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NEURAL NETWORK APPROXIMATION OF COARSE-SCALE
SURROGATES IN NUMERICAL HOMOGENIZATION\ast 

FABIAN KR\"OPFL\dagger , ROLAND MAIER\ddagger , AND DANIEL PETERSEIM\S 

Abstract. Coarse-scale surrogate models in the context of numerical homogenization of linear
elliptic problems with arbitrary rough diffusion coefficients rely on the efficient solution of fine-scale
subproblems on local subdomains whose solutions are then employed to deduce appropriate coarse
contributions to the surrogate model. However, in the absence of periodicity and scale separation,
the reliability of such models requires the local subdomains to cover the whole domain which may re-
sult in high offline costs, in particular for parameter-dependent and stochastic problems. This paper
justifies the use of neural networks for the approximation of coarse-scale surrogate models by analyz-
ing their approximation properties. For a prototypical and representative numerical homogenization
technique, the Localized Orthogonal Decomposition method, we show that one single neural network
is sufficient to approximate the coarse contributions of all occurring coefficient-dependent local sub-
problems for a nontrivial class of diffusion coefficients up to arbitrary accuracy. We present rigorous
upper bounds on the depth and number of nonzero parameters for such a network to achieve a given
accuracy. Further, we analyze the overall error of the resulting neural network enhanced numerical
homogenization surrogate model.

Key words. deep learning, neural networks, surrogate models, numerical homogenization, ap-
proximation properties
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1. Introduction. Surrogate models play an important role in the context of
partial differential equations (PDEs) with multiscale features. After the offline adap-
tation to a particular coefficient, these models provide a reliable and online efficient
approximation of the solution operator on some coarse scale of interest. In the context
of modern numerical homogenization, the adaptation of the models is typically real-
ized through coefficient-specific approximation spaces with provably optimal approx-
imation on the coarse target scale. Prominent examples are methods such as the Lo-
calized Orthogonal Decomposition (LOD) [MP14, HP13, MP20], gamblets [Owh17],
rough polyharmonic splines [OZB14] or generalized (multiscale) finite element meth-
ods [BL11, EGW11]. For a more detailed overview of such methods, we refer to
[AHP21] and the references therein. Such numerical homogenization methods have
been successful for a wide range of PDEs and their applications because they do not
rely on structural assumptions on the coefficient such as periodicity or scale separa-
tion. Another benefit of numerical homogenization approaches is their construction,
which is similar to classical finite element methods. In particular, they are based on
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1458 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

coarse-scale submatrices that are combined to a coarse global system matrix by ap-
propriate local-to-global mappings. However, the local submatrices are based on the
sufficiently resolved solution of fine-scale subproblems on local subdomains (which are
also known as cell problems or corrector problems in the homogenization literature)
that resolve all features of the local PDE response. In the absence of periodicity and
scale separation, the reliability of the resulting surrogate relies on the consideration
of the coefficient in the full domain, i.e., the union of all local subdomains needs
to cover the whole domain, which may result in high offline cost, in particular for
parameter-dependent or stochastic coefficients.

To reduce the complexity bottleneck in the process of building reliable surrogate
models, there has recently been a growing interest in utilizing data-driven approaches
such as deep learning in the homogenization community; see, e.g., [ABS+20, PZ21,
CLPZ21, WHG+21, CE18, SSM23, HL22, LLZ22]. The previous work [KMP22] pro-
poses to replace the computation of all local system matrices---that can each be seen
as the output of a mapping from a local extract of the underlying PDE coefficient
to the corresponding coarse local matrix---by one single neural network in the offline
phase of numerical homogenization. The approximation by a local and thus relatively
small (trained) neural network allows one to reduce the high complexity of the cor-
rector computations to a number of forward passes through the network, which is
of particular value in nonstationary, parametric, or nondeterministic problems, since
the computational savings during the computation of the local matrices eventually
outweigh the initial effort required to train the network. Numerical experiments in
[KMP22] showed that a reasonably sized network leads to good approximation proper-
ties compared to the surrogate based on the classical computation of local subproblems
on a fine scale.

In this work, we aim at a mathematical foundation of this neural network en-
hanced numerical homogenization approach in the context of a prototypical ellip-
tic model problem with an underlying (possibly fine-scale) coefficient. We restrict
ourselves to the LOD which will be reviewed briefly in section 2 below. Due to its
representative nature outlined in [AHP21], we believe that the derivations can be gen-
eralized to other variants of classical and modern numerical homogenization methods.
From a practical point of view, the coarse-scale surrogate model computed by the
LOD can be represented by a global coarse-scale system matrix that is assembled
from local matrices that depend on local instances of the underlying coefficient. We
investigate the approximation properties of neural networks as a replacement of the
mappings from local coefficient to local matrix in section 3.

Our analysis builds upon the formal framework for studying the approximation
properties of deep neural networks developed in [PV18]. The approach is based on
combining smaller neural networks as building blocks to approximate complicated
nonlinear functions and has so far been used in a multitude of settings and applica-
tions. Examples include the approximation of higher-order finite elements [OPS20],
Kolmogorov PDEs in the context of option pricing [EGJS21], and reduced basis meth-
ods in the context of parametric PDEs [KPRS21]. For an overview on the expressivity
of neural networks, we refer to the survey article [GRK20].

Based on these recent findings, the main result of this paper in section 3 pro-
vides an upper bound on depth and number of parameters of an appropriate neural
network which is able to achieve a certain tolerance error when approximating the
local coefficient-to-matrix mappings that are the basis of the LOD. In section 4, we
then investigate the error between discrete solutions obtained with the original LOD
approach and discrete solutions that rely on a surrogate model that is built from the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1459

local neural network approximations. In particular, we show that there exists a net-
work such that the error of the two discrete solutions is at most of size \scrO (H), where
H denotes the coarse scale of interest. Note that this bound is of the same error as the
discretization error of the LOD with respect to the exact solution to the elliptic prob-
lem. Finally, we comment on the choice of fine-scale parameters for the computation
and approximation of local contributions (section 5) and draw conclusions.

Notation. Throughout this work, C,c > 0 denote generic constants that are
independent of the scales H,\varepsilon ,h, but might depend on the physical dimension d\leq 3.
Further, we write \theta \lesssim \eta if \theta \leq C\eta and \theta \approx \eta if additionally also \theta \geq c\eta . Matrices
and vectors are denoted in boldface notation throughout this paper. In particular, we
write Idn for the n\times n identity matrix and 0n for the zero vector in \BbbR n.

2. Operator compression with deep neural networks. In this section, we
briefly explain the LOD methodology and summarize the main ideas and results of
[KMP22], which provides the basis for the theoretical analysis in the subsequent
sections. The aim of this section is not to provide a detailed analysis of the method,
but to give an overview of the underlying concepts.

2.1. Setting. Let d\in \{ 1,2,3\} , and let D\subseteq \BbbR d be a bounded, polyhedral, convex
Lipschitz domain. We denote with H1

0 (D) the standard Sobolev space of L2-functions
whose traces vanish on \partial D and that have weak first derivatives in L2(D). Given a
function f \in L2(D) and a scalar coefficient A \in L\infty (D), consider the prototypical
variational problem of finding u\in H1

0 (D) such that

a(u, v) :=

\int 
D

A\nabla u \cdot \nabla v dx=

\int 
D

fv dx for all v \in H1
0 (D).(2.1)

Note that we do not pose any requirements on the coefficient A apart from the exis-
tence of uniform bounds \alpha ,\beta \in \BbbR such that

0<\alpha \leq A(x)\leq \beta <\infty for a.e. x\in D.(2.2)

In particular, we do not assume periodicity or scale separation and allow for arbitrarily
rough coefficients that may vary on a continuum of scales up to some fine microscale
\varepsilon . In this setting, the Lax--Milgram theorem guarantees the existence of a unique
solution u\in H1

0 (D) to problem (2.1). Note that a and u implicitly depend on A.

2.2. Coarse-scale discretization by localized orthogonal decomposition.
Although the coefficient A encodes microscopic oscillations on a scale \varepsilon , in practical
simulations one is often interested in the effective behavior of the solution u on some
macroscopic target scale of interest H \geq \varepsilon . It is well known, however, that the
discretization of (2.1) with standard approaches such as conforming finite elements
leads to acceptable results only if the problem is discretized on a scale smaller than \varepsilon 
that fully resolves all fine-scale oscillations of the coefficient; see, e.g., the illustrations
in [MP20, Chap. 2].

In order to overcome this problem, numerous methods have been proposed that
compress the fine-scale information contained in the coefficient A to a surrogate model
SA (represented by a system matrix SA) capable of reproducing the effective behav-
ior of u on the target scale H. One such method known as Localized Orthogonal
Decomposition (LOD) achieves this by explicitly constructing a coarse approximation
space spanned by coefficient-adapted basis functions, which can then be used to ap-
proximate (2.1) in a Galerkin fashion, resulting in a sparse system matrix SA that is
composed of multiple local contributions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1460 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

The LOD has originally been introduced in an elliptic setting [MP14, HP13],
but has been successfully applied in connection with, e.g., wave propagation problems
[GP15, Pet17, AH17, PS17, GHV18, MP19, RHB19, GM21, LMP21, MV22, HW22]
and parabolic PDEs [MP18, LMM22]. The idea has also been extended to higher-
order [Mai21] and multiresolution [HP22] variants based on the hierarchical approach
known as gamblets [Owh17]. Further, the possibility to superlocalize the local sub-
problems has been investigated [HP21].

In the following, we briefly describe the method and an adapted version based on
local neural network approximations as presented in [KMP22]. Note that the method
in [KMP22] may be applied to general linear divergence form partial differential equa-
tions in a straightforward way and works beyond the LOD framework, but we restrict
ourselves to its application in connection with a prototypical elliptic setting and the
LOD method within this work.

Let \scrT H be a uniform Cartesian mesh of D with characteristic mesh size H, let
Q1(\scrT H) be the standard first-order finite element space of piecewise polynomials with
coordinate degree at most 1 and consider the conforming finite-dimensional space
VH :=Q1(\scrT H)\cap H1

0 (D). In our setting, H denotes the length of an edge of an element
of \scrT H . Besides the coarse mesh \scrT H , we will also need a fine mesh \scrT h with h < \varepsilon and
the corresponding discrete space Vh \supset VH , as well as an intermediate mesh \scrT \varepsilon with
h< \varepsilon <H. Moreover, we assume these meshes to be nested and uniform refinements of
each other, i.e., that \scrT \varepsilon is a uniform refinement of \scrT H and \scrT h a uniform refinement of
\scrT \varepsilon . An important ingredient of the method is a projective quasi-interpolation operator
\scrI H : H1

0 (D)\rightarrow VH , which fulfills

\| H - 1(v - \scrI Hv)\| L2(T ) + \| \nabla \scrI Hv\| L2(T ) \leq C\| \nabla v\| L2(N(T ))(2.3)

for all v \in H1
0 (D) and any element T \in \scrT H , where the constant C is independent of

H, and N(S) := N1(S) is an element patch around S \subseteq D defined by

N1(S) :=
\bigcup \bigl\{ 

K \in \scrT H | S \cap K \not = \emptyset 
\bigr\} 
.

