crystals

Article

Frictionless Motion of Diffuse Interfaces by Sharp
Phase-Field Modeling

Michael Fleck *(, Felix Schleifer 1

check for
updates

Citation: Fleck, M.; Schleifer, F,;
Zimbrod, P. Frictionless Motion of
Diffuse Interfaces by Sharp
Phase-Field Modeling. Crystals 2022,
12,1496. https://doi.org/10.3390/
cryst12101496

Academic Editors: Wenwu Xu, Fawei
Tang and Massoud Malaki

Received: 26 September 2022
Accepted: 14 October 2022
Published: 21 October 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Patrick Zimbrod 2

Metals and Alloys, University of Bayreuth, Prof.-Riidiger-Bormann-Strafie 1, 95447 Bayreuth, Germany
Applied Computer Science, University of Augsburg, Am Technologiezentrum 8, 86163 Augsburg, Germany
*  Correspondence: michael.fleck@uni-bayreuth.de

2

Abstract: Diffuse interface descriptions offer many advantages for the modeling of microstructure
evolution. However, the numerical representation of moving diffuse interfaces on discrete numerical
grids involves spurious grid friction, which limits the overall performance of the model in many
respects. Interestingly, this intricate and detrimental effect can be overcome in finite difference (FD)
and fast Fourier transformation (FFT)-based implementations by employing the so-called sharp
phase-field method (SPEM). The key idea is to restore the discretization-induced broken translational
invariance (TI) in the discrete phase-field equation by using analytic properties of the equilibrium
interface profile. We prove that this method can indeed eliminate spurious grid friction in the three-
dimensional space. Focusing on homogeneous driving forces, we quantitatively evaluate the impact
of spurious grid friction on the overall operational performance of different phase-field models.
We show that the SPFM provides superior degrees of interface isotropy with respect to energy and
kinetics. The latter property enables the frictionless motion of arbitrarily oriented diffuse interfaces
on a fixed 3D grid.

Keywords: phase-field modeling; microstructure evolution; grid pinning; grid anisotropy; finite
differences

1. Introduction

Diffuse interface descriptions, such as phase-field models, provide an elegant way of
modeling microstructure evolution involving phase or domain boundary motions. In these
models, the diffuse interfaces serve as “smeared out” volumetric surrogates for surface-type
defects. The surface-type defects are carriers of physical access energy and their motion is
driven by the Gibbs-Thompson effect of reducing the total amount of surface energy as well
as other volumetric driving forces. As compared to sharp interface descriptions, the difficult
problem of explicit surface tracking is avoided, which allows for any topological evolution
of the phase or domain structures, such as interface instabilities, shape bifurcations,
nonlinear pattern selection, particle nucleation, or dissolution. Phase-field methods are
extensively used in the simulation of complex microstructure evolution problems, such
as solidification [1-5], solid-state transformations [6—10], crack propagation [11-14], ferro-
electric domain evolution [15], grain growth [16-18], as well as many other [19-23].

Quite often, the width of the diffuse interface appears to be the smallest physical
length-scale in the system. Clearly, in order to increase the numerical efficiency in all
these cases, one is interested in choosing the smallest possible numerical width resolution,
while still keeping the benefits from the diffuse interface description. So far, spurious grid
friction (or grid pinning in the phase-field equation) has been the major limiting factor in
this regard.

For an understanding of what spurious grid friction is, consider an interface between
two phases at different bulk-free energy density levels. The level difference, also called
the driving force, induces an interface motion lowering the total free energy of the system
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by lowering the volume of the high-energy phase. After a transient period of time, a
homogeneous and time-independent driving force should always result in a stationary
state with a constant transformation velocity. The resulting stationary interface velocity v is
proportional to the driving force and is exactly prescribed by energy conservation principles.

Figure 1 illustrates the influence of spurious grid friction on the stationary interface
motion. An animated version of this figure is provided in the Supplementary Materials.
We compare the resulting interface motion for different dimensionless profile resolutions
A = A/Ax, ie., the ratio between the phase-field profile width and the numerical grid
spacing. In Figure 1a, the phase-field values at different grid points (full symbols) and
the least square fit of the profile function Equation (3) around the interface region are
plotted. On the right, in Figure 1b, the total interface energy and the fitting value for
the phase-field profile width are plotted both as a function of the dimensionless position
of the interface center ¢,(t) = c¢,(t)/Ax, which takes an integer value whenever a grid
point is located in the middle of the interface. For the conventional continuum field (CF)
type phase-field models, the interface propagates with a clearly smaller average velocity
than expected. This indicates a spurious, friction-like loss of energy during the interface
motion. Further, we obtain oscillations in the interface energy and velocity as the interface
center passes one grid point after the other. With the decreasing profile resolution, we
obtain increasingly larger drops in the average values as well as increasing oscillation
amplitudes. For the CF model, this culminates in fully destroyed interface kinetics at the
profile resolution A = 2.0 and below, which is commonly referred to as grid pinning, see
yellow curves in Figure 1. Grid friction and pinning during stationary interface motion
in phase-field modeling has been studied earlier [24,25]. Please note, that the coupling of
the phase-field to a local bulk energy density difference is prototypical for many advanced
phase-field models. In the modeling of microstructure evolution, such inhomogeneous
driving forces are calculated from local temperatures [26-28], local concentrations [29-33],
local strains [34-36] or combinations of these [37—40].
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Figure 1. Illustration of the influence of spurious grid friction on the motion of a constantly driven,
planar interface. (a) Comparison of conventional continuum field (CF) models for different phase-
field profile resolutions A = A/Ax with the translational invariant (TT) model for A = 0.5 (green
curves) (b) The energy density and the interface velocity, as measured during the simulation, are
plotted as functions of the advancing interface center &, (t) = ¢, (t)/Ax. The dimensionless driving
force is ji = uAx/T = 0.1. The CF model is subject to pinning for the case of A = 2.0. The logarithmic
scale bar on the right shows how much smaller the relative velocity error for the TI model is in
comparison to those from the CF model. An animated version of this figure is provided in the
Supplementary Materials.

