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Abstract. Coarse-scale surrogate models in the context of numerical homogenization of linear
elliptic problems with arbitrary rough diffusion coefficients rely on the efficient solution of fine-scale
subproblems on local subdomains whose solutions are then employed to deduce appropriate coarse
contributions to the surrogate model. However, in the absence of periodicity and scale separation,
the reliability of such models requires the local subdomains to cover the whole domain which may re-
sult in high offline costs, in particular for parameter-dependent and stochastic problems. This paper
justifies the use of neural networks for the approximation of coarse-scale surrogate models by analyz-
ing their approximation properties. For a prototypical and representative numerical homogenization
technique, the Localized Orthogonal Decomposition method, we show that one single neural network
is sufficient to approximate the coarse contributions of all occurring coefficient-dependent local sub-
problems for a nontrivial class of diffusion coefficients up to arbitrary accuracy. We present rigorous
upper bounds on the depth and number of nonzero parameters for such a network to achieve a given
accuracy. Further, we analyze the overall error of the resulting neural network enhanced numerical
homogenization surrogate model.
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1. Introduction. Surrogate models play an important role in the context of
partial differential equations (PDEs) with multiscale features. After the offline adap-
tation to a particular coefficient, these models provide a reliable and online efficient
approximation of the solution operator on some coarse scale of interest. In the context
of modern numerical homogenization, the adaptation of the models is typically real-
ized through coefficient-specific approximation spaces with provably optimal approx-
imation on the coarse target scale. Prominent examples are methods such as the Lo-
calized Orthogonal Decomposition (LOD) [MP14, HP13, MP20], gamblets [Owh17],
rough polyharmonic splines [0OZB14] or generalized (multiscale) finite element meth-
ods [BL11, EGW11]. For a more detailed overview of such methods, we refer to
[AHP21] and the references therein. Such numerical homogenization methods have
been successful for a wide range of PDEs and their applications because they do not
rely on structural assumptions on the coefficient such as periodicity or scale separa-
tion. Another benefit of numerical homogenization approaches is their construction,
which is similar to classical finite element methods. In particular, they are based on
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coarse-scale submatrices that are combined to a coarse global system matrix by ap-
propriate local-to-global mappings. However, the local submatrices are based on the
sufficiently resolved solution of fine-scale subproblems on local subdomains (which are
also known as cell problems or corrector problems in the homogenization literature)
that resolve all features of the local PDE response. In the absence of periodicity and
scale separation, the reliability of the resulting surrogate relies on the consideration
of the coefficient in the full domain, i.e., the union of all local subdomains needs
to cover the whole domain, which may result in high offline cost, in particular for
parameter-dependent or stochastic coefficients.

To reduce the complexity bottleneck in the process of building reliable surrogate
models, there has recently been a growing interest in utilizing data-driven approaches
such as deep learning in the homogenization community; see, e.g., [ABS+420, PZ21,
CLPZ21, WHG+21, CE18, SSM23, HL22, LLZ22]. The previous work [KMP22] pro-
poses to replace the computation of all local system matrices—that can each be seen
as the output of a mapping from a local extract of the underlying PDE coefficient
to the corresponding coarse local matrix—by one single neural network in the offline
phase of numerical homogenization. The approximation by a local and thus relatively
small (trained) neural network allows one to reduce the high complexity of the cor-
rector computations to a number of forward passes through the network, which is
of particular value in nonstationary, parametric, or nondeterministic problems, since
the computational savings during the computation of the local matrices eventually
outweigh the initial effort required to train the network. Numerical experiments in
[KMP22] showed that a reasonably sized network leads to good approximation proper-
ties compared to the surrogate based on the classical computation of local subproblems
on a fine scale.

In this work, we aim at a mathematical foundation of this neural network en-
hanced numerical homogenization approach in the context of a prototypical ellip-
tic model problem with an underlying (possibly fine-scale) coefficient. We restrict
ourselves to the LOD which will be reviewed briefly in section 2 below. Due to its
representative nature outlined in [AHP21], we believe that the derivations can be gen-
eralized to other variants of classical and modern numerical homogenization methods.
From a practical point of view, the coarse-scale surrogate model computed by the
LOD can be represented by a global coarse-scale system matrix that is assembled
from local matrices that depend on local instances of the underlying coefficient. We
investigate the approximation properties of neural networks as a replacement of the
mappings from local coefficient to local matrix in section 3.

Our analysis builds upon the formal framework for studying the approximation
properties of deep neural networks developed in [PV18]. The approach is based on
combining smaller neural networks as building blocks to approximate complicated
nonlinear functions and has so far been used in a multitude of settings and applica-
tions. Examples include the approximation of higher-order finite elements [OPS20],
Kolmogorov PDEs in the context of option pricing [EGJS21], and reduced basis meth-
ods in the context of parametric PDEs [KPRS21]. For an overview on the expressivity
of neural networks, we refer to the survey article [GRK20].

Based on these recent findings, the main result of this paper in section 3 pro-
vides an upper bound on depth and number of parameters of an appropriate neural
network which is able to achieve a certain tolerance error when approximating the
local coefficient-to-matrix mappings that are the basis of the LOD. In section 4, we
then investigate the error between discrete solutions obtained with the original LOD
approach and discrete solutions that rely on a surrogate model that is built from the
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local neural network approximations. In particular, we show that there exists a net-
work such that the error of the two discrete solutions is at most of size O(H), where
H denotes the coarse scale of interest. Note that this bound is of the same error as the
discretization error of the LOD with respect to the exact solution to the elliptic prob-
lem. Finally, we comment on the choice of fine-scale parameters for the computation
and approximation of local contributions (section 5) and draw conclusions.

Notation. Throughout this work, C,c > 0 denote generic constants that are
independent of the scales H, e, h, but might depend on the physical dimension d < 3.
Further, we write § < n if § < Cn and 6 = n if additionally also 8 > cn. Matrices
and vectors are denoted in boldface notation throughout this paper. In particular, we
write Id,, for the n x n identity matrix and 0,, for the zero vector in R"™.