A prominent example of an operator \scrI H that fulfills (2.3) is the one considered in
[EG17], which is also used for the numerical experiments in [KMP22]. For that
reason we restrict our analysis in section 3 to this particular choice. It is defined by
\scrI H :=EH \circ \Pi H , where \Pi H denotes the piecewise L2-projection onto Q1(\scrT H). For any
vH \in Q1(\scrT H), the operator EH averages in any inner node z of \scrT H the values of the
neighboring elements, i.e.,\bigl( 

EH(vH)
\bigr) 
(z) :=

\sum 
K\in \scrT H :

z\in K

\bigl( 
vH | K

\bigr) 
(z) \cdot 1

card\{ K \prime \in \scrT H : z \in K \prime \} 
.(2.4)

Further,
\bigl( 
EH(vH)

\bigr) 
(z) = 0 if z \in \partial D. Given \scrI H , we define the so-called fine-scale

space as

\scrW := ker\scrI H | Vh
,

which contains functions that cannot be captured by the space VH . For any S \subseteq D,
we also define a local version of \scrW ,

\scrW (S) := \{ w \in \scrW | supp(w)\subseteq S\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1461

Appropriate local versions of the fine-scale space are now used to correct coarse-
scale functions in a coefficient-dependent manner. Therefore, we iteratively define an
enlarged element patch N\ell (S) := N(N\ell  - 1(S)), \ell \geq 2. Let a fixed A \in L\infty (D) which
fulfills (2.2) be given. For an \ell \in \BbbN (that will later be quantified) as well as a function
vH \in VH and T \in \scrT H , we now introduce the element corrector \scrQ \ell 

T vH\in \scrW (N\ell (T )) as
the solution to

a(\scrQ \ell 
T vH ,w) =

\int 
T

A\nabla vH \cdot \nabla w dx for all w \in \scrW (N\ell (T )).(2.5)

Note that this is a discrete subproblem, which is locally computed on the fine scale
h. The corresponding algebraic realization of this subproblem will be discussed in
section 2.3 below and assumptions on the fine mesh are discussed in section 5. Note
that the correctors \scrQ \ell 

T vH for different T are independent of each other and their
respective supports are limited to N\ell (T ). That is, global computations on a fine scale
can be avoided. Further, the correctors are only computed for a basis of VH due to
linearity.

The last step towards the final multiscale method consists of defining an appro-
priate space based on the element correctors. Therefore, we first define the global
correction operator \scrQ \ell : VH \rightarrow \scrW by

\scrQ \ell :=
\sum 

T\in \scrT H

\scrQ \ell 
T ,(2.6)

which will be used to correct classical finite element functions. In particular, the
classical LOD approximation (C-LOD) now seeks uc

H \in VH such that

a((id - \scrQ \ell )uc
H , (id - \scrQ \ell )vH) =

\int 
D

f vH dx for all vH \in VH .(2.7)

Alternatively, u can be approximated with a Petrov--Galerkin variant of the classical
LOD. That is, the correction is only used for the trial functions but not for the test
functions. The Petrov--Galerkin LOD approximation (PG-LOD) upg

H \in VH solves

a((id - \scrQ \ell )upg
H , vH) =

\int 
D

f vH dx for all vH \in VH .(2.8)

The Petrov--Galerkin variant has several computational advantages compared to the
classical method and was therefore used for the experiments in [KMP22].

From a theoretical point of view, the approximations uc
H and upg

H are both first-
order accurate in L2(D) if the oversampling parameter \ell is chosen logarithmically in
the target mesh size H, i.e., \ell \approx | log(H)| , and the fine mesh parameter h is chosen
small enough (cf. section 5 below for details). More precisely, it holds that

\| u - uc
H\| L2(D) \lesssim \| u - uh\| L2(D) + (H + e - c\mathrm{d}\mathrm{e}\mathrm{c}\ell )\| f\| L2(D),(2.9)

as well as

\| u - upg
H \| L2(D) \lesssim \| u - uh\| L2(D) + (H + e - c\mathrm{d}\mathrm{e}\mathrm{c}\ell )\| f\| L2(D),(2.10)

where uh \in Vh is the classical Galerkin finite element approximation of u in the space
Vh. These results follow from the triangle inequality and the results presented, e.g.,
in [GP17, CMP20, MP20]. The last two estimates arise from a localization estimate
of the form

\| \nabla (\scrQ  - \scrQ \ell )vH\| L2(D) \leq Ce - c\mathrm{l}\mathrm{o}\mathrm{c}\ell \| \nabla vH\| L2(D), vH \in VH(2.11)
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1462 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

with a constant cloc which is independent of h, H, and \ell . Note that \scrQ := \scrQ \infty 

is computed based on nonlocalized subproblems (2.5). This result is, for instance,
shown in [HP13, Pet16] (based on [MP14]) and will later on be required in section 4.

2.3. Algebraic realization of the LOD. As explained above, the correction
operator is constructed based on a number of local element correctors on given patches.
In the following, we elaborate on the algebraic realization of these subproblems. Since
the corrector computations all have a similar structure, we restrict ourselves to one
particular problem. Let K \in \scrT H be fixed, and let \omega be the patch with \ell additional
element layers around K, i.e., \omega = N\ell (K). The construction of the local matrix
requires the solution of a corrector problem on some fine scale h as introduced above.
First, we define Vh(\omega ) := \{ vh \in Vh | supp(vh) \subseteq \omega \} and VH | \omega := \{ vH | \omega | vH \in VH\} 
with nodal basis functions \{ \lambda j\} n\omega 

j=1 and \{ \Lambda j\} N\omega 
j=1, respectively. Here, n\omega = dimVh(\omega )

and N\omega = dimVH | \omega . For a given basis function \Lambda i, the corrector problem seeks the
solution \scrQ \ell 

K(\Lambda i| K)\in Vh(\omega ) to

a(\scrQ \ell 
K(\Lambda i| K),wh) = a(\Lambda i| K ,wh)(2.12)

for all wh \in Vh(\omega ) \cap ker\scrI H . Note that we need only compute the corrections for
the 2d basis functions for which supp\Lambda i \cap K \not = \emptyset . For simplicity and without loss of
generality, we assume in the following that this is the case for the first indices 1, . . . ,2d.

To avoid defining a basis of Vh(\omega ) \cap ker\scrI H , it is favorable to write (2.12) as an
equivalent saddle point problem, which reads

a(\scrQ \ell 
K(\Lambda i| K), vh) + (\varphi i,\scrI Hvh)L2(\omega ) = a(\Lambda i| K , vh),

(\scrI H\scrQ \ell 
K(\Lambda i| K), \mu H)L2(\omega ) = 0

(2.13)

for all vh \in Vh(\omega ) and \mu H \in VH | \omega , where \varphi i \in VH | \omega is the associated Lagrange
multiplier. Note that (2.13) has a unique solution pair (\scrQ \ell 

T\Lambda i,\varphi i) and the problem is
equivalent to solving (2.12); see, for instance, [Mai20, Chap. 2].

To solve problem (2.13) numerically, it is reformulated as a system of linear equa-
tions. We use the linear combinations

\scrQ \ell 
K(\Lambda i| K) =

n\omega \sum 
j=1

\xi ij\lambda j , \varphi i =

N\omega \sum 
j=1

\phi i
j\Lambda j ,

and write \Xi i = [\xi i1, . . . , \xi 
i
n\omega 

]T and \Phi i = [\phi i
1, . . . , \phi 

i
N\omega 

]T for the corresponding vectors.
Let S := SA,\omega be the finite element stiffness matrix with respect to Vh(\omega ) (weighted

by the coefficient A and with built-in boundary conditions) and P\omega \in \BbbR n\omega \times N\omega (resp.,

P\omega ,K \in \BbbR n\omega \times 2d) the prolongation matrix between functions in VH | \omega and Vh(\omega ) (resp.,
VH | K and Vh(\omega )). Further, I\omega \in \BbbR N\omega \times n\omega denotes the realization of the operator
\scrI H on \omega (without explicit boundary conditions). With these matrices, (2.13) can be
expressed as

S\Xi + IT\omega \Phi = SP\omega ,K ,

I\omega \Xi = 0N\omega \times 2d ,
(2.14)

where \Xi = [\Xi 1| . . . | \Xi 2d ] and \Phi = [\Phi 1| . . . | \Phi 2d ] are matrices that comprise the vectors
\{ \Xi i\} and \{ \Phi i\} , respectively. Some calculations show that \Phi = (I\omega S

 - 1IT\omega )
 - 1I\omega P\omega ,K .

Inserting this in the first equation of (2.14) yields

\Xi =P\omega ,K  - S - 1IT\omega (I\omega S
 - 1IT\omega )

 - 1I\omega P\omega ,K .
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1463

The local PG-LOD matrix with respect to the element K and the patch \omega around K
is defined by

Spg
\omega [i, j] = a(\Lambda i, (id - \scrQ \ell 

K)(\Lambda j | K)), (i, j)\in \{ 1, . . . ,N\omega \} \times \{ 1, . . . ,2d\} .(2.15)

In terms of the matrix system (2.14), Spg
\omega can be equivalently defined by

Spg
\omega =PT

\omega S(P\omega ,K  - \Xi ) =PT
\omega SS

 - 1IT\omega (I\omega S
 - 1IT\omega )

 - 1I\omega P\omega ,K

=PT
\omega I

T
\omega (I\omega S

 - 1IT\omega )
 - 1I\omega P\omega ,K ,

(2.16)

which will be an important representation in order to analyze the approximability by
a suitable neural network in the following. Note that Spg

\omega implicitly depends on the
coefficient A through the bilinear form a and the correction operator \scrQ \ell 

K .

2.4. Neural network approximation of the local subproblems. The
method presented in [KMP22] can be used to approximate the local contributions
to the LOD stiffness matrix, i.e., the matrices Spg

\omega of the previous subsections, by one
single neural network that maps from a local instance of the coefficient on \omega := N\ell (K)
to an approximation of the matrix Spg

\omega . For completeness, we briefly discuss the main
ideas and refer to [KMP22, sect. 4] for numerical experiments that show the feasibility
of the approach. In the subsequent section, we also rigorously investigate the strategy
from the viewpoint of approximation theory.

The matrices Spg
\omega , as defined in (2.15), are rectangular matrices that are charac-

terized by the local degrees of freedom i = 1, . . . ,N\omega and j = 1, . . . ,2d. For the final
Petrov--Galerkin stiffness matrix corresponding to the discretized problem (2.8), we
require the sum of the local corrections \scrQ \ell 

K ; cf. (2.6). That is, to build the stiffness
matrix, we need the sum of the local matrices Spg

\omega as well. This is done with appro-
priate local-to-global mappings \Phi K that transform the local matrix for an element
K \in \scrT H to an inflated matrix with respect to the global degrees of freedom. The
global stiffness matrix Spg thus has the form

Spg =
\sum 

K\in \scrT H

\Phi K

\bigl( 
Spg
N\ell (K)

\bigr) 
;(2.17)

see [KMP22, sect. 3.4] for further details. As mentioned above, the local matri-
ces Spg

N\ell (K)
implicitly depend on A, but the mappings \Phi K are independent of the

coefficient. The method for approximating the matrix Spg now keeps this coefficient-
independent decomposition and only replaces the local matrices Spg

N\ell (K)
by suitable

approximations based on a single neural network. This is a reasonable approach due
to the fact that the local corrector problems (2.12) all have a similar structure and
are (up to the actual values of the coefficient) independent of their position within
the domain.

In the following, we theoretically justify this strategy in the sense that we show
that there exists a suitable network that provides a (local) surrogate such that the
solution computed with the corresponding global stiffness matrix is reasonably close to
the actual PG-LOD solution. In particular, we are interested in the dimensions (i.e.,
depth and number of nonzero parameters) of such a neural network. In section 3, we
first focus on the approximability of the local LOD subproblems by a neural network,
before we investigate the difference between the corresponding discrete global coarse-
scale solutions in section 4.
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1464 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

3. Neural network approximation of local LOD matrices. In this section,
we investigate the complexity of a neural network to approximate the mapping from
a coefficient to the local PG-LOD matrix as given in (2.16) and give rigorous upper
bounds for depth and number of nonzero parameters of such a network. To start with,
we have to establish a framework for neural network approximation theory that we
will then apply to our specific setting.

3.1. Neural network calculus. We adopt the main ideas and definitions of
the formal framework developed in [PV18]. To familiarize the reader with the central
concepts and the notation that we will subsequently use, we quickly recap the most
important cornerstones of this framework as well as some results from [KPRS21]
regarding the approximation of matrix inversion by deep ReLU-neural networks.

Definition 3.1 (neural network). A neural network \Psi of depth L \in \BbbN is a
sequence of matrix-vector tuples

\Psi = ((Wl,bl))
L
l=1,

where each layer (Wl,bl) consists of a weight matrix Wl \in \BbbR Nl\times Nl - 1 and a bias
vector bl \in \BbbR Nl for N0, . . . ,NL \in \BbbN .