Recently, Finel et al. found a strikingly novel and surprisingly simple way to deal
with spurious grid friction in one dimension [41]. The method is conceptually related to
previous suggestions to improve the numerical performance of phase-field solvers based
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on the phase-field profile function [42—48]. Similar formulations involving the section-
wise defined sinus, such as phase-field profiles, have been independently proposed by
J. Eiken [49]. The key is to restore the translational invariance (TI) in the discretized phase-
field equation by using analytical properties of the phase-field profile function, see Figure 1,
the green curve. The TI model, as shown by the green curves in Figure 1, is neither subject
to grid friction nor grid pinning even though the phase-field width has been chosen as
small as A/Ax = 0.5. We should note that choosing A/Ax = 0.5 means that over 96.4% of
the hyperbolic tangent interface profile is resolved by just one grid point, see Equation (3).

The aim of this work is to prove that spurious grid friction can be eliminated by the
sharp phase-field method in one dimension as well as in three dimensions. We define
the test configurations, which allow the comprehensive, quantitative evaluation of the
intricate influence of grid friction effects on the operational performance of different phase-
field models within a unified finite difference (FD) framework. The starting point is the
stationary interface motion in one dimension driven by a constant chemical potential
density difference. Depending on the modeling details, spurious grid friction and pinning
can seriously limit the total parameter range of the reasonable spatial resolution. In the three-
dimensional case, the interface orientation relative to the orientation of the computational
grid appears as an additional degree of freedom. Keeping the uniform, cubic computational
grid fixed, we investigate the influence of varying interface orientations on the stationary
motion, see Figure 2. The realization of this configuration requires imposing special
boundary conditions for the phase-field, which meets the boundary plains under angles
that are different from 0° or 90°. Within this article, we newly propose suitable boundary
conditions for this purpose. Deviations of the resulting interface velocity from the theoretic
expectations reveal the effect of spurious grid friction. We show that the SPFM can also
provide frictionless motion of planar interfaces for arbitrary interface orientations, even in
the case of the very low numerical resolution of the diffuse interface profile. Finally, we
discuss possible grid friction effects on the 3D shape evolution of a single particle within a
matrix phase at constant particle phase volume.

¢
=

phase-field

Figure 2. The stationary interface motion simulation with interface orientations, which differ from
the principal axes of the computational grid.

The article is structured as follows: The theoretic aspects of grid friction and how the
sharp phase-field method deals with it are presented in Section 2.1. This is followed by the
description of the newly proposed contact angle boundary conditions for the phase-field
in Section 2.2. In Section 2.3, we discuss a new method for the accurate local measure of
the interface center and profile width by nonlinear profile interpolation. The presentation
and discussion of the results can be found in Section 3. It starts with the one-dimensional
study of the effect of grid friction and grid pinning on the operational limits of different
phase-field models, in Section 3.1. In Section 3.2, we discuss the case of stationary interface
motion with nontrivial interface orientations in the three-dimensional space with the aim
of quantitatively evaluating the residual kinetic grid anisotropy of different phase-field
models. Section 3.3 is devoted to the quantitative evaluation of the residual energetic grid
anisotropy of different phase-field models, by considering the particle shape evolution
toward quasi-equilibrium conditions at constant phase volumes. Finally, based on the
present results, in Section 3.4, we discuss the potential computational gains of using the
SPEM, also going beyond the finite difference (FD) method.
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2. Methods
2.1. The Sharp Phase Field Method (SPFM)

We begin by going through the necessary discretization methods in order to implement
the SPFM computationally. The discretized simulation domain in three dimensions consists
of a uniform, Cartesian grid of cubic shape, as is usual for simulations based on the finite
difference (FD) method, where one is restricted to operating on equispaced, orthogonal
grids. We describe orientations and directions relative to the simple cubic computational
grid using a Miller index notation system, where the three primitive translation vectors,
i.e., (100), conveniently correspond to the system’s orthonormal Cartesian basis vectors.
The SPFM is based on a discrete Helmholtz free energy functional F [¢p| = Yp fpAx3, with
a grid spacing Ax along the principle axes. The discrete Helmholtz free energy density f,
associated with the grid point p is given by

I A2 e 2
fo :@;fijj(7(ak Do)+ 8k(0p) ) + (). )

where the discrete directional phase-field derivatives, 9" ¢p, are approximated by forward
differencing 9 ¢p = (Pp1r, — Pp)/|1i| and r; denotes a numerical grid vector connecting
two neighboring grid points along the direction number k. Besides the central grid point p,
the formulation involves grid points on the first three neighboring shells j = 1, 2,3, with
|1y | = \/jAx, as summarized in Table 1. For a given neighboring shell with m j neighboring
nodes, the coefficients v; = 3/m; are correct for the multiplicity of the shell. Each of the
three different summations,ie,j=1:k=0...2,j=2:k=3...8andj=3:k=9...12,
over all the directions constituting a certain neighboring shell results in an independent
approximation of the continuous phase-field square gradient contribution to the free energy
density. The relative weightings 7; of the three different realizations are chosen to obtain
the best possible energetic isotropy [41,50]. All the equilibrium potentials g (¢) are minimal
at ¢ = 0 and ¢ = 1. These states correspond to the two distinct phases of the system. A
denotes the width of the diffuse interface, I' is the interface energy density, and Cr is an
interface energy calibration parameter. A positive bulk free energy density difference y
favors the growth of phase ¢ = 0 at the expense of phase ¢ = 1. The interpolation function
h(¢) has to satisfy #(0) = 0 and k(1) = 1. Further, a vanishing slope at dyh(¢ = 0,1) =0
is demanded, to keep the local minima of the total potential energy density at ¢ = 0 and
¢ =1

The Allen—Cahn equation prescribes the time evolution of the phase-field 8t<pp to be
proportional to the functional derivative of F with respect to the phase-field, i.e., —J4F. We
write [51,52]