2. Operator compression with deep neural networks. In this section, we
briefly explain the LOD methodology and summarize the main ideas and results of
[KMP22], which provides the basis for the theoretical analysis in the subsequent
sections. The aim of this section is not to provide a detailed analysis of the method,
but to give an overview of the underlying concepts.

2.1. Setting. Let d € {1,2,3}, and let D C R? be a bounded, polyhedral, convex
Lipschitz domain. We denote with H{ (D) the standard Sobolev space of L2-functions
whose traces vanish on 9D and that have weak first derivatives in L?(D). Given a
function f € L?(D) and a scalar coefficient A € L°°(D), consider the prototypical
variational problem of finding u € H}(D) such that

(2.1) a(u,v) ::/ AVu-Vvdx:/ fvdz  for all ve Hy (D).
D D

Note that we do not pose any requirements on the coefficient A apart from the exis-
tence of uniform bounds «, 8 € R such that

(2.2) O<a<A(z)<fB<oo forae zeD.

In particular, we do not assume periodicity or scale separation and allow for arbitrarily
rough coefficients that may vary on a continuum of scales up to some fine microscale
€. In this setting, the Lax—Milgram theorem guarantees the existence of a unique
solution u € H} (D) to problem (2.1). Note that a and u implicitly depend on A.

2.2. Coarse-scale discretization by localized orthogonal decomposition.
Although the coefficient A encodes microscopic oscillations on a scale ¢, in practical
simulations one is often interested in the effective behavior of the solution u on some
macroscopic target scale of interest H > e. It is well known, however, that the
discretization of (2.1) with standard approaches such as conforming finite elements
leads to acceptable results only if the problem is discretized on a scale smaller than e
that fully resolves all fine-scale oscillations of the coefficient; see, e.g., the illustrations
in [MP20, Chap. 2].

In order to overcome this problem, numerous methods have been proposed that
compress the fine-scale information contained in the coefficient A to a surrogate model
G 4 (represented by a system matrix S4) capable of reproducing the effective behav-
ior of u on the target scale H. One such method known as Localized Orthogonal
Decomposition (LOD) achieves this by explicitly constructing a coarse approximation
space spanned by coefficient-adapted basis functions, which can then be used to ap-
proximate (2.1) in a Galerkin fashion, resulting in a sparse system matrix S4 that is
composed of multiple local contributions.
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The LOD has originally been introduced in an elliptic setting [MP14, HP13],
but has been successfully applied in connection with, e.g., wave propagation problems
[GP15, Petl7, AH17, PS17, GHV18, MP19, RHB19, GM21, LMP21, MV22, HW22]
and parabolic PDEs [MP18, LMM?22]. The idea has also been extended to higher-
order [Mai21] and multiresolution [HP22] variants based on the hierarchical approach
known as gamblets [Owh17]. Further, the possibility to superlocalize the local sub-
problems has been investigated [HP21].

In the following, we briefly describe the method and an adapted version based on
local neural network approximations as presented in [KMP22]. Note that the method
in [KMP22] may be applied to general linear divergence form partial differential equa-
tions in a straightforward way and works beyond the LOD framework, but we restrict
ourselves to its application in connection with a prototypical elliptic setting and the
LOD method within this work.

Let 7y be a uniform Cartesian mesh of D with characteristic mesh size H, let
Q' (T#) be the standard first-order finite element space of piecewise polynomials with
coordinate degree at most 1 and consider the conforming finite-dimensional space
Vi = QY (Ty)NHE (D). In our setting, H denotes the length of an edge of an element
of Ty. Besides the coarse mesh Ty, we will also need a fine mesh 7;, with h < ¢ and
the corresponding discrete space Vi, O Vg, as well as an intermediate mesh 7. with
h < e < H. Moreover, we assume these meshes to be nested and uniform refinements of
each other, i.e., that 7; is a uniform refinement of 7z and 7;, a uniform refinement of
T.. An important ingredient of the method is a projective quasi-interpolation operator
Ty HE(D)— Vi, which fulfills

(2.3) I1H ™ (v = Zgv)|lL2¢r) + IVZaoll L2y < ClIVO|l L2 ery)

for all v € H}(D) and any element T € Ty, where the constant C' is independent of
H, and N(S) :=N'(9) is an element patch around S C D defined by

N'(S) = {K eTu|S N K #£0}.

A prominent example of an operator Zy that fulfills (2.3) is the one considered in
[EG17], which is also used for the numerical experiments in [KMP22]. For that
reason we restrict our analysis in section 3 to this particular choice. It is defined by
Ty := Egolly, where Iy denotes the piecewise L2-projection onto Q1(7z). For any
vy € Q1(Tw), the operator Ey averages in any inner node z of Ty the values of the
neighboring elements, i.e.,

1

(24) (Br(vm))(z) = Z (vrl) (=) - card{K' € Ty : 2z€ K’}

KeTy:
z€K

Further, (Eg(vg))(z) =0 if z € 0D. Given Iy, we define the so-called fine-scale
space as

W= kGI‘IH|Vh,

which contains functions that cannot be captured by the space V. For any S C D,
we also define a local version of W,

W(S) :={w e W |supp(w) C S}.
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Appropriate local versions of the fine-scale space are now used to correct coarse-
scale functions in a coefficient-dependent manner. Therefore, we iteratively define an
enlarged element patch N’(S) := N(N‘1(S)), £ > 2. Let a fixed A € L°°(D) which
fulfills (2.2) be given. For an ¢ € N (that will later be quantified) as well as a function
v € Vi and T € Ty, we now introduce the element corrector QLvge W(NY(T)) as
the solution to

(2.5) a(Q5vm,w) :/ AVog -Vwdz  for all w e W(NY(T)).
T

Note that this is a discrete subproblem, which is locally computed on the fine scale
h. The corresponding algebraic realization of this subproblem will be discussed in
section 2.3 below and assumptions on the fine mesh are discussed in section 5. Note
that the correctors QETUH for different T are independent of each other and their
respective supports are limited to NZ(T). That is, global computations on a fine scale
can be avoided. Further, the correctors are only computed for a basis of Vi due to
linearity.