We will refer to L(\Psi ) := L as the number of layers, to dimin(\Psi ) := N0 as the
input dimension and to dimout(\Psi ) := NL as the output dimension of \Psi . We call
Ml(\Psi ) := \| Wl\| 0 + \| bl\| 0 the number of parameters in the lth layer, where \| \cdot \| 0
counts the number of nonzero entries in a given matrix or vector. The total number
of parameters is then given by M(\Psi ) :=

\sum L
l=1Ml.

Definition 3.2 (realization of a neural network). Let \Psi be a neural network of
depth L. For a set S \subset \BbbR N0 and an activation function \rho : \BbbR \rightarrow \BbbR that is assumed
to act componentwise on vectors by convention, the realization of \Psi with activation
function \rho over S is the mapping \scrR S

\rho (\Psi ): S \rightarrow \BbbR NL implemented by the neural network
\Psi . It is given by

\scrR S
\rho (\Psi )(x) := xL,

where xL results from

x0 := x,

xl := \rho (Wl xl - 1 + bl), l= 1, . . . ,L - 1,

xL :=WL xL + bL,

i.e.,

\scrR S
\rho (\Psi )(x) =WL \rho (WL - 1(. . . \rho (W2 \rho (W1x+ b1) + b2) . . . ) + bL - 1) + bL.

Although many different activation functions \rho are conceivable and used in prac-
tice, we restrict ourselves to one of the most popular choices, the so-called Rectified
Linear Unit (ReLU) activation function given by \rho (x) :=max\{ 0, x\} in this work.

Definition 3.3 (concatenation of neural networks). Let \Psi 1 := ((W1
l ,b

1
l ))

L1

l=1

and \Psi 2 := ((W2
l ,b

2
l ))

L2

l=1 be two neural networks of depth L1,L2, respectively, such
that dimin(\Psi 

1) = dimout(\Psi 
2). Then the concatenation of \Psi 1 and \Psi 2 is denoted by

\Psi 1 \bullet \Psi 2 and reads

\Psi 1 \bullet \Psi 2 := ((W2
1,b

2
1), . . . , (W

2
L2 - 1,b

2
L2 - 1), (W

1
1W

2
L2
,W1

1b
2
L2

+ b1
1),

(W1
2,b

1
2), . . . , (W

1
L1
,b1

L1
)).
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1465

It is easy to check that the realization of this concatenation implements the com-
position of the realizations of \Psi 1 and \Psi 2, i.e.,

\scrR \BbbR N2
0

\rho (\Psi 1 \bullet \Psi 2) =\scrR \BbbR N1
0

\rho (\Psi 1) \circ \scrR \BbbR N2
0

\rho (\Psi 2).

Thus, the concatenation of two neural networks can be interpreted as connecting them
in series. The problem with this approach is that, in general, M(\Psi 1 \bullet \Psi 2) cannot be
bounded linearly with respect to M(\Psi 1) and M(\Psi 2). The next lemma shows one
possible exception to this.

Lemma 3.4. Let \Psi 1 be a neural network of the form

\Psi 1 =
\bigl( 
(\mu Q,0n)

\bigr) 
, \mu \in \BbbR ,

where Q \in \BbbR n\times n is a permutation matrix and \Psi 2 a neural network with output di-
mension n. Then it holds that

(i) L(\Psi 1 \bullet \Psi 2) =L(\Psi 2),
(i) M(\Psi 1 \bullet \Psi 2) =M(\Psi 2).

Proof. This is a special case of [KPRS21, Lemma A.1.].

In the general case of more complicated networks, however, we need to introduce
another type of concatenation, which is built on the construction of a two-layer neural
network that implements the identity function.

Lemma 3.5 (see [PV18, Lem. 2.3]). Let n \in \BbbN and define the two-layer neural
network

\Psi Id
n :=

\biggl( \biggl( \biggl[ 
Idn

 - Idn

\biggr] 
,02n

\biggr) 
,
\bigl( \bigl[ 
Idn,  - Idn

\bigr] 
,0n

\bigr) \biggr) 
with input and output dimension n. Then it holds that

R\BbbR n

\rho (\Psi Id
n ) = Id\BbbR n ,

i.e., \Psi Id
n implements the identity function on \BbbR n.

With this definition, we can introduce the so-called sparse concatenation that
allows us to precisely control the number of nonzero parameters when two or more
networks are connected in series.

Definition 3.6 (sparse concatenation of neural networks). Given two networks
\Psi 1 and \Psi 2 of depth L1,L2 \in \BbbN , respectively, with dimin(\Psi 

1) = dimout(\Psi 
2) =: n as

above, we define the sparse concatenation of \Psi 1 and \Psi 2 as

\Psi 1 \odot \Psi 2 :=\Psi 1 \bullet \Psi Id
n \bullet \Psi 2,

where \Psi Id
n is the identity network from Lemma 3.5.

Obviously, the sparse concatenation does not change the function realized by the
network compared to the regular concatenation and therefore also implements the
composition of the individual realizations. Moreover, the following lemma shows the
desired linear bound on M(\Psi 1 \odot \Psi 2).

Lemma 3.7 (cf. [EGJS21, Lem. 5.3]). Given two neural networks \Psi 1 and \Psi 2,
their sparse concatenation fulfills

(i) L(\Psi 1 \odot \Psi 2)\leq L(\Psi 1) +L(\Psi 2),
(ii) M(\Psi 1\odot \Psi 2)\leq M(\Psi 1)+M(\Psi 2)+M1(\Psi 

1)+ML(\Psi 2)(\Psi 
2)\leq 2M(\Psi 1)+2M(\Psi 2)

\lesssim M(\Psi 1) +M(\Psi 2).
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1466 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

Moreover, given k > 2 neural networks \Psi 1, . . . ,\Psi k, their sparse concatenation satisfies
(i) L(\Psi 1 \odot \cdot \cdot \cdot \odot \Psi k)\leq 

\sum k
i=1L(\Psi 

i),

(ii) M(\Psi 1 \odot \cdot \cdot \cdot \odot \Psi k)\lesssim 
\sum k

i=1M(\Psi i).

In order to construct more complex networks out of smaller building blocks, we
also need to be able to connect them in parallel. The definition below describes how
this can be done for networks with identical depths. In principle, network paralleliza-
tion can also be defined for networks of different depths. However, since we do not
require such a construction for our proofs in the next subsection, we restrict ourselves
to the simpler case.

Definition 3.8 (parallelization of neural networks). Let \Psi i = ((Wi
l ,b

i
l))

L
l=1, i=

1, . . . , k, be a family of k neural networks with identical input dimension n and identical
depth L. Then the parallelization of the \Psi i is given by

P (\Psi 1, . . . ,\Psi k) =

\left(   
\left(   
\left[   W

1
1

. . .

Wk
1

\right]   ,
\left[   b

1
1
...
bk
1

\right]   
\right)   , . . . ,

\left(   
\left[   W

1
L

. . .

Wk
L

\right]   ,
\left[   b

1
L
...
bk
L

\right]   
\right)   
\right)   .

For the realizations of parallelized networks of identical input dimension n, it
holds that

R\BbbR n

\rho (\Psi 1, . . . ,\Psi k)(x1, . . . ,xk) = [R\BbbR n

\rho (\Psi 1)(x1), . . . ,R
\BbbR n

\rho (\Psi k)(xk)]

for x1, . . . ,xk \in \BbbR n.

Lemma 3.9. Let \Psi 1, . . . ,\Psi k be a family of k neural networks with identical input
dimension and identical depth L. Then the parallelization P (\Psi 1, . . . ,\Psi k) fulfills

(i) L(P (\Psi 1, . . . ,\Psi k)) =L,
(ii) M(P (\Psi 1, . . . ,\Psi k)) =

\sum k
i=1M(\Psi i).

Proof. The result follows by construction.

Now that we have laid down the foundations of neural network calculus, we turn
to the question of how to approximate matrix inversion with a neural network. Since
in the standard formulation of feedforward networks the input and output are one-
dimensional arrays, we choose to consider columnwise ``flattened"" (or vectorized) ma-
trices. For A\in \BbbR k\times l we thus write

vec(A) := [A1,1, . . . ,Ak,1, . . . ,A1,l, . . . ,Ak,l]
T \in \BbbR k \cdot l

and, conversely, for v= [v1,1, . . . , vk,1, . . . , v1,l, . . . , vk,l]
T \in \BbbR k \cdot l,

mat(v) := (vi,j)
k,l
i,j=1 \in \BbbR k\times l.

Furthermore, we define for n\in \BbbN and Z > 0 the set

KZ
n :=

\bigl\{ 
vec(A) | A\in \BbbR n\times n,\| A\| 2 \leq Z

\bigr\} 
,

where \| \cdot \| 2 denotes the spectral norm induced by the Euclidean vector norm. The idea
behind the approximation of matrix inversion with a deep neural network is based
on approximating the Neumann series of matrices which can be suitably bounded in
terms of their spectral norm. That is, we approximate the map

inv : \{ A\in \BbbR n\times n | \| A\| 2 \leq 1 - \delta \} \rightarrow \BbbR n\times n, A \mapsto \rightarrow (Idn  - A) - 1 =

\infty \sum 
k=0

Ak.

The following theorem makes this precise and shows that matrix inversion can be
approximated up to arbitrary precision.
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1467

Theorem 3.10 (see [KPRS21, Thm. 3.8]). For n \in \BbbN , \vargamma \in (0,1/4) and \delta \in (0,1),
let

m(\vargamma , \delta ) :=

\biggl\lceil 
log(0.5\vargamma \delta )

log(1 - \delta )

\biggr\rceil 
.

Then there exists a neural network \Psi 1 - \delta ,n
inv,\vargamma with input dimension n2 and output di-

mension n2 with
(i) L(\Psi 1 - \delta ,n

inv,\vargamma )\lesssim log(m(\vargamma , \delta ))
\bigl( 
log(1/\vargamma ) + log(m(\vargamma , \delta )) + log(n)

\bigr) 
,

(ii) M(\Psi 1 - \delta ,n
inv,\vargamma )\lesssim m(\vargamma , \delta ) log2(m(\vargamma , \delta ))n3

\bigl( 
log(1/\vargamma )+log(m(\vargamma , \delta ))+log(n)

\bigr) 
, such

that for all vec(A)\in K1 - \delta 
n it holds that

(iii) supvec(A)\in K1 - \delta 
n

\| (Idn  - A) - 1  - mat(R
K1 - \delta 

n
\rho (\Psi 1 - \delta ,n

inv,\vargamma )(vec(A)))\| 2 \leq \vargamma ,

(iv) \| mat(R
K1 - \delta 

n
\rho (\Psi 1 - \delta ,n

inv,\vargamma )(vec(A)))\| 2 \leq \vargamma + \| (Idn  - A) - 1\| 2 \leq \vargamma + 1
\delta .

Remark 3.11 (conservation of symmetry in neural network matrix inversion). In
the original construction of the network \Psi 1 - \delta ,n

inv,\vargamma given in [KPRS21], the network is not
symmetry-preserving in the sense that if A is a symmetric matrix, the output matrix

mat
\Bigl( 
R

K1 - \delta 
n

\rho 

\bigl( 
\Psi 1 - \delta ,n

inv,\vargamma 

\bigr) 
(vec(A))

\Bigr) 
might not be symmetric although (Idn - A) - 1 is. For our intended application below,
this is not very convenient and makes the error analysis much more difficult. How-
ever, the construction can be slightly adapted to preserve the symmetry. Using our
notation, we define in the induction step of the proof of [KPRS21, Proposition A.4]
the modified network

\widetilde \Psi 1/2,n
k,\vargamma := \widetilde \Psi 1,n,n,n

mult,\vargamma /4 \odot P
\Bigl( 
\Psi 

1/2,n
2j ,\vargamma ,\Psi 

1/2,n
t,\vargamma 

\Bigr) 
\bullet 
\biggl( \biggl( \biggl[ 

Idn2

Idn2

\biggr] 
,02n2

\biggr) \biggr) 
,

where \widetilde \Psi 1,n,n,n
mult,\vargamma /4 is a network that is constructed analogously to the network imple-

menting general matrix-matrix multiplication in [KPRS21, Proposition 3.7]. However,
instead of the three-dimensional array D in the proof therein, we consider a modified
array \widetilde D, that for i, j, k \in \{ 1, . . . , n\} and A,B\in \BbbR n\times n is defined by

\widetilde Di,k,j(vec(A),vec(B)) :=

\Biggl\{ 
(Ai,k,Bk,j) if i\leq j,

(Bi,k,Ak,j) if i > j,

i.e., it contains ordered tuples of the corresponding entries in A,B. Then the desired
result follows analogously to [KPRS21].