BAT - spp = —2M6,F, )

where M is a kinetic coefficient comparable to a diffusion coefficient with dimension
[M] = m?s~!. The functional derivative is defined as §,F = 9pfp — Lk 9 (a@k 9) fo)
where the second directional derivative, 9, , is approximated by backward differencing,
ie, 0, (9fp) = (3fp—r, —9fp)/|r|, and 9y = 9/9¢ abbreviates the partial phase-field
derivative ¢. The continuum phase-field Equation (2) promotes solutions of the form

®)
where n is the unit normal interface vector and ¢, = vyt denotes the central interface
position, moving with the velocity vy,. During the stationary motion of a planar interface,
a constant amount of energy per unit time interval dissipates via the progressing phase
transformation. Thus, total energy conservation dictates the phase transformation rate
as well as the interface velocity to be exactly determined by the driving force u via
vy, = —Mp/T. We should note that the phase-field parameter A, the controlling width of
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the hyperbolic tangent interface profile, is not uniquely defined in the literature. Here, the
A is defined in such a way that the fraction of tanh2 ~ 0.964 of the total transition from
¢ = 0to ¢ = 1 happens within the distance of 2A [18,50].

In equilibrium, i.e., y = 0 — 0;¢ = 0, the phase-field Equation (2) reduces the discrete
force equilibrium condition [50]:

/\2
;')’jvj{ ?(¢P+rk —2¢p + ‘Pp—rk) - a¢gk(¢p)} =0. 4)
k

where we approximate the Laplacian of ¢ by combining forward and backward differencing
to the second-order central difference formula, as is usual within the FD method. Note
that solutions obtained from conventional phase-field implementations do not strictly
satisfy the discrete force equilibrium condition. Not even the ideal solution Equation (3)
strictly satisfies Equation (4), if the conventional quartic double well potential g°(¢) =
8¢?(1 — 4))2/ 3 is imposed. Generally, these violations of the discrete force equilibrium
condition become increasingly severe for small profile resolution numbers.

Table 1. The three different neighboring shells and all related grid directions within the simple
cubic numerical grid. Exemplary determination of the grid coupling parameter set for the
Tl 120) —formulation, which restores translational invariance (TI) in the (120)—directions of the
numerical lattice.

Shell j k P -p [120] - p |arctanh (ay) |

0 [100] [100] [120] - [100] = 1 4/(v/5M)

1 1 [010] [010] [120] - [010] = 2 2/(v/5M)
2 [001] [001] [120] - [001] = 0
3 [110] [110] [120] - [110] = 3 6/(v/51)
4 [011] [011] [120] - [011] = 4/(v/5A)

5 5 [101] [101] [120] - [101] = 1 4/(+/51)
6 [110] [110] [120] - [110] = —1 2/(V/51)
7 [011] [011] [120] - [011] = 2 2/(v/5A)
8 [101] [101] [120] - [101] = —1 2/(+v/5M)
9 [111] [111] [120] - [111] =3 6/(v/5M)

3 10 [111] [111] [120] - [111] =1 6/(v/5M)
11 [111] [111] [120] - [111] = —1 2/(V/51)
12 [117] [111] [120] - [111] =3 2/(v/5A)

In Figure 3, we evaluate the degree of satisfaction of the discrete force equilibrium
condition with respect to the ideal profile function (3) for different phase-field models.
Therefore, a phase-field is initialized according to the ideal profile function (3) such that the
interface is located in the middle of the computational domain. The total grid friction force
acting on the ideal interface is given by the system integral over (4). While the continuum
force integral clearly vanishes, the discrete force integral typically oscillates, when the ideal
profile is moved on the computational grid. In Figure 3, we plot the oscillation amplitude A
of the discrete interface force as a function of the interface orientation for different models.
The conventional continuum field (CF) model (dash-dotted curves), as obtained using the
quartic double well potential g°(¢) = 8¢?(1 — $)?/3, provides quite large equilibrium
force oscillations. For A = 1 (yellow curves), the force oscillations clearly reach order unity,
which indicates that the model cannot be operated at such a small profile resolution. The
situation changes for substantially larger profile resolution numbers, as shown exemplarily
by the red curves in Figure 3 for the resolution A = 3.
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Figure 3. Logarithmic plot of the oscillation amplitude A of the total grid friction forces, i.e., the
system integral over Equation (4), using the ideal profile function (3) as a function of the interface
orientation angles ¢/o;) and 9}g11). Two different profile resolutions are compared: A = 1.0 (yellow
curves) and A = 3.0 (red curves). The dash-dotted curves indicate the continuum field (CF) model,
where no translational invariance (TI) is restored. The thick solid curves indicate the TI 15y model,
which uses global grid coupling parameters (5) to restore TI for interfaces oriented normal to the
(120)-directions. The TI, model (thin curves) restores TI locally in the direction of the local interface
normal n. The system size is 300 x 1 x 1.

Interestingly, for a given interface orientation n, we can find a modified equilibrium
potential, which strictly satisfies the discrete equilibrium condition Equation (4), thus
providing zero grid friction forces for arbitrarily small profile resolution numbers. Therefore,
this modified potential restores the translational invariance (TI) in the phase-field equation
and it is derived as follows. The discrete forces equilibrium condition holds if all k—
directional components are simultaneously satisfied. One individual k—component can be
satisfied at any real-time during the propagation of the interface, based on the following
additional property, ¢p+r, = (1Ear)Pp/ (1% (2¢p — 1)ay), of the ideal phase-field profile
function. Therefore, we introduced the grid coupling parameters as

ax(n) = tanh(Zrk);n). )

Inserting this addition property into the force equilibrium condition, we obtain the
k—th component of the derivative of the modified equilibrium potential [50]. Further,
integration leads to the k—th component of the modified equilibrium potential

n oo 1—a? 1—a?
2l0)3s = 00-0)+ 5t () ©)

which further satisfies g, (0) = gx(1) = 0 to allow for easy calculation of the total interface
energy (1) using an arbitrary phase-field by Fint(¢p) = ¥p fu=0 [53,54]. In the continuum

limit |r¢| — 0, Equation (6) converges to the conventional CF potential, gi° = 8¢?(1 — 0)%
as shown in Figure 4.