The last step towards the final multiscale method consists of defining an appro-
priate space based on the element correctors. Therefore, we first define the global
correction operator Q°: Vg — W by

(2.6) Q=" of,

TeETH

which will be used to correct classical finite element functions. In particular, the
classical LOD approzimation (C-LOD) now seeks u$; € Vi such that

(2.7) a((id = QY u$;, (id — Q% wy) :/ fvgda for all vy € Vi,
D

Alternatively, u can be approximated with a Petrov—Galerkin variant of the classical
LOD. That is, the correction is only used for the trial functions but not for the test
functions. The Petrov-Galerkin LOD approzimation (PG-LOD) u¥? € Vi solves

(2.8) a((id — Q“)uP® vy) :/ fvgdz for all vy € Vy.
D

The Petrov-Galerkin variant has several computational advantages compared to the
classical method and was therefore used for the experiments in [KMP22].

From a theoretical point of view, the approximations u$, and uby are both first-
order accurate in L?(D) if the oversampling parameter ¢ is chosen logarithmically in
the target mesh size H, i.e., £ ~ |log(H)|, and the fine mesh parameter h is chosen
small enough (cf. section 5 below for details). More precisely, it holds that

(2.9) u— Sl z2(py S llw—unll2py + (H + e || fll 2y,
as well as
(2.10) u— uBfl| 2oy S 1w — unll 2oy + (H + e || fll 2y,

where uy, € V}, is the classical Galerkin finite element approximation of « in the space
Vi,. These results follow from the triangle inequality and the results presented, e.g.,
in [GP17, CMP20, MP20]. The last two estimates arise from a localization estimate
of the form

(2.11) ||V(Q—Q£)UHHL2(D) SCG_C1°°£||VUH||L2(D), vg €V
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with a constant cj,. which is independent of h, H, and ¢. Note that Q := O™
is computed based on nonlocalized subproblems (2.5). This result is, for instance,
shown in [HP13, Pet16] (based on [MP14]) and will later on be required in section 4.

2.3. Algebraic realization of the LOD. As explained above, the correction
operator is constructed based on a number of local element correctors on given patches.
In the following, we elaborate on the algebraic realization of these subproblems. Since
the corrector computations all have a similar structure, we restrict ourselves to one
particular problem. Let K € Ty be fixed, and let w be the patch with ¢ additional
element layers around K, ie., w = N°(K). The construction of the local matrix
requires the solution of a corrector problem on some fine scale h as introduced above.
First, we define Vj,(w) := {v, € V}, | supp(vp) C w} and Vyl, = {vglw | va € Vu}
with nodal basis functions {);}7<, and {A, };V:“l, respectively. Here, n, = dimV},(w)
and N, = dimVy|,. For a given basis function A;, the corrector problem seeks the
solution Q% (A;|k) € Vi (w) to

(2.12) a( Qe (Nilx), wn) = a(As| ik, wh,)

for all wy, € Vj(w) NkerZy. Note that we need only compute the corrections for
the 2¢ basis functions for which suppA; N K # (). For simplicity and without loss of
generality, we assume in the following that this is the case for the first indices 1, ... ,2¢%.

To avoid defining a basis of V,(w) NkerZy, it is favorable to write (2.12) as an
equivalent saddle point problem, which reads

a(Q% (Ailx),vn) + (pi,Zavn)2w)y =  a(Ailk,vn),
(IHQ%(AZ'|K)7MH)L2(A)) = 0

for all vy, € Vj(w) and py € Vil,, where ; € V|, is the associated Lagrange
multiplier. Note that (2.13) has a unique solution pair (Q%A;, ;) and the problem is
equivalent to solving (2.12); see, for instance, [Mai20, Chap. 2].

To solve problem (2.13) numerically, it is reformulated as a system of linear equa-
tions. We use the linear combinations

(2.13)

N Ny,
j=1 j=1
and write 2 =[¢],...,&, 1" and &' =[¢},...,¢% ] for the corresponding vectors.

Let S :=8S 4, be the finite element stiffness matrix with respect to Vj,(w) (weighted
by the coefficient A and with built-in boundary conditions) and P,, € R™*Ne (resp.,
P, x eR™ x2%) the prolongation matrix between functions in V|, and Vj,(w) (resp.,
Vi|x and Vi, (w)). Further, I, € RM«X"« denotes the realization of the operator
Ty on w (without explicit boundary conditions). With these matrices, (2.13) can be
expressed as

S= + I’® = SP,x,
(2.14) w o
IwE = ONW x2dy
where B =[Z!|...|22"] and ® = [®|...|$2] are matrices that comprise the vectors

{E%} and {®}, respectively. Some calculations show that ® = (I,S™'I)"'I,P,, .
Inserting this in the first equation of (2.14) yields

E=P, x-S IH(I,ST'I)) P, k.
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The local PG-LOD matrix with respect to the element K and the patch w around K
is defined by

(2.15)  SPE[i.jl=a(Ai, (id = Q) (Ajlx)),  (ij) € {1, N} x {1,...,2%}.
In terms of the matrix system (2.14), SP& can be equivalently defined by

S =PLS(P, x —E)=PlSS™'I}(L,S™'I}) 'L, P, x
(216) _PTIT(I S—llT)—lI P
T wlw \tw w wt w, K>

which will be an important representation in order to analyze the approximability by
a suitable neural network in the following. Note that SP# implicitly depends on the
coefficient A through the bilinear form a and the correction operator Q%

2.4. Neural network approximation of the local subproblems. The
method presented in [KMP22] can be used to approximate the local contributions
to the LOD stiffness matrix, i.e., the matrices SP# of the previous subsections, by one
single neural network that maps from a local instance of the coefficient on w := N*(K)
to an approximation of the matrix SP%. For completeness, we briefly discuss the main
ideas and refer to [KMP22, sect. 4] for numerical experiments that show the feasibility
of the approach. In the subsequent section, we also rigorously investigate the strategy
from the viewpoint of approximation theory.

