transcribed speech or speaker turns. However, the
absolute representations, in particular, must be normalised as a function of the segment
length to reduce this influencing factor.

2. Dimension reduction: Clustering algorithms are often vulnerable and less robust
when using broad feature sets with many dimensions due to effects such as the curse
of dimensionality [284]. For this reason, the dimensionality of the created feature
set is reduced by a Principal Component Analysis (PCA) [285]. In this process, the
components are transformed by a projection procedure into new orthogonal axes that
largely map the data variance. These components are then the starting point of the
further procedure. Similarly, this is also possible with self-organising maps, which
can be seen as a ANN without deeper layers. Here, a high-dimensional input is
transformed into a low-dimensional output [286]. The output neurons correlate with
patterns in the input, whereby the most important structures are represented even at
low dimensions [287].

3. Clustering: The applied clustering methods intelligently construct more meaningful
and homogeneous class clusters for these segments. Although a variety of methods are
available in MuSe-Toolbox, only two are relevant to this thesis:

• K-means: This is a crisp clustering method; therefore, each data point is always
assigned to only one unique cluster during the course of the process [288, 149].
The number of clusters is specified a priori. Then, clusters are randomly placed
centrally at this height, and the distance between the clusters and the data point
is determined with the help of a distance measure, often the Euclidean distance.
The nearest cluster centre corresponds to the cluster to which a point is assigned.
Based on the Estimation-Maximisation Algorithm (EM), the centres and the
cluster membership are optimised step by step until they converge after a few
iterations.

• Gaussian Mixture Model (GMM): In contrast, GMM is a fuzzy clustering
method, so the membership of a data point in the resulting clusters is expressed
with a certain probability [289]. This is based on a probabilistic algorithm that
aims to describe the distribution of the points as well as possible with the help of
Gaussian distributions. A method based on the EM algorithm is employed once
again to find the appropriate covariance structure of the data and the centres of
the latent Gaussian distributions.
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This entire process is run several times for a set of hyperparameters and monitored by
clustering and qualitative criteria until the user is satisfied with the results.
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5 Experiments and Evaluation
This chapter brings together the concepts (Chapter 2), underlying methodology (Chapter 3),
and data (Chapter 4) to empirically answer the research questions described in Section 1.2.
For this purpose, Section 5.1 and Section 5.2 exclusively use the Multimodal Sentiment
Analysis in Car Reviews (MuSe-CaR) dataset. As the originators of the data set, suitable
extraction frameworks were applied for the first time and the baseline models for the guidance
of other researchers were introduced in Stappen et al. [26, 27]. However, the developed
models go far beyond the simplistic baselines in comparable work [17, 18]. Their complexity,
training, and fine-tuning are the results of extensive method development.

The experiments are executed on Graphics Grocessing Units (GPUs), which offer between
24 GB and 32 GB GPU RAM and serve as the hardware backbone. All experiments are
implemented in Python. The design and training of the Deep Learning (DL) architectures
are carried out with the Python packages PyTorch1 and TensorFlow2. The Hugging Face
package3 is used for the NLP transformers. All other Machine Learning (ML) and clustering
models are implemented with the ML library Scikit-Learn [290].

5.1 Subjective Dimensions

The focus in this section is on predicting and utilising the subjective dimensions of Multi-
modal Sentiment Analysis (MSA) (see Section 2.2). The presented MuSe-CaR dataset (see
Chapter 4) is the basis for the experiments, which address RQ-1 and RQ-3 in the following
manner:

• RQ-1a: Demonstrating the efficacy of predicting arousal and valence dimensions as a
time- and value-continuous regression task, evaluating two gold standards.

• RQ-1b: Investigating the efficacy of predicting arousal and valence dimensions as
a classification task, evaluating two “summary” class creation procedures for topic-
specific segments.

• RQ-1c: Exploring the quantification of the perceived trustworthiness dimension as a
continuous regression task (as in 1a).

1https://pytorch.org/ accessed July 11, 2021
2https://www.tensorflow.org/ accessed February 1, 2021
3https://github.com/huggingface/ accessed April 6, 2021
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Table 5.1: Total amount of video footage of the MuSe-CaR dataset selected and speaker-
independent partitioned for each task type. Reported are the number of unique videos and
the duration for each task type in hh :mm :ss.

Partition No. Regression Classification Trustworthiness

Train 166 22 :16 :43 22 :35 :55 22 :45 :52
Devel. 62 06 :48 :58 06 :49 :46 06 :52 :22
Test 64 06 :02 :20 06 :14 :08 06 :12 :53
∑ 292 35 :08 :01 35 :39 :49 35 :51 :07

• RQ-1d: Exploring the relationships of the three dimensions of 1a and 1c on (predicting)
the popularity of a video on the YouTube platform.

• RQ-3: Evaluating the predictive power of the three core modalities and their repre-
sentations, individually and in combination.

For each task, the characteristics (e. g. , data selection) are introduced at the beginning. The
followed experimental setup explains details to the representation extraction and introduces
the architectures, specifically developed for the task. After the results, the research questions
raised here are revisited.

5.1.1 Emotion Recognition

5.1.1.1 Characteristics

Developing models robust against in-the-wild characteristics (Section 2.1) is a vital challenge
in predicting arousal and valence levels. In general, the modalities extracted from the
audio-visual recordings have varying amounts of presence and significance (e. g. , due to
the influence of noise) and need to be systematically combined to fully exploit the models’
potential. Methods involved include (dynamic) alignment and fusion of representations at
appropriate linguistic levels (e. g. , word, sentence, segment).

For the following experiments, all people-focused video segments wherein a voice is
present or a face is visible are included. At the same time, all non-product-related parts (e. g. ,
the introduction, social media mentions, and commercial remarks) are excluded. In total,
more than 35 hours of video from MuSe-CaR fulfil these criteria, and are speaker-independent
separated into train, development, and test sets as illustrated in Table 5.1. Stappen et al.
proposed two slightly different versions of this task in previous publications [26, 27], differing
only in the annotator fusion method (Section 4.2).
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Figure 5.1: Density distribution using 35 equal-width bins of the train, (devel)opment, and
test partitions for continuous annotations of (a) MuSe-Wild and (b) MuSe-Wilder. The
distributions between all partitions of one annotation are fairly similar, however, MuSe-
Wilder is more sharply distributed than MuSe-Wild due to different standardisation and
annotator fusion. Figure adapted from Stappen et al. [26, 27].

I. Multimodal V-A Sentiments in-the-Wild Sub-challenge (MuSe-Wild): The first
version of the task [26] uses Evaluator Weighted Estimator (EWE) fusion on the
ratings standardised on the video level.

II. Multimodal Continuous Emotions in-the-Wild Sub-challenge (MuSe-Wilder): The
second version [27] uses Rater Aligned Annotation Weighting (RAAW) fusion and
applies standardisation and min-max normalisation on the rater, not video, level as
described in Section 4.2.

Modelling annotator subjectivity by these fusion methods has a vigorous impact on un-
derstanding the annotator agreement and generalisability of the models. Furthermore, the
interested reader is referred to Stappen et al. [25] for an in-depth analysis of additional
standardisation and fusion methods made available by Multimodal Sentiment Analysis Con-
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tinuous Annotation Fusion and Discrete Class Transformation Toolbox (MuSe-Toolbox)
toolbox.

Analogous to other regression tasks and emotion recognition challenges [17, 18], the
Concordance Correlation Coefficient (CCC), with an identical formulation as the CCC loss
function (see Section 3.2.1), is used to assess and compare the models’ performance.

5.1.1.2 Experimental Setup

For each task, the experiments are subdivided into establishing baseline results, as presented
in the respective earlier publications, and evaluating the Multihead Attention Long Short-
Term Memory Recurrent Neural Network (MHA-LSTM) architecture, which is derived from
the lessons of the MuSe challenges. Even though the baselines differ for the respective tasks,
all models are listed together in the following.

5.1.1.2.1 Feature Sets: In the following experiments, a wide variety of representations
from the three modalities are utilised as introduced in Section 3.1. Extraction is performed
over the entire length of a video, from which the relevant segments are selected. Most of the
audio extractors rely on preprocessed audio data. The raw audio is normalised to -3dB and
converted from stereo to mono, 16 kHz with 16 bit. The ComParE Low-Level Descriptors
(ComParE LLDs), the voice-related hand-crafted representations, are extracted using 60 ms
frames with a Gaussian window function, while all other Low-level Descriptors (LLDs) are
based on 25 ms frames with a Hamming window function which is overlapped and sampled
at 100Hz. In accordance with the specifications, a symmetric moving average window with
a frame length of three and their first order delta regression coefficient with a window size
of two frames is applied for smoothing. For Spectrograms Feature Extraction from Audio
Data with Pre-trained Convolutional Neural Networks (Deep Spectrum) the audio signal is
converted first into mel spectrogram plots using a Hanning window with 32 ms and an overlap
of 16 ms. Next, 128 mel frequency bands are computed. Finally, these mel spectrograms
are passed into a VGG-19 extraction network [205], resulting in a 4 096-dimensional vector.
To be in line with the annotation sampling rate, the hop size is set to 250 millisecond steps
for the remaining audio (e. g. , CNN Architectures for Large-Scale Audio Classification
(VGGish), extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)) and video
(e. g. , Depthwise Separable Convolutions Network (Xception), Very Deep Convolutional
Networks for Large-Scale Face Recognition Descriptor (VGGFace), Facial Action Unit
(FAU)) feature sets. For video representations, this corresponds to 4 evenly sampled frames
per second. The only exceptions are the text inputs, wherein one feature vector for each word
is generated, which can span across several hops.
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Alignment: If feature extraction fails for a time step, for example, because no person is
visible for a human-related feature such as a FAU, a zero feature vector is imputed. For
the text representations, the extraction is done for each word. Since the word frequency
is much lower than the annotation frequency, text representations are imputed for
the time of vocalisation according to the timestamps of the transcripts. Substituting
timestamps without articulation with a zero vector ensures a perfect alignment to
representations of the other modalities.

5.1.1.2.2 Architectures: Four architectures with distinctive characteristics are proposed
for this task. For MuSe-Wild, three models are used to create a baseline, while the Long
Short-Term Memory Recurrent Neural Network (LSTM-RNN) model serves as a baseline for
MuSe-Wilder only. The final architecture, incorporating all learnings, consists of a Multihead
Attention Layer (MHAL) combined with an LSTM-RNN. In the experiments, the most
promising feature sets introduced in Section 3.1 are used.

LSTM-RNN: Since the nature of the data provides a sequence of representations to predict
a sequence of regression points, a many-to-many LSTM-RNN, as explained in Sec-
tion 3.2.2, is inherently suited for this task. LSTM-RNNs are specifically designed
to facilitate learning short- and medium-term patterns. As a stand-alone solution, the
LSTM-RNN first performs a linear reduction of the feature input e to the hidden state
dimensionality (h) ∈ {32,64,128} of the first recurrent layer. This layer can be either
uni- or bi-directional. The additional layers in the LSTM-RNN, number of layers (n)
∈ {1,2,4}, consist of the same type and dimensionality as the first while a Rectified
Linear Unit (ReLU) activation function squashes the resulting hidden vectors of each.
In the final layer, these states are transformed by a Fully connected Feed-Forward
Layer (FFL) to a sequence of logits resulting in one prediction for each time step.
As with comparable approaches [24, 26, 262], efficient training when using input
sequences of different lengths is achieved by dividing them into shorter, equally long,
and overlapping segments of the original sequence. For this purpose, a 200-step-sized
window size (ws) (corresponding to 50 s at a sampling rate of 250 ms) is applied,
shifting the window hop size (hs) by 100-step hops (25 s). Sequences that are too short
are zero padded. The experiments are executed with a learning rate of learning rate
(lr) ∈ {0.0001,0.001,0.005} and a batch size (bs) ∈ {512,1024,2048} running for up
to 100 epochs (early stopping). For late fusion, an additional multimodal LSTM-RNN
network can be trained on the stored predictions of the unimodal networks as done in
[262]. Due to the 2- or 3-dimensional input, parameters are set as h = 32, n = 1 and
the network is fine-tuned until the loss does not decrease further for 15 epochs.
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Long Short-Term Memory Recurrent Neural Network with Self-Attention (LSTM-SA):
Similar to LSTM-RNN, LSTM-SA copes with the sequential nature of the input repre-
sentations by feeding them into a bidirectional LSTM-RNN with h ∈ {30,40,50,100}
neurons in each of the n ∈ {1,2,3} hidden layers. As described in Section 3.2.4,
the encoded representation is then used as a query to apply self-attention based on
the entire sequence. The resulting attention-encoded sequence is concatenated to the
sequence of original query representations. At each time step, the vector is processed
by a FFL for continuous-time regression. Furthermore, the input length is restricted to
50 time-step segments with no overlap and 0.1 Gaussian noise is added to the input for
better generalisation. The initial lr ∈ {0,00001,0,0001,0.001} and bs ∈ {50,100}
are used while the training is running for up to 50 epochs, applying early stopping
when the loss on the development set does not improve for 5 epochs. As with the
LSTM-RNN, the network has an early fusion mechanism.

End-to-End Learning (End2You): The End2You Framework [89], is frequently applied
for end-to-end DL in unimodal audio [90] and multimodal settings [26, 291, 292]. It is
based on a Recurrent Convolution Neural Network (RCNN), combining a Convolu-
tional Neural Network (CNN) mechanism (see Section 3.2.3), for low-level, spatial
audio feature extraction from the raw (audio) signals, with an LSTM-RNN to learn
short-term temporal dynamics. The configuration comprises three CNN building
blocks with a ReLU activation function for audio feature extraction, followed by con-
catenating representations from other modalities and an LSTM-RNN layer. One CNN
block consists of a one-dimensional CNN layer with a filter size ( f s) and kernel size
(ks), followed by a maximum pooling layer with a pool size (ps) and strides strides
(s), as well as 50 % random dropout. After preliminary experiments, the following
architecture is selected: The first block has filter size ( f s) = 50, ks = 5, ps = 10, and
s = 10; the second block increases f s to 125 and reduces ks to 8, while ps and s are
set to 8; the final block sets f s = 250, ks = 6, ps = 6, and s = 6. The LSTM-RNN
layer has h = 256. Due to the high degree of noise, further modalities are necessary
to achieve stable training. In addition to audio, VGGFace is used for vision — since
they are low-level face representations (see Section 3.1.3) — and Fast Text Classifier
(FastText) representations for text. While the VGGFace representations are imputed
with a zero vector if missing, the text feature vector is repeated until the next recog-
nised word, equivalent to a successfully extracted word vector. Based on previous
findings [291, 292], to learn underlying low-level audio representations, the lr has to
be set very low, starting from 0.00001, and is increased in equal steps to 0.00009 for
up to 40 epochs at a bs = 10.
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Figure 5.2: Illustration of the developed MHA-LSTM architecture utilising multihead atten-
tion (at = 3 in layer) for intramodality enhancement and two bidirectional LSTM-RNNs to
capture the sequential context.

MHA-LSTM: To model the short- and long-term dependencies, two DL mechanisms are
leveraged, as depicted in Figure 5.2. These improve the representation of the input
state(s), e. g. , early fused audio, text, and video feature sets, by one or multiple MHAL
(see Section 3.2.4) and again encode the spatial patterns of state transitions with one or
multiple (bidirectional) LSTM-RNNs. The attention heads (at), reinforce the robust
representations of the extracted local representation and can preserve the long-term
(global) dynamics of a sequence. However, this mechanism is not sufficient to develop
a deeper understanding of the positional encoding (see Section 3.2.2) [91]. For this
purpose, the properties of n LSTM-RNN layers are required. Similar combinations
have been proposed previously [27, 262, 293]. Depending on the task, the top layer
is a FFL with one output for each encoding step (Sequence to Sequence (S2S)) for
regression. For optimal performance, the following architectural hyperparameters are
searched: n ∈ {1,2,4}, h ∈ {32,64,128}, number of attention heads (at) ∈ {2,4,8}. In
addition, the training behaviour is optimised for up to 100 epochs (early stopping) using
lr ∈ {0,0001,0.001,0.005} and bs ∈ {512,1024,2048}, and the sliding windows
values are set to ws = 200 and hop size to hs = 100. For MuSe-Wilder only, the
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number of MHALs is evaluated in the same range as n. The architecture enables early
and late modality fusion. For this, multiple modalities can be incorporated by an early
concatenation of aligned representations, or the extracted sequences of predictions
utilised by an additional LSTM-RNN.

5.1.1.3 Results

In the following, results of MuSe-Wild and MuSe-Wilder are first discussed individually.
The conclusion brings the findings of the two tasks together to give an overall picture.

5.1.1.3.1 MuSe-Wild: An overview of the results for predicting continuous, EWE fused
emotions is given in Table 5.2. The upper half of the table shows the baseline models, while
the lower half highlights the architectures developed as challengers.

Baseline: For valence prediction, the best results are yielded by the end-to-end architecture
using a range of representations consisting of FastText, VGGISH, and audio represen-
tations learned from the raw audio signal. Here, the model shows a CCC on valence
of .1506 on development set and .2431 on the test set. This architecture also achieves
robust results for arousal prediction, with .2587 CCC on the development set and .2706
on the test set. However, the LSTM-SA performs considerably better for predicting
arousal with a CCC of .3088 and .2884, respectively, on the development and test sets.
In this case, the audio representations, especially the LLD and Deep Spectrum, show
the most robust performance of all input representations. In comparison, results for
valence are poor, with the best feature set, FastText, only resulting in a CCC of .1816
on the test set.

Challenge: Compared to the baseline models, the two best teams in the MuSe-Wild chal-
lenge achieved substantial performance gains. Ruichen et al. [294] achieved test results
of .4346 for arousal and .4513 for valence with a LSTM-RNN attention architecture,
and Sun et al. [262] developed a LSTM-RNN incorporating multihead attention that
achieved .4726 and .5996 on arousal and valence, respectively, on the challenge test
set fusing up to six different feature sets.

Post-challenge models: Inspired by the challenge improvements and to find the crucial
success mechanisms, further experiments (see lower panel in Table 5.2) are conducted
using two architecture with (MHA-LSTM) and without (LSTM-RNN) multihead
attention. Again, the best performance for predicting valence is achieved with the text
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Table 5.2: Reporting arousal and valence for MuSe-Wild (using EWE annotation fusion)
in Concordance Correlation Coefficient (CCC) on the devel(opment) and test partitions.
Audio feature sets: LOW-LEVEL DESCRIPTORS (LDD), EGEMAPS (Ge), DEEP SPECTRUM

(DS), and VGGISH (VG); vision features sets: GOCARD (Go), VGGFACE (VF), and
XCEPTION (X); and text feature sets FASTTEXT (FT) and BERT (BT) are fed into the
models. Furthermore, the raw audio signal (RA) is utilised by End2You. The features are
aligned to the label timestamps.

Approach Modality Feature(s) Valence Arousal
devel test devel test

Official Baselines [26]
Unimodal

LSTM-SA
A

LLD .0711 .0349 .3078 .2834
DS .0165 .0024 .1585 .1723
Ge .0435 -.0097 .1090 .0827

V
X .0499 .0426 .0776 .0683
aV .0098 .0272 .1598 .1227

T FT .1273 .1816 .0959 .1074
Multimodal

LSTM-SA
A+T Ge + FT .0520 .0361 .1375 .1018

T+A+V FT + Ge + aV .0393 .0654 .1809 .0865
End2You T+A+V FT + VG + RA .1506 .2431 .2587 .2706

Post-Challenge Models
Unimodal

LSTM-RNN

T
FT .2398 .3202 .2038 .1629
BT .4522 .5216 .2497 .1615

A
VG .1843 -.0349 .4249 .1822
Ge .1809 .0867 .3711 .1810

V
VF .1083 .0455 .3497 .2593
AU .0646 .0542 .2713 .0662

MHAL-LSTM

T
FT .2742 .3806 .1669 .1004
BT .4569 .5987 .3527 .2954

A
VG .1481 .0652 .4909 .4027
Ge .1271 .0728 .3984 .4024

V
VF .0921 .0686 .3733 .3652
AU .1109 .0392 .2840 .0961

Multimodal

MHAL-LSTM
(early fusion)

best A + V .1174 .0634 .5327 .3592
best A + T .4284 .5577 .4235 .1757
best V + T .4451 .5547 .4127 .2777

best V + A + T .4302 .5476 .4683 .3073

MHAL-LSTM
(late fusion)

best A + V .1918 .1185 .4622 .3891
best A + T .4711 .6216 .4622 .4104
best V + T .4645 .6237 .4107 .3814

best V + A + T .4737 .6204 .4748 .4271
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RNN.

Figure 5.3: Illustration of the multimodal (a) early and (b) late fusion techniques used to
improve MHA-LSTM.

modality on both models. All other modalities achieve less than .1 CCC on the test
set and are of limited relevance. For arousal, audio representations show the strongest
results. Using MHA-LSTM, VGGish yielded the best results with .4027 CCC on the
test set. Both vision representations show solid results on the development set for
the prediction of arousal, however, only VGGFace generalises on a similar level on
the test set. Text, e. g. , Bidirectional Encoder Representations from Transformers
(BERT) achieves up to .2954 CCC on the test set with MHA-LSTM. Compared to
the participants’ results, the performance of the proposed models are comparable and
in most cases slightly outperform them. The MHA-LSTM architecture achieves new
state-of-the-art results with .6237 CCC on the test set predicting valence fusing BERT
and FAU. The best result for the prediction of arousal falls slightly behind the best
challenge result with .4271 CCC, however, both utilise only two, three representations,
compared to the six of the model that won the challenge.

In comparison to the baseline models, several changes have been made that seem to
have positive impact on the results. Three underlying mechanisms are highlighted here
as contributing, at least partially, to the performance improvements:

• Shorter window size and overlapping segments: Compared to the baseline,
the input window length and overlapping is more sensible crafted for the post-
baseline models. Experimental results are shown in Table 5.3 wherein the window
ws and hop size hs in the data segmentation process are varied. For predicting
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arousal and valence, the best performing representations (VGGish and BERT) in
combination with the best architecture (MHA-LSTM) and most suited hyperpa-
rameters are applied. Looking at the average results on the test set, the results
clearly improve with increasing length, for example from .4142 CCC (using ws
= 100 and hs = 50) to .5223 CCC (using ws = 750 and hs = 500). For VGGish,
the results with overlap (ws > hs) are in all cases better than without (ws = hs)
when comparing the performance on a ws-level, for example .4027 CCC at ws =
200 and hs = 100 compared to .3752 CCC at ws = 200 and hs = 200. For BERT,
this is only the case for the ws = 750.

The disadvantage of longer sequences is the vastly increased computation time
for architectures employing LSTM-RNN, which increases computational cost
and GPU memory quadratically with each sequence step (see Section 3.2.2),
making it impractical for broad hyperparameter search (ws > 750 exceeds 32 GB
GPU memory in the standard setting used here).

• Stronger representations: A summary of these experiments in tabular form
is shown in the lower half of Table 5.2. BERT outperforms FastText by a large
margin independently of the architecture and prediction target. Although the
acoustical representations still dominate in the arousal prediction, the gap to
the best text (BERT) and best vision (VGGFace) feature sets is substantially
reduced (cf. MHA-LSTM vs LSTM-RNN). On audio, which previously showed
better results on arousal, the new VGGish clearly outperforms eGeMAPS on the
development set. While the results using the LSTM-RNN are also much better
on the test set, the results using the MHA-LSTM architecture are almost identical
on the test set.