This new potential strictly eliminates grid friction forces only for those ideal profiles
having interface orientations that properly relate to the unit normal vector used to construct
the set of grid coupling parameters defined by Equation (5). In the last two columns
of Table 1, we construct a set of exemplary grid coupling parameters a;(u) based on
the unit vector u = (1,2,0)7/+/5 pointing in the [120]—direction of the computational
grid. For the usage of the grid coupling parameters within the sum over the equilibrium
potentials Equation (6), the order or the signs are not important. The final potential
value is only determined by the absolute values of the grid coupling parameters, as
given in the last column in Table 1. Note that all unit vectors u pointing in one of
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the crystallographically equivalent (120)— grid directions, as obtained by all possible
permutations and negations of the components, provide the identical final potential value.
In this regard, the (120) —construction has the advantage that it provides the maximum
possible number of 24 different equivalent lattice directions sinceh =1 # k=2 #1=0.
The resulting sharp phase-field model, which is constructed from this set of grid coupling
parameters, is denoted as the TI 159y —model. The thick solid curves in Figure 3 show that
the TI 159y —model provides vanishing force oscillations for those interface orientations that
match any of the equivalent (120) —numerical lattice directions. However, the grid friction
force evaluation in Figure 3 also reveals quite narrow interface orientation windows in
which the force oscillation amplitudes are found to be substantially below the level of the CF
model. This highlights the sensitivity of the method with respect to interface orientations.

T T T

(-~

=
Q1
T

potential density fpotA/T

uA/T
05 + A= e .
A=1.0
A=05
O AL |
0.0 0.5 1.0

phase-field ¢

Figure 4. Joint potential energy density, fpot(¢)A/T = gx(¢)/Cr + ph3(¢)A/T, as a function of the
phase-field ¢ with the vanishing (approximately parabolic curves) and non-vanishing (approximately
sigmoid shaped curves) driving force, for different values of the dimensionless interface width
A = A/Ax. The equilibrium potential g;(¢) is given by Equation (6), and h3(¢) = ¢*(3 — 2¢).

In [50], we propose a sharp phase-field model, as denoted by the TI,, model, which uses
locally adaptive grid coupling parameters. These grid coupling parameters are calculated
based on the locally measured interface orientation. Concerning the grid friction force
evaluation shown in Figure 3, this model (thin curves) provides very small grid friction
force oscillations regardless of the interface orientation and the profile resolution. This
already indicates that the TI,, model eliminates spurious grid friction for arbitrarily oriented
planar interfaces in 3D. For a sufficiently accurate determination of the locally adaptive
grid coupling parameters a;(n) based on the local interface orientation n, the reader is
referred to [50].

Within this article, we compare the behavior of different phase-field models with
respect to grid friction effects. All these models have been implemented within a unified
finite difference (FD) framework. An overview of the considered models is given in Table 2.
The models basically differ in their choices for the equilibrium potentials gx(¢) and for the
interpolation function h(¢).

The continuum field (CF) models are obtained in the limit lim,,| ,o. In this limit the
equilibrium potentials (6) converge to the classical quartic double-well potential g (¢) =
8vp?(1 — 4))2 /3, and no translational invariance (T1) is restored. Imposing this potential,
we obtain finite difference implementations for phase-field models that correspond to
conventional Allen-Cahn type models using a hyperbolic tangent profile. The best possible
comparability to the present sharp phase-field models is reached by employing the same
interface energy calibrated 27 grid point approximation of the Laplace operator in the
phase-field Equation (6). Different CF models result from three different choices for the
interpolation function: (i) the natural interpolation function h3, (i) the most frequently
used interpolation function ks, which provides infinite phase stability, and (iii) the broken
rational interpolation function fape (¢) = ¢?/(¢* + (1 — ¢)?).
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Table 2. Overview of the considered models constructed within the unified finite difference
(FD) framework.

Model Equilibrium Potential Interpolation Function Calibration
CF+h3 hs = ¢*(3 - 2¢) -
CF+hs () = 8¢2(1— ¢)2/3 hs = ¢3(10 — 15¢ + 647) CEF o ™
CF+hppel hiavel = 9/ (97 + (1 - 9)?)
Sk : Equation (6), ai(u), 1 Tl
Tl + s w | (k] h = ¢2(3-29) T
Tl + I3 gk : Equation (6), ax(n) CFI, 'ijI“

TI is obtained when the new equilibrium potential, given by Equation (6) is imposed in
conjunction with the natural interpolation function /3. When the grid coupling parameters
g in equilibrium potentials are set to the fixed set a(u) = tanh(2ry - u/A), then TI is
restored for all (hkl)—directions of the computational grid, with u parallel to one of the
(hkl)—directions. These models are denoted as TLyk1y + h3. A combination of the new
equilibrium potentials with other interpolation functions turns out to not be useful because
the non-equilibrium phase-field profile alternation destroys the carefully restored TI again.
In the case of the TI, model, the grid coupling parameters a;(n) are calculated based on
the locally determined interface normal vector n [50]. Then, TI is restored locally in the
local interface normal direction n.

All models have been separately calibrated using the procedure discussed in [50]. The
result of these calibration procedures is a set of profile resolution-dependent calibration
parameters Cr (1) and 'y]'()l) for each model. However, not all of these calibration parameter
functions turn out to be practically different. For instance, the energy calibration parameter
function turns out to be equal for all different sharp phase-field models. The different
calibration parameter functions are illustrated in Figure 5 and the association with the
different models is explained in the last column of Table 2.

T |
continuum limit

calibration parameter

1 2 3 4 5
dimensionless profile resolution A

Figure 5. Different interface energy calibration parameters Cr (1) (solid and dashed green curves) and
ponderation coefficients (1) (solid and dash-dotted violet curves), 73(A) (solid and dash-dotted
blue curves) as functions of the profile resolution A. y; = 1 — 75 — 73.