The matrices SP2, as defined in (2.15), are rectangular matrices that are charac-
terized by the local degrees of freedom i =1,...,N, and j =1,...,2% For the final
Petrov—Galerkin stiffness matrix corresponding to the discretized problem (2.8), we
require the sum of the local corrections Q%; cf. (2.6). That is, to build the stiffness
matrix, we need the sum of the local matrices SP# as well. This is done with appro-
priate local-to-global mappings ® that transform the local matrix for an element
K € Ty to an inflated matrix with respect to the global degrees of freedom. The
global stiffness matrix SP® thus has the form

(2.17) SPE= > Pk (SVk))s
KeTy

see [KMP22, sect. 3.4] for further details. As mentioned above, the local matri-
ces Sgeg( k) implicitly depend on A, but the mappings ®x are independent of the
coefficient. The method for approximating the matrix SP® now keeps this coefficient-
independent decomposition and only replaces the local matrices Sﬁf( K) by suitable
approximations based on a single neural network. This is a reasonable approach due
to the fact that the local corrector problems (2.12) all have a similar structure and
are (up to the actual values of the coefficient) independent of their position within
the domain.

In the following, we theoretically justify this strategy in the sense that we show
that there exists a suitable network that provides a (local) surrogate such that the
solution computed with the corresponding global stiffness matrix is reasonably close to
the actual PG-LOD solution. In particular, we are interested in the dimensions (i.e.,
depth and number of nonzero parameters) of such a neural network. In section 3, we
first focus on the approximability of the local LOD subproblems by a neural network,
before we investigate the difference between the corresponding discrete global coarse-
scale solutions in section 4.
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3. Neural network approximation of local LOD matrices. In this section,
we investigate the complexity of a neural network to approximate the mapping from
a coefficient to the local PG-LOD matrix as given in (2.16) and give rigorous upper
bounds for depth and number of nonzero parameters of such a network. To start with,
we have to establish a framework for neural network approximation theory that we
will then apply to our specific setting.

3.1. Neural network calculus. We adopt the main ideas and definitions of
the formal framework developed in [PV18]. To familiarize the reader with the central
concepts and the notation that we will subsequently use, we quickly recap the most
important cornerstones of this framework as well as some results from [KPRS21]
regarding the approximation of matrix inversion by deep ReLU-neural networks.

DEFINITION 3.1 (neural network). A neural network ¥ of depth L € N is a
sequence of matriz-vector tuples

¥ = ((lebl))lL:h

where each layer (Wy,by) consists of a weight matric W; € RN>*Ni—1 and a bias
vector by € RN for Ny,...,N €N.

We will refer to L(V) := L as the number of layers, to dim;,(¥) := Ny as the
input dimension and to dimey: (V) := N as the output dimension of . We call
Mi(®) = [[Wyllo + |[billo the number of parameters in the lth layer, where || - |l
counts the number of nonzero entries in aLgiven matriz or vector. The total number
of parameters is then given by M(¥):=3 ", M.

DEFINITION 3.2 (realization of a neural network). Let U be a neural network of
depth L. For a set S C RNo and an activation function p: R — R that is assumed
to act componentwise on vectors by convention, the realization of W with activation
function p over S is the mapping R[‘?(\Il) : S — RN implemented by the neural network
W. It is given by

R (0)(x) :=x,
where Xy, results from
Xq =X,
x;:=p(Wix;—1+by), I=1,...,L—1,
xr:=Wrx,+bp,
i.e.,
RE(U)(2) =W p(Wr_1(...p(W2p(Wix+b1) +bs)...)+br_1) + bL.

Although many different activation functions p are conceivable and used in prac-
tice, we restrict ourselves to one of the most popular choices, the so-called Rectified
Linear Unit (ReLU) activation function given by p(x):=max{0,z} in this work.

DEFINITION 3.3 (concatenation of neural networks). Let W' := ((W},b}))/2,
and W2 = ((Wf,b?))fjl be two neural networks of depth L1, Lo, respectively, such
that dimi, (V1) = dimeyu (¥?). Then the concatenation of W' and V? is denoted by
Ul e U2 and reads

\Ill hd \112 = ((W%b%)v teey (W%2—17b%2—1)7 (Wiwisz%big + b%)a
(W3,b3),....,(WL,,bL,)).
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It is easy to check that the realization of this concatenation implements the com-
position of the realizations of W' and U2, i.e.,

REY (0! 0 02) = RE™ (01) o RE™ (92).

Thus, the concatenation of two neural networks can be interpreted as connecting them
in series. The problem with this approach is that, in general, M (¥! e ¥2) cannot be
bounded linearly with respect to M(¥') and M(¥?). The next lemma shows one
possible exception to this.

LEMMA 3.4. Let U be a neural network of the form

U'=((1Q,0,)), nER,

where Q € R™¥™ is a permutation matriz and V? a neural network with output di-
mension n. Then it holds that

(i) L(V! e W?)=L(V?),

(i) M(U!eW2)=M(V2).

Proof. This is a special case of [KPRS21, Lemma A.1.]. O

In the general case of more complicated networks, however, we need to introduce
another type of concatenation, which is built on the construction of a two-layer neural
network that implements the identity function.

LEMMA 3.5 (see [PV18, Lem. 2.3]). Let n € N and define the two-layer neural

network
U= (({_Ifg } 702n) ([Tdn, ~1d,,] 70n)>

with input and output dimension n. Then it holds that
RY (V1) =Idg»,
i.e., WX implements the identity function on R™.

With this definition, we can introduce the so-called sparse concatenation that
allows us to precisely control the number of nonzero parameters when two or more
networks are connected in series.