• Late fusion: Finally, in a multimodal setting, late fusion is superior in combining
various modalities (see lower half of Table 5.2). In these experiments, the
representation which reached the best unimodal results for each modality is
chosen. These results confirm the participants’ results, so that here too, a later
fusion is more beneficial to performance than an early one. The results of early
fusion are always worse than the best result of the best unimodal approach.
For example, MHA-LSTM achieves .5987 CCC with BERT representations for
valence prediction of but only .5577 CCC when including VGGish representations
(alone: .0652 CCC) in the early fused mode. In contrast, late fusion of the same
combination achieves .6216 CCC for the same target, greater than both unimodal
results. The primary reason for this may be that overfitting is avoided. Early
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Table 5.3: Results of MuSe-Wild varying the data segmentation parameters: the window
size (ws) and the overlap hop size (hs) showing the results of the best model MHA-LSTM
with the strongest feature sets, VGGish for arousal and BERT for valence, as well as the
average of these two Ø. The other hyperparameters remain static. The results are given in
Concordance Correlation Coefficient (CCC) for the devel(opment) and test sets.

steps BERT VGGISH Ø
ws hs devel test devel test devel test

750 750 .5641 .5540 .4274 .4344 .4957 .4942
750 500 .5739 .5747 .5604 .4699 .5671 .5223
750 250 .5189 .5693 .5386 .4686 .5288 .5190
200 200 .4512 .5245 .4566 .3752 .4539 .4499
200 100 .4569 .5987 .4909 .4027 .4739 .5007
200 50 .4282 .5160 .4440 .4081 .4361 .4621
100 100 .4167 .5128 .4782 .2815 .4475 .3971
100 50 .4312 .5068 .4958 .3215 .4635 .4142
100 25 .4233 .5216 .5016 .3233 .4624 .4225

fusion of the representations might lead to modelling very complex interacting
representations, which are not necessarily found in the test set.

5.1.1.3.2 MuSe-Wilder: The proposed baseline models for the MuSe2021 challenge
incorporate the lessons learnt and findings of MuSe2020, aiming for better results while
using a less complex architecture.

Baseline: To predict the RAAW-fused arousal and valence annotations, a competitive base-
line with a variety of feature sets was first established in Stappen et al. [27]. In terms
of the predictive strength of the modalities, the picture is consistent with the results
of the EWE fused annotations: valence is best predicted by text, whereas audio has
a strong predictive power for arousal. Looking more closely at the representations,
the BERT representations combined with the hyperparameters of n = 4, lr = 0.005,
and h = 128 achieve the best results by far with .4613 CCC on the development set
and .5671 CCC on the test set. Visual representations still achieve results of up to
.1637 CCC on test for Xception. Even though the performance of audio is marginally
superior on the development set, the models generalise poorly on the test set, so that
these results are not transferable, and Deep Spectrum just exceeds .1 CCC. This per-
formance gap is analogous to the EWE annotation results. The result is different for
arousal prediction. Here, Deep Spectrum demonstrates the strongest performance in
combination with the hyperparameters n = 2, lr = 0.001, and h = 64: .4831 CCC
on the development and .3386 CCC on the test set. VGGish and eGeMAPS are still
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Table 5.4: Reporting arousal and valence for MuSe-Wilder (using RAAW annotation fusion)
in Concordance Correlation Coefficient (CCC) on the devel(opment) and test partitions.
The feature sets tested are Deep Spectrum, VGGish, and eGeMAPS for audio; Xception,
VGGFace, and FAU for video; and BERT for text. All utilised features are aligned to the
label timestamps by imputing missing values or repeating the word embeddings.

Features
LSTM-RNN Baseline [27] MHAL + LSTM

Valence Arousal Valence Arousal
devel test devel test devel test devel test

Unimodal
Deep Spectrum .1901 .1019 .4841 .3386 .2109 .1217 .4688 .3670
VGGish .1500 .0054 .4027 .2545 .1898 .1111 .4541 .3768
EGEMAPS .1916 .0019 .3877 .2428 .1867 .0827 .4042 .3471
Xception .1872 .1637 .2870 .1793 .1730 .1530 .3622 .2123
VGGFace .1203 .1197 .3201 .2970 .1654 .1291 .3633 .3735
FAU .0682 .1275 .3045 .1165 .0993 .1456 .3166 .2983
BERT .4613 .5671 .2716 .1873 .4660 .6132 .3741 .2374

Multimodal Late Fusion
best A + V .2362 .1220 .4821 .2822 .2193 .1715 .4442 .4242
best A + T .4782 .5950 .4754 .3046 .4677 .6147 .4538 .3713
best V + T .4641 .5874 .3111 .1767 .4647 .6035 .4131 .3138
best V + A + T .4863 .5974 .4929 .3257 .4762 .6150 .4834 .4148

competitive on the development set, but perform slightly worse on the test set with
.2545 CCC and .2428 CCC, respectively. Of the visual representations, VGGFace
shows a strong and balanced performance across both partitions with .3201 CCC and
.2970 CCC on the development and test set, respectively.

Bimodal late fusion produces mixed results with isolated increases in performance.
Multimodal late fusion from the three best performing representations of each modality
(Deep Spectrum, VGGFace, and BERT) leads to improved outcomes for valence by
around .03 to .5974 CCC on the test set. For arousal, the results increase only slightly
on the development set, but are slightly worse than Deep Spectrum.

MHA-LSTM: As seen with MuSe-Wild, the attention-enhanced architecture outperforms
the unimodal baseline on almost every feature set. In line with the baseline results, text
is the best predictor of valence, while the audio representations are most effective in
predicting arousal. For the valence prediction, BERT rose by almost .05 CCC, from
.5671 to .6132 CCC, on the test set using h = 128, one LSTM-RNN, and a MHAL
with four blocks trained with a bs = 512 and a lr = 0.005. The visual representations
show only isolated marginal improvements for valence prediction. For the audio
representations, the generalisation ability of the models increases, hence closing the
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gap between development and test set results for all audio feature sets on both targets.
For example, it almost halved the margin from .14 to .08 CCC and .15 to .08 CCC on
the test set for eGeMAPS on valence and VGGish on arousal respectively. In predicting
arousal, Deep Spectrum gains almost .03 CCC on the test set and remains the best
feature set. VGGish jumps from .2545 to .3768 CCC with hyperparameters of n = 4,
h = 128, at = 2, and training parameters of bs = 512 and lr = 0.005, thus, as with
MuSe-Wild, it shows the best performance for unimodal prediction of arousal on the
test set. For visual representations, FAU in particular greatly increases to .2983 CCC
on the test set, but remains just behind VGGFace (n = 2, h = 64, at = 4, bs = 1024,
and lr = 0.001) with .3735 CCC on the test set, putting the best vision feature only
slightly behind VGGish. Text also improves significantly in predicting arousal on the
development set, but these results can only be partially generalised on the test set.

The multimodal experiments behave almost identically to the baselines with top results
of .6150 CCC on the test set by fusing Deep Spectrum, Xception, and BERT on the
prediction of valence and .4242 CCC on the test set by fusing Deep Spectrum and
VGGFace on the prediction of arousal. In general, the bi- and tri-modality results
only slightly improved compared to the baseline results when predicting valence. For
arousal, the largest gain is achieved by the fusion of VGGFace and BERT. Otherwise,
the results on the development set perform slightly worse than the baseline models,
however, vast improvements are shown on the test set, e. g. , the best A + V increases
from .2822 to .4242, the best A + T from .1767 to .3138, and the best V + A + T from
.3257 to .4148 CCC. The improvement of development and test set results indicates
an increased generalisation robustness of the attention-enhanced architectures.

5.1.1.4 Conclusions

Overall, these findings show that both annotation gold standards of the novel MuSe-CaR
dataset can be effectively predicted through a carefully selected combination of representa-
tions and models (RQ-1a). Besides several extracted representations, a variety of models for
the tasks of MuSe-Wild (EWE) and MuSe-Wilder (RAAW) were developed and successfully
tested. In particular, performance improvements can be attributed to intra modality feature
enhancement through the attention mechanism prior to sequential coding. This finding links
to literature that associates the robustness of representation with attention encoding [91].
In addition, segmentation through fine-tuned window selection strategies has demonstrated
its effectiveness. Both have been united in the proposed MHA-LSTM architecture. Due to
the ongoing development of attention mechanisms, further advances can be expected in the
future.
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Furthermore, it was found that the distributions of the prediction points of the widely
used EWE gold standard differ vastly from the proposed configuration of the RAAW method
(see Figure 5.1). However, the experiments presented could verify that the new proposed
gold standard has no negative impact on predictability by emotion recognition models. For
example, BERT, as the best text representation, achieves .5987 CCC using EWE and .6132
CCC using RAAW. Comparable results can also be seen for arousal prediction. In fact,
it could be shown that the structure, hence the combination of successful modalities or
representation types to prediction targets (arousal, valence), is identical. These findings
indicate that RAAW allows comparable results to EWE, while the influence of the rater lag
is reduced fully automatically.

From a uni-modal perspective (RQ-3), the textual representations proved to be partic-
ularly suitable in this novel setting, especially in the prediction of valence. Audio was
most effective in the prediction of arousal. Regardless of the modelling technique, the
novel contextual Transformer word embeddings (BERT) specifically turned out to be much
more predictive than the classical word embeddings. In the case of audio representations,
data-driven representations (VGGish, Deep Spectrum) demonstrated their suitability, often
outperform hand-crafted representations (eGeMAPS). The vision representation, e. g. , VG-
GFace, also led to promising results in predicting arousal. Looking at these results, it is
worth noting that although MuSe-CaR brings a higher complexity in terms of in-the-wild
characteristics, the results are in the same range as on other, much less complex datasets [12].
However, the performance of vision on valence is below expectations. This can probably be
attributed to the negative influence of the noisy visual traits. To counteract noisy influences,
further investigation is needed, as are improved extraction methods, which can conveniently
be conducted on this novel dataset. Among the fusion techniques, late fusion (MHA-LSTM)
outperformed early fusion (End2You, LSTM-SA, and MHA-LSTM). In the future, improving
intermodality fusion using attention mechanisms in a hybrid integration could be a next step.
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5.1.2 Emotion Classification

5.1.2.1 Characteristics

Multimodal Sentiment Analysis aims to investigate the engagement between emotions (see
Section 2.2) and the domain-specific context (see Section 2.3). The latter is contextually
self-contained; for example, a topic has a clearly defined beginning and endpoint and engages
with a group of heterogeneous topic aspects in between. While the recognition task in the
previous chapter focuses on detecting small emotional changes (sequence of regression
points), the classification task implies two subtasks in this setting:

(a) creating higher-level summary emotion labels from the continuous annotations of a
coherent content segment, and

(b) predicting the artificially created summary emotion labels.

In this light, the emotion component is considered in isolation while using an identical data
basis as in Section 5.2.1 for speaker topic prediction. Therefore, the applied methods are
distinct in their viewpoints and training but share a common ground, and the individual
results can be connected to an EMOTION-SPEAKER TOPIC pair for each segment.

As for emotion recognition, MuSe-CaR serves as the testing bed. However, the focus
is only on segments with an active voice, because it is a well-known fact (see Section 2.3)
that a contextual understanding can better be understood from linguistics, such as sentence
transcripts in the case of videos, than from other modalities. In addition, to avoid highly
fragmented short segments, adjacent segments covering the same target are concatenated
if the gap is smaller than 2 seconds. Therefore, one segment can comprise one or more
sentences, and slightly more data is available, as for the previous task (see Table 5.1). The
data partitioning follows the same logic as before.

5.1.2.1.1 Class Creation: Due to the lack of human labelling of emotions for the speaker-
topic-based segments, a transfer from continuous emotion annotations to discrete summary
emotion classes is needed before models can be trained to predict them automatically. Stappen
et al. present the MuSe-Toolbox [25], which provides multiple options to accomplish this
task.

The following sections summarise one possible naïve method for the subsequent predic-
tion as well as a more complex approach. The first is the base for Multimodal Emotion-Target
Sub-challenge (MuSe-Topic) and the second for Multimodal Sentiment Sub-challenge (MuSe-
Sent) tasks:
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I. MuSe-Topic Naïve Intensity Classes: In [26], Stappen et al. craft classes by averag-
ing the annotations across a segment and transforming the summary score into classes.
This can be interpreted as intensity classes within the emotion distribution. The classes
are calculated by first taking the mean value of the gold standards to aggregate them
to a regression estimate on the temporal axis. As in Section 5.1.2 I., the EWE gold
standard is used for annotation fusion. The regression estimate is transformed into a
class label depending on the class boundaries set. The class boundaries are naïvely
specified based on an equal distribution of the average values in three low-, medium-,
and high-intensity classes. For this, two class thresholds are chosen, leading to a
balanced number of segments that fall into each class (33.3 % each), as depicted in
Table 5.5.

II. MuSe-Sent Learnt Emotion Classes: A major shortcoming of naïve classes is the
loss of information regarding the temporal changes occurring within a segment, as
only the mean value of the annotation segment is used. To address this, Stappen et al.
propose an evolution of MuSe-Topic in [27]. Instead of the emotion classes being
statically selected based on the class distribution, they are dynamically constructed
by extracting time series, hand-crafted representations (see Section 4.3) expressing
temporal changes and forming cluster classes using unsupervised clustering methods.
An in-depth explanation of this concept is given in Section 4.3. By running preliminary
experiments using the MuSe-Toolbox [25], the following final settings are chosen
by monitoring the provided qualitative and quantitative measures (as described in
Section 4.3.2), resulting in five representative classes for each dimension: 1) as time
series representations (median, standard deviation, percentile {10, 90}, relative energy,
relative sum of changes, relative number of peaks, relative longest strike {below,
above} mean, and relative count below mean) for arousal, and the same representations
for valence plus the mean, percentile {5, 25, 33, 66, 75, 95}, and the percentage of
reoccurring data points to all data points. They are calculated relative to the segment
length from the RAAW gold standards of each segment. 2) By using the provided
dimension reduction function, the representations are reduced to five components by a
Principal Component Analysis (PCA). Based on these, the K-means algorithm [149]
is selected for valence and 3) a Gaussian Mixture Model (GMM) clustering [289]
for arousal based on exhaustive evaluation runs by the toolbox. The clustering is
only applied to the training partition to ensure it is applicable to new data from
the same domain. Using the distance to the resulting cluster centres, the segment
representations of the development and test partitions are labelled. The silhouette
coefficients [295] (ranging from -1 to 1) for the arousal and valence dimensions are
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Figure 5.4: MuSe-Sent classes for (a) arousal and (b) valence. The figures show the standard-
ised characteristics of the selected time series representations (“relative” means normalised
by segment length) for each of the five classes. The abbreviations are as following: standard
deviation (std), median, the 90th percentile (q90), percentage of reoccurring data points to all
data points (PreDa), relative energy (relEnergy), relative sum of changes (relSoC), relative
number of peaks (relPeaks), relative count below mean (relCBMe), relative longest strike
below mean (relLSBMe), and relative longest strike above mean (relLSAMe). Figure taken
from Stappen et al. [27].

0.19 and 0.10, respectively. It may be difficult to obtain a notably higher coefficient
given the sensitivity of the measure to varying cluster densities [296], which are
naturally caused by the application of PCA as it structures the data along orthogonal
axes. Hence, the created classes expressing the emotional changes of a segment cannot
simply categorised as low, medium, and high. Instead, the provided visualisations and
statistical measures (correlations, distribution statistics) give guidance for interpretation.
Figure 5.4 shows the most distinctive relative representations for valence (V#) and
arousal (A#). The number (#) is meaningless and just given for structural reasons. A
small amount of corrupted data points are removed, so that the classes cover slightly
fewer segments in the training and development partitions compared to Table 5.5.

5.1.2.1.2 Prediction: As a standard measure of ML classification tasks [19], (macro)
F1-score (F1) (see Section 3.2) is reported and the primary focus of the performance analysis.
For MuSe-Topic, the Unweighted Average Recall (UAR) is further reported as it is also
widely used in speech recognition tasks [8].
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Table 5.5: Distribution of the naïve intensity classes of valence and arousal on the train(ing),
devel(opment), and test set. Note: For technical reasons, some segments had to be excluded
after segmentation from the development set of Arousal. Table adapted from Stappen et al.
[26].

Valence Arousal

train devel test total train devel test total

low 1432 434 384 2250 1433 453 343 2229
medium 1483 486 435 2404 1460 416 432 2308
high 1398 466 441 2305 1420 415 485 2320

∑ 4313 1386 1260 6959 4313 1284 1260 6857

Table 5.6: Distribution of the five valence and arousal classes across train(ing), devel(opment)
and test partitions. Table adapted from Stappen et al. [27].

Valence Arousal

# train devel test total # train devel test total

V0 528 71 89 688 A0 612 249 178 1039
V1 552 159 277 988 A1 534 135 194 863
V2 1178 458 378 2014 A2 312 96 53 461
V3 1112 405 271 1788 A3 1255 388 448 2091
V4 837 242 245 1324 A4 1494 467 387 2348

∑ 4207 1335 1260 6802 ∑ 4042 1335 1260 6802

5.1.2.2 Experimental Setup

While the experiments are conducted from two viewpoints, the experimental settings for both
are described together because of the common focus on the same type of prediction and, thus,
theoretical suitability.

5.1.2.2.1 Feature Sets: Even though a high sampling rate of representations is not neces-
sarily required for the classification task with one prediction per segment, this fine granular
input enables time-sensitive modelling. For the extraction of the audio representations (Deep
Spectrum, eGeMAPS, VGGish), the audio track is converted to mono (16 kHz with 16 bit)
and normalised to -3dB. To calculate the 128 mel frequency bands of Deep Spectrum, the
mel spectrograms are extracted using a Hanning window with 32 ms with an overlap of 16 ms.
The other representations (Xception,VGGFace) are assumed to have one extraction every
250 ms as before. The only exception are the text-based representations (FastText, BERT),
which are imputed and aligned per word. To align the representations meaningfully with
each other and across modalities, the same logic is used in this chapter as is described in
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detail in Section 5.1.1.2. Due to the unimodal use of SenticNet representations, the sampling
rate is the same regardless of the type.

5.1.2.2.2 Architectures: Except for LSTM-RNN (see Paragraph 5.1.1.2.2), three new
architectures are introduced for this task.

LSTM-RNN-based: The architecture and hyperparameter search are almost identical to
the LSTM-RNN emotion recognition models in Paragraph 5.1.1.2.2. The primary
difference is the output of the prediction layer, which, instead of predicting a sequence
of regression points, predicts only one label to classify the entire sequence. For this,
the prediction layer of LSTM-SA is replaced by a global max-pooling layer. The
pooling operation is applied over the concatenated sequence of the top attention layer,
providing the logits of each class prediction. Furthermore, the set of each sequence
fed into the LSTM is padded or cropped to 500 time steps. For the LSTM-RNN
and MHA-LSTM, the sequence of hidden vectors from the final LSTM-RNN layer
here only outputs a single value per prediction target. The range of learning rates is
changed to lr ∈ {0.001,0.005,0.01} based on first experiments. In addition, the CCC
loss function for regression is replaced by a cross-entropy loss function for all models.

Multimodal Transformer (MMT): Another suitable architecture for emotion classification
is the MMT architecture [183]. As explained in Section 3.2.5, the Transformer units
allow for a deep, cross-modal fusion of representations. On similar tasks [297, 183],
such architecture outperformed other advanced network architectures in predicting
emotion classes. Similar to Yao et al. [183], the implementation evaluates a deep
representation fusion method using cross-modal attention heads between bimodal
feature sets (text to audio, text to video, audio to video) which are temporally fused to
a trimodal representation. The chosen configuration utilises five cross-modal attention
heads. The network is optimised using a bs of 16 and an Adam optimiser. To avoid
overfitting, dropout is set on multiple levels: 0.25 dropout on the embedding, 0.1
dropout on each attention, and 0.1 dropout on the ReLU layers. Preliminary results
found a learning rate of 10−3 optimal, leading the network to converge after 20 epochs.

Support Vector Machine (SVM): A Support Vector Machine (SVM) is a supervised ML
algorithm for classification and regression, frequently used as a baseline model for
emotion recognition [8, 84]. For this, the data points are represented in a vector space
in which a hyperplane is projected to separate the binary-labelled data points. By
using quadratic programming solvers, the largest possible margin between points
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of different classes is computationally determined. The calculation of this decision
boundary utilises (non-)linear kernels and transfers the space to higher dimensions until
a separation is feasible. Support vectors then flank the optimal hyperplane in the higher
dimensional space on both sides of the decision boundary. This process is repeated
until an optimal separation is achieved. The method is relatively memory efficient
as the support vectors only require a portion of the training data and is particularly
effective in high-dimensional input data, even if the number of dimensions is higher
than the number of samples. However, the computational and memory requirements
increase rapidly with the amount of data and, hence, the training vectors required.
For computational optimisation and to avoid overfitting, a complexity parameter C
is set. With increasing influences of noise, this parameter is lowered and serves for
regularisation. One-against-one or one-against-all strategies, in which classes are
combined, or several SVMs are trained, make it necessary to use them for multi-class
problems. Since SVMs cannot work with continuous-time feature extractions, these
are condensed by averaging.

A linear SVM is employed for the MuSe-Topic task, optimising C ∈ {10−5, 10−4,
10−3, 10−2, 10−1, 1 } up to 1 000 iterations on the training set and validating the
results on the development set. For the best C value, the model is then retrained on a
concatenated version of the training and development set to measure the performance
on the data points of the test set. This training procedure is used for SVM training
only.

SENtic Sentiment Analysis Learner (SenSA): There are several ways to represent text in
the form of high-contextual representations, for example SenticNet-based Learning
(SNL), as discussed in Sections 2.3 and 3.1.2. However, only SenticNet represents a
natural hierarchy of logical concepts of the real world through the automatic extraction
of subsymbolic terms and their ordering and arrangement. In prior work, Stappen
et al. [56] introduce the method SenSA, which extracts sentics, primary and secondary
mood tags, and semantics from the transcription, enhances them into sentence- or
segment-level representations, and enables the prediction of classes.

In the data cleaning process, stop words, for example, sentence conjunctions, per-
sonal pronouns, and articles, are removed from the text snippets. The system dy-
namically separates the cleaned text into n-grams, applies the SenticNet application
programming interface (versions 5 (SenSA5) and 6 (SenSA6)) to extract n-gram-level
representations and fuses them back together to receive sentence and segment rep-
resentations. The fusion process has to take the different sequence lengths n of the
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n-grams n̄s = [n1, ...,nn] as well as the segment s into account. The resulting sequence
m of concepts c̄s = [c1, ...,cm] is also of varying length and has to be compressed into
a single embedding vector representation hs to incorporate the entire context. In its
simplest form, hs is equal to a concatenated n-hot encoded vector of discrete semantics
and sentic concepts. For continuous-valued extractions of intensities (e. g. , mood tags,
polarity), n and m are step-wise averaged considering the normalised values based
on the respective length. The resulting representations can then be used for emotion
classification by an SVM.

The linear SVMs, as explained above, are trained, tuning the C value from 10−5 to
1 on the development set over up to 10 000 iterations. As before, the configuration
yielding the best results on development is applied to test.

5.1.2.3 Results

First, suitable architectures are described for the naïve intensity classes MuSe-Topic, be-
ginning with the baseline model selection from the earlier publication Stappen et al. [26],
and the challenger text-only SenSA models, whose concepts are explained in Sections 2.3
and 3.1.2, from Stappen et al. [56]. This is followed by the results of the LSTM-RNN models
predicting the learnt emotion classes MuSe-Sent.