Note that the result in Theorem 3.10 above does not utilize any structural prop-
erties of the matrix to be inverted such as sparsity, positive definiteness or symmetry.
If one has additional structural knowledge about the matrix, as in our intended ap-
plication in the sections below, we believe that by approximating more sophisticated
solvers, for example multigrid approaches, with a neural network, one could improve
upon the cubic complexity in the number of nonzero parameters.

The previous theorem is the key ingredient to proving that the approximation of
the local LOD matrices can be realized by deep neural networks, to which we turn
now.

3.2. Application to local PG-LOD matrices. Before we formulate the cen-
tral result of this section, we have to introduce some more notation. We define

\frakA := \{ A\in L\infty (D) | 0<\alpha \leq A(x)\leq \beta <\infty for a.e. x\in D\} ,
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1468 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

which is the set of admissible coefficients for problem (2.1) according to (2.2), where
now \alpha ,\beta are fixed constants. Since neural networks take only discrete information as
input, we restrict ourselves to the finite-dimensional subset

\frakA \varepsilon := \{ A\in \frakA | A| T is constant for every T \in \scrT \varepsilon \} \subseteq \frakA 

of elementwise constant coefficients on \scrT \varepsilon . Recall that the meshes \scrT \varepsilon and \scrT h are
assumed to be uniform refinements of \scrT H and that for a given patch \omega = N\ell (K), K \in 
\scrT H , the local matrices Spg

\omega from (2.15) that we want to approximate solely depend on
the values of A on \omega .

Note that we implicitly assume that the patch \omega has ``full"" size, i.e., that it
corresponds to an element K that is at least \ell +1 layers of coarse elements away from
the boundary of D. We emphasize, however, that the treatment of the boundary cases
can as well be incorporated into the theory below by changing the overall complexity
of the network only by a moderate factor. The first ingredient is that patches closer
to the boundary can be artificially extended by elements where the coefficient has
the value zero to keep a uniform size of all patches; we refer to [KMP22, sect. 3.4]
for further details. Further, a slight adaptation of the matrices used in the algebraic
realization of the method presented in section 2.3 is required for the boundary cases.
This adaptation is conceptually straightforward but rather technical, since one has to
account for artificial ``degrees of freedom"" outside the physical domain D. For better
readability, we thus only focus on the inner patches in the proof of Theorem 3.12
below.

We enumerate the elements in the restricted mesh \scrT \varepsilon (\omega ) by 1, . . . ,m\ell := ((2\ell +
1)H/\varepsilon )d, which allows us to store the respective values of the coefficient in a vector
A\varepsilon ,\omega \in \BbbR m\ell . Based on this, we consider the set

\frakA \varepsilon ,\omega := \{ A\varepsilon ,\omega | A\in \frakA \varepsilon \} \subseteq \BbbR m\ell 

of all possible input vectors corresponding to the patch \omega . Moreover, we enumerate
the inner nodes of \scrT h(\omega ) by 1, . . . , n\ell := ((2\ell + 1)H/h - 1)d and inner and boundary
nodes of \scrT H(\omega ) by 1, . . . ,N\ell := (2\ell + 2)d.

Theorem 3.12 (neural network approximation of local PG-LOD matrices). Let
\eta \in (0,1/4) be a given error tolerance, and let \ell \in \BbbN . Then there exists a neural
network \Psi pg

\eta with input dimension m\ell and output dimension N\ell 2
d such that for any

\omega = N\ell (K), K \in \scrT H , and any A\varepsilon ,\omega \in \frakA \varepsilon ,\omega it holds that\bigm\| \bigm\| \bigm\| Spg
\omega  - mat

\Bigl( 
\scrR \frakA \varepsilon ,\omega 

\rho (\Psi pg
\eta )(A\varepsilon ,\omega )

\Bigr) \bigm\| \bigm\| \bigm\| 
2
\leq \eta .

The network \Psi pg
\eta has the following properties;

(i) L(\Psi pg
\eta )\lesssim log(m(\theta , \delta ))

\bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\bigr) 
+ log(m(\gamma ,\widehat \delta )) \bigl( log(1/\gamma ) + log(m(\gamma ,\widehat \delta )) + log(N\ell )

\bigr) 
+ 1,

(ii) M(\Psi pg
\eta )\lesssim m(\theta , \delta ) log2(m(\theta , \delta ))n3

\ell 

\bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\bigr) 
+m(\gamma ,\widehat \delta ) log2(m(\gamma ,\widehat \delta ))N3

\ell 

\bigl( 
log(1/\gamma )+log(m(\gamma ,\widehat \delta ))+log(N\ell )

\bigr) 
+(\ell H/h)2d,

where \delta \approx \lambda min(S)\lambda max(S)
 - 1 and \widehat \delta \approx \lambda min(I\omega S

 - 1IT\omega )\lambda max(I\omega S
 - 1IT\omega )

 - 1. Further, the
values \theta , \gamma \in (0, \eta ) are chosen such that

\theta <min

\Biggl\{ 
\lambda min(I\omega S

 - 1IT\omega ),
\lambda min(I\omega S

 - 1IT\omega )

2vresc\| IT\omega \| 22

\Biggr\} 
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1469

and

vresc \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
4
2\widehat V2

inf

\theta + \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
2
2 \gamma \leq \eta 

with vresc \approx \lambda max(S)
 - 1 and \widehat Vinf \approx \lambda min(I\omega S

 - 1IT\omega ); cf. also the precise definitions in
(A.2) and (A.6), (A.7) in the proof.

Proof. The main idea of the proof is to start from the representation (2.16) of the
local PG-LOD stiffness matrix and subsequently implement or approximate all matrix
multiplications or inversions of the mapping A\varepsilon ,\omega \mapsto \rightarrow Spg

\omega by suitably constructed
neural networks. The matrix multiplications can be implemented exactly by single-
layer networks, the inversions, however, have to be approximated using Theorem 3.10.
In the end, these individual building blocks can be connected in series to obtain a
final network with the desired properties. A detailed proof can be found in section
A.1 of the appendix.

We close the section by bounding the size of a network in order for it to well-
approximate any local PG-LOD stiffness matrix with an error of size \scrO (Hk), k \in \BbbN ,
which will be essential for the error estimation of the global errors between the two
surrogate models that are based on deterministic local PG-LOD matrices and their
network approximations, respectively.

Corollary 3.13. Let H < 1/4 and \ell \approx | log(H)| . For any k \in \BbbN , there exists a
neural network \Psi pg

Hk with input dimension m\ell , and output dimension N\ell 2
d such that

for any \omega = N\ell (K), K \in \scrT H , and any A\varepsilon ,\omega \in \frakA \varepsilon ,\omega \bigm\| \bigm\| \bigm\| Spg
\omega  - mat

\Bigl( 
\scrR \frakA \varepsilon ,\omega 

\rho (\Psi pg
Hk)(A\varepsilon ,\omega )

\Bigr) \bigm\| \bigm\| \bigm\| 
2
\lesssim Hk.

Further, we have
(i) L(\Psi pg

Hk)\lesssim | log(h)| 2 + | log(k)| 2,
(ii) M(\Psi pg

Hk)\lesssim h - 2(k| log(H)| + | log(h)| )(| log(h)| 3 + | log(k)| 3)(| log(H)| H/h)3d.

Proof. The result is obtained by applying Theorem 3.12 above with \eta = Hk

and estimating all quantities in the resulting upper bounds on depth and number of
nonzero parameters in terms of the mesh sizes H,h. For more details, see the full
proof in section A.2 of the appendix.

Remark 3.14. Note that the goal of the above results is to show that a suitable
neural network exists that allows one to approximate the local PG-LOD matrices up
to arbitrary accuracy. We emphasize that this does not guarantee that such a network
is actually learned during the training phase in practice. Further, the bounds on the
number of layers and nonzero parameters of the network have to be understood as
worst-case estimates. In the numerical experiments section of [KMP22] it was shown
that the estimates presented above indeed seem very pessimistic and one is able to
train a network that produces satisfying results with significantly fewer parameters.

4. Error analysis of the neural network enhanced surrogate model. In
the previous section, we have seen that the local PG-LOD matrices individually can
be well-approximated by a neural network. However, in applications we are usually
more concerned about how this translates to the resulting difference of the respective
global solutions when applied to our test problem. This involves multiple error sources
that will be discussed in this section.
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1470 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

In the following, we investigate the error in solutions between the solution upg
H \in 

VH of (2.8), i.e., the PGLOD solution, and the solution unn
H \in VH obtained from

the stiffness matrix which is assembled based on the (optimal) local neural network
according to Theorem 3.12 for a suitable tolerance \eta . Let upg be the vector corre-
sponding to upg

H , i.e.,

upg
H =

N\sum 
j=1

upg
j \Lambda j .(4.1)

Here, \{ \Lambda j\} Nj=1 denote the nodal basis functions of VH with N = dimVH . As above,
we write

Spg =
\sum 

K\in \scrT H

\Phi K

\bigl( 
Spg
N\ell (K)

\bigr) 
;(4.2)

cf. (2.17). In the same manner, let unn be the vector corresponding to unn
H and let

Snn :=
\sum 

K\in \scrT H

\Phi K

\bigl( 
\Theta K

\bigr) 
(4.3)

be the respective stiffness matrix. Note that the matrices

\Theta K :=mat
\bigl( 
\scrR 

\frakA 
\varepsilon ,N\ell (K)

\rho (\Psi pg
\eta )(A\varepsilon ,N\ell (K))

\bigr) 
(4.4)

are the local matrices obtained by a forward pass of the local instance A\varepsilon ,N\ell (K) of a
fixed coefficient A on N\ell (K) through the neural network; cf. section 3.1, particularly
Theorem 3.12 and Corollary 3.13. Our goal is to investigate under which conditions
the error \| upg

H  - unn
H \| L2(D) is bounded by some given tolerance, ideally of order \scrO (H).

This would be optimal since upg
H already includes an error which scales at least like

\scrO (H) compared to the ideal solution to (2.1). Note that we have the following norm
equivalence (see, e.g., [Fri73] and observe that the eigenvalues of the local mass matrix
are bounded by Hd 6 - d and Hd 2 - d from below and above, respectively),\bigl( 

H/6
\bigr) d\| v\| 22 \leq vTMv= \| v\| 2L2(D) \leq Hd\| v\| 22,(4.5)

where v \in VH and v is the corresponding vector. Here, M denotes the classical finite
element mass matrix. Therefore, it holds that

\| upg
H  - unn

H \| 2L2(D) = (upg  - unn)TM(upg  - unn)\approx Hd\| upg  - unn\| 22.

To investigate the error between these two solutions, it is favorable to consider the
symmetric version of the LOD for an intermediate step. This will be treated in the
following subsection.

4.1. Difference between C-LOD and PG-LOD approximation. Let uc
H \in 

VH be the solution to (2.7) with corresponding vector uc as above. The stiffness
matrix to (2.7) is denoted Sc. The next lemma shows that the difference uc

H  - upg
H ,

respectively uc  - upg, exponentially decays with increasing localization parameter \ell 
introduced in section 2.2.
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1471

Lemma 4.1. Let uc
H \in VH and upg

H \in VH be the solutions of (2.7) and (2.8),
respectively, and let uc and upg be the corresponding vectors; cf. (4.1). Then

\| uc
H  - upg

H \| L2(D) \lesssim exp( - c\ell )

and

\| uc  - upg\| 2 \lesssim H - d/2 exp( - c\ell ),

where the constant hidden in \lesssim depends on the right-hand side f .