DEFINITION 3.6 (sparse concatenation of neural networks). Given two networks
Ul and W2 of depth Ly, Lo € N, respectively, with dimy, (V1) = dimyy(¥?) =: n as
above, we define the sparse concatenation of U' and ¥? as

Ul ow? =gl o\IlLd ° \PQ,
where W4 is the identity network from Lemma 3.5.

Obviously, the sparse concatenation does not change the function realized by the
network compared to the regular concatenation and therefore also implements the
composition of the individual realizations. Moreover, the following lemma shows the
desired linear bound on M (¥! ® ¥2).

LEMMA 3.7 (cf. [EGJS21, Lem. 5.3]). Given two neural networks W' and W2,
their sparse concatenation fulfills
(i) L(¥! © %) < L(T') + L(P?),
(i) M(¥' W) < M(U)+M(02)+ M (1) + M2y (92) <2M (1) +2M (V?)
S MWL) + M(¥?).
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Moreover, given k> 2 neural networks W', ... W¥ their sparse concatenation satisfies
() L(¥! 0 0T <37 L(TY),
(i) M(¥! 00 UF) S, M(T),

In order to construct more complex networks out of smaller building blocks, we
also need to be able to connect them in parallel. The definition below describes how
this can be done for networks with identical depths. In principle, network paralleliza-
tion can also be defined for networks of different depths. However, since we do not
require such a construction for our proofs in the next subsection, we restrict ourselves
to the simpler case.

DEFINITION 3.8 (parallelization of neural networks). Let W% = ((Wi bi))L 5 i=

1,...,k, be a family of k neural networks wth identical input dimension n and identical
depth L. Then the parallelization of the U* is given by
wi by Wi by,
PO 0k = N I B N
Wi| [bf Wil b}

For the realizations of parallelized networks of identical input dimension n, it
holds that

RE(Wh, . UF)(xq,.., %) = [RE (Uh)(x1),..., RE (UF)(xw)]
for x1,...,xx € R™.

LEMMA 3.9. Let U, ... U* be a family of k neural networks with identical input
dimension and identical depth L. Then the parallelization P(UY, ... WF) fulfills

() L(P(V),..., 0%) = L,

(it) M(P(WL,...,0k) =% M(Dh).

Proof. The result follows by construction. ]

Now that we have laid down the foundations of neural network calculus, we turn
to the question of how to approximate matrix inversion with a neural network. Since
in the standard formulation of feedforward networks the input and output are one-

dimensional arrays, we choose to consider columnwise “flattened” (or vectorized) ma-
trices. For A € R**! we thus write

VeC(A) = [Al,la'” ,Ak’l,. . .,A1717.. . 7Ak’l]T GRk'l

and, conversely, for v =[v11,..., 051,011, ..., V1] €RFL
. k,l kxl
mat(v) = (vi;); j—1 € R"*.

Furthermore, we define for n € N and Z > 0 the set
K7 :={vec(A)| AR " ||[A|>< Z},

where ||-||2 denotes the spectral norm induced by the Euclidean vector norm. The idea
behind the approximation of matrix inversion with a deep neural network is based
on approximating the Neumann series of matrices which can be suitably bounded in
terms of their spectral norm. That is, we approximate the map

inv:{A R [[A2<1-6} >R, A —(Id,—A)"'=) Ak
k=0

The following theorem makes this precise and shows that matrix inversion can be
approximated up to arbitrary precision.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/10/25 to 137.250.100.44 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1467

THEOREM 3.10 (see [KPRS21, Thm. 3.8]). For ne N,d € (0,1/4) and 6 € (0,1),
let
_[log(0.596)
m(0,9) := [log(l |
1-é,n

v with input dimension n? and output di-

Then there exists a neural network ¥
mension n? with

(i) L(W. ) S log(m(,6)) (log(1/9) + log(m (9, ) + log(n)),

(ii) M(\Ililn_v%") <m(9,6) log®(m(9,8)) n® (log(1/9) +log(m(¥,5)) +log(n)), such

that for all vec(A) € K}=° it holds that
_ K= —8n
(ii1) SuPyee(ayercis | (Idn — A)~H —mat(Ry"  (F1%") (vec(A))) ||z < 9,

inv,9

(iv) [mat(Ry™ " (W) (vec(A))) [l2 < 0+ | (I, — A) 2 <0+ L.

inv,9

Remark 3.11 (conservation of symmetry in neural network matrix inversion). In
the original construction of the network \I'iln;%" given in [KPRS21], the network is not
symmetry-preserving in the sense that if A is a symmetric matrix, the output matrix

K70 (1o,
mat (Rp ’ (\I/inv’ﬂ")(vec(A)))

might not be symmetric although (Id,, —A)~! is. For our intended application below,
this is not very convenient and makes the error analysis much more difficult. How-
ever, the construction can be slightly adapted to preserve the symmetry. Using our
notation, we define in the induction step of the proof of [KPRS21, Proposition A.4]
the modified network

=1/2n . Tlnmnn 1/2n 5,1/2,n Id,.:
\Pk,ﬂ T Fmult,¥/4 GP(\Ijza‘,ﬁ ’\Ijt,ﬂ )' <<|:Id 2] ’02712));

where \T!rlnzltn ;9"/ 4, is a network that is constructed analogously to the network imple-
menting general matrix-matrix multiplication in [KPRS21, Proposition 3.7]. However,
instead of the three-dimensional array D in the proof therein, we consider a modified

array D, that for 4,5,k € {1,...,n} and A,B € R"*" is defined by

~ (Ai,lmBk,‘) if i1 <y,
D vect ) vec(B)):= {(Blk Any) i
LR »J )

i.e., it contains ordered tuples of the corresponding entries in A,B. Then the desired
result follows analogously to [KPRS21].