5.1.2.3.1 MuSe-Topic: For the classification tasks MuSe-Topic, an overview of the re-
sults is given in Table 5.7. As can be seen, some of the prediction results of the naïvely
created classes fall below the random level of 33 %.

Baselines: Both unimodal baseline approaches achieve the best results on the test set using
vision representations (Xception and VGGFace). The SVM outperforms LSTM-SA,
yielding 37.94% for both F1 and UAR on the test set for valence prediction. Using
the VGGFace representations, a F1 of 42.46 % and an UAR of 43.07 % on the test set
is reached for arousal prediction. None of the models give compelling results when
solely trained on text representations.

Comparing the two multimodal fusion models, LSTM-SA and MMT, the MMT reaches
stronger results. Here, the MMT, with 39.93 % F1 and 40.52 % UAR on the test set,
achieves the best overall results taking FastText, eGeMAPS, and Xception as inputs.
For arousal prediction, the MMT, with the same configuration, demonstrates the best
results among all fusion combinations, but is slightly outperformed by the SVMs
trained with vision representations.
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Table 5.7: Reporting arousal and valence for MuSe-Topic (using EWE annotation fusion) in
Unweighted Average Recall (UAR) and F1 on the devel(opment) and test partitions. Audio
feature sets: LOW-LEVEL DESCRIPTORS (LDD), EGEMAPS (Ge), DEEP SPECTRUM (DS),
and VGGISH (VG); vision features sets: GOCARD (Go), VGGFACE (VF), and XCEPTION

(X); and text feature set FASTTEXT (FT) are fed into the models. Furthermore, high-level
text concepts: sentics (SE), mood tags (MO), and polarity (PO) are evaluated. Furthermore,
all vision features (aV) are utilised by LSTM-SA. The features are aligned to the label
timestamps. The by-chance level is 33 %.

Approach Modality Feature(s)
Valence Arousal

F1 UAR F1 UAR
devel test devel test devel test devel test

Official Baselines [26]
Unimodal

LSTM-SA

A
DS 34.17 34.60 34.07 35.00 38.03 37.54 38.43 36.78
eG 33.26 34.44 32.16 33.94 34.39 33.33 34.44 32.87

V
X 36.21 36.83 35.75 36.61 40.38 35.16 40.51 34.87
aV 35.61 34.92 35.10 34.41 38.11 34.21 38.26 35.39

T FT 38.41 36.19 37.75 36.22 35.15 34.92 35.78 37.10

SVM

A
DS 34.08 34.29 33.21 34.07 41.35 42.30 40.18 40.18
eG 36.33 33.10 34.79 34.13 43.52 34.37 42.27 33.43

V
X 38.28 37.94 37.09 37.94 46.22 41.35 45.25 40.52
VG 37.08 32.94 37.01 32.63 46.44 42.46 45.21 43.07

T FT 37.90 36.43 36.00 35.37 45.17 38.25 44.53 39.67
Multimodal

MMT
A+V+T

FT + eG + X 38.28 39.92 37.62 40.52 41.87 37.30 40.83 37.87
FT + eG + VG 37.38 32.78 38.19 32.53 47.12 41.19 45.55 39.01
FT + eG + AU 36.93 39.92 37.35 39.57 43.15 34.76 41.88 34.87
FT + eG + OP 39.48 38.81 39.17 38.64 38.88 37.70 38.95 38.10

LSTM-SA A+V+T eG + FT + aV 36.06 37.14 35.20 37.14 39.92 35.16 40.44 34.76
Post-Challenge Models [56]

SenSA5 T

SE 35.66 35.16 34.65 35.17 33.56 33.73 34.51 33.69
MO 33.78 37.86 33.53 38.04 36.78 35.79 36.30 33.50
SE + MO 34.38 37.78 34.22 37.89 35.96 35.63 35.49 33.60
SE + MO + PO 34.53 38.41 34.40 38.55 35.51 36.51 35.15 34.54

SenSA6 T

SE 35.51 36.59 34.77 36.72 32.43 35.16 33.45 35.91
MO 38.65 36.83 38.28 37.57 35.66 38.02 35.33 35.86
SE + MO 38.13 38.57 37.89 38.90 36.18 38.02 35.68 35.90
SE + MO + PO 37.68 38.65 37.54 38.88 35.96 38.33 35.50 36.12

SenSA: Combining all the constructed SenticNet representations (sentics, mood tags, po-
larity), the results achieve 38.65 % F1 on the test set predicting valence and 38.22 %
F1 on the test set predicting arousal utilising text-only representations. In terms of
F1, they outperform the text baseline. The concepts from SenticNet-6 show slightly
better results to those from SenticNet-5. By fusing sentics, mood tags, and polarity, the
model exceeds the LSTM-SA and SVM using FastText for valence prediction by an
average of 3 % for UAR and F1. Furthermore, the mood tags representations perform
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Table 5.8: Reporting arousal and valence for MuSe-Sent in F1 score across five classes.
Feature sets tested are DEEP SPECTRUM, VGGISH, and EGEMAPS for audio; XCEPTION,
VGGFACE and FAU for video; and BERT for text. All utilised features are aligned to the
label timestamps by imputing missing values or repeating the word embeddings. Table is
taken from [27]. The by-chance level is 20 %.

LSTM-RNN
Features Valence Arousal

devel test devel test
Audio

DEEP SPECTRUM 30.23 27.26 33.52 33.16
VGGISH 30.76 25.08 36.05 31.66
EGEMAPS 32.93 25.80 36.04 31.97

Video
XCEPTION 30.40 28.74 35.16 31.14
VGGFACE 32.29 28.86 34.57 31.32
FAU 31.37 27.38 35.21 31.43

Text
BERT 32.68 31.90 38.27 30.63

Late Fusion
best A + V 32.96 27.92 37.72 35.12
best A + T 30.15 30.29 37.63 32.87
best V + T 30.17 32.91 37.51 32.82
best V + A + T 30.37 31.01 36.72 33.20

better than the conceptual sentics, with all models benefiting from fusion. Conversely,
in predicting arousal, the text-embedding baseline outperforms them.

In summary, the models emphasise the importance of inter- and intra-modality fusion. In
the unimodal setting, they contradict the common view that valence is more predictable
by textual representations and arousal correlates more strongly with audio representations
(see also Section 5.1.1). The latter can be attributed to the generally low level of the results
caused by the difficulty of the task and the trivial generation of labels. The contextual
high-level SenSA results are only of limited value, although the results for valence are
considerably more plausible. Their usefulness, e. g. , as supplements in fusion with other low-
level representations in a multimodal context, could be given, but remains to be investigated
in more depth.

5.1.2.3.2 MuSe-Sent: The results for predicting the learned class labels (MuSe-Sent) can
be found in Table 5.8. It can be seen that the level of results obtained are relatively higher
than before, compared to the by-chance level of 20 % (5 classes).

Unimodal: With regard to the baseline model, LSTM-RNN, on unimodal representations,
the textual representations for valence and the audio representations for arousal show
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the most compelling results. For valence prediction, the BERT representations score
32.68% F1 on the development set and 31.90% F1 on the test set. This is followed by
the visual representations VGGFace with 28.86% and Xception with 28.74% F1 on
the test set. Leading to the highest F1 for arousal with 33.52% on the development
and 33.16% on test set are the audio-based DEEP SPECTRUM representations, closely
followed by VGGish with 31.66% on the test set.

The best unimodal setups for each prediction target are mapped in the relative confusion
matrices. Figure 5.5 shows that valence class V2 is frequently predicted for data points
from classes V0 and V4, and class V3 is frequently misclassified for data points from
class V1. With arousal, there is some confusion with classes A1 and A2. Classes
A3 and A4 also classify many data points from other classes. A connection with
the particularly salient representations (deviating from the average behaviour) from
Figure 5.4 is not directly evident. One implication of this could be that the time series of
representations are only reflected in the modalities to a limited extent. Without a direct
link, no generalisable patterns for recognition can be obtained. The best performing
hyperparameters in the experiments vary greatly depending on the representation and
target. In general, bidirectional layers and at least two layers have shown to be slightly
advantageous.

Multimodal: The bimodal late fusion performs slightly better on both prediction targets,
but can only occasionally reach new peaks. For example, 32.91% F1 on the test set
shows a marginal improvement of 1 percentage point when VGGFace and BERT are
combined for predicting valence. For arousal prediction, the combination of audio
(VGGish) and video (FAU) achieves slightly improved scores of almost 2 percentage
points to 35.12% F1 on the test set.

5.1.2.4 Conclusions

The main aspect of the evaluation was the nature of the target itself, being transformed from
the time- and value-continuous annotation into a discrete class per segment (RQ-1b). Overall,
for both directions, effective systems could be developed with results above chance-level.
The peak results of 39.92% F1 for valence and 42.26% for arousal at a 33% chance-level
indicates a severe loss of information in the case of the naïvely created classes. A logical
assumption is that this loss is caused by the heavily reduced granularity of the target (discrete
classes instead of continuous points) and the temporal compression (one target instead of
a sequence of targets). The proposed approach of elaborately constructed classes aimed to
mitigate these weaknesses by expanding the granularity in terms of more classes and by
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Figure 5.5: Relative confusion matrices over the 5 (a) arousal and (b) valence classes for
the MuSe-Sent sub-challenge. The LSTM baseline model with hyperparameters of n = 4
(bidirectional), h = 128, and α = 0.001 using the eGeMAPS feature set for arousal, and for
valence, the BERT representations with a unidirectional model setting of n = 2, h = 64 and,
α = 0.01 is used. Figure taken from Stappen et al. [27].

including features that describe the temporal course of an annotation segment. Furthermore,
very little human involvement is necessary since the classes are proposed automatically,
driven by unsupervised machine learning methods. Classes generated this way exhibit
plausible characteristics. However, robust classification proved to be difficult. The best
results showed 32.91% F1 for valence and 35.12% F1 for arousal at a 20 % chance-level. In
terms of absolute F1, this represents a slight improvement over chance level, for example,
15 % instead of 9 % for valence. A robust, categorical representation of a summarised
sequence of emotion targets would be very convenient for human interpretation, and another
reason to build on continuous emotion annotations. Given the consistencies in the findings
across both experiments, further steps are required to refine the procedure, making it more
generally applicable. One idea could be human annotation of both forms to learn a mapping
directly, or cross-corpus class formation on large datasets to find more robust, generalisable
characteristics in this data-driven process. Additionally, further efforts are also necessary to
make data-driven classes more interpretable.

A large set of uni- and multi-modal architectures was proposed (RQ-3). For the naïve
created classes, the SenSA architecture, developed based on knowledge graphs, showed
improvements compared to conventional word embeddings. This may relate to the known
ability of the underlying knowledge-base features to extract high-level emotional and thematic
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concepts from thematically closed segments. The SVM architecture using only vision
representations (VGGFace) demonstrated the best results for arousal with 42.26% F1. This
was only beaten by the very complex MMT achieving 39.92% F1 for valence, but fell slightly
behind on arousal with 41.19% F1. The elaborately constructed classes show peak values
of 31.90% F1 for valence using BERT and 33.16% F1 for arousal using Deep Spectrum on
the test set of the 5-class problem. The multimodal fusion was slightly superior, with peak
values of 32.91% F1 for valence and 35.12% F1 for arousal. Regarding the effectivity of
the feature sets and modalities, the results of the second series of experiments are well in
line with the outcome of the value- and time-continuous prediction in Section 5.1.1. For the
first series, it can be speculated that the isolated superior result of the unimodal SVM was
due to generalisation achieved by chance on the grounds of the less efficient class formation
procedure and closely spaced results.
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Figure 5.6: Density distribution using 35 equal-width bins of the partitions train(ing), (de-
vel)opment, and test for the continuous annotations of MuSe-Trust. The distributions between
the individual partitions are very similar, however, the distribution is skewed towards the
positive end. Figure adapted from Stappen et al. [26].

5.1.3 Trustworthiness Recognition

5.1.3.1 Characteristics

In Stappen et al. [26] a completely novel, continuously annotated dimension, trustworthiness,
was proposed that attempts to capture the subjective feeling about how objective informa-
tion (see Section 2.1) is conveyed and perceived. For this dimension, the data selection
from MuSe-CaR differs modestly from the emotion regression and classification tasks (see
Sections 5.1.1 and 5.1.2) and was captured under the name Multimodal Trustworthiness
Sub-challenge (MuSe-Trust). The non-product segments of a video, previously excluded
to prevent introducing bias on the task targets, are now included. Those elements, such as
an advertisement, might be an essential factor of perceived trustworthiness. The annotation
covers a total of 35 :51 hours of relevant video material (see Table 5.1), is strongly left
skewed as depicted in Figure 5.6, and EWE-fused by the MuSe-Toolbox [25] as before with
MuSe-Wild.

5.1.3.2 Experimental Setup

The below depiction of the experiments is separated into setting up a baseline, as introduced
in Stappen et al. [26], and reporting observations from the deeper exploration of the task, as
described in Stappen et al. [24]. Since there has never before been an attempt to quantify
trustworthiness in a sequential manner alongside a video stream, these in-depth experiments
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cover various aspects of modelling in greater detail. For example, the influence of the
sequence length in data augmentation, the choice of the loss function, and individual network
configurations are all evaluated. Furthermore, arousal and valence annotations alongside
trustworthiness are learnt in a multitask fashion to explore the interaction between the estab-
lished emotion dimensions and trustworthiness at a large scale. The same feature alignment
approach is used as in Section 5.1.1. Like the other regression tasks, the CCC is evaluated
on the development set after each epoch, and after the training, the best configurations are
subsequently evaluated on the test set. The following architectures are used:

Baselines: As in the previous regression chapter (Section 5.1.1), the LSTM-RNN, the
LSTM-SA, and End2You are utilised as baseline models using the same configuration
and hyperparameter range.

Deep Trust Multihead Attention Network (DeepTrust): To show the impact of the vari-
ous experimental aspects, one architecture is put in the centre of the analysis. Stappen
et al. [24] named this architecture DeepTrust when it was first proposed and that
name will be used here as well; however, it is in its core identical to the MHA-LSTM
architecture. It has proven to be very robust and has achieved the best results in the two
previous emotion tasks. Since the hyperparameter space allows endless combinations,
only the most relevant hyperparameters are changed. Step by step evaluations are
performed for the effects of, for instance, augmentation, the number of heads, the
choice of loss functions, the type and number of layers, fusion, and multitask learning
(trustworthiness together with arousal and valence). Thereby, one set of hyperparam-
eters is searched within a specific range to consider cross-interactions, and one set
remains static. The static initial parameters are ws = 200, hs = 100 for augmentation
and n = 64 hidden neurons of the bidirectional LSTM. For each experiment, the hy-
perparameters are optimised: at ∈ {2,4,8} heads, lr ∈ {0.0001,0.001,0.005}, and
bs ∈ {512,1024,2048}. All experiments optimise the network for 100 epochs using
Adam as the optimisation algorithm of choice. The model reduces the learning rate by
0.1 if it reaches a plateau for more than ten epochs, and stops training if no further loss
reduction is reached.

5.1.3.3 Results

First, different experimental settings are evaluated using the DeepTrust architecture. The best
configuration is then compared to the other baseline approaches.
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Table 5.9: Results of unimodal DeepTrust (MuSe-Trust) experiments, reported in Concor-
dance Correlation Coefficient (CCC) on the devel(opment) and test set using feature sets
for text (T): FASTTEXT (FT) and BERT; audio (A): VGGISH and EGEMAPS; vision (V):
VGGFACE and FAU. Table taken from Stappen et al. [24].

Modality Feature sets devel test

T
FASTTEXT .4559 .4782
BERT .5624 .5539
BERT+ FASTTEXT .5648 .5478

A
EGEMAPS .3921 .1220
VGGISH .5376 .4035
VGGISH+ EGEMAPS .4751 .2402

V
FAU .3675 .3623
VGGFACE .4000 .2802
VGGFACE+ FAU .3936 .3298

5.1.3.3.1 Unimodal results: The first experiment evaluates the capabilities of the indi-
vidual audio, text, and video feature sets. Table 5.9 gives an overview of the most effective
representations. In particular, the textual BERT representations using at = 4, bs = 512, and
lr = 0.005 and the deep acoustic VGGish representations (same hyperparameters) stand
out for their strong performance, while the vision representations tend to underperform. In
addition, the extracted FAU (same hyperparameters) score very weakly in predicting trust-
worthiness, whereas the VGGFace using at = 4, bs = 1024, and lr = 0.005 does better on
the development set but generalises poorly to the test set. Early fusion of the representations
within the modality before feeding them into the network yields a slight advantage only
for text (test set). The following experiments use only the most convincing feature set per
modality (BERT, VGGish, and FAU).

5.1.3.3.2 Segmenting: Increasing the amount of data by segmenting and adding slightly
overlapping segments has proven to be an effective technique for improving results [17].
To determine an optimal ratio, the number of sequence steps ws and hop sizes hs is varied.
Table 5.10 illustrates that a higher value of ws, hence a longer context (ws = 750), leads to
more effective training of the task. The experimental results on the overlap hs are rather
ambiguous and produce both better and worse results depending on ws. The absence of
any overlap (ws = hs) yields a better generalisation only for very short ws = 100. A strong
interdependence of both factors seems likely. From ws > 200 onwards, a larger overlap
with increasing sequence length seems useful, from which a sound reference value of
approximately hs = 0.3–0.5 ws can be derived. As the duration of the sequence increases,
both the memory requirements and the training time expand. The maximum supported
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Table 5.10: Results of several augmentation hyperparameter combinations of DeepTrust to
predict MuSe-Trust on the devel(opment) and test set, reported in Concordance Correlation
Coefficient (CCC). Table taken from Stappen et al. [24].

steps BERT VGGISH FAU Ø
ws hs devel test devel test devel test devel test

750 750 .5641 .5540 .4274 .4344 .3775 .3719 .4563 .4534
750 500 .5739 .5747 .5604 .4699 .3671 .3705 .5005 .4717
750 250 .5889 .5693 .5386 .4686 .4305 .4843 .5193 .5074
200 200 .5512 .5245 .5566 .4752 .3614 .2710 .4897 .4236
200 150 .5500 .5533 .5517 .3034 .3558 .3508 .4858 .4025
200 100 .5624 .5539 .5376 .4035 .3675 .3623 .4892 .4399
200 50 .5282 .5160 .5440 .4081 .3319 .1820 .4680 .3687
100 100 .5167 .5128 .5064 .4445 .3711 .3709 .4647 .4427
100 50 .5312 .5068 .5369 .2918 .3816 .3294 .4832 .3760
100 25 .5233 .5216 .5264 .2517 .3642 .2911 .4713 .3548

sequence length on the 32 GB GPU machine is ws = 750, which means performance has to
be sacrificed for usability.

5.1.3.3.3 Heads: Table 5.11 shows that the number of heads relates to the modality
or feature set dimension size. Four heads achieve the best results for text (BERT: 768
dimensions), .5539 CCC; 16 heads for audio (VGGish: 512 dimensions), .4592 CCC; and
two heads for vision (FAU: 28 dimensions), .3774 CCC (all on the test set). Even on average,
no consistent pattern emerges. Two, four, and sixteen heads produce comparably good on
the development set, with a slight advantage for more heads. However, as with the sequence
length, more heads require considerably more computing resources.

Table 5.11: Evaluation of the number of heads using DeepTrust on the devel(opment) and
test set reported in Concordance Correlation Coefficient (CCC). Table taken from Stappen
et al. [24].

heads BERT VGGISH FAU Ø
devel test devel test devel test devel test

2 .5698 .4745 .5375 .4368 .3561 .3774 .4878 .4296
4 .5624 .5539 .5376 .4035 .3675 .3591 .4892 .4388
8 .5539 .5454 .4035 .2671 .3623 .3280 .4399 .3802

16 .5693 .5112 .5619 .4592 .3548 .3352 .4953 .4352

5.1.3.3.4 Loss: To fairly evaluate the best loss function (the loss and metric of the previ-
ous experiments was CCC), the Pearson Correlation Coefficient (PCC) and the Root Mean
Square Error (RMSE) are also reported in Table 5.12. When BERT and VGGish represen-
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tations are used, both correlation-based metrics (CCC and PCC) show better results with
the CCC than with the L1 [193] and Mean Square Error (MSE) loss. However, the VGGish
representations show a contrary picture, with the RMSE leading to particularly compelling
results.

Table 5.12: Evaluating CCC, L1, and MSE loss functions of DeepTrust and reporting
Concordance Correlation Coefficient (CCC), Pearson Correlation Coefficient (PCC), and
Root Mean Square Error (RMSE) as metrics on the devel(opment) and test set. Table taken
from Stappen et al. [24].

loss metric BERT VGGISH FAU Ø
devel test devel test devel test devel test

C
C

C

CCC .5624 .5539 .5376 .4035 .3675 .3623 .4892 .4399
PCC .5684 .5998 .5384 .4421 .3770 .4301 .4946 .4907

RMSE .3652 .3485 .3867 .4199 .4693 .4780 .4071 .4155

L
1

CCC .5076 .5211 .3650 .2408 .3678 .3407 .4135 .3675
PCC .5432 .5712 .3877 .3270 .3724 .3728 .4344 .4237

RMSE .3595 .3409 .4031 .3978 .4350 .3690 .3992 .3692

M
SE

CCC .5215 .5433 .3932 .4094 .3537 .3243 .4228 .4257
PCC .5455 .5570 .3932 .410 .3584 .3498 .4324 .4392

RMSE .3584 .3470 .3932 .4160 .4407 .3796 .3974 .3809

5.1.3.3.5 Model: The performance of a neural network is strongly influenced by the
depth (number of layers) and width of the layers. Table 5.13 shows the results of experiments
with different configurations of the two main mechanisms (LSTM-RNN and MHAL). Overall,
an architecture combining an MHAL and a bidirectional LSTM seems to lead to solid results.
For BERT, this can be further improved with a second MHAL.

Table 5.13: Experiments with different DeepTrust model configuration. Results of MuSe-
Trust reporting Concordance Correlation Coefficient (CCC) on the devel(opment) and test
set. Table taken from Stappen et al. [24].

network BERT VGGISH FAU Ø
devel test devel test devel test devel test

MHAL .3117 .3248 .4230 .3150 .3677 .3351 .3675 .3250
LSTM .5165 .5170 .5441 .3771 .3270 .2513 .4625 .3818
MHAL+LSTM .5423 .5526 .5368 .2248 .3609 .3047 .4800 .3607
MHAL+2 Bi-LSTM .5456 .5504 .5259 .3688 .3642 .2973 .4786 .4055
MHAL+Bi-LSTM .5624 .5539 .5376 .4035 .3675 .3623 .4892 .4399
2 MHAL+Bi-LSTM .5548 .5762 .4918 .3818 .3645 .3447 .4704 .4342
2 MHAL+2 Bi-LSTM .5410 .5344 .4942 .3233 .3553 .3523 .4635 .4033
3 MHAL+3 Bi-LSTM .5437 .5089 .4977 .3376 .3455 .3104 .4623 .3856



Page 111 of 214 111

5.1.3.3.6 Multimodal fusion: Modality fusion displays a mixed picture in terms of
performance (see Table 5.15). Having a positive effect on predicting the development set
in almost all combinations, it generalises poorly for some models (see the fusion of BERT
and VGGish). Others, such as the fusion of text and image representations, show improved
results on the test set and outperform (.5880 CCC) all others, including all unimodal models.