Proof. The proof is based on the observation that the error between the solutions
to (2.7) and (2.8) can be reduced to a decay estimate of the form (2.11). The full
proof is stated in section B.1 of the appendix.

This result will allow us to switch from the PG-LOD approximation to the C-
LOD approximation in the next subsection. Note that the C-LOD approximation is
much more convenient to use in connection with spectral estimates. In particular, we
have the following lemma.

Lemma 4.2. Let Sc be the stiffness matrix corresponding to (2.7). Its minimal
eigenvalue fulfills

\lambda min(S
c)\geq cHd

with a constant c that does not depend on the mesh size H.

Proof. The proof is given in section B.2 of the appendix.

4.2. Error in solution. With the preliminary considerations of the previous
subsection, we can now investigate the error between the solutions upg

H and unn
H .

Theorem 4.3 (coarse-scale error). Let H < 1/4, \ell \approx | log(H)| . There exists a
neural network \Psi pg with

L(\Psi pg)\lesssim | log(h)| 2 and M(\Psi pg)\lesssim h - 2 | log(h)| 4 (| log(H)| H/h)3d(4.6)

such that for any A\in \frakA \varepsilon the solutions upg
H \in VH of (2.8) (and its vector representation

upg) and the network solution unn
H (resp., the vector unn) fulfill

\| upg  - unn\| 2 \lesssim H1 - d/2 and \| upg
H  - unn

H \| L2(D) \lesssim H.

Proof. The proof reduces the stated error to local contributions that can be esti-
mated using Corollary 3.13. To employ useful properties of the symmetric and positive
definite matrix Sc, we take an intermediate step to first estimate the error compared
to the symmetric solution uc

H \in VH of (2.7) (resp., the vector uc) and make use of
Lemma 4.1 and the eigenvalue bound in Lemma 4.2. The detailed proof is presented
in section B.3.

Theorem 4.3 shows that there exists a neural network such that the approach of
section 2 leads to a global coarse-scale error between the discrete PG-LOD solution
and its neural network-based variant of order \scrO (H). The size of such a network can
be bounded dependent on the scales H and h. This leads to an overall error compared
to the exact solution to the elliptic problem of the order \scrO (H) as well, provided that
h is reasonably small; see also (2.10). In certain cases, the necessary choice of the
scale h (and thus the dependence of the size of the network) can be stated in terms
of H and \varepsilon only as investigated in the following section.
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1472 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

5. How fine is enough? LOD on an appropriate fine scale. In the pre-
vious sections, we have investigated how PG-LOD stiffness matrices can be well-
approximated by a local neural network in the sense that the error of the (global)
coarse discretizations are reasonably close with respect to the mesh size H. Note that
the dimensions of the network depend on the scale h on which the corrector problems
(2.12) are computed. In this section, we want to investigate how fine this fine scale
actually needs to be.

5.1. Finding an optimal fine computational scale. In general, the correc-
tions for the LOD may be computed on an arbitrarily fine scale h. Choosing a finer
h also means smaller discretization errors and we generally have

\| u - uh\| L2(D) \rightarrow 0 as h\rightarrow 0

for the first term on the right-hand side of (2.10). For the corrector problems, however,
a finer h also increases the size of the linear systems that need to be solved. As
investigated in section 3.1, this leads to more parameters in the neural network which
approximates the local contributions. Since the network itself already introduces an
error and the LOD also comes with an error of order \scrO (H), we now seek the largest
possible scale h with 0 < h < H such that the scale h is sufficient to still obtain an
overall error of order H while minimizing the necessary parameters of the network.
This particularly means that the term \| u - uh\| L2(D) should be of order \scrO (H). We
have the following result.

Lemma 5.1 (fine-scale error). There exists an s > 0 (depending on \alpha ,\beta ) such
that for any A \in \frakA \varepsilon , the solution u to (2.1) and its Galerkin approximation uh in Vh

satisfy u\in H1+s(D) and

\| \nabla (u - uh)\| L2(D) \lesssim hs\| u\| H1+s(D).(5.1)

Proof. The regularity results presented in [Pet01, Chap 2] state that there exists
some s > 0 such that u\in H1+s(D) for our class of coefficients \frakA \varepsilon . With an appropriate
interpolation operator \scrI h, we may thus derive (see, e.g., [EG17, Thm. 6.4])

\| \nabla (u - uh)\| L2(D) \lesssim \| \nabla (1 - \scrI h)u\| L2(D) \leq Chs\| u\| H1+s(D).

Remark 5.2 (dependence on \varepsilon ). If A \in W 1,\infty (D) with oscillations on the scale \varepsilon ,
i.e., \| A\| W 1,\infty (D) \leq C\varepsilon  - 1, we have s= 1 in Lemma 5.1 with \| u\| H2(D) \lesssim h/\varepsilon \| f\| L2(D)

(see, e.g., the bounds in the proofs of [PS12, Lem. 4.3] or [MP19, Lem. 3.3]). That
is, the choice h\approx H\varepsilon leads to an error of size \scrO (H).

If instead A \in \frakA \varepsilon , the condition on h reads h\approx H1/s \| u\|  - 1/s
H1+s(D). We emphasize

that the norm of u does not depend on h and one can expect that \| u\| H1+s(D) =

\scrO (\varepsilon  - s), leading to the optimal choice h\approx H1/s\varepsilon .

With the above considerations and Theorem 4.3, we can finally state a result
that quantifies the worst-case size and depth of a (local) neural network to achieve
an overall error of the corresponding global surrogate of order \scrO (H) independently
of the scale h (which, in practice, could be chosen arbitrarily small).

Corollary 5.3. Let the solution u of (2.1) fulfill u \in H1+s(D), and let
\| u\| H1+s(D) = \scrO (\varepsilon  - s) for some s > 0. Then, there exists a local neural network
\Psi pg with depth

L(\Psi pg)\lesssim s - 2| log(H)| 2 + | log(\varepsilon )| 2
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1473

and size

M(\Psi pg)\lesssim H - 2/s\varepsilon  - 2
\Bigl( 
s - 4| log(H)| 4 + | log(\varepsilon )| 4

\Bigr) \bigl( 
| log(H)| H1 - 1/s\varepsilon  - 1

\bigr) 3d
such that the error of u and the solution unn

H \in VH obtained from the stiffness matrix
which is assembled based on \Psi pg fulfills

\| u - unn
H \| L2(D) \lesssim H.

6. Conclusion and outlook. In this paper, we have theoretically investigated
the approximation properties of neural networks to approximate the coarse-scale con-
tributions of local subproblems in numerical homogenization. The computation of
these local problems that are solved on a fine scale is the bottleneck when comput-
ing reliable coarse-scale surrogates in numerical homogenization. Therefore, replacing
this process by a single trained neural network allows for a significant speedup, be-
cause the computation of an appropriate surrogate is reduced to simple forward passes
through the network. We have focused on the LOD method as a representative nu-
merical homogenization method and presented upper bounds on the size of a network
that leads to a total error between the deterministic discrete approximation and its
variant based on the output surrogate of a trained neural network that scales linearly
with respect to the coarse scale of interest.

We emphasize that the presented results focus on general approximation proper-
ties and do not provide an answer to the important question regarding whether and
how optimal approximating networks can be found through training from data, which
might not be possible at all for certain tasks as recently shown in [CAH21]. Neverthe-
less, our findings provide insight into how the dimensions of a suitable neural network
for the approximation of the local subproblems in numerical homogenization should
be chosen if the target scale of interest and the oscillation scale of the coefficient are
given. This serves as a first step in developing mathematically rigorous guidelines
on how to design suitable neural network architectures for numerical homogenization
tasks. Further investigations into this direction are subject to future research.

Appendix A. Proofs in section 3.

A.1. Proof of Theorem 3.12. As mentioned at the beginning of section 3.2,
we assume that K \in \scrT H is an element that is at least \ell + 1 layers of elements away
from the boundary of D and set \omega = N\ell (K). The idea of the proof is to start from the
representation of the local PG-LOD matrix given in (2.16), namely

Spg
\omega =PT

\omega I
T
\omega (I\omega S

 - 1IT\omega )
 - 1I\omega P\omega ,K ,(A.1)

and decomposing the approximation of the mapping A\varepsilon ,\omega \mapsto \rightarrow vec(Spg
\omega ) into the follow-

ing seven consecutive steps:
(1) Linear transformation A\varepsilon ,\omega \mapsto \rightarrow vec(S),
(2) Inversion vec(S) \mapsto \rightarrow vec(S - 1),
(3) Linear transformation vec(S - 1) \mapsto \rightarrow vec(S - 1IT\omega ) =: vec(X),
(4) Linear transformation vec(X) \mapsto \rightarrow vec(I\omega X) =: vec(Y),
(5) Inversion vec(Y) \mapsto \rightarrow vec(Y - 1),
(6) Linear transformation vec(Y - 1) \mapsto \rightarrow vec(Y - 1I\omega P\omega ,K) =: vec(Z),
(7) Linear transformation vec(Z) \mapsto \rightarrow vec(PT

\omega I
T
\omega Z).

Note that, in fact, steps 1, 3, 4, 6, and 7 can be implemented exactly by single-
layer neural networks. The matrix inversions in steps 2 and 5, however, have to
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1474 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

be approximated up to some tolerance. Our goal is, therefore, to construct neural
networks \Psi 1, . . . ,\Psi 7, which implement and approximate these steps. Connecting those
building blocks in series then yields a network \Psi pg

\eta with the desired properties.
Step 1. The key insight in the first step is that the mapping A\varepsilon ,\omega \mapsto \rightarrow vec(S) can

be written as a linear transformation of the input vector A\varepsilon ,\omega \mapsto \rightarrow UA\varepsilon ,\omega . Based on
this observation, the single-layer network

\Psi 1 :=
\bigl( 
(U,0n2

\ell 
)
\bigr) 

with input dimension m\ell and output dimension n2
\ell exactly implements the desired

map. Writing \lambda i, i = 1, . . . , n\ell , for the classical nodal basis of Vh(\omega ), and identifying
the index of entry i \in \{ 1, . . . , n2

\ell \} in vec(S) with the index pair (k, l) \in \{ 1, . . . , n\ell \} \times 
\{ 1, . . . , n\ell \} of the corresponding entry in S, the matrix U\in \BbbR n2

\ell \times m\ell is given by

Ui,j =

\int 
Tj

\nabla \lambda k \cdot \nabla \lambda l dx,

where Tj is the jth element in \scrT \varepsilon (\omega ). The fact that \| U\| 0 \leq 23d - 1m\ell (\varepsilon /h)
d by a rough

estimation then yields
(i) L(\Psi 1) = 1,
(ii) M(\Psi 1)\leq 23d - 1m\ell (\varepsilon /h)

d \lesssim ((\ell + 1)H/h)d \lesssim (\ell H/h)d.
Step 2. To approximate the inversion vec(S) \mapsto \rightarrow vec(S - 1), we utilize Theorem 3.10

to construct a suitable network \Psi 2. In order to do so, however, we first have to rescale
the input vec(S) with a value vresc in such a way that \| Idn2

\ell 
 - vrescS\| 2 \leq 1  - \delta for

some \delta \in (0,1). Since all coefficients under consideration are bounded from below and
above by \alpha and \beta , respectively, there exist optimal values Vinf ,Vsup (dependent on
h, \alpha , and \beta ) such that

0<Vinf \leq inf
v\in \BbbR n\ell \setminus \{ 0\} 

vTSv

vTv
\leq sup

v\in \BbbR n\ell \setminus \{ 0\} 

vTSv

vTv
\leq Vsup <\infty 

for any A\in \frakA . That is, the spectrum of S is always contained in [Vinf ,Vsup]. Choosing

vresc \in (0,V - 1
sup)(A.2)

and setting \delta := vrescVinf , the symmetry of S then implies\bigm\| \bigm\| Idn2
\ell 
 - vrescS

\bigm\| \bigm\| 
2
\leq | 1 - vrescVinf | = 1 - \delta .