Note that the result in Theorem 3.10 above does not utilize any structural prop-
erties of the matrix to be inverted such as sparsity, positive definiteness or symmetry.
If one has additional structural knowledge about the matrix, as in our intended ap-
plication in the sections below, we believe that by approximating more sophisticated
solvers, for example multigrid approaches, with a neural network, one could improve
upon the cubic complexity in the number of nonzero parameters.

The previous theorem is the key ingredient to proving that the approximation of
the local LOD matrices can be realized by deep neural networks, to which we turn
now.

3.2. Application to local PG-LOD matrices. Before we formulate the cen-
tral result of this section, we have to introduce some more notation. We define

WA:={AecL¥(D)|0<a<A(z)<f <o fora.e.z € D},
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which is the set of admissible coefficients for problem (2.1) according to (2.2), where
now «, 3 are fixed constants. Since neural networks take only discrete information as
input, we restrict ourselves to the finite-dimensional subset

A :={AeA| A|r is constant for every T € T.} CU

of elementwise constant coefficients on 7.. Recall that the meshes 7. and 7T, are
assumed to be uniform refinements of Tz and that for a given patch w =N*(K), K €
Tw, the local matrices SP2 from (2.15) that we want to approximate solely depend on
the values of A on w.

Note that we implicitly assume that the patch w has “full” size, i.e., that it
corresponds to an element K that is at least £+ 1 layers of coarse elements away from
the boundary of D. We emphasize, however, that the treatment of the boundary cases
can as well be incorporated into the theory below by changing the overall complexity
of the network only by a moderate factor. The first ingredient is that patches closer
to the boundary can be artificially extended by elements where the coefficient has
the value zero to keep a uniform size of all patches; we refer to [KMP22, sect. 3.4]
for further details. Further, a slight adaptation of the matrices used in the algebraic
realization of the method presented in section 2.3 is required for the boundary cases.
This adaptation is conceptually straightforward but rather technical, since one has to
account for artificial “degrees of freedom” outside the physical domain D. For better
readability, we thus only focus on the inner patches in the proof of Theorem 3.12
below.

We enumerate the elements in the restricted mesh 7:(w) by 1,...,m, := ((2¢ +
1)H/¢)?, which allows us to store the respective values of the coefficient in a vector
A. ., €R™. Based on this, we consider the set

Ao ={Ac|AcA} CR™

of all possible input vectors corresponding to the patch w. Moreover, we enumerate
the inner nodes of T, (w) by 1,...,ng:= ((2¢( +1)H/h — 1)¢ and inner and boundary
nodes of T (w) by 1,..., Ny := (20 +2)%.

THEOREM 3.12 (neural network approximation of local PG-LOD matrices). Let
n € (0,1/4) be a given error tolerance, and let £ € N. Then there exists a neural
network WY with input dimension my and output dimension No2¢ such that for any
w=N(K), K€Ty, and any A, €2, it holds that

The network WYe has the following properties;
(i) L(wpe) glog(m(e,(i)) (log(l/H) + log(m(6,4)) + log ng))
+log(m(7,9)) (log(1/7) + log(m(y ,0)) +log(INy)) +
(i) M(wpe) <m0, 5)10g (m(6, 5))W (10g(1/9)+10g( (97§))+10g(ne))
+m(7,0)log®(m(y,0))NF (log(1/7)+log(m(y 75))+10g(1\’e)) +(CH/h)™,
where § 2 Apin (S) Amax(S) 7t and 8 ~ )\mm( ST Mpax (LS L. Further, the
values 0, € (0,m) are chosen such that

. —17T
6 <min {Amin(lws—llf ) WSU}

SPE _ mat (Rﬁ‘w (ngg)(As,w)) Hz <.

20rese || TZ 13
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and

Uresc ||Pw,KH2 HPwHQ ”I
2352

inf

ol >
20+ [P lly [Pl 1Tl 7 <

With Yrese & Amax(S) ™! and {ﬁinf ~ Amin(I,STHL); ¢f. also the precise definitions in
(A.2) and (A.6), (A.7) in the proof.

Proof. The main idea of the proof is to start from the representation (2.16) of the
local PG-LOD stiffness matrix and subsequently implement or approximate all matrix
multiplications or inversions of the mapping A. . ~ SP% by suitably constructed
neural networks. The matrix multiplications can be implemented exactly by single-
layer networks, the inversions, however, have to be approximated using Theorem 3.10.
In the end, these individual building blocks can be connected in series to obtain a
final network with the desired properties. A detailed proof can be found in section
A.1 of the appendix. ]

We close the section by bounding the size of a network in order for it to well-
approximate any local PG-LOD stiffness matrix with an error of size O(H*), k € N,
which will be essential for the error estimation of the global errors between the two
surrogate models that are based on deterministic local PG-LOD matrices and their
network approximations, respectively.

COROLLARY 3.13. Let H < 1/4 and £ =~ |log(H)|. For any k € N, there exists a
neural network \I/%gk with input dimension myg, and output dimension N;2¢ such that
for any w=NK), K € Ty, and any A, ., €A,

| ste - mat (R (wt2) (o) | S HE.

Further, we have
(i) L(¥P) < [log(h)[? + [log(k)[?,
(i) MUY S h2(k|log(H)| + |log(h)])(|log(h)|* + [log(k)|*)(|log(H)|H /h)>*.

Proof. The result is obtained by applying Theorem 3.12 above with n = H*
and estimating all quantities in the resulting upper bounds on depth and number of
nonzero parameters in terms of the mesh sizes H,h. For more details, see the full
proof in section A.2 of the appendix. ]

Remark 3.14. Note that the goal of the above results is to show that a suitable
neural network exists that allows one to approximate the local PG-LOD matrices up
to arbitrary accuracy. We emphasize that this does not guarantee that such a network
is actually learned during the training phase in practice. Further, the bounds on the
number of layers and nonzero parameters of the network have to be understood as
worst-case estimates. In the numerical experiments section of [KMP22] it was shown
that the estimates presented above indeed seem very pessimistic and one is able to
train a network that produces satisfying results with significantly fewer parameters.