2.2. Contact Angle Boundary Conditions

The simulation of interface propagation in directions other than the (100) —directions
of the computational grid requires special boundary conditions for the phase-field. In these
simulations, the interface has to meet the boundaries under a definite contact angle. Here,
a boundary condition for the phase-field, enforcing a given interface orientation angle «
with respect to the boundary plane, is newly proposed and implemented. Physically the
condition can be understood as a wetting angle of droplets on a surface [55,56]. We use the
addition property of the ideal phase-field profile Equation (3) to impose the profile shift,
sy = Axsina, on the boundary. This shift relates to the angle « and enforces the phase-field
to meet the boundary plane with proper orientation.
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The case when a phase front with the interface normal n meets a boundary plane with
direction e, under an angle a is shown in Figure 6. The interface is visualized by the gray
plane, which relates to the ¢ = 1/2—contour of the phase-field. The grid points associated
with the computational domain are indicated as colored spheres, with the color denoting
the respective phase-field value. Grid points p; associated with the boundary are indicated
as gray spheres. The boundary value at py, is calculated as

— (1 - ak)(Pprrrk
1— ay(2¢p,+r — 1)

with g; = tanh(2|r| sina/A). The idea behind Equation (7) is to calculate the boundary
value at p; from the neighboring phase-field value at p; + r; using the addition property of
ideal profile function Equation (3), and imposing a profile-shift by the length s, = sin a|ry|
along the interface’s normal direction. Experience from the simulations with different
phase-field models has shown that the accuracy of the proposed contact angle boundary
conditions depends on how well the respective phase-field model reproduces the ideal
hyperbolic tangent profile.

Ppy ()

interface orientation ./ computation
domain

phase-field ¢

Figure 6. Schematic illustration of the boundary conditions for the phase-field, which enforces
the wetting or contact angle a between the interface normal and the direction normal to the
boundary plane.

2.3. Measure of the Interface Position and Width

A practical way to accurately determine the actual central interface position c;, as well
as the current profile width A for the given phase-field simulation results, is to fit the ideal
profile function (3) to the data using least squares. This could be done, for instance, using
the Marquardt-Levenberg algorithm [50]. However, for practical reasons, it is not always
possible to determine these quantities in such an elaborate way. In these cases, one would
rather desire to have an easy and efficient method that, for instance, just interpolates the
central interface position ¢y, i.e., the ¢ = 0.5—contour, based on the known positions and
phase-field values at the neighboring grid points. Note that a simple linear interpolation
turns out to be not useful in the present case. The linear interpolation results are not
sufficiently accurate if the phase-field profile width is small compared to the grid spacing.

Here, we propose a new nonlinear interpolation technique to calculate the / —contour
position based on the analytic phase-field profile (3). The [—contour position denotes
the interpolated position between two neighboring grid points at the positions p and
p + 1y, separated by the lattice vector ry, where the phase-field takes the value ¢ = I,
with the contour-level I € (0,1). The two neighboring grid points are located on opposite
sides of the /—contour position along the direction k, such that the following condition
(pp — 1) - (pp4r, — 1) < Ois satisfied. Based on the two different phase-field values ¢, and
¢p+r,two different [—contour positions can be calculated as

: A l1—¢
int k P
Xp ep+ 5 |arctan gy —pp 1| 8)
- Ak | = Ppr
A0 — e (p+1r) — =|arctanh k , 9
p+rx k (p k) 2 214)p+rk _ ¢p+rk —1 ( )
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where ey is a unit vector parallel to the direction k and Ak = A/ny denotes the directional
phase-field width, as determined by the phase-field parameter A and the a priori unknown
projection ny of the unit normal interface orientation vector onto the k—th direction.
Assuming the two contour positions to be equal xg‘t = xiﬁrk’ we obtain an estimation for
the directional phase-field width

I - l— -
arctanh Pp arctanh Ppix, D (10)

214’13 - ‘Pp -1 214’p+rk - 4’P+rk —1

This value for the directional phase-field width is inserted into Equations (8) and (9).
In order to further regularize and symmetrize the finally interpolated contour position, we
impose linear interpolation, xpYy, = {xpt,, (I = ¢p) + 33" (¢p+r, — 1)} (Pp+r, — Pp), between
the two slightly different positions at the two neighboring grid points x

;\k—Zek~rk(

+

int int
pand xgl .
3. Results and Discussion

3.1. Frictionless Interface Motion in 1D

First, we consider the constantly driven motion of a planar interface in one dimension.
After a certain time that depends on the model and profile width, the system reaches
a stationary state of motion where the interface velocity is exactly known from energy
conservation principles and is given as vy, = —Mpu/I'. We perform a simulation study
with highly comparable individual simulation runs, with a constant time resolution of
MuAt/(TAx) = 1.6 - 1078, In all the individual simulation runs the interface center has
passed at least a minimum number of four grid points (corresponds to 2.5 - 108 time steps)
even after the system has reached a stationary state. To reduce the overall computational
demands, the whole system is incrementally shifted back by one grid point, whenever the
fraction of the energetically favored phase reaches 50% of the system [57,58]. Then, it is
sufficient to resolve the total system by just 50 grid points, which is ten times the maximally
employed profile resolution. We should note that, especially in the cases of the higher
spatial resolution numbers A, ji, some models require very long transient times to relax
from the initial ideal profile to the stationary state.

In Figure 7, we compare average relative interface velocities as well as the stationary
oscillation amplitudes as a function of the constant driving force for a number of different
models. As illustrated in Figure 1b, the oscillation amplitudes are indicated by the
transparently colored areas connected to the solid lines. The colored areas start from
the oscillation amplitude value and end at the mean value. When the colored area is
found above the mean value, we encounter the desirable situation that the measured value
oscillates around the theoretic expectation. In contrast, colored areas below the mean value
denote the undesirable case when the theoretic expectation is located somewhere outside
the oscillation interval.