The step of rescaling the input corresponds to feeding it through the one-layer net-
work

\bigl( 
(vresc Idn2

\ell 
,0n2

\ell 
)
\bigr) 
. Moreover, it can be easily seen that if ((W,b)) is the neu-

ral network that implements vrescvec(S), then (( - W, - b + vec(Idn2
\ell 
))) implements

vec(Idn2
\ell 
 - vrescS). For any \theta \in (0, \eta ), Theorem 3.10 then guarantees the existence of

a neural network \Psi 
1 - \delta ,n2

\ell 

inv,\theta such that\bigm\| \bigm\| \bigm\| (vrescS)
 - 1  - mat

\Bigl( 
R

K1 - \delta 
n\ell 

\rho 

\bigl( 
\Psi 

1 - \delta ,n2
\ell 

inv,\theta 

\bigr) \Bigl( 
vec(Idn2

\ell 
 - vrescS)

\Bigr) \Bigr) \bigm\| \bigm\| \bigm\| 
2
\leq \theta .(A.3)

Lastly, after the approximate inversion is performed, one has to scale the output
back to the original scaling to obtain an approximation to vec(S - 1) rather than
(1/vresc)vec(S

 - 1). This is again done with the one-layer network
\bigl( 
(vresc Idn2

\ell 
,0n2

\ell 
)
\bigr) 
.

Taking those operations together, we define

\Psi 2 :=
\bigl( 
(vresc Idn2

\ell 
,0n2

\ell 
)
\bigr) 
\bullet \Psi 1 - \delta ,n2

\ell 

inv,\eta \odot 
\bigl( 
( - vresc Idn2

\ell 
,vec(Idn2

\ell 
))
\bigr) 
.
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1475

Combining Theorem 3.10 with Lemmas 3.4 and 3.7, we obtain the following bounds
for the inversion network \Psi 2:

(i) L(\Psi 2)\lesssim log(m(\theta , \delta ))
\bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\bigr) 
+ 1,

(ii) M(\Psi 2)\lesssim m(\theta , \delta ) log2(m(\theta , \delta ))n3
\ell 

\bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\bigr) 
+ n2

\ell .
Step 3: Similarly to step 1, multiplying the neural network approximation of S - 1

with IT\omega from the right can be implemented by a single-layer neural network. Since
both S - 1 and its approximation are symmetric matrices (see Remark 3.11), it holds
for both matrices that S - 1IT\omega = (I\omega S

 - 1)T , and therefore, vec(S - 1IT\omega ) =Qvec(I\omega S
 - 1)

for a suitable permutation matrix Q that maps vec(M) to vec(MT ) for an arbitrary
matrix M\in \BbbR N\ell \times n\ell . To implement the map vec(S - 1) \mapsto \rightarrow vec(I\omega S

 - 1), we consider the
parallelization of n\ell identical copies \Psi 3

1, . . . ,\Psi 
3
n\ell 

of the single-layer network

\Psi I\omega :=
\bigl( 
(I\omega ,0N\ell 

)
\bigr) 
.

Concatenating the output of this parallelization with the one-layer network ((Q,0n\ell \cdot N\ell 
)),

i.e., setting

\Psi 3 := ((Q,0n\ell \cdot N\ell 
)) \bullet P (\Psi 3

1, . . . ,\Psi 
3
n\ell 
),

then exactly implements the desired transformation. If the interpolation operator
\scrI H given in (2.4) is used, the corresponding matrix I\omega \in \BbbR N\ell \times n\ell is a sparse matrix
that satisfies \| I\omega \| 0 \leq N\ell (2H/h + 1)d. Moreover, since Q is a permutation matrix,
it does not change the number of nonzero parameters when concatenated with the
parallelization network due to Lemma 3.4. With Lemma 3.9, we finally obtain the
following complexity estimates:

(i) L(\Psi 3) = 1,
(ii) M(\Psi 3) = n\ell N\ell (2H/h+ 1)d = (((2\ell + 1)H/h - 1)(2\ell + 2)(2H/h+ 1))d

\lesssim (\ell 2H/h(H/h+ 1))d \lesssim (\ell H/h)2d.
Step 4. Analogous to the previous step, we considerN\ell identical copies \Psi 

4
1, . . . ,\Psi 

4
N\ell 

of the linear transformation network \Psi I\omega =
\bigl( 
(I\omega ,0N\ell 

)
\bigr) 
that implements multiplication

of an input vector with I\omega . Then define the parallelization

\Psi 4 := P (\Psi 4
1, . . . ,\Psi 

4
N\ell 

),

which implements the desired transformation exactly. Note that in this step, no
permutation of the output of the parallelization is necessary. We obtain the same
bounds as in the previous step, i.e.,

(i) L(\Psi 4) = 1,
(ii) M(\Psi 4)\lesssim (((2\ell + 1)H/h - 1)(2\ell + 2)(2H/h+ 1))d \lesssim (\ell H/h)2d.
Step 5. This step is similar to step 2 and utilizes again Theorem 3.10 to approxi-

mate the inversion of Y := I\omega S
 - 1IT\omega \in \BbbR N\ell \times N\ell . However, we have to consider that at

this stage the approximation

\widehat Y := I\omega vrescmat
\Bigl( 
R

K1 - \delta 
n\ell 

\rho 

\bigl( 
\Psi 

1 - \delta ,n2
\ell 

inv,\theta 

\bigr) 
(vec(Idn2

\ell 
 - vrescS))

\Bigr) 
IT\omega 

instead of the true matrixY will be given as the input to the network to be constructed
due to the inexact inversion of step 2 above. Observe that under the additional
condition

\theta <min

\Biggl\{ 
\lambda min(Y),

\lambda min(Y)

2vresc\| I\omega \| 22

\Biggr\} 
,
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1476 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

it holds true that

| \lambda min(Y) - \lambda min( \widehat Y)| \leq \| Y - \widehat Y\| 2 \leq vresc\| I\omega \| 22 \theta < 0.5\lambda min(Y),

and therefore,

\lambda min( \widehat Y) = \lambda min(Y) - 
\bigl( 
\lambda min(Y) - \lambda min( \widehat Y)

\bigr) 
> 0.5\lambda min(Y),(A.4)

i.e., the minimal eigenvalue of \widehat Y can be bounded in terms of the minimal eigenvalue
of Y. This and the fact that Y is a symmetric and positive definite matrix (cf. also
the proof of Corollary 3.13) implies that \widehat Y is symmetric and positive definite as well,
since the neural network approximating matrix inversion can always be constructed
such that symmetry of the input matrix is preserved (cf. Remark 3.11). Further, we
have

\lambda max( \widehat Y) = \| \widehat Y\| 2 \leq \| Y\| 2 + \| Y - \widehat Y\| 2 \leq \lambda max(Y) + 0.5\lambda min(Y)< 2\lambda max(Y).(A.5)

This implies the existence of optimal values \widehat Vinf , \widehat Vsup (dependent on H, h, \alpha , and
\beta ) such that

0< \widehat Vinf \leq inf
v\in \BbbR N\ell \setminus \{ 0\} 

vT \widehat Yv

vTv
\leq sup

v\in \BbbR N\ell \setminus \{ 0\} 

vT \widehat Yv

vTv
\leq \widehat Vsup <\infty (A.6)

and

0< \widehat Vinf \leq inf
v\in \BbbR N\ell \setminus \{ 0\} 

vTYv

vTv
\leq sup

v\in \BbbR N\ell \setminus \{ 0\} 

vTYv

vTv
\leq \widehat Vsup <\infty .(A.7)

For a discussion on the scaling of the values \widehat Vinf , \widehat Vsup and the assumptions on \theta in
terms of the mesh sizes H and h, we refer to the proof of Corollary 3.13 below. When
the matrices Y and \widehat Y are rescaled with \widehat vresc \in (0, \widehat V - 1

sup), it holds that

\| IdN2
\ell 
 - \widehat vrescY\| 2 \leq 1 - \widehat \delta , aswell as \| IdN2

\ell 
 - \widehat vresc \widehat Y\| 2 \leq 1 - \widehat \delta ,

with \widehat \delta := \widehat vresc \widehat Vinf . The rescaling is implemented by the network
\bigl( 
(\widehat vresc IdN2

\ell 
,0N2

\ell 
)
\bigr) 
.

Moreover, changing this network to
\bigl( 
( - \widehat vresc IdN2

\ell 
,vec(IdN2

\ell 
))
\bigr) 
by switching signs of

the weight matrix and adding a vectorized identity matrix as a bias term leads to
the implementation of (IdN2

\ell 
 - \widehat vresc \widehat Y) if vec( \widehat Y) is fed through this network. Theo-

rem 3.10 yields the existence of a neural network \Psi 
1 - \widehat \delta ,N2

\ell 

inv,\gamma such that\bigm\| \bigm\| \bigm\| \bigl( \widehat vresc \widehat Y\bigr)  - 1  - mat
\Bigl( 
R

K1 - \widehat \delta 
N\ell 

\rho 

\bigl( 
\Psi 

1 - \widehat \delta ,N2
\ell 

inv,\gamma 

\bigr) 
(vec(IdN2

\ell 
 - \widehat vresc \widehat Y))

\Bigr) \bigm\| \bigm\| \bigm\| 
2
\leq \gamma .(A.8)

Note that this, in turn, implies that

\bigm\| \bigm\| \bigm\| \bigl( \widehat vrescY\bigr)  - 1  - mat
\Bigl( 
R

K1 - \widehat \delta 
N\ell 

\rho 

\bigl( 
\Psi 

1 - \widehat \delta ,N2
\ell 

inv,\eta 

\bigr) \bigl( 
vec(IdN2

\ell 
 - \widehat vresc \widehat Y)

\bigr) \Bigr) \bigm\| \bigm\| \bigm\| 
2
\leq 

vresc \| I\omega \| 22\widehat vresc \widehat V2
inf

\theta + \gamma .

(A.9)

Indeed, it holds by the triangle inequality and (A.8) that\bigm\| \bigm\| \bigm\| \bigl( \widehat vrescY\bigr)  - 1  - mat
\Bigl( 
R

K1 - \widehat \delta 
N\ell 

\rho 

\bigl( 
\Psi 

1 - \widehat \delta ,N2
\ell 

inv,\eta 

\bigr) 
(vec(IdN2

\ell 
 - \widehat vresc \widehat Y))

\Bigr) \bigm\| \bigm\| \bigm\| 
2

\leq 
\bigm\| \bigm\| \bigm\| \bigl( \widehat vrescY\bigr)  - 1  - 

\bigl( \widehat vresc \widehat Y\bigr)  - 1
\bigm\| \bigm\| \bigm\| 
2

+
\bigm\| \bigm\| \bigm\| \bigl( \widehat vresc \widehat Y\bigr)  - 1  - mat

\Bigl( 
R

K1 - \widehat \delta 
N\ell 

\rho 

\bigl( 
\Psi 

1 - \widehat \delta ,N2
\ell 

inv,\eta 

\bigr) 
(vec(IdN2

\ell 
 - \widehat vresc \widehat Y))

\Bigr) \bigm\| \bigm\| \bigm\| 
2
=: ( \star ) + \gamma .
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1477

Using \| A - 1  - B - 1\| 2 \leq \| A - B\| 2\| A - 1\| 2\| B - 1\| 2, the term ( \star ) can be estimated by

( \star )\leq 
\bigm\| \bigm\| \bigm\| \widehat vrescY - \widehat vresc \widehat Y\bigm\| \bigm\| \bigm\| 

2

\bigm\| \bigm\| \bigm\| \bigl( \widehat vrescY\bigr)  - 1
\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bigm\| \bigl( \widehat vresc \widehat Y\bigr)  - 1
\bigm\| \bigm\| \bigm\| 
2
\leq 1\widehat vresc \| I\omega \| 22 vresc \theta 1\widehat Vinf

1\widehat Vinf

,

where we have used (A.3) and the definitions as well as the spectral bounds given on
Y, \widehat Y in (A.6), (A.7). This yields the inequality (A.9).