4. Error analysis of the neural network enhanced surrogate model. In
the previous section, we have seen that the local PG-LOD matrices individually can
be well-approximated by a neural network. However, in applications we are usually
more concerned about how this translates to the resulting difference of the respective
global solutions when applied to our test problem. This involves multiple error sources
that will be discussed in this section.
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In the following, we investigate the error in solutions between the solution uby €
Vi of (2.8), i.e., the PGLOD solution, and the solution u}' € Vy obtained from
the stiffness matrix which is assembled based on the (optimal) local neural network
according to Theorem 3.12 for a suitable tolerance 7. Let uP® be the vector corre-
sponding to ubs, i.e.,

(4.1) ub? :Zu?gAj.

Here, {Aj}j»v:l denote the nodal basis functions of Vg with N =dim Vy. As above,
we write

(4.2) srE= " Oi (She )
KeTu

cf. (2.17). In the same manner, let u™ be the vector corresponding to u} and let

(4.3) S™i= Y bk (Ok)

KeTu

be the respective stiffness matrix. Note that the matrices
le,lle
(4.4) O :=mat(R, " " (VP®)(A. v (x)))

are the local matrices obtained by a forward pass of the local instance A, y¢(x) of a
fixed coefficient A on N*(K) through the neural network; cf. section 3.1, particularly
Theorem 3.12 and Corollary 3.13. Our goal is to investigate under which conditions
the error ||uff —u}||L2(p) is bounded by some given tolerance, ideally of order O(H).
This would be optimal since ub? already includes an error which scales at least like
O(H) compared to the ideal solution to (2.1). Note that we have the following norm
equivalence (see, e.g., [Fri73] and observe that the eigenvalues of the local mass matrix

are bounded by H%6~% and H?2~? from below and above, respectively),
d
(4.5) (H/6) VI3 < vIMv = |[v]72p) < HI|IV]3,

where v € Vi and v is the corresponding vector. Here, M denotes the classical finite
element mass matrix. Therefore, it holds that

3y — i 22 (p) = (P —u™)TM(uP® — u™) & H|uP® —u™ |3,

To investigate the error between these two solutions, it is favorable to consider the
symmetric version of the LOD for an intermediate step. This will be treated in the
following subsection.

4.1. Difference between C-LOD and PG-LOD approximation. Let u§; €
Vi be the solution to (2.7) with corresponding vector u® as above. The stiffness
matrix to (2.7) is denoted S¢. The next lemma shows that the difference u§, — uby,
respectively u® — uP®, exponentially decays with increasing localization parameter ¢

introduced in section 2.2.
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LEMMA 4.1. Let u§; € Vi and ubf € Vi be the solutions of (2.7) and (2.8),
respectively, and let u® and uP® be the corresponding vectors; cf. (4.1). Then

ufy — willL2(py S exp(—cl)
and
Ju® — uPe S 42 exp(~ct),

where the constant hidden in < depends on the right-hand side f.

Proof. The proof is based on the observation that the error between the solutions
to (2.7) and (2.8) can be reduced to a decay estimate of the form (2.11). The full
proof is stated in section B.1 of the appendix. 0

This result will allow us to switch from the PG-LOD approximation to the C-
LOD approximation in the next subsection. Note that the C-LOD approximation is
much more convenient to use in connection with spectral estimates. In particular, we
have the following lemma.

LEMMA 4.2. Let S¢ be the stiffness matriz corresponding to (2.7). Its minimal
eigenvalue fulfills

)\min(sc) > CHd

with a constant ¢ that does not depend on the mesh size H.
Proof. The proof is given in section B.2 of the appendix. ]

4.2. Error in solution. With the preliminary considerations of the previous
subsection, we can now investigate the error between the solutions uby and w%.

THEOREM 4.3 (coarse-scale error). Let H < 1/4, £ = |log(H)|. There exists a
neural network UPE with

(46)  L(U*®) S[log(h)[*  and  M(U®) A2 [log(h)|* (|log(H)|H/h)*

such that for any A € 2. the solutions u}? € Vi of (2.8) (and its vector representation
uP?) and the network solution uiy (resp., the vector u™) fulfill

s s SH Y and il — e o) S H.

Proof. The proof reduces the stated error to local contributions that can be esti-
mated using Corollary 3.13. To employ useful properties of the symmetric and positive
definite matrix S¢, we take an intermediate step to first estimate the error compared
to the symmetric solution u$; € Vi of (2.7) (resp., the vector u®) and make use of
Lemma 4.1 and the eigenvalue bound in Lemma 4.2. The detailed proof is presented
in section B.3. O

Theorem 4.3 shows that there exists a neural network such that the approach of
section 2 leads to a global coarse-scale error between the discrete PG-LOD solution
and its neural network-based variant of order O(H). The size of such a network can
be bounded dependent on the scales H and h. This leads to an overall error compared
to the exact solution to the elliptic problem of the order O(H) as well, provided that
h is reasonably small; see also (2.10). In certain cases, the necessary choice of the
scale h (and thus the dependence of the size of the network) can be stated in terms
of H and ¢ only as investigated in the following section.
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5. How fine is enough? LOD on an appropriate fine scale. In the pre-
vious sections, we have investigated how PG-LOD stiffness matrices can be well-
approximated by a local neural network in the sense that the error of the (global)
coarse discretizations are reasonably close with respect to the mesh size H. Note that
the dimensions of the network depend on the scale h on which the corrector problems
(2.12) are computed. In this section, we want to investigate how fine this fine scale
actually needs to be.

5.1. Finding an optimal fine computational scale. In general, the correc-
tions for the LOD may be computed on an arbitrarily fine scale h. Choosing a finer
h also means smaller discretization errors and we generally have

||u—uh||Lz(D)—>0 as h—0

for the first term on the right-hand side of (2.10). For the corrector problems, however,
a finer h also increases the size of the linear systems that need to be solved. As
investigated in section 3.1, this leads to more parameters in the neural network which
approximates the local contributions. Since the network itself already introduces an
error and the LOD also comes with an error of order O(H), we now seek the largest
possible scale h with 0 < h < H such that the scale h is sufficient to still obtain an
overall error of order H while minimizing the necessary parameters of the network.
This particularly means that the term ||u — up/z2(py should be of order O(H). We
have the following result.