5.1.3.3.7 Multitask learning: Besides merging multiple input representations, one can
also simultaneously predict multiple outputs (targets) to assess whether a jointly learned
representation enhances the ability to predict a single task. Multitask training, in which the
model simultaneously learns to predict arousal, valence, and trustworthiness, outperforms the
baseline models (see Table 5.14) by 0.2 on the development and almost 0.15 on the test set in
terms of CCC. This shows that trustworthiness benefits from a jointly learned representation
that is equally compelling for arousal and valence. This becomes even more noticeable when
the importance of the loss of trustworthiness is increased (II.), and the other two modes are
assigned a weaker learning signal.

Table 5.14: Evaluating multitask learning on trustworthiness (T), arousal (A), and valence
(V) of MuSe-Trust task using the DeepTrust and reporting results on devel(opment) and test
set in Concordance Correlation Coefficient (CCC). Configurations: (I.) equal loss weight of
0.33 (II.) 0.5 x trustworthiness, 0.25 x {arousal,valence}. Table adapted from Stappen et al.
[24].

Configuration T A V
Model Features devel test devel devel

End2You-Multitask [26] FASTTEXT+ VGGFACE+ A 3264 .4119 – –
MHAL+LSTM-Multi (I.) BERT+ VGGISH+ FAU .5428 .5456 .4102 .4442
MHAL+LSTM-Multi (II.) BERT+ VGGISH+ FAU .5497 .5518 .4132 .4215

5.1.3.3.8 Best model: An overview of all results are given in Table 5.15. The baselines
were drastically improved upon with an in-depth hyperparameter search of DeepTrust.
The unimodal LSTM-SA falls far behind, with the best result achieved using the textual
representations, leading to .2549 CCC on the test set. The multimodal version of the same
architecture results in further deterioration of the test set results with a CCC of .2054. Here,
the end-to-end baseline system using the raw audio signals alongside FastText and VGGish
yield the best results with .4128 CCC on test. This setting is identical to the prediction of
MuSe-Wild (cf. Table 5.2). However, all are outperformed by a large margin by the unimodal
(as above), including at least one MHAL, DeepTrust architecture. Comparing those models
with the baselines while using the same representations (eGeMAPS and FastText), one
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Table 5.15: Reporting final results for the prediction of MuSe-Trust using the developed
DeepTrust and the baseline models in Concordance Correlation Coefficient (CCC) on the
devel(opment) and test partitions. Audio feature sets: LOW-LEVEL DESCRIPTORS (LDD),
EGEMAPS (Ge), DEEP SPECTRUM (DS), and VGGISH (VG); Vision features sets: GO-
CARD (Go), VGGFACE (VF), and XCEPTION (X); and Text feature sets: FASTTEXT (FT)
and BERT (BT) are fed into the models. Furthermore, the raw audio signal (RA) is used by
End2You. The features are aligned to the label timestamps.

Approach Modality Feature(s) Trustworthiness
devel test

Unimodal Baselines

LSTM-SA [26]
A

LLD .2560 .1343
DS .0875 .0874
Ge .1576 .1385

V X .1167 .1378
T FT .2278 .2549

Multimodal Baselines

LSTM-SA [26]
A+T Ge + FT .2296 .2054

T+A+V FT + Ge + aV .1245 .1695
End2You [26] T+A+V FT + VG + RA .3198 .4128

MultiFusion [263] T+A+V FASTTEXT+ DS + 2D .3426 .3259
Post-Challenge: Best DeepTrust [24]

early fusion
best V + A + T BT + VGG + AU .6241 .5073
2xT + 2xA + V BT + FT + VGG + eG + AU .5445 .4998

late fusion
best V + A + T BT + VGG + AU .6075 .5796
2xT + 2xA + V BT + FT + VGG + eG + AU .6507 .6105

notices a considerable improvement (e. g. , FastText doubles the result on test), which can
therefore be attributed to the architecture as a whole. The best versions use late fusion. This
increases results by almost 100 % to .6507 CCC on the development and by more than 50 %
to .6105 CCC on the test set.

5.1.3.4 Conclusions

In this section, the experiments demonstrated that the novel dimension trustworthiness can be
predicted and opened the door to a new way to automatically understand the trust mechanism
in online videos (RQ-1c). In doing so, the baseline models achieved results up to .4128 CCC
on the test set, which were gradually improved with careful tuning. On a DL architectural
level, the integrated modules (loss, heads in the attention layer) of the proposed DeepTrust
architecture exhibit similar improvements as for emotions, suggesting that this form of
temporal modelling might helpful for other, related sequence-to-sequence tasks. Furthermore,
longer sequences in the segmentation increased the results even more than previously with
arousal and valence emotions. This may indicate that trustworthiness fluctuates less than
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emotions, or that a longer temporal context is more relevant to estimate credibility later in
the course. This rigorous evaluation provides valuable insights for future model design for
trustworthiness prediction.

The evaluation has led to numerous findings regarding the effectiveness of the individ-
ual modalities (RQ-3). Text achieves the strongest prediction performance, regardless of
the representation. Thus, content seems to be the most important indicator of perceived
trustworthiness. This is followed by audio representations, suggesting that the acoustic
environment and how the content is communicated (e. g. , prosodically) are of value. The
feature sets based on facial expressions (video), which are known to be another non-verbal
communication layer, performed the worst but still achieved solid results. The best result
was equal to arousal and valence prediction achieved by the late-fusion with trimodal fusion.
By extending this with an additional text and audio representation each, hence unimodal and
multimodal fusion, this result increased even further to .6105 CCC on the test set. Overall,
the results suggest that even for trustworthiness, the multimodal perspective has advantages.

One phenomenon that should be investigated further is the high level of trustworthiness
that appeared in MuSe-CaR (see Figure 5.6). This could be caused by selection bias due to
the data selection of popular videos with mainly semi-professional actors, the domain, or the
YouTube platform, which may not reflect the general collection of videos available on the
internet. More data sets with such annotations are needed to be able to more precisely assess
the applicability and the full potential of the new dimension.
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5.1.4 Video Popularity

The previous two chapters have explored the influencing factors in modelling the subjective
dimensions, namely arousal, valence, and trustworthiness, to achieve accurate prediction
results. The following chapter shows that these subjective dimensions can estimate how
popular a video will become. This research direction is inspired by the high relevance
of video portals for collecting videos, in this case, review videos from YouTube, which
are particularly suited for training MSA systems. Improving recommendation engines for
platforms like YouTube is seen as a potential application of such systems, as discussed in
Section 2.1.

5.1.4.1 Characteristics

Many methods have been developed to predict user engagement indicators. It is known that
portraying certain emotion patterns by the actor, for instance, high fluctuation in arousal
and trustworthy content, improves video attractiveness. Stappen et al. [224] are the first to
deeply investigate the relationship between YouTube video popularity and trustworthiness
time series, hand-crafted representations and predict cross-modal user popularity indicators
as a regression task. Compared to previous research (see Section 2.1), both tasks are purely
based on feature representations extracted from the subjective emotion annotations without
using audio, text, or video modalities. The MuSe-CaR dataset (see Section 4.1), with its
600 hours of continuously annotated emotions and collected metadata, is the optimal testing
bed for such a study. To also include the viewers’ opinions expressed in comments and to
combine video and text modalities in the empirical investigation, it is necessary to extend the
MuSe-CaR collection, as described in Section 5.1.4.3.

With the linkage of the time series emotion representations with various user engagement
indicators, including views, like/dislike ratio, and the sentiment of comments, this section
aims to:

(I) identify interpretable patterns that correlate to user engagement and determine
positive and negative effects of the individual representations, and

(II) estimate the value of user engagement indicators by predicting them with an inter-
pretable model.

5.1.4.2 Experimental Setup

As can be seen from Figure 5.7, the proposed approach aims to reveal relationships between
emotions (arousal, valence, trustworthiness), user-engagement-related metadata, and user
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Figure 5.7: For the proposed approach to examine relationships and estimate the engagement,
three core components are necessary: a) representations derived from continuous emotion and
trustworthiness (purple), b) (semi-)automatic annotations of YouTube comments regarding
the sentiment (blue), and c) the collected user engagement data (orange). Figure taken from
Stappen et al. [224].

comments, as well as to predict these engagement indicators from emotion representations.
As a starting point, predictive representations from the EWE fused gold standard annotation
(see Sections 4.3 and 5.1.1) in purple are extracted using the procedures described in
Section 3.1. Furthermore, the MuSe-CaR dataset needs to be extended (see Section 5.1.4.3)
to incorporate the user engagement data (yellow) and the comments of each video (blue).
To enable a comparison of the representations with the comments originally represented
in unstructured textual form, it is necessary to transform them into structured data. The
target structure first captures the sentiment of the comments, either positive, neutral, or
negative, which can then be summarised. This is achieved by manually labelling some of the
comments and automating the process of labelling for the remaining ones using a developed
Transformer sentiment classifier (see Section 3.2.5). Finally, all three streams are brought
together to conduct the defined experiments.

Support Vector Regressor (SVR): To predict the engagement regressors, an SVR is used.
This is the regression version of an SVM as explained in Paragraph 5.1.2.2.2 and used
in Paragraph 5.1.2.3.1. The SVR employs a linear kernel for interpretability. The ex-
periments build upon the sensible crafted MuSe-Wild data partition (see Section 5.1.1),
guaranteeing speaker-independence among other splitting criteria. The emotional input
representations are standardised, but the targets are left in their original form to allow
the interpretation of the measured Mean Absolute Error (MAE).
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As before in Paragraph 5.1.2.2.2, the training procedure for each input-target combina-
tion has two steps: first, hyperparameter optimisation is performed for the C value ∈
{10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1 } for up to 10 000 iterations, scoring on
the development set. Second, with the best C value identified in step one, the model is
retrained from scratch using a concatenated training and development set and scored
on the hold-out test set.

Feature selection: Selection is done semi-automatically (cross-task) and automatically
(task-specific), and combinations of representations that predict user engagement
indicators are automatically identified.

For semi-automatic selection, correlations between the feature and the target variables
are applied. These correlations are independent of the predictive target (selected
across tasks). Only representations whose mean across all prediction tasks is between
−0.2 > rmean >+0.2 (minimum low positive/negative correlation) are selected.

Automatic selection is done by a brute-force methodology. This probes through all
combinations of representations with 5 < k < kmax−1 using a statistical, univariate
regression test ( f ) whose linear F-test estimate is converted to a p-value. The test is used
as a scoring function in which all input representations are evaluated task-specifically
in various combinations:

score( f ,y) =
Xki − X̄ki · (y− ȳ)

σXki
·σy

, (5.1)

where ki represents the index of the feature.

The representations with the highest k number are determined based on the p-value.

5.1.4.3 Data

The MuSe-CaR dataset is extended in two directions:

1. Video Comments

a. Collection: The functionality of the YouTube crawler is broadened to be able
to also collect YouTube comments based on the pre-collected video identifier.
The selection was limited exclusively to parent comments while ignoring sub-
comments. In total, 79 000 comments are retrieved. The number of likes and
dislikes of these comments were also harvested. These are designed to signify
the supposed agreement (“likes”) or disagreement (“dislikes”) of other users with
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the opinion expressed. By random sampling, 1 100 comments are chosen for
human labelling. These comments allow quantifying the success of the automatic
labelling model, as explained in the next section. Three Amazon Turk workers
independently categorised the comments as positive, neutral, negative, and not
applicable, reaching an average agreement of 0.47 inter-rater joint probability. A
single ground truth was established by majority voting; less than a tenth of the
comments were removed because no majority could be reached.

b. Sentiment extraction: To maximise the study ground of the cross-modal study,
data collection must go beyond hand-categorised comments; hence, a system is
developed that accurately and automatically assigns a sentiment label to every
comment collected. To date, context-learning language Transformer networks
(see Section 3.1.2) provide the best results in classifying text but require a large
amount of data to produce robust results. Since sufficiently large datasets of
YouTube comments are not available, multiple datasets from various domains
are selected, modified, and merged to generally pretrain the system: a) 70 000
text snippets equally positive and negative from the Sentiment140 dataset [298],
b) a mix of all sentiments consisting of more than 14 000 opinions of the US
Airline Sentiment dataset [299] and c) the datasets utilised from 2013 to 2017
in the Semantic Evaluation challenge, a series of challenges for computationally
classifying text into sentiments including but not limited to the domains of Twitter,
SMS, and sarcasm [300] (more than 75 000 texts). The combined dataset has
almost 150 k text snippets (60 k positive, 32 k neutral, and 56 k negative). After
training with these data, the model is fine-tuned on the Amazon Turk-labelled
MuSe-CaR sample set to reflect the writing styles and expressed opinions in the
domain more closely.

As a DL architecture, A Lite BERT for Self-Supervised Learning of Language
Representations (ALBERT) (see Section 3.1.2) is chosen (see further explanation
in Section 2.2 and Section 5.2.2). For all experiments, the system operates on
half-precision numbers (FP16), limiting the sequence length to 300, with shorter
sequences padded and longer ones truncated, and the number of samples for
each bs is set to 12 due to GPU memory limitations (32 GB). Data cleansing is
applied to all texts, removing words starting with a “#”, “@”, or “http” as well as
transforming emoticons to emoticon names. For pretraining, the data is stratified
based on the class distribution and partitioned across training, development, and
test sets (80-10-10). For both settings, the class weight is additionally allocated
to each data point to mitigate the detrimental effects of class imbalance. The
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Table 5.16: Relative sentiment distribution of the YouTube comments predicted by the
developed sentiment labelling classifier along with examples. # indicates number. Table
taken from Stappen et al. [224].

sentiment # comments predicted [%] example
positive 26 032 33 “the metaphors are just flying like the

raindrops in this video.” #47620
neutral 28 518 36 “Are engines for F30 made in Ger-

many?” #4
negative 24 494 31 “Poor review unfortunately, the mi-

crophone quality was very muffled...”
#31

network is optimised using an Adam optimiser converged after three epochs using
a lr of 10−5 and a warm-up ratio of 0.06 with an ε = 10−8, and gradient clipping
is applied at a value of 1.0 to avoid exploding gradients. The fully trained model
yields an F1 of 81.13 % on development and 78.09 % on the test set. Further,
when fine-tuned for one epoch with a reduced learning rate of 10−6 using the
crawled YouTube comments, the model achieves 75.41 % F1 on the test set of the
YouTube comment dataset. Table 5.16 illustrates the relative distribution across
all classes and examples using this classifier to label the remaining, not manually
labelled snippets. The distribution is quite balanced, with slightly more neutral
predicted snippets.

2. Video popularity indicators: The video identifiers from the first crawl (see Sec-
tion 4.1) also enable collecting additional information from each video. The num-
ber of views (Vp/d), likes (Lp/d), dislikes (Dp/d), comments (Cp/d), and likes of
comments (LCp/d) are collected from the videos, where p/d indicates that each
indicator is calculated on a per-day basis, given the crawling and the individual
video upload date. Averaged over all videos, the statistical distributions are as
follows (µ mean, σ standard deviation): Vp/d: µ = 863.88, σ = 2048.43; Lp/d:
µ = 9.73, σ = 28.75, Dp/d: µ = 0.4125, σ = 1.11; Cp/d: µ = 0.91,σ = 3.00;
and LCp/d: µ = 5.28, σ = 16.84.

5.1.4.4 Results

5.1.4.4.1 Interpretable patterns: First, the correlations within the user engagement
indicators themselves are examined. As shown in Figure 5.8, the four indicators (Vp/d,
Lp/d, Dp/d, and Cp/d) are correlated. Also correlations are not necessarily transitive in
the Euclidean plan, it can be an indicator that a correlation to any of these variables might
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Figure 5.8: Pearson correlation matrix of indicators. All results are significant at a 0.01 level.
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imply a correlation to the others. It is also evident that individual scores cannot represent
complex interactions. For example, Lp/d and Dp/d have a complementary instead of a
contrary relationship (if one increases, the other increases), which is relativised, if one looks
at the ratios (pos.-neg. ratio vs pos. ratio, neg. ratio). Therefore, observing the indicators
needs to be considered in isolation, as otherwise, it can easily lead to a wrong conclusion.

In the following, the correlation results for each emotional dimension are discussed
individually based on the obtained Pearson correlation coefficient Figure 5.9:

Valence: Almost all of the conventional distribution statistics extracted from the valence
gold-standard tend to have a very weak linear correlation with the engagement indi-
cators, typically with r values slightly below .2. Notable exceptions are that higher
values around the middle of the distribution (kurt – r =−.313) result in more likes per
comment. A reduction in the standard deviation (r =−.276) causes a shift towards
more positive comments. Meanwhile, the more complex representations reveal strong
positive correlations for absE e. g. , rV p/d = .467,rLp/d = .422,rdislikes = .355,rCp/d =

.350, followed by the peaks, CBMe and LSBMe, suggesting that user engagement
increases with the value of this feature. In contrast, MACh and the SaEn are negatively
correlated, so as the complexity of the valence gold-standard within a video increases,
the number of user interactions with the video decreases.

Arousal: As can be seen from Figure 5.8, there are various correlations among the arousal
representations that differ in intensity. For example, Vp/d, Lp/d, Cp/d and CLp/d
decrease slightly (e. g. , r(vp/d ,std)=−.293,r(Vp/d ,q95)=−.212) with increasing standard
deviation and the 95% quantile. This effect is coherently mirrored to the opposite



Page 120 of 214 Experiments and Evaluation

st
d

q_
0.

05
q_

0.
25

m
ed

ia
n

q_
0.

75
q_

0.
95

ab
sE

aS
oC

M
aC

h
M

C
h

M
sd

C
C

rM
pe

ak
s

sk
ew

ne
ss

ku
rto

si
s

LS
B

M
e

LS
A

M
e

C
B

M
e

Fi
LM

a
Fi

LM
i

La
LM

a
La

LM
i

PR
eD

a
S

aE
n

views pd
likes pd
dislikes pd
 - like dislike ratio
comments pd
 - positive pd
 - positive ratio
 - neutral pd
 - neutral ratio
 - negative pd
 - negative ratio
 - pos.-neg. ratio
likes of comments pd
 - positive com. pd
 - positive com. ratio
 - neutral com. pd
 - neutral com. ratio
 - negative com. pd
 - negative com. ratio
like-comment ratio
 - positive lc. ratio
 - negative lc. ratio
mean

Arousal

st
d

q_
0.

05
q_

0.
25

m
ed

ia
n

q_
0.

75
q_

0.
95

ab
sE

aS
oC

M
aC

h
M

C
h

M
sd

C
C

rM
pe

ak
s

sk
ew

ne
ss

ku
rto

si
s

LS
B

M
e

LS
A

M
e

C
B

M
e

Fi
LM

a
Fi

LM
i

La
LM

a
La

LM
i

P
R

eD
a

S
aE

n

Valence

st
d

q_
0.

05
q_

0.
25

m
ed

ia
n

q_
0.

75
q_

0.
95

ab
sE

aS
oC

M
aC

h
M

C
h

M
sd

C
C

rM
pe

ak
s

sk
ew

ne
ss

ku
rt

os
is

LS
B

M
e

LS
A

M
e

C
B

M
e

Fi
LM

a
Fi

LM
i

La
LM

a
La

LM
i

PR
eD

a
S

aE
n

Trustworthiness

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Figure 5.9: Pearson correlation matrix of user engagement indicators and the statistics/
representations extracted from each dimension. The latter are standard deviation (std),
quantile (qx), absolute Energy (absE), Mean relative Absolute Change (MACh), Mean
Change (MCh), Mean value of a central approximation of the Second Derivatives (MSDC),
number of Crossings of a point (CrM) m, peaks, dynamic sample skewness (skew), Kurtosis
(kurt), Last Strike Above the Mean (LSAMe), Last Strike Below the Mean (LSBMe), Count
Below Mean (CBMe), Relative Sum Of Changes (ASOC), first and last location of the
minimum and maximum (FLMi, LLMi, FLMa, FLMa), Percentage of Reoccurring Data
points of non-unique single points (PreDa), and Sample Entropy (SaEn). Representations in
blue are utilised as cross-task, semi-automatic representations for user engagement prediction.

quantile, including the comment-like ratio (clr) (e. g. , r(Vp/d ,q.05) = 0.231,r(clr,q.05) =

−.248).

Overall, peaks and CBM show the strongest positive correlations, for example, r(Vp/d ,peaks)=

.440,r(Lp/d ,CBMe) = .456 and rCp/d ,peaks = .409. Furthermore, the share of neutral com-
ments changes much less than the share of positive and negative comments, as these
representations trend upwards. Also, CrM, aSoc, absE and PreDa significantly corre-
late to the user engagement criteria. No conclusion can be drawn with regard to the
ratios (e. g. , like-dislike and positive-negative comments), as none of the correlations
to any feature is sufficiently significant.

Trustworthiness: The skew of the distribution of the trustworthiness gold-standard appears
to be of inherent importance. This is reflected in two feature categories: On the one
hand, the skew itself, which shows a significant negative correlation to most indicators
over r <−.3 (interpretation: negative skew equals to a shift of the distribution to the
right (left skewed) leads to a stronger, positive effect). However, on the other hand, this
pattern is also recognisable in the quantiles, which correlate positively with decreasing
relevance, for example r(views,q.05) = .356,r(likes,q.75) = .175. In this context, the level of
the trustworthiness increases with decreasing standard deviation increases, showing that
a strongly concentrated, left skew is beneficial (e. g. , r(views,std) =−.304,r(likes,std) =

−.287,andrdislikes,std =−.274). In addition, a number of other representations show
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clear correlations, such as absE and the number of peaks. Regarding the ratios, no
conclusion could be drawn due to the lack of significance.

Discussion: In the previous sections, a variety of correlations between emotion signal
statistics (including trust) and user engagement were shown. Representations of
arousal and trustworthiness exhibited distinct patterns. A less broadly distributed
level of arousal (higher low and lower high quantiles) and an overall high level of
trustworthiness showed more user interaction with the video. In contrast to the findings
from [116], valence appears to have less apparent linear correlations in the analysis.

The number of peaks is defined (according to the parameter set: ten consecutive as-
cending followed by ten descending time steps) as the strongest correlated and broadly
applicable indicator. Likewise, the signal-energy related feature for trustworthiness
and valence have proven to be helpful. Regardless of the representations, the number
of negative comments tend to be stronger correlated, followed by likes and positive
comments, often showing weak to moderate correlations.

Even though these results show many significant correlations, they are based exclu-
sively on simple correlation analyses. The real impact and predictive strength for the
prediction are therefore still to be established. Similarly, non-linear correlations, even
spanning several representations, may exist.

5.1.4.4.2 Estimation results: All four prediction tasks are presented in Table 5.17 and
addressed in the following paragraphs. As explained in Section 3.2.1, the MAE allows
rendering the results under consideration of the underlying distribution of individual target
variables (cf. Section 5.1.4.3). Each SVR version is trained with all semi-automatic and
automatically selected representations. The semi-automatically chosen representations of
each dimension are highlighted in blue in Figure 5.9 and kept identical across targets.

On average, the fewest number of representations were selected by the automatic process
for trustworthiness (6.0), followed by arousal (9.3) and valence (9.5). Broken down by
targets, these are 7.6 Vp/d, 23.3 Cp/d, 29.3 Lp/d, and 20.1 LCp/d.