Rescaling the output of \Psi 
1 - \widehat \delta ,N2

\ell 

inv,\gamma again, we get a network with the desired approx-
imation properties defined by

\Psi 5 :=
\bigl( 
(\widehat vresc IdN2

\ell 
,0N2

\ell 
)
\bigr) 
\bullet \Psi 1 - \widehat \delta ,N2

\ell 

inv,\gamma \odot 
\bigl( 
( - \widehat vresc IdN2

\ell 
,vec(IdN2

\ell 
))
\bigr) 
.

Further, we have the following bounds on depth and number of parameters:
(i) L(\Psi 5)\lesssim log(m(\gamma ,\widehat \delta )) (log(1/\gamma ) + log(m(\gamma ,\widehat \delta )) + log(N\ell )) + 1,
(ii) M(\Psi 5)\lesssim m(\gamma ,\widehat \delta ) log2(m(\gamma ,\widehat \delta ))N3

\ell (log(1/\gamma ) + log(m(\gamma ,\widehat \delta )) + log(N\ell )) +N2
\ell .

Step 6. The multiplication of Y - 1, respectively \widehat Y - 1, with I\omega P\omega ,K from the right

is analogous to step 3. Again, we have that both Y - 1 and \widehat Y - 1 are symmetric and
thus the expression Y - 1I\omega P\omega ,K can also be written as ((I\omega P\omega ,K)TY - 1)T . With the
same argument as in step 3, the map vec(Y - 1) \mapsto \rightarrow vec(Y - 1I\omega P\omega ,K) is thus exactly
implemented by

\Psi 6 := ((\widetilde Q,02dN\ell 
)) \bullet P (\Psi 6

1, . . . ,\Psi 
6
N\ell 

),

where \widetilde Q is a suitable permutation matrix of dimension N\ell 2
d\times N\ell 2

d and \Psi 6
1, . . . ,\Psi 

6
N\ell 

are identical copies of

\Psi (I\omega P\omega ,K)T :=
\bigl( 
(I\omega P\omega ,K)T ,02d

\bigr) 
.

Since I\omega is a quasi-interpolation operator on \omega and P\omega ,K is the prolongation oper-
ator from the element K to the whole patch, we roughly estimate \| I\omega P\omega ,K\| 0 \leq 6d.
Combining this with Lemma 3.9 yields

(i) L(\Psi 6) = 1,
(ii) M(\Psi 6) = 6dN\ell = 6d(2\ell + 2)d \lesssim \ell d.
Step 7. Analogous to step 4, we consider the parallelization

\Psi 7 := P (\Psi 7
1, . . . ,\Psi 

7
N\ell 

),

where \Psi 7
1, . . . ,\Psi 

7
N\ell 

are identical copies of

\Psi PT
\omega IT\omega 

:=
\bigl( 
(PT

\omega I
T
\omega ,02d)

\bigr) 
.

Again, no permutation is necessary in this step. With our choice of the quasi-
interpolation operator, the rough estimate \| PT

\omega I
T
\omega \| 0 \leq 3dN\ell holds, which leads to

(i) L(\Psi 7) = 1,
(ii) M(\Psi 7)\leq 3dN2

\ell = 3d(2\ell + 2)2d \lesssim \ell 2d.
By connecting the individual networks \Psi 1, . . . ,\Psi 7 in series by sparsely concate-

nating them, i.e., defining

\Psi pg
\eta :=\Psi 7 \odot \cdot \cdot \cdot \odot \Psi 1,

we finally obtain a network with the desired properties. In particular, we have\bigm\| \bigm\| Spg
\omega  - mat(\scrR \frakA \varepsilon ,\omega 

\rho (\Psi pg
\eta (A\varepsilon ,\omega )))

\bigm\| \bigm\| 
2
\leq 

vresc \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
4
2\widehat V2

inf

\theta 

+ \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
2
2 \gamma ,
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1478 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

since with the abbreviation

\widehat inv(\widehat vresc \widehat Y) :=mat
\Bigl( 
R

K1 - \widehat \delta 
N\ell 

\rho 

\bigl( 
\Psi 

1 - \widehat \delta ,N2
\ell 

inv,\eta 

\bigr) 
(vec(IdN2

\ell 
 - \widehat vresc \widehat Y))

\Bigr) 
,

it holds that\bigm\| \bigm\| \bigm\| Spg
\omega  - mat(\scrR \frakA \varepsilon ,\omega 

\rho (\Psi pg
\eta (A\varepsilon ,\omega )))

\bigm\| \bigm\| \bigm\| 
2

=
\bigm\| \bigm\| \bigm\| I\omega P\omega \widehat vresc \bigl( \widehat vrescY\bigr)  - 1

IT\omega PK,\omega  - I\omega P\omega \widehat vresc\widehat inv(\widehat vresc \widehat Y)IT\omega PK,\omega 

\bigm\| \bigm\| \bigm\| 
2

\leq \| P\omega \| 2 \| PK,\omega \| 2 \| I\omega \| 
2
2
\widehat vresc\Biggl( vresc \| I\omega \| 22\widehat vresc \widehat V2

inf

\theta + \gamma 

\Biggr) 

due to (A.9). Choosing \theta , \gamma such that

vresc \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
4
2\widehat V2

inf

\theta + \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
2
2 \gamma \leq \eta 

then yields the estimate. As above, we refer to the proof of Corollary 3.13 below for
a discussion of the scaling of the relevant spectral norms in terms of the mesh sizes
H,h. Using Lemma 3.7, we obtain the following bounds for the final network:

(i) L(\Psi pg)\leq 
\sum 7

i=1L(\Psi 
i)\lesssim log(m(\theta , \delta ))

\bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\bigr) 
+ log(m(\gamma ,\widehat \delta )) \bigl( log(1/\gamma )+log(m(\gamma ,\widehat \delta ))+log(N\ell )

\bigr) 
+1,

(ii) M(\Psi pg)\lesssim 
\sum 7

i=1M(\Psi i)
\lesssim m(\theta , \delta ) log2(m(\theta , \delta ))n3

\ell 

\bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\bigr) 
+m(\gamma ,\widehat \delta ) log2(m(\gamma ,\widehat \delta ))N3

\ell 

\bigl( 
log(1/\gamma )+log(m(\gamma ,\widehat \delta ))+log(N\ell )

\bigr) 
+(\ell H/h)2d.

This is the assertion.

A.2. Proof of Corollary 3.13. The claim follows directly from Theorem 3.12
with \eta \approx Hk and the estimation of the quantities \theta , \gamma , \delta ,\widehat \delta in terms of the mesh sizes
H,h. Starting with \theta and \gamma , we have the condition that

\theta <min

\Biggl\{ 
Hk, \lambda min(I\omega S

 - 1IT\omega ),
\lambda min(I\omega S

 - 1IT\omega )

2vresc\| I\omega \| 22

\Biggr\} 
,(A.10)

which requires an estimation of the smallest eigenvalue of I\omega S
 - 1IT\omega . Observe that

\lambda min(I\omega S
 - 1IT\omega )\geq \lambda min(S

 - 1)\lambda min(I\omega I
T
\omega ) =

\lambda min(I\omega I
T
\omega )

\lambda max(S)
\gtrsim 

\lambda min(I\omega I
T
\omega )

hd - 2
,

where we have used the well-known fact that \lambda max(S) \approx hd - 2 as the maximal eigen-
value of a finite element stiffness matrix. In order to estimate the eigenvalues of I\omega I

T
\omega ,

we have to look into the practical computation of the matrix I\omega . It holds that

I\omega =Rc,\omega Ec,\omega (M
dg
c,\omega )

 - 1(Pdg
\omega )TMdg

\omega C\omega R
T
\omega ,

where Ec,\omega is the algebraic realization of the averaging operator EH introduced in
(2.4), Mdg

c,\omega and Mdg
\omega are the mass matrices corresponding to Q1 discontinuous finite

element functions on \scrT H(\omega ) and \scrT h(\omega ), respectively, Pdg
\omega is the prolongation map from

\scrT H(\omega ) to \scrT h(\omega ) for Q1 discontinuous finite element functions, C\omega maps the vector
representation of a continuous finite element function to the vector of its discontinuous
representation, and R\omega is a restriction operator that removes all entries corresponding
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1479

to boundary nodes of the patch \omega on the fine mesh. The restriction operator Rc,\omega 

removes coarse boundary nodes on \partial D only. Since I\omega has full rank, it holds that

\lambda min(I\omega I
T
\omega )\geq \lambda min(Rc,\omega R

T
c,\omega )\lambda min(Ec,\omega E

T
c,\omega )\lambda min((M

dg
c,\omega )

 - 2)\lambda min((P
dg
\omega )TPdg

\omega )

\cdot \lambda min((M
dg
\omega )2)\lambda min(C

T
\omega C\omega )\lambda min(R\omega R

T
\omega ).

Using that \lambda min(Rc,\omega R
T
c,\omega ) = \lambda min(R\omega R

T
\omega ) = 1, \lambda min(Ec,\omega E

T
c,\omega )\gtrsim 2 - d, \lambda min((M

dg
c,\omega )

 - 2)
\gtrsim H - 2d, \lambda min((M

dg
\omega )2) \gtrsim h2d, \lambda min((P

dg
\omega )TPdg

\omega ) \gtrsim (H/h)d and \lambda min(C
T
\omega C\omega ) = 1, we

obtain

\lambda min(I\omega I
T
\omega )\gtrsim 2 - dH - 2dh2d(H/h)d \gtrsim (h/H)d.

This, in turn, yields

\lambda min(I\omega S
 - 1IT\omega )\gtrsim 

(h/H)d

hd - 2
\approx h2

Hd
.

With a similar argument for the maximal eigenvalue, we also get \| I\omega \| 22 \lesssim (h/H)d.
Further, we have

vresc <
1

Vsup
\leq 1

\lambda max(S)
\approx h2 - d.

Combining the above estimates, we arrive at

\lambda min(I\omega S
 - 1IT\omega )

vresc\| I\omega \| 22
\gtrsim 

h2/Hd

h2 - d(h/H)d
\approx 1.

Recall that according to Theorem 3.12, the parameter \gamma has to satisfy the condition

vresc \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
4
2\widehat Vinf

\theta + \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
2
2 \gamma \leq Hk.

Since P\omega and P\omega ,K realize prolongations, we have \| P\omega \| 2 \lesssim (H/h)d/2 as well as
\| P\omega ,K\| 2 \lesssim (H/h)d/2. With a suitable choice of \theta , i.e.,

\theta \approx h2

H
Hk

\Biggl( 
1 +

Hd

h2

\Biggr)  - 1

,

the estimate (A.10) is fulfilled. Further, we have with (A.4) that

\widehat Vinf \approx \lambda min(I\omega S
 - 1IT\omega )\gtrsim 

h2

Hd
.

Choosing \gamma \approx \theta thus leads to the rough estimate

vresc \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
4
2\widehat V2

inf

\theta + \| P\omega ,K\| 2 \| P\omega \| 2 \| I\omega \| 
2
2 \gamma 

\lesssim 
h2 - d(H/h)d(h/H)2d

(h4/H2d)
\theta + (H/h)d(h/H)d\gamma 

\approx 
\Bigl( 
1 +

Hd

h2

\Bigr) 
\theta \lesssim 

\Bigl( 
1 +

Hd

h2

\Bigr) \Bigl( 
1 +

Hd

h2

\Bigr)  - 1

Hk =Hk.
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1480 FABIAN KR\"OPFL, ROLAND MAIER, AND DANIEL PETERSEIM

In order to estimate the quantities m(\theta , \delta ) and m(\gamma ,\widehat \delta ), we derive lower bounds on
\delta , \widehat \delta , and \theta . If vresc is chosen close to V - 1

sup , we have that

\delta = vrescVinf \approx 
Vinf

Vsup
\approx \lambda min(S)

\lambda max(S)
\approx hd

hd - 2
= h2,

using the fact that \lambda min(S) \approx hd. Analogously, for a choice of \widehat vresc close to \widehat V - 1
sup we

obtain

\widehat \delta \approx \widehat Vinf\widehat Vsup

\approx \lambda min(I\omega S
 - 1IT\omega )

\lambda max(I\omega S - 1IT\omega )
\gtrsim 

h2H - d

H - d
\approx h2,

where we have used that \lambda max(I\omega S
 - 1IT\omega ) \lesssim H - d, which can be derived analogously

to the scaling of the smallest eigenvalue. For \theta (and thus \gamma ), a very rough estimation
yields

\theta \approx h2

H
Hk

\Biggl( 
1 +

Hd

h2

\Biggr)  - 1

\approx Hk - 1h2 h2

h2 +Hd
\gtrsim Hk - 1h4.