Figure 7 shows that all continuum field (CF) models are subject to grid pinning for
the profile resolution A = 2.5 and dimensionless driving forces below i < 0.02. Due to
the absence of any interface motion in these cases, the mean relative velocity error takes
the value 1 and the measured oscillation amplitude vanishes, resulting in the large colored
areas below the solid lines on the left side in the logarithmic plots. For increasing profile
resolutions, the onset of pinning is shifted towards smaller dimensionless driving forces,
as also clearly visible in Figure 7. At a profile resolution of A = 4, we find a limited
parameter window of driving forces in which the mean relative error is minimal and nearly
constant at a value of about 2 - 102, This significant residual error at the comparably large
profile resolutions A = 4 indicates the relevance of spurious grid friction in conventional
phase-field modeling. In contrast, the sharp phase-field model provides very small relative
velocity errors and oscillations amplitudes on the order of the time discretization error for
all resolutions A, ji < 1. This indicates that spurious grid friction and grid pinning is truly
eliminated in the one-dimensional sharp phase field model.
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Figure 7. Logarithmic errors of the stationary interface velocity as a function of the dimensionless
driving force fi = uAx /T for different profile resolutions: A =A/Ax = 4.0, 3.0, 2.5, 0.5. The behavior
of different models is compared: (i) continuum field (CF) model with hape (violet), (ii) CF model
with hs (blue), (iii) CF model with h3 (red) and (iv) the sharp phase-field model with Translational
invariance (TI+h3) (green). Solid lines denote the mean relative errors and the oscillations are
indicated as transparently colored areas (see Figure 1). The bottom plot compares the parameter
windows of reasonable spatial resolution evaluated for the different models. Here, a model is
reasonably resolved if the mean velocity error is lower than 10%.

We further discuss the application of large dimensionless driving forces or small
interface energy densities. Limitations with respect to large dimensionless driving forces
exist in any phase-field model and denote a relevant restriction of the general applicability
of these models. In all kinds of diffuse interface descriptions, the interface energy area
density I' is somehow distributed over the localized volume covered by the diffuse interface.
Then, the morphological changes due to the interface energy, i.e., the so-called capillary
forces, are modeled by a volume density equivalent, which is inversely proportional to
the width of the diffuse interface. The wider the diffuse interface is chosen, the smaller
the volume density equivalent of the interface energy is. Therefore, large dimensionless
driving forces are the natural consequence of coarse-graining or upscaling of simulations.
An important example is the simulation of dendritic solidification, which involves small
capillary lengths and large diffusion lengths, resulting in small dendritic tip radii as well
as medium secondary- and large primary dendrite arm spacings [58-60]. A less complex
example is the study of the development of interface instabilities, such as the diffusional
Mullins-Sekerka-[61] or the elastic Asaro-Tiller-Grinfeld instability [62-65]. Both require
the interface energy to be comparably small.

Naturally, the choice of the interpolation function is gaining more importance at
large dimensionless driving forces. First, we consider the case of imposing the natural
interpolation function: h3(¢) = ¢*(3 — 2¢) [41,64,66]. In this case the ideal phase-field
profile Equation (3) remains an analytic solution of the phase-field Equation (2) even at finite
driving forces. Then the maximal possible driving force is given by the condition of phase
stability. Phase stability demands the driving force to be small enough to guarantee meta-
stability of the high energy phase: The two local minima of the potential energy density
at ¢ = 0,1 have to be separated by a (local) maximum in between. For the CF+h3 model,
phase stability requires the dimensionless driving force to be below || < 8/(3CSFA), with
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fi = uAx/T and A = A/Ax. The TI+h3 model provides a profile resolution-dependent
phase stability limit, which nicely reflects the behavior of the model [50].

Changing the interpolation function can provide phase stability for larger driving
forces. One example is the interpolation function hape () = ¢?/(¢* + (1 — ¢)?), which
has been first proposed by Abel et al. [28]. The advantage of this interpolation function is
that a thermodynamically consistent extension to the case of multiple phases is comparably
easy [67-69]. With regard to the condition of phase stability, we obtain a maximally possible
driving force for this interpolation function of |ji| < 440/ (3CSFA). An even more common
choice for the interpolation function is hs = ¢3(10 — 15¢ + 6¢?) (see e.g., [22,31,70-72]).
The CF+h5s model even provides phase stability for infinitely large driving forces, which is
of course a highly desirable property. However, using interpolation functions other than
the natural one leads to altered non-equilibrium phase-field profiles.

The profile alternation grows with increasing driving force. Stronger alternations in
turn also lead to stronger grid friction effects. For large dimensionless driving forces, the
two CF models k5 and hap,) are both limited by grid friction, while the two h3 models
are limited by the condition of phase stability. Neither the use of /5 nor that of hap is
useful in the sharp phase-field model, as the altered non-equilibrium profile destroys any
restored TL

In the lower part of Figure 7, the parameter ranges of reasonable spatial resolution
are evaluated for each of the different models. A model is set to be reasonably spatially
resolved when the relative velocity error during constantly driven interface motion is found
to be less than 0.1. The CF models cannot reasonably operate at profile resolutions below
2; however, the sharp phase-field model can. For very small profile resolutions, the sharp
phase-field model provides surprisingly high limits of phase stability [50].

3.2. Frictionless Interface Motion in 3D

A phase-field model can be anisotropic with respect to interface kinetics as well as
interface energetics. Here, we investigate both effects separately. The residual kinetic
anisotropy is studied by considering the constantly driven stationary motion of planar
interfaces with varying interface orientations n. In a stationary system state, the interface
normal velocity is exactly determined by energy conservation principles v = —Myu/T.
Within the fixed Cartesian grid comprised of 120 x 10 x 10 equispaced grid points, differently
oriented interfaces meet the cubic domain boundaries under specific angles. This requires
the employment of the special boundary conditions for the phase-field, as discussed in
Section 2.2. The different interface orientations n result from continuous rotations around
the two different axes [001] and [011], as sketched on top of the plot in Figure 8. The
respective rotation angles between the interface normal direction and the x—direction,
i.e., the [100] —direction, are denoted by §|g91) and B(o11}, respectively. To evaluate the degree
of isotropy of the interface kinetics, we perform a simulation study consisting of many
highly comparable individual simulations with an equal x—component of the interface
velocity vth for all individual simulations. Therefore, the imposed driving forces are chosen
to decrease with increasing orientation angles, i.e., 4 = pg cos(9) with fig = Axpe/T = 0.1,
and a time discretization of MyugAt/(T'Ax) = 10~°. Running each individual simulation
for at least 5 - 10° time steps ensures that the interface center has passed at least five grid
points along the [100]—direction.