A comparison of the feature selection per method is provided for CLp/d in Figure 5.10.
It depicts the relevance of each feature for the prediction by the corresponding weight of
the SVM. In addition, the p-values of the automatic (univariate) selection are displayed,
which are almost equivalent to the auto-selection. This also holds for the hand-selected
representations in this example, with automatic representations slightly outperforming all
others (cf. Table 5.17), however, indicating sensitivity to the inclusion and exclusion of
representations.
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Arousal Valence Trustworthiness

Univariate score
SVM selected
SVM standard
SVM auto. k=22

Figure 5.10: Comparing different feature selection methods based on the SVM weights of
arousal, valence, and trustworthiness representations. It shows the p-values of all, manually
selected (24), and automatically selected k = 22 representations. For the sake of clarity, the
p-values of the automatic selection are scaled by applying a base 10 logarithm and dividing
the result by 10 (−Log(pvalue)/10).

Views per day: Representations from all gold-standards show potential to predict Vp/d.
When valence and trustworthiness representations are fused, the results improve. When
arousal is added to them, the result decreases slightly. Without any feature selection,
trustworthiness is the strongest. However, the results deteriorate if only individual
representations are selected, suggesting that only a broad range of representations
allows robust prediction without causing generalisation problems. When considering
the feature selection for the other uni-modal results, the semi-automatic, cross-task
version clearly increases these to 198.5 and 184.8 MAE respectively. With automatic
feature selection, the result for valence can be increased even further to 169.5 MAE.
Selecting representations from the fused modalities, however, does not seem to be
clearly advantageous.

Likes per day: Comparable to Vp/d, the use of all unimodal arousal and valence representa-
tions appears to be more sensitive than their fusion. This only seems worthwhile with
the cross-task selection method, which improves all results except for tri-modal fusion.
With the automatic selection approach, the results in the single and bi-gold-standard
models reach their peak, with valence having the most robust prediction performance
with 1.23 MAE Vp/d. Only the tri-modal fusion seems to make sense with the cross-
task selection approach. The tri-modal fusion slightly degrades the selection methods.
For the prediction of Lp/d, trustworthiness exhibits weaker performance than the other
feature types on the test set while being superior on the development set. Although
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Table 5.17: Prediction of views, likes, comments, and likes of comments utilising extracted
and selected representations from A(rousal), V(alence), and T(rustworthiness) annotations.
The C parameter of the SVR is specified, which is tuned from 0.00001 to 1. Using the best
M mean absolute error on the devel(opment) set the best C is selected for the prediction on
the test set. (%) indicates the relative change of the automatic (auto.) and semi-automatically
selected (sel.) in % to the unchanged representations, while “+” indicates an improvement,
hence a decrease of the Mean Absolute Error (MAE) compared to the original feature sets.

Type

Views Likes Comments Likes of Comments
devel test devel test devel test devel test

all sel. auto. all sel. auto. all sel. auto. all sel. auto. all sel. auto. all sel. auto. all sel. auto. all sel. auto.
MAE rel.% rel.% MAE rel.% rel.% MAE rel.% rel.% MAE rel.% rel.% MAE rel.% rel.% MAE rel.% rel.% MAE rel.% rel.% MAE rel.% rel.%

A 231.8 +6.8 +5.0 220.3 +9.9 +3.1 2.30 -0.3 +2.6 1.55 +5.9 +3.0 .288 -0.1 +3.7 .154 +2.5 +0.6 1.19 +5.7 +5.9 .50 -19.1 -22.7
V 253.1 +8.7 +7.2 223.8 +17.4 +24.3 2.29 +0.6 +1.0 1.61 +17.6 +24.0 .288 +3.1 +3.9 .154 +5.1 +2.4 1.17 -1.4 +3.6 .51 -2.8 -18.4
T 237.4 +11.8 +16.3 207.9 -5.2 -9.7 2.21 +5.3 +14.4 1.92 +13.3 +3.6 .262 +5.8 +6.4 .225 +2.1 -5.3 1.11 -0.1 +9.5 .75 +8.8 +6.7

A+V 237.6 -1.0 +2.1 210.7 +4.1 +18.3 2.27 -11.4 +0.3 1.79 +24.2 -0.7 .277 -4.3 +3.4 .161 +9.9 +0.1 1.16 +0.1 +2.0 .54 +16.8 -27.3
A+T 240.3 +9.2 +15.7 207.9 -6.7 -3.9 2.26 +4.8 +10.6 2.02 +11.8 +10.3 .268 +1.6 +7.2 .182 -34.9 -1.1 1.11 -0.2 +3.7 .59 -17.9 -14.7
V+T 249.1 +15.5 +20.0 205.8 -3.1 -2.6 2.07 -11.8 -0.2 1.99 +17.2 +0.1 .262 -2.7 +5.5 .188 +10.9 -24.7 1.04 -6.2 +0.3 .78 +11.4 -0.1

A+V+T 228.9 -1.2 +8.7 205.9 -8.4 +0.2 2.06 -12.6 +0.6 2.08 -22.9 +0.3 .264 -0.0 +2.7 .192 -7.5 +0.5 1.10 +0.9 +4.3 .60 -16.6 +8.4

fusion and automatic feature selection yield robust results on the development set, they
are not transferable.

Comments per day: Without selection, the representations of the two conventional emo-
tion dimensions demonstrate the most substantial results in predicting Cp/d with .154
MAE each. For valence, in particular, the findings from the previous tasks are con-
firmed and highlight it is a meaningful gold-standard which prediction results can even
be improved by the auto-selection and cross-task method. However, the combination of
the two shows little added value across the board, even though it achieves the best result
with the cross-task selection of .145 MAE. As in the previous tasks, trustworthiness is
convincing on the development set but is incapable of validating the results on the test
set.

Likes of comments per day: Using all representations, arousal achieves the best result in
the prediction of CLp/d. Unlike other prediction goals, the feature selection procedures
lead to a deterioration of the results except for the fusion of arousal and valence in com-
bination with the task-specific procedure. It is apparent once again that trustworthiness
does not meet the results of the development on the test set.

Discussion: Examining the results obtained across all prediction targets, it seems likely
that feature selection leads to consistently improved results. In particular, the proposed
cross-task feature selection seems to have good generalisation capabilities, which
makes it slightly superior to automatic selection. All user-engagement criteria have
an inherent sentiment relationship, which probably explains valence’s consistently
superior results for almost all prediction targets and makes it the most predictive signal
overall. This is not necessarily reflected in the simple correlations. Furthermore,
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arousal without any selection as well as in fusion with valence (see Vp/d) proves to
be valuable. In general, the early fusion of representations seems to be of limited
applicability. However, it cannot be ruled out that it still leads to better results, since
late fusion of the predictions and deeper fusion by more complex models was beyond
the scope and has not been tested so far.

The additional dimension trustworthiness fails to reach the same predictive power
as valence and arousal. In particular, this is due to the generalisability problem on
the test set, as very good results are achieved on the development set, for example,
uni-modal and without feature selection on Vp/d performs better than the others. This
weakness can be attributed to the lack of consistency of the trustworthiness gold-
standard across the derived partitions and the lack of normalisation. Since the targets
remain unnormalised to allow for interpretability, this leads to much stronger effect of
outliers in a tightly and skewed distribution across partitions. In general, these initial
results are promising, indicating that trust also appears to be generally valuable to
viewers and supports the formation of a parasocial relationship [301].

5.1.4.5 Conclusions

Through the extensive series of experiments, it could be shown that each of the emotional
dimensions studied (arousal, valence, and trustworthiness) have relationships with key
criteria for user engagement and can be exploited to predict them to a certain extent (RQ-1d).
Such automatic prediction appears to facilitate potential benefits, for example, the patterns
discovered in the emotional understanding of the video content (e. g. , short-term fluctuations
in arousal) could improve the parasocial relationship and thereby drive the user engagement.

This effect may be reinforced by YouTube’s own algorithms, which favour content
that goes viral (thus having a high reach or increased user engagement). The use of these
representations may also open up financial improvement of income sources for the creators,
e. g. , through more views of the video per day. In order to control these effects in the future,
however, it may also be sensible for the platform operators to gain a deeper understanding of
emotional mechanisms and, if necessary, integrate them into suggestion algorithms. For this,
further research on the indicators themselves are necessary, e. g. , a comparison between the
real increase and the calculated average per day.

In view of the above-mentioned parasocial relationship theory, it could be expected that
trustworthiness will be very predictive in estimating user interaction. Although the results
are promising in some cases, conventional emotional dimensions seem to be more effective.
However, the selected data domain only considers car review videos, which means that
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applying the novel dimension to other domains (e. g. , comedy or entertainment) may reveal
itself to be more important in exploring the relationship between trust and user engagement.
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5.2 Objective Dimensions

Besides the emotional information in audio-video data, the other essential dimension of
MSA is the context, specifically, the target the emotion is directed towards. In the following,
experiments are presented dealing with the target dimension in two different fashions:

• RQ-2a: Improving contextual understanding by proposing a target extraction method
(alongside others) that works without labels, as well as assumptions about the number
of expected topics.

• RQ-2b: Predicting the proposed speaker topic dimension using detection models,
which are trained on manually labelled segments.

• RQ-3: Evaluating the uni- and multi-modal dynamics and the strengths of the three
core modalities.

The characteristics of each task are explained in detail in the introduction, followed by the
proposed methods and the experimental results. The RQs covered are discussed at the end of
each section.

5.2.1 Target Extraction

5.2.1.1 Characteristics

It is well known that the most meaningful modality for contextual understanding is the
linguistic component of language. This section aims to discover latent semantic structures
(the topics) algorithmically. As explained in Section 2.3, this is usually done by specifying
the number of expected topic clusters as an initial parameter for the model. For each topic
cluster, the model returns a set of words, called topic representatives, that portrays the
topic’s semantics. Also, the capabilities of speech-to-text are improving, the field is rather
unexplored for spoken language from videos. Here, the main differences in extracting context
from written text lie in colloquial language, expressed by longer, rapidly produced text
sequences.

Stappen et al. [302] propose a novel approach, Graph-based Topic Modelling approach for
Transcripts (GraphTMT), to these challenges, aiming to extract meaningful and semantically
coherent topics from transcribed video reviews. To avoid making any (wrong) assumption
regarding the data distribution, the algorithm aims to find the number of relevant topic
clusters automatically. The approach transforms the corpus into a single graph, which is split
into subgraphs utilising edge connectivity to find prominent topics in an unsupervised way.
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Furthermore, the differences between transcribed language of MuSe-CaR and another corpus,
Citysearch New York corpus (Citysearch), of written short-sentenced reviews, are analysed,
as well as the generalizability of this novel approach.

Seite 8Thema | Abteilung | Datum

data preprocessing vectorisation

approaches

k-means, HDBSCAN LDA

GraphTMT

post-
processing: 

topic and
aspect

evaluation: 
coherence, 
intra-topic  

assessment, 
user study

MuSe-CaR: transcripts
Citysearch: written text

TF, TF-IDF, 
word2vec (CSG)

part-of-speech 
tags, etc.

baseline

Figure 5.11: Overview of the topic extraction process: First, the transcripts are preprocessed,
vectorised, and grouped by different methods (baseline: K-means, HDBScan, LDA vs.
GraphTMT) to extract relevant topics and aspects. The results are considered in terms
of the topic coherence and intratopic structure. In addition, a user study is conducted for
MUSE-CAR.

5.2.1.2 Experimental Setup

The entire workflow using the transcripts is illustrated in Figure 5.11, and a detailed explana-
tion is provided in the following paragraphs.

Datasets: The primary focus of the evaluation is on the MuSe-CaR covering 5 467 tran-
scribed segments, each assigned to one of the ten topics, featuring more than 20k
sentences as described in Chapter 4. Furthermore, the popular Citysearch [303–305]
corpus is utilised.4 It covers over 50 000 restaurants reviews from 30 000 distinct users.
However, only a subset of 3 400 sentences was labelled by Ganu et al. [306] using five
core topics: Ambience, Anecdotes, Food, Price, and Staff.

Preprocessing: Motivated by Schofield and Mimno [307], a part-of-speech system extracts
tags for the words of the transcripts [308]. Using the unique words, a Continuous
Skip-gram Word Model (CSG) model is trained for 400 epochs using a window size of
15 (see Section 3.1.2), as suggested by other studies [145, 154, 309], to deliver a stable
outcome.

4Download Citysearch: http://www.cs.cmu.edu/~mehrbod/RR/, accessed on 29 April 2021

http://www.cs.cmu.edu/~mehrbod/RR/
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Baseline approaches: The Latent Dirichlet Allocation (LDA) [155], K-means [310], and
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-
SCAN) [153] algorithms are selected as baseline models. The first one is broadly
applied in topic modelling [144] to gain an understanding of semantic clusters in docu-
ments. By using statistical Dirichlet-priors and bag-of-words methods, a distribution
of topics as well as their representatives can be determined. The sentence structure is
left aside, and the focus is on pure word co-occurrences and their cardinality. In the
context of NLP, it is often initialised by the Term Frequency (TF) and the TF-Inverse
Document Frequency (TF-IDF) [144]. These as well as the document-topic density
(α), word-topic density (β ), and the number of topics (tn) are tuned.

K-means uses the same initialisation techniques, where clusters are formed based on
the closest distances between the words [146, 161, 309, 311]. As the distance measure,
the Euclidean distance is commonly applied. As explained in the context of MuSe-
Toolbox (see Section 5.1.2), K-means divides the text data into a predefined number
of k clusters by executing an Estimation-Maximisation Algorithm. In the assignment
step, each point is assigned to the closest cluster centroid, and in an update step, the
new positions of the centroids are calculated based on the assigned data points. For the
experiments, a hyperparameter search for k = {4,20} using both types of initialisation
(TF, TF-IDF) are used.

The latter algorithm, HDBSCAN, is very efficient in finding hierarchical and density-
based clusters [153], wherein the number of clusters k does not have to be specified
a priori. Creating a minimum spanning tree that is reduced into smaller trees creates
clusters until the minsize is reached and converges. In the configuration used here, the
automatically detected outliers are ignored.

GraphTMT approach steps:

1. Graph construction: A graph G of N nodes and E edges is constructed, where
|N| ≤ n nodes represents the embeddings of all vocabulary words, and each edge
e ∈ E reflects the semantic closeness between words relying on the cosine simi-
larity, which is calculated on the word embeddings [80, 312]. After construction,
the graph is complete so that every edge is adjacent to every other edge.

2. Edge removal: Based on the construction, a higher similarity between nodes
is expressed by a higher weight value of the edge. This property can be used
to disconnect nodes. By dropping edges of low similarity, subgraphs of highly
similar nodes, representing topics, are revealed. To isolate the nodes, a Percentile
Similarity Threshold (PTH) is proposed.
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3. Subgraph topic clustering: The incomplete graph is further clustered to obtain
maximal connected subgraphs, each expressing a concise topic. This is achieved
using the K-Components algorithm, which is highly efficient in finding locally
strongly connected subgraphs for various definitions of edges and nodes [156,
313, 314]. An optimal subgraph of G is defined by having at least a maximal
node connectivity K, while at least K nodes are removed. The nested nature of
these subgraphs is hierarchical. This means that a 1-component graph can enfold
one or more 2-components, where each of them comprises several 3-components,
each consisting of several 4-components, and so forth.

Post-processing: The minimum number of representative words for a cluster is defined
as six, meaning that clusters have to meet this minimum to be considered a relevant
cluster topic. The selection of assigned words is chosen according to the proximity of
the average embedding vector of a cluster. Words can be ranked either by the Topic
Vector Similarity (TVS) or Node Degree Connectivity (NDC) logic. Finally, as in
comparable studies [305, 304], each derived topic is assigned by hand to one of the
gold standard topics based on the representative words.

Evaluation: Three measures are used in order to assess success of the proposed method.

• Coherence: The semantic similarity between topic clusters can automatically be
assessed using a coherence score. Röthe et al. [315] found that cv better mapped
human understanding of coherence within a cluster than alternatives such as the
widely applied umass [145, 305]. The cv is intrinsically calculated by a sliding
window, calculating the cosine similarity on the base of the normalised pointwise
information. It can be interpreted as an intrinsic evaluation of how the modelled
topics reflect the data set [316].

• Intratopic assessment: Although the coherence score provides information
on semantic consistency, this does not necessarily correspond to human under-
standing [315, 317]. For this reason, intratopic assessment is used to compare
unsupervised created clusters labelled by a human to human-crafted annotations
(gold topics). For this purpose, the representation words of a class are interpreted
by a human and a topic is inferred. By comparing annotated classes and assigned
classes, the topic coverage (tc) as well as the topic overlap (to) can be calculated.
The first is the proportion of inferred labels that are also present in the annotations.
The second is the ratio of repeated inferred topics.
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Parameter Values
Number of topics (tn) [4; 20]
Document-topic density (α) [0.1, 0.4, 0.7, 1.0, 1/tn]
Word-topic density (β ) [0.1, 0.4, 0.7, 1.0]
Weighting strategy [TF, TF-IDF]
Minimum cluster size(Cmin) [5; 30]
Edge connectivity (K) [1, 2, 3]
Edge weight threshold (percentilerank) [0.50, 0.60, 0.70, 0.80, 0.90, 0.95]

Table 5.18: Overview of all hyperparameter settings evaluated in the experiments. Table is
taken from [302].

• User study: Computational methods are easy to use and therefore often preferred.
However, such indicators do not replace the human ability to abstract concepts
and sort them into their understanding of the world. For this reason, semantic
validity is assessed through a user study similar to [142, 317, 318]. In this study,
31 participants with at least an upper-intermediate English level (minimum of
B2 in the Common European Framework of Language Reference) performed
word intrusion tasks for MuSe-CaR. In this task, six words are suggested to the
user, one of which is a representative of another cluster. The participants have
to locate the intruder. Alternatively, they can select “not sure” to express high
uncertainty. Given the following intrusion task: {acceleration, steering, stability,
voice, chassis, anticipation, not sure}, all words besides the intruder word “voice”
represent the topic of “handling”. The precision of finding the intruder can be
expressed by the Word Intrusion Precision (WIP):

WIPm
k = ∑

s
1(imk,s = wm

k )/S, (5.2)

where S the number of all participants, imk,s is the intruder selected by the sth

participant on the kth topic, and wm
k is the intruder from the kth topic inferred by

model m. Similarly, the rate of “not sure” (NSR) selections is relatively measured.

5.2.1.3 Results

Here, the pre-experiments in terms of the preprocessing procedures are first discussed. Details
of the experiments of MuSe-CaR and Citysearch follow. An overview of the hyperparameter
settings is given in Table 5.18.
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Table 5.19: Overview of the best results for the baseline (LDA, HDBSCAN, K-means) and
GraphTMT approach reporting the intrinsic coherence score (cv), the number of topics (tn),
topic coverage (tc), and topic overlap (to) on MuSe-CaR. The best hyperparameters (HP)
for LDA are α = 0.10, β = 0.70; HDBSCAN with minsize = 6; and K-means are k = 8 and
k = 10 while using the TF-weighted initialisation. The graph approaches utilise PTH = 80
for K = 1 and K = 2. Table adapted from Stappen et al. [302].

Approaches HP cccvvv tttnnn tttccc tttooo
LDA α = 0.10, β = 0.70 .51 8 .60 .25

HDBSCAN minsize = 6 .63 11 .60 .40

K-means k = 8 .73 8 .60 .25
k = 10 .69 10 .60 .25

GraphTMT K = 1 .76 6 .50 .17
K = 2 .85 5 .40 .20

Ø .70 8 .45 .25

5.2.1.3.1 Preprocessing: In preliminary experiments, variations of typical preprocessing
procedures are evaluated [307, 318]. No positive effect arises for MuSe-CaR from the
removal of stop words, or the normalisation of nouns through lemmatisation. However, a
positive effect appears when the words are not stemmed but limited to all types of nouns
provided by the tagger. This is in line with multiple studies [141–143], which have shown
that generalisation is superior when dealing with noisy textual data as given by automatic
transcripts, e. g. , words that are implausible in context, incorrect grammar due to failures in
the speech-to-text system, and colloquialisms in spoken language. Moreover, the preprocess-
ing has shown to be effective in related tasks [143, 154, 319]. For Citysearch, using all tags
achieved the best results. For conciseness, the following detailed results are limited to these
preprocessing procedures.

5.2.1.3.2 MuSe-CaR evaluation: Table 5.19 depicts the best results of the baseline and
graph-based methods.

Coherence score: Following are results of the strong word-embedding clustering baseline:
K-means achieves a cv = 0.73 for k = 8. Higher values of k, for example, k = 10, show
more incoherent (miscellaneous) topics also reflected by cv = 0.69. HDBSCAN with
a minsize = 10 has its best result with 11 topics resulting in a cv = 0.63. LDA creates
the most coherent clusters at α = 0.1, β = 0.7, and tn = 8 with cv = 0.51. The best
configurations for GraphTMT outperform the baseline models, reaching at PTH = 80
with K=1 and cv = 0.75 and for K=2 and cv = 0.84.

Furthermore, for the proposed GraphTMT, the cv is exhibited in detail for different
levels of K, NDC, and TVS in Figure 5.12. With increasing K, cv also increases,
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(b) Topic Vector Similarity (TVS)

Figure 5.12: GraphTMT for (K = {1, 2, 3} and using (a) NDC and (b) TVS (right) reporting
the intrinsic coherence score on MuSe-CaR. For all K’s, the cv is increasing with higher
percentile cutoff points, while TVS shows better performance in the lower range. Missing
dots indicate that the experiment outcome did not fall in line with the experimental guideline.

Table 5.20: Exemplary results for GraphTMT at 80th PTH with K = 1 on the MuSe-CaR
corpus showing inferred and gold topics as well as their representative words. Table adapted
from Stappen et al. [302].

Inferred Topic Topic Representatives Gold Topic
Handling suspension, changes, sport, steering, response Handling

Infotainment hand, screen, pop, information, entertainment User Experience
Infotainment touch, ways, climate, buttons, controls User Experience

Passenger Space area, head, roof, room, headroom Interior Features
Performance seconds, turbo, twin, acceleration, cylinder Performance

YouTube channel, dot, please, thanks, share General Information

suggesting that higher edge connectivity leads to more representative topics. In
addition, TVS boosts coherence scores; however, for K={1, 2} at 80th PTH level,
experiments do not reach the minimum threshold of six subgraphs. The NDC variation
does not have this issue but generally performs worse than TVS.

Intratopic assessment: Looking at the qualitative side, the baseline approaches give more
fine-grained clusters than the human-annotated ground truth and achieve a slightly
higher topic coverage (tc) than GraphTMT. As shown in detail for K-means in Ta-
ble 5.21, the mixed golden label General Information [24] is further separated into
YouTube and Storage. This means that from six unique gold topics that can be matched
(tc = 6/10) they included two duplicate topics (to = 2/8). HDBSCAN leads to almost the
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Table 5.21: List of topics extracted from the MuSe-CaR corpus by using weighted K-means
(k = 8, TF-weighted). Table adapted from Stappen et al. [302].

Inferred Topic Topic Representatives Gold Topic
Handling suspension, handling, dampers, corners, chassis Handling

Infotainment menus, satnav, swivel, commands, entertainment User Experience
Interior Features dash, design, events, wood, plastic Interior Features

Performance engine, turbo, litre, cylinder, engines Performance
Safety detection, assist, safety, collision, airbags Safety

Storage storage, items, space, boot, hooks General Information
YouTube please, enjoy, click, share, wow General Information

Miscellaneous cars, guys, opportunity, brand, tomorrow General Information

Table 5.22: User study of the most successful topic models on MuSe-CaR showing the Word
Intrusion Precision (WIP), lowest and highest hit rates, and the “not sure” ratio (NSR). Table
adapted from Stappen et al. [302].