Therefore, we obtain

m(\theta , \delta ) =

\biggl\lceil 
log(0.5\theta \delta )

log(1 - \delta )

\biggr\rceil 
\lesssim 

log(0.5Hk - 1h6)

log(1 - h2)
\lesssim 

(k - 1)| log(H)| + 6| log(h)| 
h2

,

and similarly,

m(\gamma ,\widehat \delta )\lesssim (k - 1)| log(H)| + 6| log(h)| 
h2

.

Moreover, it holds that N\ell <n\ell \lesssim (| log(H)| H/h)d and thus

log(n\ell )\lesssim d log(H| log(H)| /h)\lesssim | log(h)| .

Inserting all these results into the bounds derived in Theorem 3.10 and using without
loss of generality that \theta \leq \gamma and \delta \leq \widehat \delta , we obtain

L(\Psi pg
Hk)\lesssim log(m(\theta , \delta ))

\Bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\Bigr) 
\lesssim 
\Bigl( 
| log(h)| + | log(k)| 

\Bigr) \Bigl( 
| log(h)| + | log(k)| 

\Bigr) 
\lesssim | log(h)| 2 + | log(k)| 2

as well as

M(\Psi pg
Hk)\lesssim m(\theta , \delta ) log2(m(\theta , \delta ))n3

\ell 

\Bigl( 
log(1/\theta ) + log(m(\theta , \delta )) + log(n\ell )

\Bigr) 
+ (| log(H)| H/h)2d

\lesssim h - 2
\Bigl( 
k| log(H)| + | log(h)| 

\Bigr) \Bigl( 
| log(h)| 3 + | log(k)| 3

\Bigr) \bigl( 
| log(H)| H/h

\bigr) 3d
.

This is the assertion.
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NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1481

Appendix B. Proofs in section 4.

B.1. Proof of Lemma 4.1. Taking the difference of (2.7) and (2.8) leads to

a((id - \scrQ \ell )(uc
H  - upg

H ), (id - \scrQ \ell )vH) = a((id - \scrQ \ell )upg
H ,\scrQ \ell vH)

for all vH \in VH . Therefore, with vH = (uc
H  - upg

H ), we have

a((id - \scrQ \ell )(uc
H  - upg

H ), (id - \scrQ \ell )(uc
H  - upg

H ))

= a((id - \scrQ \ell )upg
H ,\scrQ \ell (uc

H  - upg
H ))

= a((id - \scrQ )upg
H ,\scrQ \ell (uc

H  - upg
H ))\underbrace{}  \underbrace{}  

=0

+a((\scrQ  - \scrQ \ell )upg
H ,\scrQ \ell (uc

H  - upg
H ))

\lesssim exp( - c\ell )\| \nabla upg
H \| L2(D) \| (id - \scrQ \ell )(uc

H  - upg
H )\| L2(D)

using (2.11) in the last step. This leads to

\| \nabla (id - \scrQ \ell )(uc
H  - upg

H )\| L2(D) \lesssim exp( - c\ell )\| \nabla upg
H \| L2(D)

and, with the Friedrichs inequality, interpolation estimates, and the stability of the
solution upg

H , we get

\| uc
H  - upg

H \| L2(D) \lesssim exp( - c\ell ).

Further, we have

\| uc  - upg\| 2 \leq CH - d/2\| uc
H  - upg

H \| L2(D) \lesssim H - d/2 exp( - c\ell ),

which is the assertion.

B.2. Proof of Lemma 4.2. Due to the definition of (2.7) (which defines Sc),
we have for any vector v with corresponding function v \in VH that

vTScv= a((id - \scrQ \ell )v, (id - \scrQ \ell )v)\geq \alpha \| \nabla (id - \scrQ \ell )v\| 2L2(D)

\geq \alpha C - 2\| \nabla v\| 2L2(D)

(B.1)

using the interpolation estimate (2.3) and \scrI H(id  - \scrQ \ell )v = v. With the Poincar\'e--
Friedrichs inequality with constant CP and the estimate (4.5), we further get

vTScv\geq \alpha C - 2C - 2
P \| v\| 2L2(D) = \alpha C - 2C - 2

P vTMv\geq cHd\| v\| 22.(B.2)

The claim follows since the minimal eigenvalue is bounded from above by the Rayleigh
quotient.

B.3. Proof of Theorem 4.3. We only show the first estimate. The second one
follows directly from the equivalence

Hd/2\| upg  - unn\| 2 \lesssim \| upg
H  - unn

H \| L2(D) \lesssim Hd/2\| upg  - unn\| 2,(B.3)

which follows from (4.5). With Lemma 4.1, we have

\| upg  - unn\| 2 \leq \| upg  - uc\| 2 + \| uc  - unn\| 2 \lesssim H - d/2e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell + \| uc  - unn\| 2.(B.4)

We now bound the second term. Note that the right-hand side involving f is deter-
ministic and thus equal for the discrete problems (2.8), (2.7), and the system based
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on the neural network. Denoting the vector-version of the right-hand side with f , we
particularly have the linear systems

Spgupg = f , Scuc = f , Snnunn = f ,(B.5)

where Spg is the PG-LOD stiffness matrix, Sc the (symmetric) C-LOD stiffness ma-
trix, and Snn the one assembled from the neural network. Using (B.5), we estimate

\| uc  - unn\| 2 =
\bigm\| \bigm\| \bigl( Sc

\bigr)  - 1
f  - unn

\bigm\| \bigm\| 
2
=
\bigm\| \bigm\| \bigl( Sc

\bigr)  - 1
(Snnunn  - Scunn)

\bigm\| \bigm\| 
2

\leq 
\bigm\| \bigm\| \bigl( Sc

\bigr)  - 1\bigm\| \bigm\| 
2

\bigm\| \bigm\| Snn  - Sc
\bigm\| \bigm\| 
2

\bigm\| \bigm\| unn
\bigm\| \bigm\| 
2
.

(B.6)

With the eigenvalue bound on Sc that is proven in Lemma 4.2, we obtain\bigm\| \bigm\| \bigl( Sc
\bigr)  - 1\bigm\| \bigm\| 

2
=
\bigl( 
\lambda min(S

c)
\bigr)  - 1

\lesssim H - d.(B.7)

For the second factor on the right-hand side of (B.6), we estimate

\| Snn  - Sc\| 2 \leq \| Snn  - Spg\| 2 + \| Spg  - Sc\| 2.

With the choice k= 2d+1 in Corollary 3.13 and (4.2)--(4.4), we obtain the bounds in
(4.6) as well as

\| Snn  - Spg\| 2 \leq 
\sum 

K\in \scrT H

\bigm\| \bigm\| \Phi K

\bigl( 
\Theta K  - Spg

N\ell (K)

\bigr) \bigm\| \bigm\| 
2

\leq 
\sum 

K\in \scrT H

\bigm\| \bigm\| \Theta K  - Spg
N\ell (K)

\bigm\| \bigm\| 
2
\lesssim H - dHk \lesssim Hd+1.

(B.8)

The difference of the C-LOD and the PG-LOD stiffness matrices can be bounded as
follows. Let v be a vector (with corresponding function v \in VH) such that

\| Spg  - Sc\| 2 = | \lambda max(S
pg  - Sc)| =

\bigm| \bigm| vT (Spg  - Sc)v
\bigm| \bigm| 

vTv
.

With the definition of Spg and Sc corresponding to the discrete problems (2.8) and
(2.7), respectively, we thus have

\| Spg  - Sc\| 2 =
| a((id - \scrQ \ell )v, v) - a((id - \scrQ \ell )v, (id - \scrQ \ell )v)| 

vTv

=
| a((id - \scrQ \ell )v,\scrQ \ell v)| 

vTv
\lesssim 

| a((\scrQ  - \scrQ \ell )v,\scrQ \ell v)| 
H - d\| v\| 2L2(D)

using the definition of the globally defined correction \scrQ := \scrQ \infty and (4.5) in the last
step. Employing the estimate (2.11), the stability of the correction operator \scrQ \ell , and
a classical inverse inequality, we arrive at

\| Spg  - Sc\| 2 \lesssim 
| a((\scrQ  - \scrQ \ell )v,\scrQ \ell v)| 

H - d\| v\| 2L2(D)

\lesssim 
\beta \| \nabla (\scrQ  - \scrQ \ell )v\| L2(D) \| \nabla \scrQ \ell v\| L2(D)

H - d\| v\| 2L2(D)

\lesssim 
e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell \| \nabla v\| 2L2(D)

H - d+2\| \nabla v\| 2L2(D)

\lesssim Hd - 2e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell .

(B.9)

For the last term on the right-hand side of (B.6), we estimate

\| unn\| 2 \leq \| upg  - unn\| 2 + \| upg\| 2 \leq \| upg  - unn\| 2 +CH - d/2\| upg
H \| L2(D)

\leq \| upg  - unn\| 2 +CH - d/2\| f\| L2(D),
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where we employ the stability of the solution upg
H and the Friedrichs inequality. We

now go back to (B.4) and (B.6) and obtain

\| upg  - unn\| 2 \leq CH - d/2e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell +
\bigm\| \bigm\| \bigl( Sc

\bigr)  - 1\bigm\| \bigm\| 
2

\bigm\| \bigm\| Snn  - Sc
\bigm\| \bigm\| 
2

\bigm\| \bigm\| unn
\bigm\| \bigm\| 
2

\leq CH - d/2e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell +
\bigm\| \bigm\| \bigl( Sc

\bigr)  - 1\bigm\| \bigm\| 
2

\bigm\| \bigm\| Snn  - Sc
\bigm\| \bigm\| 
2
CH - d/2\| f\| L2(D)

+
\bigm\| \bigm\| \bigl( Sc

\bigr)  - 1\bigm\| \bigm\| 
2

\bigm\| \bigm\| Snn  - Sc
\bigm\| \bigm\| 
2

\bigm\| \bigm\| upg  - unn
\bigm\| \bigm\| 
2

\leq CH - d/2e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell +CH1 - d/2\| f\| L2(D) +
1

2
\| upg  - unn\| 2.

(B.10)

In the last step, we have used that\bigm\| \bigm\| \bigl( Sc
\bigr)  - 1\bigm\| \bigm\| 

2

\bigm\| \bigm\| Snn  - Sc
\bigm\| \bigm\| 
2
\lesssim H - d

\bigl( 
Hd+1 +Hd - 2e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell 

\bigr) 
\lesssim H \leq 1

2

according to (B.7), (B.8), and (B.9) if H is chosen small enough and \ell \gtrsim | log(H)| 
large enough with respect to the respective hidden constant. Absorbing the last term
on the right-hand side of (B.10) leads to

\| upg  - unn\| 2 \lesssim H - d/2e - c\mathrm{l}\mathrm{o}\mathrm{c}\ell +H1 - d/2 \| f\| L2(D).

Omitting the dependence on f and using again that \ell \gtrsim | log(H)| , we finally get

\| upg  - unn\| 2 \lesssim H1 - d/2.

Employing (B.3), this directly leads to

\| upg
H  - unn

H \| L2(D) \lesssim H.
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