In Figure 8, we compare the orientation-dependent error (mean value as well as
oscillation amplitude) in the interface velocity for different phase-field models. The relative
mean errors are depicted by the solid lines and the relative oscillation amplitudes are
visualized as colored areas, as has been previously illustrated on the right-hand side of
Figure 1b.
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Figure 8. The relative error in the x —component of the stationary velocity as functions of the interface
orientation angles ooy and J[g19]. The results from the continuum field (CF) model, various TI
models and the TI, model are compared for three different profile resolutions A = 4.0, A = 1.0 and

A = 0.5. The imposed driving force decreases with increasing orientation angles, i.e., = g cos(9)
with fig = Axpg/T = 0.1 and in any case h3. The time discretization is MugAt/(TAx) = 107°.

The black curves show the results from the continuum field (CF) model. Only for the
profile resolution A = 4, the CF model is not subject to pinning. Note that the vanishing
force oscillations at the profile resolutions A = 1 and A = 0.5 have been omitted in Figure 8
for the CF model. Even for a profile resolution as large as A = 4 the CF model is still
characterized by a significant kinetic anisotropy of about 3%, which is on the scale of the
mean relative error in the interface velocity.

All of the sharp phase-field models are more accurate in this regard, in some configurations
even by more than an order of magnitude. For a profile resolution of A = 4, none of these
models is subject to a kinetic anisotropy larger than 0.1%. However, similar to the onset of
grid pinning this situation quickly changes when the profile resolution is decreased. The
TI 47y models denote sharp phase-field models with a restored translational invariance
(TI) in the (hkl)—directions, as also discussed in Section 2.1. As expected, for interface
orientations close to the directions of restored TI, we obtain extremely small errors in the
interface velocity. However, already slightly misoriented interfaces propagate at velocities
that are clearly below the expectation. The resulting errors in the interface velocity indicate
the existence of finite grid friction effects during the stationary interface motion in these
directions. Even spurious grid pinning is observed at the profile resolutions A = 1 and
A = 0.5 for interface orientations in the vicinity of the [100] —direction or less pronounced
in the [110]—direction for most of the TI;;;, models, as clearly visible in Figure 8.

The green curves in Figure 8 show the behavior of the TI, model, where the TI has
been locally restored in the local direction of interface motion. This provides very accurate
interface velocities for all orientations, even if the phase-field width is chosen to be as
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small as A = 0.5. The resulting velocity error is basically given by the residual error in the
time discretization. This observation indicates that this model indeed provides frictionless
motion of planar interfaces with arbitrary orientations in the three-dimensional space.

It should be noted that the TI ;) models differ from the original 3D sharp phase-
field model purposed by Finel in some respects [41]. We use a finite difference (FD)
implementation that operates on a simple cubic computational grid, whereas the 3D sharp
phase-field model is formulated on a fcc grid using a spectral FFT-based solver. Both
aspects are expected to significantly influence the modeling behavior with regard to the
present investigation on the residual anisotropy profile of the interface kinetics.

3.3. Interface Energy-Driven Shape Relaxation

To quantify the residual grid anisotropy of the interfacial energy, we consider the
shape evolution of a single particle towards the quasi-equilibrium state under constant
particle volume [35,53,73,74]. The 3D simulations of size 60 x 60 x 60 begin with an initially
cubic particle, as shown in the inset of Figure 9a. During the simulation, a homogeneous
and time-dependent driving force is imposed, such that the integral volume of the particle
neither shrinks nor grows [51,52,75]. The shape evolution of the particle is driven by the
minimization of the total interface energy. Figure 9a shows the relaxation of the particles’
total interface energy as a function of the simulation time during the shape evolution. It
rapidly approaches a distinct shape that reflects the effective interface energy anisotropy. In
the case of a fully isotropic model, the resulting equilibrium shape will be an ideal sphere.
Thus, the residual interface energy anisotropy is defined as the deviation of the resulting
equilibrium shape from the shape of an ideal sphere.

[
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Figure 9. Investigation of the residual energetic anisotropy by interface energy relaxation of an
initially cubic particle at constant particle volume. (a) Total interface energy as a function of the
simulation time. (b) Anisotropy €eff = (Rmax — Rmin)/2Rmean 0f the final quasi-equilibrium phase-
fields as a function of the phase-field width A for different phase-field models. Insets: Phase-field
contours together with their sphericity errors plotted as color-value. For A = 1.8, the extended error
range is plotted aside from the inset.

The residual interface energy anisotropy of a certain phase-field model operating at
a certain profile resolution A is evaluated from the finally relaxed phase-field at the end
of the respective simulation. The anisotropy is evaluated from nonlinearly interpolated
¢ = 1/2—contour points. The nonlinear interpolation of contour positions based on a given
phase-field is described in Section 2.3. For each contour position, we calculate its distance
from the particle’s barycenter R; and divide this by the mean radius Rmean. This ratio is
called the local sphericity error and is provided as the color value in the contour plots of
the quasi-equilibrium shapes shown in Figure 9b. Finally, the overall residual anisotropy of
this particular simulation is given by €ef = (Rmax — Rmin)/2Rmean, Where Rpin and Rmax
denote the smallest and largest distance between the ¢ = 1/2—contour positions and the
particle’s barycenter, respectively.
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Figure 9b shows the evaluation of the residual interface energy anisotropy as a function
of the profile resolution A for different phase-field models. For the largest profile resolution
A = 4 all models show very small residual anisotropies with sphericity errors below
3-107%. Already at profile resolutions of A = 2 and below the continuum field (CF)
model provides the highest sphericity errors of the quasi-equilibrium particle shape due
to the onset of pinning. The partially pinned particle contours for the cases A = 2 and
A = 1.8 are exemplarily shown as insets in Figure 9b). For profile resolutions below 1.3,
larger anisotropies due to spurious grid pinning are also observed using the TI ;) models,
especially in the generic cases, when the faces of the initial cube are not accidentally aligned
with the directions of restored TI. The residual interface energy anisotropies obtained for
the TI, model are generally very low but, of course, gradually increase with decreasing
profile resolution, leading to maximal sphericity errors of 2.0 % for A = 0.4 or 3.0% for

A =0.35.