Approaches WIP Lowest Hit Highest Hit NSR
LDA 43 % 15 % 78 % 13 %

K-means 61 % 47 % 75 % 15 %
GraphTMT 63 % 56 % 72 % 8 %

Ø 56 % 39 % 75 % 36 %

same topics, but also adds two Miscellaneous ones as well as a Passenger Space topic
with the respective words: {area, head, roof, room, headroom} compared to K-means.
Example cluster topics are shown for K = 1 in Table 5.20. The topic overlap to is
lower for GraphTMT than that of the baseline models, indicating high precision. The
consistent representative words and the absence of a miscellaneous topic show the high
quality of this approach. For K = 2, the structure is almost identical while Performance
is further divided and Handling and Infotainment disappear. Therefore and due to the
hierarchical structure of this approach, it can be assumed that the overlapped topics
Performance, Infotainment, Passenger Space, and YouTube reflect the most stable,
coherent structures.

User study: Results of the user study are given in Table 5.22. WIP measures the number of
successfully identified randomly added intruders by a participant. If the respondent
selects the wrong option or “not sure”, this counts as missed. For each method, a
number of randomly selected topic clusters are suggested to the user. The average WIP
rate across all users of a model is shown for all topic clusters as well as the lowest and
highest hit rate across all topic clusters. GraphTMT performed best with an average
WIP rate of 63 %, followed by K-means. Even the lowest hit rate of 56 % shows that
the majority of users are still very confident even with the fuzziest topic of GraphTMT
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Table 5.23: Overview of the best results for the baseline (LDA, HDBSCAN, K-means)
and GraphTMT approach reporting the intrinsic coherence score (cv), the number of topics
(tn), the topic coverage (tc), and topic overlap (to) on Citysearch. The best hyperparameters
(HP) for LDA have α = 1/tn, β = 0.40; HDBSCAN has minsize set to 5; and K-means has
k = 8 while using the TF-weighted initialisation. The graph approaches utilise PTH = 80 for
K = {1–3}. Table adapted from Stappen et al. [302].

Approach HP cccvvv tttnnn tttccc tttooo
LDA α = 1/tn, β = 0.40 .48 8 .67 .50

K-means K = 8 .64 8 .83 .38
HDBSCAN minsize = 5 .61 3 .33 .33

GraphTMT
K = 1 .40 9 .67 .56
K = 2 .60 6 .67 .33
K = 3 .64 5 .67 .20

Ø .56 7 .64 .38

and that the inferred representation words are the most straightforward to interpret. It
also achieves the lowest NSR. LDA has the least interpretable topics with only 15 %,
but the highest hit rate with 78 %, closely followed by K-means and GraphTMT.

The results can be summarised by stating that both the baseline and the GraphTMT ap-
proaches found meaningful topics. Hereby, clustering-based approaches performed better
than the statistical LDA approach. The most topics were inferred by the GraphTMT, while
by increasing K, the topic coherence increases but the number of clusters decreases. In this
case, the user study corresponds well with the coherence scores, so high scores also have the
highest topic hit rates and seem to be the more interpretable topics on average.

5.2.1.3.3 Citysearch evaluation: Finally, the generalisability of the proposed approach
is evaluated using the Citysearch corpus (see Table 5.23). In general, stronger results are
achieved using the full preprocessing capability.

Coherence score: The best configuration of each model type along with the associated
results are listed in Table 5.23. With a cv of .64 each, both K-means (with k = 8 and
TF-initialised) and GraphTMT (with K = 3 and PTH = 0.8) achieve the best cv result.
As K of GraphTMT decreases, so does the coherence score, however, the number
of topics increases. HDBSCAN scores cv = .61 followed by LDA with cv = .42 and
applying α = 1/tn, β = 0.4. Furthermore, Citysearch has six manual annotated topics.
K-means infers eight and GraphTMT (K=3) five. At a lower K = 1, GraphTMT even
finds nine topics. HDBSCAN, however, infers only three topics.
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Table 5.24: Inferred topics and their representatives from the GraphTMT (K = 1) approach
on the Citysearch corpus, including positive (pos.) and negative (neg.) Service topics as well
as Miscellaneous (Misc.) topics as gold topic.

Inferred Topic Topic Representatives Gold Topic
Adjectives incredible, fantastic, outstanding, fabulous, amazing Miscellaneous
Ambience painted, baguette, mirror, coloured, wood, leather Ambience
Anecdotes celebrate, celebrated, celebrating, wedding, anniversary Anecdotes

Food fennel, puree, polenta, jalapeno, pate Food
Food poivre, hanger, sirloin, ribeye, frites Food

Location high, hill, bronx, murray, queen Miscellaneous
Location chelsea, downtown, soho, midtown, district, uptown Miscellaneous

Music piano, playing, jazz, band, played, background Miscellaneous
Service (pos.) personable, gracious, polite, knowledgeable, professional Staff
Service (neg.) arrogant, unfriendly, incompetent, unattentive, unprofessional Staff

Weekdays tuesday, wednesday, monday, friday, thursday Miscellaneous

Table 5.25: Inferred topics and their representatives from the K-means (k = 8, TF) approach
on Citysearch.

Inferred Topic Topic Representatives Gold Topic
Handling suspension, handling, dampers, corners, chassis Handling

Infotainment menus, satnav, swivel, commands, entertainment User Experience
Interior Features dash, design, events, wood, plastic Interior Features

Performance engine, turbo, litre, cylinder, engines Performance
Safety detection, assist, safety, collision, airbags Safety

Storage storage, items, space, boot, hooks General Information
YouTube please, enjoy, click, share, wow General Information

Miscellaneous cars, guys, opportunity, brand, tomorrow General Information

Intratopic assessment: K-means produces convincing results, finding all six golden themes
(Tc = .83) and only resulting in a single miscellaneous topic, as depicted in Table 5.24.
For GraphTMT, only location and food are duplicated (see Table 5.24), resulting in tc
= .67 (see Table 5.23). Many of the classes found seem very plausible and intrinsically
coherent, such as, e. g. , Music with {piano, playing, jazz, band, played, background},
although these were not necessarily mapped by a human as a gold topic. Overall,
the proposed method inferred many relevant topics. Regarding the golden labels, the
degree of coverage for GraphTMT is slightly lower than for K-means and LDA with tc
= 83.3 as well as the overlap with to = 38 %.

5.2.1.4 Conclusions

From these experiments, it can be concluded that the proposed GraphTMT is able to extract
meaningful target clusters without being dependent on human annotations and a priori
assumptions regarding the number of topics (RQ-2a). This finding is promising as it supports
the development of graph-based machine learning methods to tackle the issue of unsupervised
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exploration of long, noisy transcript snippets. It can also be useful as an exploration step
before domain-specific labelling. In addition, the results underline the robustness of this
method with very little fine-tuning. On transcripts, GraphTMT outperformed the baseline
topic modelling approaches in terms of coherence, uniqueness, and interpretability of the
clusters. The simplicity when fine-tuning is, in comparison to other approaches, an additional
benefit. For example, a high K led to highly encapsulated clusters, which suggest that
semantically inconsistent topics and words can further be excluded with a single parameter.
In contrast, by manually setting k in K-means, it is possible to extract a larger number of
topics. However, this is not so much a fine-tuning parameter, but rather a strict setting
that leads to the exact number of output topics k, requiring assumptions about the data and
repeated runs to optimise the random initialisation.

Generally speaking, the GraphTMT properties help in every scenario where no assump-
tions can be made and no labels are available. The experiments on the Citysearch corpus
showed that the method is generally transferable to other domains and datasets. Although the
coherence results were just behind the best model, K-means, it achieved the highest WIP rate
and a higher uniqueness.

Overall, the proposed approach of graph construction, edge removal, and subgraph
clustering showed promising results. However, this needs further investigation on a wider
selection of datasets. For the future, a multimodal view is necessary for a full understanding
of the content topics factoring in human actions. The development of such extension can be
seen as an intriguing next step.
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5.2.2 Target Detection

5.2.2.1 Characteristics

After extracting the speaker topics in an unsupervised fashion, this chapter focuses on
modelling the human-annotated speaker topics as presented in Section 4.2. Understanding
the domain-specific context relies strongly on the textual representation of the spoken
language (transcripts). To this end, uni- and multi-modal approaches from Stappen et al.
[26] are evaluated on various modalities. This is followed by the work on subsymbolic,
high-level representation from Stappen et al. [56]. All experiments are conducted on the data
selection of MuSe-Topic from MuSe-CaR introduced in Stappen et al. [27] (see Section 5.1).
This enables a linkage of the two components, emotion and topic, as explained before. The
distribution and examples across the ten speaker topics can be found in Section 4.2.

5.2.2.2 Experimental Setup

The experimental setup closely follows what is described in Section 5.1.2.2.

5.2.2.2.1 Feature Sets: As with the prediction of emotion classes, the sampling rate is
maintained for all representations. As a result, the audio-video feature sets (Deep Spectrum,
eGeMAPS, VGGish, Xception, VGGFace, and Generic, Optical Car Part Recogniser and
Detector (GoCaRD)) produce a vector every 250ms. The preprocessing of the audio track
and the imputing of the text-generated feature vectors (FastText and Sentic) also remains
equivalent. The extracted representations and feature alignment are the same as the ones
used in Section 5.1.2.2.

5.2.2.2.2 Architectures:

ALBERT: ALBERT [81] is employed as a state-of-the-art NLP Transformer for fine-tuning,
as explained in Section 3.1.2. The network core and pretrained weights are utilised from
Hugging Face5 package. To optimise computational resources for such a parameter-
intensive architecture, the training procedure is conducted in half-precision numbers.
This purely textual model is fine-tuned for three epochs with a learning rate of 10−5 (ε
to 10−8) using an Adam optimiser with a bs of 12. The sequence length is limited to
300, applying padding and truncating where appropriate.

SenSA: SenticNet provides a unique way to integrate high-level language semantic con-
cepts c̄s from knowledge-based representations (see Section 3.1.2) into speaker topics

5https://github.com/huggingface accessed June 25, 2021.
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classification. On the same base as in Paragraph 5.1.2.2.2, one-hot embedded sen-
tics are utilised for training classifiers. Inspired from word-embedding training (see
Section 3.1.2), the stronger learning impulse from this language-centric task can be
channelled to neurally learn a domain-specific projection hs = σ(c̄s), where σ is a
sigmoid FFL, from these one-hot encoded vectors. The compression leads to a strongly
reduced input dimension from > 5k valid concepts to only 100, benefiting computation
of the subsequent SVM. While training the embeddings, embedding dropout on single
representations and time steps is applied to improve generalisation by avoiding learning
the identical matrix. As before, the final prediction is made by a linear SVM, tuning
the C value from 10−5 to 1 on the development set over up to 10 000 iterations (see
Paragraph 5.1.2.2.2).

Others: The training configurations for the LSTM-SA, MMT, and End2You models are
identical to Section 5.1.2.

5.2.2.2.3 Measure: The evaluation metric is inspired by classification tasks of similar
challenges [8, 19] and is aimed at balancing the UAR and F1 (micro) measures in a combined
score of 0.66 ·F1+0.34 ·UAR.

5.2.2.3 Results

Illustrated in Table 5.26 are the results of the proposed approaches for the speaker topics
classification task (by-chance 10 %).

Baselines: The unimodal LSTM-SA leads to around 35 % combined score on test. The
best result in this combination is achieved by the textual representations FastText with
36.20 % combined score. The Transformer-based ALBERT architecture proved to be
especially competitive, reaching 76.79 % combined score.

In a multimodal setting of the LSTM-SA network, the results improve slightly to
37.14 % combined score on the test set. However, these results fall behind those
achieved by the MMT, which is equipped with a more advanced modality fusion. Here,
all feature combinations result in better scores, with the best of FastText, eGeMAPS,
and FAU improving results by over 15 percentage points to 52.98 % combined score.

Comparing the performance of MMT and ALBERT at the level of individual classes
(see Figure 5.13), both show the strongest results for the classes Performance, Comfort
and General Information. However, MMT performs at lower levels across all classes.
For example, many segments from the Interior are falsely predicted as the Exterior
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Table 5.26: Reporting arousal and valence for MuSe-Topic (using EWE annotation fusion) in
a score combining Unweighted Average Recall (UAR) and F1 (0.66 ·F1+0.34 ·UAR) on the
devel(opment) and test partitions. Audio feature sets: EGEMAPS (eG), DEEP SPECTRUM

(DS), and VGGISH (VG); Vision features sets: GOCARD (Go), VGGFACE (VF), and
XCEPTION (X); and Text feature set FASTTEXT (FT), are fed into the models. Furthermore,
high-level text concepts based on contextual sentics embeddings, either encoded through
n-hot vector embedding or the neural network (NN), are evaluated. Furthermore, all vision
features (aV) are utilised by LSTM-SA. The features are aligned to the label timestamps.
The by-chance level is 10 %.

Approach Modality Feature(s) Combined
devel test

Official Baselines [26]
Unimodal

LSTM-SA

A
DS 17.50 34.74
eG 16.75 34.27

V
X 24.14 36.75
aV 25.43 34.75

T FT 21.44 36.20
ALBERT T 70.96 76.79

Multimodal

MMT
T+A+V

FT + eG + X 44.86 51.81
FT + eG + VG 41.62 48.84
FT + eG + AU 44.33 52.98
FT + eG + OP 42.67 51.05

LSTM-SA T+A+V FT + eG + aV 25.03 37.14
Post-Challenge Models [56]

SenSA5 T
n-hot 56.18 66.15
NN 47.08 56.71

SenSA6 T
n-hot 46.22 57.09
NN 40.67 49.01

class. In addition, there is a high level of confusion between Interior and Comfort. The
prediction of Safety also fails almost completely for MMT, while ALBERT shows
an almost error-free classification. This highly divergent behaviour suggests that
language may be a dominant factor in learning this class. Both also show weaknesses
in predicting User Experience and often confuse this with the close proximate class
Interior. Unclear delineation in the definition (see Table Figure 4.7) and discrimination
problems in human annotation may have played a role here.

These results demonstrate that text is exceptionally well-suited for speaker topics
prediction. Multimodal approaches showed strong results, but were not able to keep
up with the ALBERT. This can be an indication that a Transformer architecture with
more profound modalities, such as ALBERT, could outperform these architectures in
the future.
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SenSA: The learnt embeddings and models building on SenticNet-5 extractions seem more
predictive than SenticNet-6 with an almost 15 percentage point improvement for the
task. The domain-specific representations using the Artificial Neural Network (ANN)
architecture achieved solid results with 56.71 % combined score on the test set (see
Table 5.26) using version 5 extraction. The naïve n-hot encoded representations in
combination with a SVM performed even better, achieving 56.18 % combined score
on the development set and 66.16 % combined score on the test set.

As shown in Figure 5.14, the prediction errors are relatively evenly distributed, except
for the Interior and Aesthetics and Cost and General Information classes, each of
which the algorithm confuses more frequently. Compared to the baseline models,
the prediction behaviour shown by the confusion matrix is very close to that of the
other language-driven model ALBERT, but at a slightly lower level. For example, a
confusion between the class Cost and the classes General Information and Performance
is evident as in MMT. The result for the class Interior is comparable to ALBERT and
superior to MMT, which shows the potency of Transformer textual representations in
drawing a fine line between them and similar classes.

In summary, the semantic concepts SenSA prove to be very predictive, which indicates
a good contextual understanding, and are only beaten by the ALBERT. However,
one should bear in mind that the state-of-the-art Transformer was pretrained with
considerably more data, both unsupervised and supervised, and possesses substantially
more parameters, which leads to higher computational costs. As a result, the other
models such as the LSTM-RNN with self-attention are more than 30 percentage points
and the multimodal Transformer [26] is almost 15 percentage points behind the sentic
learning results.

5.2.2.4 Conclusions

From these experiments, it is evident that the text modality is the most effective one in
predicting the targeted speaker topics (RQ-3). This can mostly be attributed to the content-
dependency of the prediction target. The deeply integrated multimodal fusion of the MMT
experimentally revealed small differences in the results depending on the video feature
selected. Here, both the environmental representation Xception and FAU proved most
predictive, suggesting that other modalities may be beneficial for in-depth contextual un-
derstanding (e. g. , the visual representation captures a person driving, indicating an indoor
topic). However, the unimodal encoding of the linguistic cue is clearly decisive.
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(b) ALBERT

Figure 5.13: Relative confusion matrix predicting 10 speaker topics (MuSe-Topic) of fine-
tuned MMT and ALBERT on the test set.
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Figure 5.14: Relative confusion matrix predicting 10 speaker topics (MuSe-Topic) of SenSA5
on the test set. Figure taken from Stappen et al. [56].

Regardless of the model design, text-focused models naturally use the semantics of video
transcripts, achieving the most promising results. However, the results of the text-based
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models vary greatly (RQ-2b). This demonstrates the importance of dedicated architectures
for this particular subtask of MSA. The parameter-heavy NLP Transformer ALBERT dom-
inates the benchmark results. Although this form of BERT Transformer has almost 85 %
fewer parameters than other BERT variants [212], computational limits were encountered
during the network training, leading to a restriction of the segment window length and, thus,
an information loss. This led to developing the second-best, parameter-light, subsymbolic
SenSA architecture. The results generally highlight great strengths in the inclusion of sentic
concepts in the modelling of this task. Furthermore, the integration of high-level human
concepts requires drastically less representational encoding, and the architecture is simpler.
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5.3 Towards Modality Inference for Real-life Videos

Video data acquired from in-the-wild environments poses several challenges for the develop-
ment of reliable prediction systems (see Section 2.1). Available information is often of low
quality or feature extraction fails when the object of interest is missing or (partially) occluded
at a certain time point in a data stream [9]. In the context of this work, speech and facial
expressions are used in Section 5.1 and Section 5.2, for example, predicting emotion-related
targets. Some of these systems occasionally performed worse than expected. One issue is
that a face can be shaded or unfavourably positioned or a person stops talking for a few
moments [320], so that representations are missing or are of low quality. This issue is aimed
to be addressed in the following manner:

• RQ-4: Investigating capabilities for modelling the cross-modal dynamics of facial
muscle activity based on voice in a sequence-to-sequence prediction scenario.

5.3.1 Cross-modal Recognition

5.3.1.1 Characteristics

In the award-winning publication Stappen et al. [204], explored several ways of how facial
muscle movements can be estimated from speech signals. A first attempt of this task has been
made by Ringeval et al. [320], which simplified this highly complex task of fundamental
research into subtasks. The subtasks of onset, apex, offset, and occurrence of a particular FAU
from the Facial Action Coding System (FACS) system (see Section 3.1.3) are individually
estimated by a classifier. In the approach taken in this work, robust sequence-to-sequence
ANN architectures utilising several attention mechanisms are first developed on a single well-
suited FAU (chin raiser) to understand effective network mechanisms. Then, the efficiency is
compared to the results of Ringeval et al. [320]. Finally, the results will be linked back to the
posed RQ.

5.3.1.2 Experimental Setup

Architectures: This work proposes an encoder-decoder architecture (see Figure 5.15) and a
stacked, bidirectional LSTM-RNN(s) architecture to model the sequence-to-sequence
problem of predicting FACS from speech signals. The encoder distils the input
sequence to an abstract representation. The decoder encodes the representation to a
converted output sequence of another modality. To improve the encoding-decoding
process, attention is commonly applied to put more weight on relevant input steps
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Figure 5.15: Pipeline for cross-modal prediction from an audio signal to FAU through an
encoder-decoder architecture with a cXt attention module. First, to extract the Geneva
Minimalistic Acoustic Parameter Set (GeMAPS) and ComParE LLDs representations, the
raw audio original is preprocessed. The input sequence x is encoded, context vectors x
computed to enhance decoding, and, finally, combined with ŷt−1, ŷt is sequentially predicted.

and align the sequences dynamically [256, 249, 98]. These experiments distinguish
between two attention types: context attention (cXt) and window attention (win), as
described in Section 3.2.4. In the encoder-decoder architecture, the latter can attend
the previous time steps (pa). An attention regulariser weight of 10−4 is added to the
context attention. The bilayered stacked architecture passes the prediction through time
without encoding the whole sequence at first. The LSTM-RNN layers are bidirectional
and fused using summation. Between the stacked layers and before the prediction layer,
0.2 dropout is applied. The output transformation is done by a softmax prediction
layer. Also here, win attention is feasible but since there are no sequence constraints
of the decoder as for the encoder-decoder model, the attention windows can capture
the context from both directions bi. The number of neurons for all hidden layers of
both architectures is set to 20 in accordance to the rather low-dimensional input audio
feature sets. Furthermore, both apply L1 bias regulariser of 10−4 and a L2 kernel
regulariser of 10−1.

Baseline: There is an internal and an external baseline to which the advanced architectures
are compared. The external baseline is the result of the 3-layered stacked LSTM-RNN
architecture of [320]. The following experimental settings correspond to this baseline,
e. g. , in terms of data, so that a fair comparison is possible. Furthermore, to evaluate
the positive effect of attention, the internal baseline is the architectures without any
applied attention (No-Att).
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Dataset: As a high-quality data source, the General Multimodal Emotion Representations
(GEMEP) database, which was specifically designed to enable fundamental multimodal
research, is chosen [321]. Comprising 7 000 audio-video emotional portrayals, it
depicts 18 emotions acted by 10, equally balanced female and male, actors. The
portrayals show vocal interactions in French, captured by a static camera setting with
a frame rate of 25Hz. One of the three cameras is pointed at the actor’s face and
additional microphones recording at 44.1kHz are positioned next to the left ear of a
playing actor [320]. For comparability, the focus of this work is on a subset of 158
portrayal segments, provided by [320] for tasks aiming at cross-modelling the speech
and vision modalities. It was carefully designed to avoid any modelling imbalance,
using only segments which had a high label agreement rate between annotators, a
minimum of 5 % occurrence of each FAU, and a balanced amount of recordings from
each actor.

Preprocessing: Audio-video synchronisation and segmentation is based on the manual
effort of [320], which ensures highly accurate alignment between modalities. Further-
more, the loudness of the audio is normalised to 0 db peak amplitude. This study is
designed with emotion recognition in mind, which is why the use of domain-typical
representations and targets for modelling is a natural choice. From the audio data,
two low-level descriptor acoustic representations, ComParE LLDs and GeMAPS, are
extracted at a sample rate of 100Hz. Speaker-wise normalisation is performed on
the LLDs in respect to the variance of representations over the different actors in
relation to the facial action units, while all other parameters are kept as described
in Section 3.1.1. In addition, to smooth the GeMAPS, a symmetric moving average
window of three frame lengths and a context window of three is utilised. To receive a
systematic coding of different facial expressions, the FAUs [37] based on the FACS are
utilised as labels. While the systematic coding is identical to the automatic extraction
as explained in Section 3.1.3, the focus is on a limited set of eight FAUs connected
to voice, which are manually annotated by two independent FACS encoders: Inner
Brow Raiser (FAU-1), Outer Brow Raiser (FAU-2), Brow Lowerer (FAU-4), Cheek
Raiser (FAU-6), Lid Tightener (FAU-7), Nose Wrinkler (FAU-10), Lip Corner Puller
(FAU-12), and Chin Raiser (FAU-17). A sequence of continuous intensity values for
each point in time is transformed from a regression to a classification problem by
changing the intensity to sequences of binary activation as preprocessed in [65]:

1. The onset corresponds to the start of muscle activation, thus, the period when the
intensity of an FAU increases for longer than 2 consecutive frames.
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2. The apex indicates the peak of muscle activation after an onset and before an
offset.

3. In contrast to the onset, the offset is the part of a sequence in which the muscles
are released. The start point is the end of an apex and the end point is either an
intensity of 0 or the start of another onset.