3.4. Potential Computational Gains

Next, we discuss the potential computational gains by using the sharp phase-field
method (SPFM) in a broader context. In this work, we prove that the SPFM can indeed
eliminate spurious grid friction and grid pinning in three-dimensional simulations. So far,
these detrimental effects have been the major resolution limiting factors in the phase-field
equation. Then, the consequence of their elimination is that we obtain higher accuracy at
substantially coarser numerical resolution!

The SPFM allows operating at dimensionless profile resolutions of A = 0.5, where
it still provides a reasonably good degree of energetic isotropy, i.e., the residual interface
energy anisotropy is below 1%, as shown in Figure 9. Such a low profile resolution offers a
tremendous savings potential in terms of the number of degrees of freedom required in a
phase field simulation. Fully utilizing this potential can lead to much faster computation.
At the same spatial resolution, the SPFM involves more calculations on the node level,
especially in the case of locally adaptive translational invariance (TI). However, such
kind of higher workloads on the node level can be efficiently distributed on parallel
computing processors.

The SPFM involves strong coupling between the numerical solution method and the
imposed modeling potentials. This is primarily reflected by the grid coupling parameters (5),
which are needed for the local evaluation of the phase-field potential. Here, we report on
the quantitative testing of this method using the finite difference (FD) method. Besides
this, the method has already been successfully tested with a fast Fourier transformation
(FFT)-based solvers, as the original SPFM by A. Finel et al. was realized using a spectral
solver Finel et al. [41]. Therefore, we know that the results and conclusions presented here
are valid for both methods. The transferability of the method as well as the results to other
numerical methods, such as the finite element (FE) of the finite volume (FV) method, are
subject to ongoing research. Based on our experience with 3D simulations of isotropic
solidification using locally adaptive TI Fleck and Schleifer [50], we expect the method to also
work on non-regular grids, with changing distances and orientations between neighboring
nodes, if the grid coupling parameters are correctly determined.

4. Conclusions

The intricate effects of spurious grid friction, grid pinning, and grid anisotropy limit
the performance of conventional phase-field models in many ways. To a large extent,
these limitations can be overcome by the sharp phase field method (SPFM) [41,50]. We
quantitatively evaluated the operational limits of different phase-field models with and
without the SPFM within a unified finite difference framework. An overview of all the
different models, considered in this work, is given in Table 2. The operational limits of
the models are defined as the borders in the parameter space separating reasonable from
erroneous model behavior. The parameter space of interest is spanned by the dimensionless
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driving force fi = uAx/T and the dimensionless profile resolution A = A/Ax. The key
results and findings of this work can be summarized as follows:

*  Spurious grid friction is studied by means of simulations of stationary interface motion
in one dimension, as shown in Figure 7. In the limit of small driving forces, all CF
models are limited by grid pinning, while the sharp phase-field model is entirely
free of this effect. With respect to the important case of large dimensionless driving
forces, all models involving the natural interpolation function h3 are limited by the
condition of phase stability. The other models are limited by spurious grid friction
due to increasingly stronger alternations of the phase-field profile.

¢ The residual kinetic anisotropy of the models is evaluated by systematic variations of
the interface orientation within the 3D simulation of the constantly driven interface
motion. When imposing a one-grid-point interface resolution (as smallas A = 0.5 a
high degree of kinetic isotropy) can only be obtained by employing models, which
locally restore translational invariance (TI) in the local direction of interface motion.
The global restoration of T1 in fixed directions provides substantial kinetic anisotropies
already at dimensionless profile resolutions of A = 1.0, as shown in Figure 8.

*  The residual anisotropy of the interfacial energy is evaluated by means of a shape
relaxation simulation of one initially cubic particle in a system under the constraint
of a constant particle volume. Figure 9 shows the evaluation of the sphericity of the
quasi-equilibrium particle shapes as a function of the phase-field profile resolution
for different phase-field models. In any case, the different sharp phase-field models
provide substantially lower energetic anisotropies as compared to the conventional
CF model. However, for profile resolutions below A < 1.3, grid pinning is observed in
unlucky cases using models with a global restoration of TI in fixed lattice directions.
The TI, model reliably provides very small residual interface energy anisotropies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst12101496/s1, Supplementary_material_S1_Pinning_animation-
.mpg: This movie is an animated version of Figure 1. It illustrates the influence of spurious grid
friction and grid pinning on the motion of a planar interface in one dimension. We compare the
behavior of the conventional phase-field formulation for different phase-field widths A/Ax with
the behavior of the sharp phase-field model (green curves). Supplementary_material_S2_Steady_-
state_interface_motion.mpg: This movie is an animated visualization of the evolution of the phase-
field during the simulation of stationary motion of a planar interface with propagates under an
angle of 19[011] = 30° with respect to the computational grid using the TI, model with A = 0.6.
Supplementary_material_S3_ContactAngleBC.mpg: This movie illustrates the function of the newly
proposed boundary conditions. They enforce a finite contact angle between the interface normal and
the boundary plane. In this movie, we show a simulation of the shape-evolution of an initially cubic
particle toward its spherical equilibrium shape under conserved phase volume. The particle is in
contact with the bottom boundary, where a contact angle of 80° with respect to the boundary plane
is enforced.
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Abbreviations

The following abbreviations are used in this manuscript:

SPFM  sharp phase-field method

CF continuum field
TI translational invariance
FD finite difference
FFT fast Fourier transformation
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