4. The occurrence covers any kind of facial muscle activation, independent of onset,
apex, or offset.

Measure: The evaluation is done following a speaker-independent leave-one-speaker-out
(LOSO) cross-validation on each combination. As with this work, this approach is
often chosen for small datasets and is also applied by the reference work [320]. In
a binary case, the by-chance level of the calculated UAR is 50 % independent of the
class distribution. The average across all partitions is reported.

Training: The LOSO validation method limits the options of hyperparameter search [204].
For this reason, a few state-of-the-art techniques are applied to achieve a smooth
training behaviour of the networks but refrain from comprehensive parameter tuning.
Batch normalisation reduces the training time and leads to stable information passed
to downstream layers [322]. The length of the sequences is set to 100, so that shorter
sequences are zero padded and network parts, related to missing timestamps, are not
updated (masked). Since the size of the dataset is rather small, the maximum number
of epochs is set to 100 and early stopping with patience of five is applied to avoid
overfitting. Adam is chosen as the gradient descent optimiser, setting the lr to 10−4,
with a bs to 32. Finally, the data points of each class are weighted in the loss function
to prevent class imbalance effects.

5.3.1.3 Results

In the first experiments, the focus is to evaluate various architectural configurations using
ComParE LLDs representations to identify components which are particular suitable for this
task.

Architecture comparison: As shown in Table 5.27, the stacked architecture (Stacked-
winAtt) performs better with larger context windows (bi = 5 vs bi = 15). Adding
more stacked layers (2x) also improves the results, e. g. , for occurrence from 70.2%
UAR of the bi = 15 single-stacked version to 76.6% UAR of the double-stacked
one. This is also the overall most successful configuration for occurrence; however,
the onset, apex, and offset results increase when only the past (pa) time steps are
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Table 5.27: Results are reported on the exemplary FAU 17 using the stacked (Stacked) and
encoder-decoder architectures (EncDec) in three configuration types: no attention (NoAtt),
either bidirectional (bi) or only past steps (pa) local attention (WinAtt), and context attention
(cXtAtt). The COMPARE LLDS features are used to report the unweighted average recall as
a percentage for onset, apex, offset, and occurrence (occur.) labels. Table taken from Stappen
et al. [204].

Architectures FAU17

Name Window Onset Apex Offset Occur.

Stacked-NoAtt - 75.8 73.1 80.2 75.4
Stacked-WinAtt bi = 5 62.9 62.1 66.8 61.9
Stacked-WinAtt bi = 15 79.1 70.3 74.9 70.2
2xStacked-WinAtt pa = 15 76.9 76.3 80.7 65.7
2xStacked-WinAtt bi = 15 75.7 72.8 75.4 76.6
Enc-Dec-NoAtt - 77.0 76.8 83.3 73.8
Enc-cXtAtt-Dec - 80.5 77.6 89.2 73.3
Enc-cXtAtt-Dec-WinAtt pa = 15 76.2 76.4 83.9 71.1

considered. The encoder-decoder architecture using only the cXtAtt module performs
strongly, achieving the best results on onset (80.5%), apex (77.6%), and offset (89.2%)
subclasses. For both architectures, it can be seen that just because one of the subclasses
improves, it does not necessarily lead to an improvement in the occurrence class. It may
be that the more frequently changing binary labels of occurrence are more challenging
to learn from the immediate neighbours, which is underlined by the NoAtt results for
this class, which either did not change or only slightly improved in contrast to the
subclasses.

The next series of experiments extends the view from a single FAU-17 to all FAUs and
compares the results to the LSTM-RNN baseline architecture. Including the four subclass
experiments for each of the eight FAUs, ten separately trained models for each partition, and
two feature sets (GeMAPS, ComParE LLDs) results in more than 640 models. This high
computational effort makes it necessary to limit the experiments to only the encoder-decoder
with context attention.

Baseline comparison: Compared to the baseline models [320], all subclasses show in-
creased average results except for the combination of occurrence and GeMAPS repre-
sentations. Specifically, using COMPARE, the average results improved on a percentage
point basis over those in [320] by 1.9 to 63.9 % UAR on onset, 3.1 to 66.2 % UAR on
apex, and 19.4 to 79.7 % UAR on offset. A similar picture is obtained when looking at
the GeMAPS use, achieving even better results for onset with 65.9 % and apex with
67.8 %. One explanation is that both the enhancement by attention and the addition
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Table 5.28: Full results on all FAUs based on the training of the proposed encoder-decoder
architecture (Enc-Dec-cXtAtt) with the GEMAPS and COMPARE features and an absolute
comparison to [320] shown in brackets. The FAUs are as defined in Section 3.1.3: Inner Brow
Raiser (FAU1), Outer Brow Raiser (FAU2), Brow Lowerer (FAU4), Cheek Raiser (FAU6),
Lid Tightener (FAU7), Nose Wrinkler (FAU10), Lip Corner Puller (FAU12), and Chin Raiser
(FAU17). Results are given in Unweighted Average Recall (UAR) as a percentage. Table
taken from Stappen et al. [204].

COMPARE EGEMAPS

FAU Onset Apex Offset Occurrence Onset Apex Offset Occurrence

1 64.2 (+2.3) 68.1 (+3.6) 80.0 (+20.5) 69.7 (+2.6) 69.7 (+7.6) 67.1 (-0.8) 81.0 (+19.8) 63.8 (-3.8)
2 60.9 (-3.4) 73.3 (+5.9) 70.9 (+8.6) 68.1 (-1.2) 64.8 (+0.2) 63.2 (-7.8) 66.5 (+3.5) 65.2 (-5.7)
4 68.9 (+7.5) 65.8 (-0.4) 75.6 (+12.3) 67.6 (+3.0) 64.7 (+2.8) 72.9 (+6.2) 73.3 (+10.1) 61.5 (-6.4)
6 65.1 (+1.1) 64.2 (-1.0) 90.3 (+26.9) 64.0 (+0.2) 65.7 (+1.4) 72.9 (+5.2) 81.4 (+18.2) 62.2 (-1.0)
7 62.0 (-0.7) 65.3 (+8.7) 85.6 (+27.3) 60.3 (+5.9) 62.8 (+0.0) 65.7 (+6.0) 69.7 (+8.2) 57.8 (+5.1)
10 55.7 (-6.1) 56.2 (-4.3) 73.8 (+17.4) 60.1 (-0.3) 59.5 (-2.5) 62.6 (+1.5) 91.1 (+33.1) 57.8 (-2.5)
12 53.6 (-5.7) 59.5 (-0.4) 72.0 (+15.3) 59.0 (+0.4) 60.5 (+2.5) 67.2 (+6.3) 79.6 (+21.8) 62.0 (+3.3)
17 80.5 (+20) 77.6 (+12.8) 89.2 (+26.9) 73.3 (+8.7) 79.6 (+18.0) 70.6 (+5.6) 79.8 (+16.7) 67.1 (+1.3)

Avg. 63.9 (+1.9) 66.2 (+3.1) 79.7 (+19.4) 65.3 (+2.4) 65.9 (+3.7) 67.8 (+2.8) 77.8 (+16.4) 62.2 (-1.2)

of state-of-the-art network properties, such as batch normalisation, early stopping,
and class weights, are the main contributors to this change. Interestingly, the largest
increases in performance are seen in the offset subclass results regardless of FAU,
while the results on occurrence are mixed across FAUs. Compared to the occurrence
prediction in [320], the results improve by 2.4 to 65.3 % UAR using COMPARE, how-
ever, they fall behind by −1.2 using GeMAPS. On an individual level, some FAUs
stand out. FAU-7 (Lid Tightener), FAU-12 (Lip Corner Puller), and FAU-17 (Chin
Raiser) seem especially suitable for this task, reaching new state-of-the-art results on
all subclasses and feature sets. In contrast, the occurrence results on the FAUs related
to the brow area of the face (inner = 1, outer = 2, lower = 4) seem especially hard to
predict from the GeMAPS voice representations.

5.3.1.4 Conclusions

The experiments demonstrated that there are human-centred relationships which can be
inferred across the audio and video modalities (RQ-4). For this, FAU-17, Chin Raiser, which
is strongly connected to mouth movements, was first evaluated. Second, the encoder-decoder
architecture was used to show generalisability of the designed network on all FAUs. The
architectures seem to profit from the attention mechanism, with an advantage for context
over local attention, and other state-of-the-art settings which improve sequence modelling.
The best average results predicting FAU were achieved using GeMAPS with 65.9 % UAR on
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the onset and 67.8 % UAR on the apex, while using COMPARE was more effective on offset
with 78.7 % UAR and occurrence with 65.3 % UAR.

The results suggest that the reasons for the improvement are manifold. Improved mecha-
nisms such as batch normalisation and class weights lead to more robust predictions. The
clear advantages of the attention mechanism can presumably be attributed to improved
temporal modelling, clearly evident in the case of offset. It can be suspected that the mixing
of onset, apex, and offset in the occurrence subtask does not allow these to be modelled
equivalently, as the prediction target is exclusively binary and therefore in-between states
cannot explicitly be modelled by the advanced architecture.

This improved understanding of cross-modal interactions paves the way for applications
to in-the-wild data. Specifically, similar architectures can be applied to the problem of
imputation, so that parts of a disturbed sequence are replaced by estimations. However, since
inference from one modality to another is naturally limited, thus cannot now and probably
never will be perfect, it seems best that the context of the target modality should also be
integrated in such an approach. The additional information from a (past) context of the target
modality ought to make inference easier. The experiments demonstrated a way towards this
idea by only considering a limited context window. In this regard, it might be worthwhile
to look for stronger alternatives to local attention windows, which work well in this setting,
but do not fully reach the level of contextual attention where the whole (source) sequence
is considered. Furthermore, it remains to be thoroughly evaluated whether large datasets,
as with in-the-wild data, can stabilise the problem to the extent that regression points can
be directly estimated rather than the simplified binary target subclasses employed in this
experimental evaluation.
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6 Concluding Remarks
This chapter first provides a summary of the findings in Section 6.1, followed by the ethical
and social considerations, which have been a continuous companion to this work, in Sec-
tion 6.2, before concluding by outlining limitations in Section 6.3, and future directions of
this thesis’s research in Section 6.4.

6.1 Summary and Discussion

Representing an emerging field of Deep Learning research, Multimodal Sentiment Analysis
seeks to structure the fastest-growing human-made information sources of the 21st century —
unstructured user-generated data — into emotional and thematic contexts through Machine
Learning (see Chapter 1). For this purpose, approaches from the fields of signal processing,
Affective Computing, and Natural Language Processing are united to develop methods that
can decompose video, a multimodal medium, into its three components to automatically
learn and recognise unimodal as well as overarching dependencies between multimodal
combinations. Starting from current research trends (see Chapter 2), this work has identified
shortcomings in the latest research and defined new directions to establish a closer link
between the MSA and AC communities. Methodologically, these challenges can be addressed
by proposing new methods, largely grounded in key concepts of modality representation
and deep learning (see Chapter 3). However, the subjective and objective dimensions of
MSA could not sufficiently be addressed with existing training material. This led to the
creation of a new dataset, MuSe-CaR, collected specifically with our research objectives in
mind (see Chapter 4). It provides the ability to fully integrate the audio-video and linguistic
components, as well as to predict continuous emotions and targets in context. All three
modalities exhibit challenging in-the-wild characteristics, for example, domain terminology
in automatically transcribed spoken word, free-floating video perspectives, and ambient audio
soundscapes. Furthermore, source-specific annotations were proposed, such as perceived
trustworthiness in user-generated content and speaker topics in multimodal scenarios. In
addition, the MuSe-Toolbox was introduced to facilitate the generation of emotional gold
standards for MSA. It provides a new gold standard RAAW and data-driven emotion class
creation. RAAW is motivated by the manual effort when aligning several annotators due
to the rater reaction delay. It extends the idea of agreement-based weighted annotators,
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EWE [3], while counteracting holistic individual lagging rater reaction [278] through GCTW
alignment [277].

Equipped with new data and tools, novel architectures were proposed and experimental
frameworks set up to investigate the initially posed research questions (see Chapter 5). The
main focus of this work was on the emotion dimension of MSA (RQ-1). First, the thesis
addressed to what extent and how time- and value-continuous arousal and valence dimensions
can be effectively predicted from real-world, user-generated content (see Section 5.1.1). For
this purpose, a variety of audio (DEEP SPECTRUM, eGeMAPS, LLD, and VGGish), vision
(Xception, VGGFace, and FAU), and text (FastText and BERT) representations were extracted.
Targeting two different gold-standards (EWE and RAAW), several sequential models were
proposed for this sequential regression task, both without attention mechanisms (LSTM-RNN
and End2You) and with them (LSTM-SA and MHA-LSTM). It is clear from the experiments
that the audio features are the most effective at modelling arousal, and the text-based ones
outperform all others on valence. This is found to be consistent with other work [8]. Learnt
representations from ANN mostly performed stronger than hand-crafted ones. Having
already been successfully used in the context of audio-video emotion recognition on smaller,
less realistic datasets [79], the results clearly underline their advantages in the context
of exceptionally large-scale, in-the-wild data. In particular, BERT, which calculates the
embeddings at run-time to integrate context, proved to be highly effective on automatically
transcribed spoken language. The merits of such text embeddings for continuous-time
prediction targets are also valuable insight for the interdisciplinary field of MSA. Many
researchers from the field of MSA have their origins in linguistic analysis with segment-
based discrete targets [28, 34] and are unfamiliar with the possibilities of the continuous-time
form, while the AC community, for its part, has largely neglected text [8]. Generally, it can
be expected that data-driven representations will fully replace hand-crafted representations in
the long run as interest in analysing real-life videos increases. In addition, equivalent results
using EWE and RAAW suggest that the proposed gold-standard method is similarly suitable
for prediction while providing improved theoretical properties. Other work with RAAW also
suggests that the integrated alignment has advantages when it comes to fusing human-made
annotations with machine-recorded biological signals, such as arousal and electrodermal
activity for stress recognition [281]. Among other findings on useful architectural features
(see RQ-3 below), the integration of the multihead attention mechanism before sequential
coding in the MHA-LSTM leads to a robust internal encoding of a representation. This
is promising as it shows that modelling accuracy in the in-the-wild domain can be further
improved by more advanced ANN attention mechanisms, suggesting that pure-attention
networks will be even more successful in the future (see Section 6.4).
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Second, this work experimentally addressed whether these time- and value-continuous
arousal and valence annotations can be transformed reasonably into segment summary
classes to allow a combined emotional and thematic summary understanding on the same
granularity (see Section 5.1.2). A naive idea towards a more intelligent unsupervised learned
method was also explored. Among the proposed models for prediction, the knowledge-based
SenSA architecture yielded the strongest text-based performance, while the MMT was the
most successful overall on the naive classes. However, the results remain at a low level.
The prediction results on the learned classes were found to be quantitatively improved.
Again, audio representations for arousal classes and text representations for valence classes,
especially BERT, exhibit the best performance. This consistency suggests that fundamental
traits are preserved in the class creation process. Qualitatively, the visualisations provide
insights into typical (temporal) characteristics of the classes, but this is not comparable to
the ease of interpretation of conventional emotion classes [37]. Considering the novelty
of time-and-value compression compared to previous value-only quantisation [104] and
extrapolation [102] approaches, these first experimental results bear further potential for
improvement towards dynamic granularities in MSA (see Section 6.4).

Third, motivated by the success of time-continuous annotations and the respective origin
of the data from online sources, it was investigated for the first time whether models can be
developed to quantify perceived trustworthiness (see Section 5.1.3). Due to the similarity
of the tasks, the experimental design, representations, and architectures could benefit from
the findings of the arousal and valence dimensions. The resulting DeepTrust architecture
employing multihead attention outperformed all baselines by a large margin of 50 %. The
content conveyed (text) seems to be of the greatest effectiveness for prediction, followed by
audio and video (e. g. , face) signals. With regard to the architectural design, it has been shown
that multiple attention heads and a large segmentation window are beneficial. This suggests
that long-term context is more influential for perceived trustworthiness than, for example,
for arousal and valence. For many use cases, such as consumer decision-making [48], a
fine-grained assessment of credibility offers a new entry point for research that can profit
from the scale of social media.

Finally, a potential new field of utilising time-continuous annotations in the context
of MSA to predict video popularity (e. g. , view, likes, comments) was outlined (see Sec-
tion 5.1.4). This way differs substantially from other attempts that have used metadata and
text such as comments [125, 126]. Interpretable patterns of up to medium-strong feature-
target correlations were found. For example, the absolute energy of the annotation course
of all three dimensions is positively correlated to views per day. Considering the findings
in the context of previous research, certain emotional characteristics found could support



Page 156 of 214 Concluding Remarks

content creators’ abilities to develop a parasocial relationship with their viewers in a more
purposeful way [117]. To explore the prediction of a video’s popularity, a semi-automatic and
an automatic feature selection method combined with an interpretable SVR was proposed.
Given this exclusively one-dimensional view, the automatic feature selection method yields
strong results based on features extracted from the valence annotations. This is likely caused
by the inherent sentiment relationship of the predicted user-engagement criteria.

The second elementary dimension of MSA, the emotion’s target (RQ-2), was attempted
to be extracted (almost) without human intervention and predicted using human annotations
in the form of objective speaker topics (see Section 5.2). First, experiments were conducted
to determine whether coherent speaker topics of a (video) corpus can be extracted without
a priori assumptions (see Section 5.2.1). For this, a graph-based method using only the
transcripts, GraphTMT, was proposed. It consists of specifically designed edge removal
mechanisms (e. g. , PTH) and representative-word prioritisation mechanisms, (TVS and
NDC). As the results have shown, these allow for a high robustness of outcome with very
little to no need for fine-tuning, which previously caused low-quality outcomes when using
other methods [150]. The success was measured using three different evaluation approaches.
The proposed method outperformed all baselines (LDA, HDBSCAN, and K-means) in
terms of measured coherence of the topics. Additionally, intratopic assessment found fine-
grained clustering. Finally, this method resulted in the most interpretable clusters with the
highest average hit rate in an intruder task conducted as a user study from a human-centred
evaluation perspective. The high error rate in transcripts is considered a severe difficulty of
this task [93]. The experiments suggest that the iterative approach to reduce edges based on
linkage distances seems to be particularly robust for large-scale automatic transcripts. As a
side experiment, the generalisability of the approach was investigated using a text evaluation
dataset (Citysearch), where GraphTMT also showed competitive results in terms of coherence
and intratopic evaluation. These promising findings demonstrate that graph-based machine
learning models are a genuine alternative in topic modelling.

Secondly, within the context of RQ-2, it was explored whether and how human-annotated
speaker topics can be effectively predicted (see Section 5.2.2). The multimodally annotated
speaker topics differ from the typical purely textual perspective [10]. In a rigorous set of
experiments, a large collection of representations and classifiers suitable for detecting ten
speaker topics from video segments was adopted. Besides the architectures already used in
the previous emotion-related tasks (LSTM-SA, MMT, and End2You), networks optimised
for an advanced linguistic understanding (ALBERT and SenSA) were introduced. The results
clearly support the understanding that text is the dominant modality for learning content-
related topics. Combined input from text and other modality representations exhibited slight
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improvements, predominantly for face-related and environmental visual features. It can be
speculated that this relates to the domain context, where very strong visually discernible
reactions might serve as an additional indicator for certain classes (e. g. , broad smile un-
der strong acceleration). Training a state-of-the-art Transformer (ALBERT) obtains the
strongest performance. However, the proposed parameter-light and second-best subsymbolic
architecture SenSA integrating common knowledge concepts needs only a fraction of the
parameters. In the sense of MSA, this opens up an efficient alternative, for example with
regard to real-time MSA.

As given by the name of the field, exploring inter- and intra-modal dynamics of the three
core modalities was a steady companion (RQ-3). From the unimodal perspective, most
notably text, in its original representation of symbolic and irregularly occurring strings of
words in time, has been proven to be extremely useful, despite the difficulty of aligning it
with regularly sampled audio and video signals. Similar to other work [98], the proposed
models exploiting cross-temporal attention mechanisms were able to cope with the poor
quality of automatic transcription of colloquial utterances and misfit to continuous-time
prediction targets more efficiently than models without. While there are clear strengths of
one modality depending on the prediction goal (e. g. , audio for arousal), multimodal fusion
almost invariably showed more effectiveness in almost all subtasks of MSA. This proves to be
very pertinent for the emotional dimension. In this work, early (e. g. , LSTM-SA), late (e. g. ,
DeepTrust), and hybrid fusion (e. g. , MMT) were explored. Early fusion often achieved
very good results on the development set, but failed to replicate on the test set. It is known
that a large input dimension in networks lead to bad generalisation capabilities [42]. Hybrid
fusion holds great promise for the future, but is currently still subject to many limitations
(see Section 6.3). Therefore, in this work, intermodal, temporal late-fusion ANN proved to
be a good compromise between strong unimodal predictors, reasonable training duration,
and learning temporal, intermodality dynamics.

Finally, to address the need for a more profound understanding of cross-modal relation-
ships, it was explored whether attention networks are suitable to explicitly model facial
muscles from the spoken word (RQ-4). The mechanisms were investigated in a fundamental
study predicting facial muscles from the voice on the multimodal dataset GEMEP. The
developed double-stacked LSTM-RNN with bidirectional local attention windows effectively
predicted the occurrence of chin raises and the encoder-decoder architecture with context
attention showed remarkably robust onset, apex, and offset prediction. This architecture
was applied on all FAU, and achieved several new state-of-the-art results, e. g. , predicting
lip corner puller and lid tightener, compared to previous benchmarks from neural networks
without attention mechanisms. It is likely that the reason for the improvement lies in the
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refined temporal modelling through attention weights applied after the input encoding. By
weighting the individual sequence steps depending on each output decoding step, the coding
bottleneck is bypassed. In doing so, no information is lost compared to first compressing
the entire sequence into a single representation for the subsequent decoding. In addition,
state-of-the-art mechanisms such as batch normalisation and class weighting stabilise the
training procedures on this reasonably small dataset.

6.2 Social and Ethical Considerations

Throughout this work, the data collection and annotation process has been intensively ex-
plored and, above all, models for emotion and object recognition for real-life environments
have been developed. In recent years, emotion recognition systems, especially those mak-
ing decisions about humans, have faced hefty criticism [323–325]. While initial ethical
discussions on the theory of emotional machines themselves date back a long time [326],
many practical implications are only slowly surfacing as technology continues to advance
and new sources of data emerge (e. g. , the internet, smartwatches, CCTV surveillance). For
example, in the context of this work, ethicists and privacy advocates have intensified efforts
to elaborate whether working with data from the public domain (e. g. , the internet) can
pose risks to individual privacy [327–329]. Constant companions of all the research and
implementation decisions faced here have been ethical, legal, and social considerations. This
section examines these aspects collectively and presents them to the reader in a structured
way. For each section, the basic theoretical principles are presented first, followed by the
use case specific policies derived for the crafted dataset, organised challenges, and designed
models. As in previous work [7], this is approached from the data collection and the potential
application side.

6.2.1 Data Collection

Subject of investigation: The people displayed and the data’s origin has a strong influence on
the sensitivity of the data. As with data characteristics (see Section 2.2), these can be roughly
divided into three groups, though the boundaries are fluid and different characteristics can
occur in each case. In the first group fall data collections from the beginning of the emotion
recognition field. These often include posed situations that actors had to imitate [321]. These
performances are, therefore, in a thoroughly professional environment, whose participants
are ordinarily compensated. These data are worthy of protection, but since neither the
artificial context, the generated emotion, nor the environment allows conclusions drawn
about the person, personality rights are scarcely affected. A side effect is that the recorded
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emotion does not necessarily correspond to a natural person’s authentic reaction, which
are often internalised because most people associate a specific behaviour such as gestures
and facial expressions with an emotion. In this setting, aspects such as spontaneity or
naturalness of an affect cannot be examined at all [10]. The second group consists of non-
professional performers, such as students. In these, recordings capture the exchange of
personal views on a topic, only led by a rough conversation guideline [12]. The monetary
compensation of the subjects is presumably lower than that of actors, and the impressions
conveyed correspond to their nature. This data is particularly worthy of protection. For
example„ in therapeutic settings [330], personal experiences are shared, and participants
in the study will always remain identifiable from their personal environment [7]. Informed
consent and thorough explanation are necessary [331]. The trend goes towards the last group,
collection of data whose use for a study was not apparent to the participants at the time
of observation [11, 27, 58]. From a research perspective, this is highly desirable and an
accepted solution, as the consciousness of a study can influence the subject’s behaviour being
studied. Databases whose consent is obtained after recording are very rare [332]. More
often, however, data recorded for another purpose is used [58, 67] with the particularity that
the data is freely available on YouTube. From an ethical point of view, this raises several
questions: The participants whose private states are mined have no awareness of the study,
so they are unlikely to be compensated for it, and, in the context of internet sources, publicly
visible content, free of charge, does not comply without rights [327].

Dealing ethically with data that is freely available on the internet is relevant for this
work since the dataset also falls into this category. For this, a preliminary review describing
the study’s aims in a structured manner was submitted to the Ethical Board and the Data
Protection Commissioner of the university [24]. As in other works [327], both parties
concluded that no in-depth review or specific approval is necessary from the Boards and the
participants. The reasons given are a) the data (car reviews) per se do not touch any personal
rights, b) are already recorded and publicly available, therefore researchers do not interact
with the subjects and creators should have a general understanding that the data might be
analysed when openly accessible, and finally, c) no harm to the health of the database users
can result from watching the videos.

However, copyright concerns have been raised because the videos have to be downloaded
to be annotated and distributed to future challenge participants — without the explicit
permission of the creators [327, 333]. For this matter, the legal doctrine of the Fair Use
Principle exists in the US legal sphere [334]. It states that copyrighted material may be
reused under certain circumstances without obtaining permission from the copyright holder.
Research is particularly affected by this. As a result, research-relevant data from the public
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domain lose copyright protection for non-commercial use. A comparable principle does
not exist in the European Union, entailing a risk for academic bodies [327]. As concluded
in Stappen et al. [24], to legally protect researchers in other countries outside the US, it
is necessary to contact creators individually. This process is a very time-consuming and
hardly practicable task, as creators cannot be contacted via an in-messenger platform and
private individuals tend not to provide an email address. In the case of this study, this led to
relying more on (semi-)professional reviewers for data collection, losing more than 50% of
the targeted selection size due to missing responses and contact information.

Environment: Not only the subjects themselves but also their surroundings and public
spaces display privacy-sensitive information. The camera might unknowingly catch other
people during an in-the-wild recording [12], the immediate environment displays private
premises [58], or an object enters unexpectedly, for example, capturing the licence plates
of passing vehicles [24]. Legally, the definition of private information varies between
jurisdictions; however, research is done globally. For MUSE-CAR, the focus was, therefore,
on videos that only depict one person. Even though people and elements in public areas can
be camouflaged manually, this way is not scaleable in practice with increasing data volumes.
At the same time, no automatic system is or will ever be perfect, so risk can only be reduced,
not eliminated. Until almost perfect disguise systems are developed for large-scale use and
are safe from unmasking attempts [328, 335], the responsible handling lies not only in the
creation process but also in the hands of (academic) receivers of in-the-wild datasets.

Sharing and storage: One aspect of this handling is the storage. Numerous papers
emphasise the importance of making collected data available for research [7, 327, 336],
especially in the field of MSA, a tremendous challenge [7, 337]. Open data allows other
researchers to build upon previous work, both from a scientific and technical viewpoint.
Scientifically, reproducibility is ensured, and technically, data sharing allows building upon
laborious work such as data preparation. Releasing the data comes with obstacles. While
some aspects, such as protected storage, are well investigated, others are open to research. In
order to legally pass on rights acquired from creators or, in other cases, participants to others,
a licence agreement is needed. This contract, between the licence holder and licensee, is
known as an End User Licence Agreement (EULA). In theory, it is legally binding and is
intended to ensure ethical exploitation. However, a right without the possibility to enforce
it is not a right. This problem becomes evident in the following example: Let us assume
a German university grants an EULA of a depression dataset to a professor in a foreign
country, who subsequently sells the data for an application to a start-up. This is a clear
violation of a standard non-commercialise clause [8, 26]. A potential product would capture
models trained with this data but would not be publicised in the product’s advertising or in
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its use by the customer. The infringement is therefore difficult if not impossible to detect.
For the sake of this thought experiment, let us assume that this violation was discovered by
chance. A university is exclusively regulated within a national legal sphere and, apart from
international research projects, operates within that jurisdiction. It will have little legal means
at its disposal to enforce rights across national borders. Besides capacity and know-how,
another issue is that there are few regulative frameworks [327] that make such a contract
legally binding in every country of the world. Furthermore, the EULA might cover elements
such as, e. g. , copyright, which are not covered, not indictable (e. g. , fair use), or differently
interpreted by the foreign legal system. At least in the case of academic EULA holders, there
is the option of contacting other officials at the university where the signee is employed to
request support in this matter. Another option would be to make such violations public so that
other institutions no longer share data with the contract infringer. However, the effectiveness
of this enforcement is questionable and the concept as such offers no protection against such
a violation occurring in the first place. This illustrates that data sharing must always be seen
as challenging to control and a high risk for ethical violations.

Zenodo [338]1 is a data-sharing platform mandated by the European Commission to
make it easier for all researchers to share, curate, and publish data and software. The research
project is at the forefront of the Open Access and Open Data movement in Europe and
provides a secure platform run by an established academic institution, CERN, on EU servers.
Even though the problems mentioned largely remain, this technical support increases control
over data accessibility. To access MUSE-CAR, a participant first needs to sign the EULA
and submit it digitally. The form checks that the email address is a valid academic one.
A human controller also checks whether the person holds a permanent academic position.
For the organised challenges and other research, more than 100 teams were given access in
this way for a fixed period of three months. Further, statistics are provided (e.g., number
of downloads), which helps monitor access on an account level. To date, the repositories
featuring different data selection of MuSe-CaR have recorded more than 900 absolute (650
user unique) downloads.

For data of higher sensitivity, e. g. , health care [8, 339], this standard might still not be
sufficient and new ways are needed. The latest ideas, such as OpenMinded2 seek to tighten
this concept further to resolve the issues around EULAs. Owners retain complete control
over their data while enabling scientists to train models on (private) datasets without ever
accessing them directly. A future challenge in the EU is posed by introduction of the General
Data Protection Regulations (GDPR). To be highlighted are the principles around the right to

1www.zenodo.org accessed July 15, 2021.
2www.openmined.org accessed August 8, 2021.
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withdraw consent and the right to be forgotten will present researchers with further challenges
in data sharing, both in terms of collection and technical feasibility [340].

6.2.2 Application

The focus of this work on publicly available in-the-wild data illustrates how far the ground-
work has advanced and that a measure of sentiment on specific topics in large-scale datasets
is on the verge of widespread application.

Reliability: Even though systems are constantly improving, perfect reliability in recog-
nition has not yet been achieved and probably never will be [341]. There are several reasons
for this. As is the case today, future algorithms will also have the challenge that emotions can
by definition never be completely objective, or thus generalisable [326], nor do they need a
perfect model of the world including all person-related information to be understood. This
is especially the case for very complex emotions [7]. This work has looked at the fusion of
multiple subjective emotion annotations and seen room for improvement in these approaches.
Sources of error, such as human error or distractions during annotation, are not unlikely.
There is also the haptic challenge of transferring a rapidly changing emotion to a recording
device (joystick) [278] and the challenge of explaining a complex emotion definition across
many annotators, social groups, and cultures. In the latter case, it is evident from Section 2.2
how difficult it is to uniquely define a complex emotion such as trustworthiness.

The first prerequisite for emotional reasoning or even the synthetisation of emotions in
applications is their recognition. Faulty recognition, therefore, permeates an emotionalised
system [325]. With this awareness in mind, one also has to imagine an average user. Users
are used to computers making objective, clearly comprehensible decisions. Regardless
of its accuracy limitations, the output of a computer will be perceived as factual [7, 325].
With emotions, this is not the case. In addition, it is fundamentally questionable whether
a simulated understanding of emotion can lead to more objective decision-making by a
machine.

The error in recognisability and uncertainty has minor effects in use cases studied here.
Usually, two applications are seen as closely connected to the analysis of online reviews [10].
On the one hand is an automated understanding of trends through aggregation of different
topics, their aspects, and the associated domains of videos uploaded. Therefore, it serves
exclusively for an aggregated understanding of a situation or change and thus has an indirect
influence on decisions. On the other hand is the improvement of search and recommendation
algorithms through a better object-emotion understanding of video content. Here, the focus
is on optimisation, so humans do not expect a perfect result, and suggestions instead serve as
a recommendation for a decision made by the user.
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Nevertheless, the dataset and the findings of these experiments can generally also be
leveraged for other applications. In particular, applications in the medical field are increas-
ingly using real customer in-the-wild data. This may include medical decisions that can
save or endanger human lives [339]. The necessity and proportionality of such an invasive
application must be continuously examined for each use case, as this is where a person’s
most private data is collected and processed. Faulty profiling or inferences based solely on
the association with a certain group of people showing the same emotions cannot be ruled
out either.

Collection bias: Another frequently addressed problem is the different treatment of
people based on external characteristics such as ethnicity [342]. Although this creates
critical problems, human discrimination due to a collection bias [341] towards skin colour
may be a more temporary problem. Providers of such applications will naturally try to
achieve improved recognition rates [343]. Nevertheless, this problem should continue to be
closely monitored by the research community, as other biases exist or will arise due to social
inequalities inherent in human nature.

Limiting freedom of speech: Through automated analysis of online data, multimodal
sentiment analysis can detect problematic content such as hate speech or fake news more
accurately and quickly [10]. However, the automatic detection of these fuzzily defined
concepts is difficult, and even simple forms of hate speech detection present social media
platforms and algorithms with to-date insurmountable obstacles [344]. Furthermore, auto-
matic blocking can also capture ordinary content, which might become blocked as collateral
damage. These unsystematic errors can also have an impact on important opinion-forming
processes. Another risk is oppressive states that engage in large-scale censorship [345].

Although this topic is receiving increased attention from the public, research community,
and press, clear conclusive regulation is still in its infancy. The EU has taken the first steps
by the regulation of the European Parliament and the Council Laying Down Harmonised
Rules on Artificial Intelligence (Artificial Intelligence Act).3 Here, emotion recognition
applications (outside of research) are classified as biometric technology. The act has made
clear that even with the primary goal not being the identification of individual people, risks
in terms of ethics and data protection need to be examined more closely. Other geographical
regions such as the United States are adopting similar plans but, in some cases, have a
fundamentally different cultural understanding of data privacy. This will continue to be
a significant challenge in implementing global frameworks in the future. Involving the

3https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206&from=DE/ accessed
August 4, 2021.
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research-intensive Asian and North American regions will be vital to ensure worldwide
uniform standards for ethical and sensible applications.

6.3 Limitations

Despite the successful creation of the MuSe-CaR dataset and several state-of-the-art methods,
three limitations of the methodology are highlighted in the following.

Data generalisation, specialisation, and trade-offs: The breakthrough of MSA has
emerged through the exponential growth of data and novel DL methods. Unlike classical
ML methods, saturation effects do not occur. Instead, more complex patterns can be learned
from the available data variance [193]. Limiting factors, however, are the available data
sources and the need for human-generated annotations [283]. User data from public data
sources harbour new dependencies that did not exist with lab-generated data. For example,
as in the case of MuSe-CaR, demographic distributions in training data are only estimable
(see Section 4.1). Furthermore, some groups of people do not use the internet at all or
only to a limited extent. This can lead to an unintended selection bias (see Section 6.2).
Using a sample for training that does not reflect the population leads to the risk of erroneous
predictions for groups of gender, age [346], and ethnicity. A partial solution to create a more
accurate understanding of the collected online data and possible implications is to estimate
demographics at a large scale using biometric facial recognition techniques [347].

However, this does not solve the contextual challenge, which also forces a trade-off
between deep and broad data due to financially expensive human annotations. Wide data
enables generalisation, which means that, for example, emotion recognition can be applied
regardless of the domain. Complex emotions like sarcasm are ambiguous and situation-
dependent [348]. However, recognising them often requires deep domain understanding,
and thus deep data. Modelling a complex thematic understanding only allows the humorous
twist to become recognisable [57]. An understanding of domain-specific entities and other
contextual objects of interest (in the dataset presented here for car parts and topics in the
automotive environment) as well as their relationship to each other and to humans (e. g. ,
human-object interaction [349]) is only possible through fine-grained modelling. This
applies as well as to the rapid development of generic understanding of text modality were
the arguments to go deep instead of broad. However, this only leads to an investigation
of mechanisms in a narrow domain and cannot necessarily be generalised to complexities
in other domains. One potential future solution could be artificial general language and
multimodal intelligence models with zero-shot capabilities [350, 351]; however, those are
not in sight yet.
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Model interpretability: Even though DL systems showed tremendous success in this
and many other works, they present the developer with a lack of interpretability being a
broadly noted structural challenge [352]. Modelling a complex world leads to incomplete
information, which in turn will always lead to erroneous predictions. Without a qualitative
understanding of what is learned and how it is learned, it is difficult to understand errors,
debug them, and develop custom solutions. Typically, this leads to technically generic
rather than domain hypothesis-driven approaches and objectives, wherein fundamentally
more robust learning mechanisms are developed and proven by higher scores on benchmark
datasets [353], such as the context, local, or MHAL attention mechanisms used in this work,
or by indirectly exerting control over the training data to be used. In the context of this work,
the issue is specially relevant because multimodal fusion has co-dependencies on all upstream
recognition systems [10]. In specific application fields of MSA for sentiment detection or
recommendation engines, this can lead to a poor user experience and, in the adjacent AC
or precision medicine applications, even to human-damaging decisions. Explainable AI
research approaches attempt to offer a solution by combining the proposed methods with
attention decoding or gradient mapping to achieve better transparency while maintaining the
prediction level of deep learning methods [354].

Multimodal fusion: As described earlier, this work mainly used early and late fusion.
Early fusion of representations led to overfitting, while in later fusion, training improved
the representation only in terms of intermodal dynamics. Until the final fusion step, much
information that might be precious in the intermodal context is already lost. Hybrid fusion has
emerged to fuse modalities after initial encoding and solve these problems [42, 13]. However,
efficient mechanisms that are able to cope with large ANN extracted representations have not
been found yet. For example, fusion by multihead attention, as experimented with in this
work, requires equal dimensions from all modalities due to mathematical constraints [91].
Reducing all representations to the dimensions of the smallest leads to heavy information
loss. Increasing them to the largest is technically impractical given current GPU memory
limitations.

6.4 Outlook

Establishing MuSe-CaR into the research community through two challenges and with
more than 120 academic groups successfully having requested access, the publications, and
accompanying source codes, this thesis has laid a multitude of foundations for future research.
In the following, the limitations and other ideas are taken up and an outlook on future work
is given.
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Semantic vision: MSA aims to explore the context alongside emotions in videos. Cur-
rently, semantic contexts are still mostly derived from the spoken word, such as speaker
topics. However, the opinion holder uses the full spectrum of communication in videos and
incorporates other modalities [355], such as pointing and gestures. Predictive vision repre-
sentations were used in this work, but only as additional input to speaker topic recognition.
Interaction with the environment can be modelled directly for MSA and extracted in the form
of object-human structures [349]. The object and hand do not necessarily overlap or may
not in line with a fixed camera in the wild, so that, for example, for finger-pointing, both
the finger and the object in a room have to be calibrated spatially by anchor points. Stappen
et al. has shown similar first approaches for gaze recognition [253]. The explicit derivation
of human-object relationships represents another exciting extension of MSA to open up a
new semantic level.

Dynamic granularities: Sentiment analysis is carried out at different levels of gran-
ularity, for example, on aggregated topics [356] and subdivided aspects [304]. There are
also methods of thematic breakdown into hierarchical levels and concepts [38, 357]. Such
hierarchies are hardly established in MSA so far, especially with regard to the emotional
component. Affective Computing is based on fine-grained, continuous affect annotations,
while language-influence MSA relies on sentiment and emotion classes for individual top-
ics, aspects, or subaspects. However, an emotion does not necessarily have to arise in a
direct spatial context (“food was excellent”), but can be a logical conclusion from complex,
long utterances that requires a larger emotion context. A hierarchical context and different
granularity would allow a seamless zoom in and out on the level of targets.

Pure-attention networks: This work focuses mostly on method development within
conventional ANN architectures (e. g. , LSTM-RNN) that embed attention mechanisms.
While pure-attention models, such as Transformers, are the new state-of-the-art in the
textual domain [81, 212] and have also achieved very strong results in this work (see
Paragraph 5.1.2.1.2), pure-attention-based architectural variants are only slowly gaining
acceptance in the video [358] and audio domain. In the MuSe 2021 challenge, which had just
ended at the time this work was finalised, models using audio transformer representations
such as wav2vec [359] yielded the strongest performance gains. Further modality-specific
adaptations are necessary for a fully integrated approach [350, 351]. In particular, multimodal
Transformers, hybrid fusion networks or spiking neural networks could lead to a much deeper
dovetailing of the different modalities than early or late fusion [253]. However, initial
approaches still lack targeted mechanisms, especially for modelling continuous emotions
and multimodal target extraction, but present an exciting new research direction.
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Given the technological leaps in recent years, the research field of MSA can look forward
to a prosperous future. We can soon expect that machines will help us to open up the vast
amounts of multimodal, unstructured knowledge and take us to a new level of the information
age.





Acronyms
Symbols | A | B | C | D | E | F | G | H | K | L | M | N | O | P | R | S | T | U | V | W | X

Symbols

at number of attention heads.

bs batch size.

f s filter size.

h hidden state dimensionality.

hs hop size.

ks kernel size.

lr learning rate.

n number of layers.

ps pool size.

s strides.

tc topic coverage.

to topic overlap.

tanh Hyperbolic Tangent Function.

ws window size.

A

absE absolute Energy.

AC Affective Computing.

ACC Accuracy.
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AI Artificial Intelligence.

ALBERT A Lite BERT for Self-Supervised Learning of Language Representations.

ANN Artificial Neural Network.

ASOC Relative Sum Of Changes.

B

BERT Bidirectional Encoder Representations from Transformers.

C

CA Circumplex Model of Affect.

CBMe Count Below Mean.

CBOW Continuous Bag of Words Model.

CCC Concordance Correlation Coefficient.

CE Cross-entropy.

Citysearch Citysearch New York corpus.

CNN Convolutional Neural Network.

ComParE LLDs ComParE Low-Level Descriptors.

CrM number of Crossings of a point.

CSG Continuous Skip-gram Word Model.

D

DARMA Dual Axis Rating and Media Annotation Software.

Deep Spectrum Spectrograms Feature Extraction from Audio Data with Pre-trained Convo-
lutional Neural Networks.

DeepTrust Deep Trust Multihead Attention Network.

DL Deep Learning.
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DNN Deep Neural Network.

DTW Dynamic Time Warping.

E

eGeMAPS extended Geneva Minimalistic Acoustic Parameter Set.

ELAN Eudico Language Annotation Tool.

EM Estimation-Maximisation Algorithm.

End2You End-to-End Learning.

EULA End User Licence Agreement.

EWE Evaluator Weighted Estimator.

F

F1 F1-score.

FACS Facial Action Coding System.

FastText Fast Text Classifier.

FAU Facial Action Unit.

FFL Fully connected Feed-Forward Layer.

FNN Feed-Forward Neural Network.

G

GCTW Generic-Canonical Time Warping.

GDPR General Data Protection Regulations.

GeMAPS Geneva Minimalistic Acoustic Parameter Set.

GEMEP General Multimodal Emotion Representations.

GMM Gaussian Mixture Model.

GoCaRD Generic, Optical Car Part Recogniser and Detector.
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GPU Graphics Grocessing Unit.

GraphTMT Graph-based Topic Modelling approach for Transcripts.

H

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise.

HMM Hidden Markov Model.

K

kurt Kurtosis.

L

LDA Latent Dirichlet Allocation.

LLD Low-level Descriptor.

LSAMe Last Strike Above the Mean.

LSBMe Last Strike Below the Mean.

LSTM-RNN Long Short-Term Memory Recurrent Neural Network.

LSTM-SA Long Short-Term Memory Recurrent Neural Network with Self-Attention.

M

MACh Mean relative Absolute Change.

MAE Mean Absolute Error.

mAP Mean Average Precision.

MCh Mean Change.

MHA-LSTM Multihead Attention Long Short-Term Memory Recurrent Neural Network.

MHAL Multihead Attention Layer.

ML Machine Learning.

MMT Multimodal Transformer.
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MSA Multimodal Sentiment Analysis.

MSDC Mean value of a central approximation of the Second Derivatives.

MSE Mean Square Error.

MTCNN Multi-task Cascaded Convolutional Network Framework.

MuSe-CaR Multimodal Sentiment Analysis in Car Reviews.

MuSe-CaR-Part Multimodal Sentiment Analysis in Car Part Frames.

MuSe-Sent Multimodal Sentiment Sub-challenge.

MuSe-Toolbox Multimodal Sentiment Analysis Continuous Annotation Fusion and Discrete
Class Transformation Toolbox.

MuSe-Topic Multimodal Emotion-Target Sub-challenge.

MuSe-Trust Multimodal Trustworthiness Sub-challenge.

MuSe-Wild Multimodal V-A Sentiments in-the-Wild Sub-challenge.

MuSe-Wilder Multimodal Continuous Emotions in-the-Wild Sub-challenge.

N

NDC Node Degree Connectivity.

NLP Natural Language Processing.

NSP Next-Sentence Prediction.

O

OpenPose Open Multi-person System to Jointly Detect Human Body, Hand, Facial, and
Foot keypoints.

openSMILE Open-source Speech and Music Interpretation by Large-space Extraction
Toolkit.

P

PCA Principal Component Analysis.
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PCC Pearson Correlation Coefficient.

PreDa Percentage of Reoccurring Data points of non-unique single points.

PTH Percentile Similarity Threshold.

R

RAAW Rater Aligned Annotation Weighting.

RCNN Recurrent Convolution Neural Network.

ReLU Rectified Linear Unit.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.

S

S2S Sequence to Sequence.

SaEn Sample Entropy.

SenSA SENtic Sentiment Analysis Learner.

skew dynamic sample skewness.

SNL SenticNet-based Learning.

SP Signal Processing.

SVM Support Vector Machine.

SVR Support Vector Regressor.

T

TF Term Frequency.

TF-IDF TF-Inverse Document Frequency.

TVS Topic Vector Similarity.

U
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UAR Unweighted Average Recall.

V

VGGFace Very Deep Convolutional Networks for Large-Scale Face Recognition Descriptor.

VGGish CNN Architectures for Large-Scale Audio Classification.

W

WER Word Error Rate.

Word2Vec Word to Vector.

X

Xception Depthwise Separable Convolutions Network.
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