LEMMA 5.1 (fine-scale error). There exists an s > 0 (depending on «, ) such
that for any A €., the solution u to (2.1) and its Galerkin approximation uyp, in Vj
satisfy u€ H'**(D) and

(5.1) IV (u—un)llz2py S P Jullgits (py-

Proof. The regularity results presented in [Pet01, Chap 2] state that there exists
some s > 0 such that u € H***(D) for our class of coefficients .. With an appropriate
interpolation operator Zj, we may thus derive (see, e.g., [EG17, Thm. 6.4])

IV(u—un)lLz(py S IV(L = Zn)ull2(py < CR° ||ul| g1+ (- u|

Remark 5.2 (dependence on €). If A€ W1°°(D) with oscillations on the scale ¢,
Le., |Allwi(py < Ce™!, we have s =1 in Lemma 5.1 with |ul|g2(py S h/e|| fll22(p)
(see, e.g., the bounds in the proofs of [PS12, Lem. 4.3] or [MP19, Lem. 3.3]). That
is, the choice ha~ He leads to an error of size O(H).

If instead A € 2., the condition on h reads h~ H'/* Hu||;1/:(D) We emphasize
that the norm of u does not depend on h and one can expect that |ul|gi+:py =
O(e7*), leading to the optimal choice h~ H'/%¢.

With the above considerations and Theorem 4.3, we can finally state a result
that quantifies the worst-case size and depth of a (local) neural network to achieve
an overall error of the corresponding global surrogate of order O(H) independently
of the scale h (which, in practice, could be chosen arbitrarily small).

COROLLARY 5.3. Let the solution u of (2.1) fulfill v € H'T*(D), and let
lull gi+s(py = O(e™*) for some s > 0. Then, there exists a local neural network
WUPE with depth

L(WP8) < s7%|log(H)|* + |log(e) [

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/10/25 to 137.250.100.44 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1473

and size
M(‘l/pg) 5 H—2/56—2 (5_4| 10g(H)|4 + ‘log(€)|4) (l 10g(H)|H1_1/S€_1)3d

such that the error of u and the solution u}' € Vi obtained from the stiffness matric
which is assembled based on VUPE fulfills

flu— Urﬁle(D) SH.

6. Conclusion and outlook. In this paper, we have theoretically investigated
the approximation properties of neural networks to approximate the coarse-scale con-
tributions of local subproblems in numerical homogenization. The computation of
these local problems that are solved on a fine scale is the bottleneck when comput-
ing reliable coarse-scale surrogates in numerical homogenization. Therefore, replacing
this process by a single trained neural network allows for a significant speedup, be-
cause the computation of an appropriate surrogate is reduced to simple forward passes
through the network. We have focused on the LOD method as a representative nu-
merical homogenization method and presented upper bounds on the size of a network
that leads to a total error between the deterministic discrete approximation and its
variant based on the output surrogate of a trained neural network that scales linearly
with respect to the coarse scale of interest.

We emphasize that the presented results focus on general approximation proper-
ties and do not provide an answer to the important question regarding whether and
how optimal approximating networks can be found through training from data, which
might not be possible at all for certain tasks as recently shown in [CAH21]. Neverthe-
less, our findings provide insight into how the dimensions of a suitable neural network
for the approximation of the local subproblems in numerical homogenization should
be chosen if the target scale of interest and the oscillation scale of the coefficient are
given. This serves as a first step in developing mathematically rigorous guidelines
on how to design suitable neural network architectures for numerical homogenization
tasks. Further investigations into this direction are subject to future research.

Appendix A. Proofs in section 3.

A.1. Proof of Theorem 3.12. As mentioned at the beginning of section 3.2,
we assume that K € Ty is an element that is at least £ + 1 layers of elements away
from the boundary of D and set w = N*(K). The idea of the proof is to start from the
representation of the local PG-LOD matrix given in (2.16), namely

(A1) srs =PIT0(1,S7'10) ', P, k,

and decomposing the approximation of the mapping A, , — vec(SP#) into the follow-
ing seven consecutive steps:

(1) Linear transformation A, — vec(S),

(2) Inversion vec(S) — vec(S™1),

(3) Linear transformation vec(S™1) — vec(S™IL) =: vec(X),

(4) Linear transformation vec(X) — vec(I,X) =: vec(Y),

(5) Inversion vec(Y) > vec(Y 1),

(6) Linear transformation vec(Y ~!) = vec(Y I, P, k) =: vec(Z),
(7) Linear transformation vec(Z) + vec(PLILZ).
Note that, in fact, steps 1, 3, 4, 6, and 7 can be implemented exactly by single-
layer neural networks. The matrix inversions in steps 2 and 5, however, have to

6
7
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be approximated up to some tolerance. Our goal is, therefore, to construct neural
networks W', ..., U7, which implement and approximate these steps. Connecting those
building blocks in series then yields a network Wh¢ with the desired properties.

Step 1. The key insight in the first step is that the mapping A, ., — vec(S) can
be written as a linear transformation of the input vector A, — UA,,. Based on
this observation, the single-layer network

v':=((U,0,))

with input dimension my and output dimension n% exactly implements the desired
map. Writing A\;, ¢ =1,...,ny, for the classical nodal basis of Vj(w), and identifying
the index of entry i € {1,...,nj} in vec(S) with the index pair (k,1) € {1,...,n¢} x
{1,...,n¢} of the corresponding entry in S, the matrix U € R™Xme ig given by

U, ; :/ VaAr -V dz,
T;

where T} is the jth element in 7;(w). The fact that ||U]|, <234~ my,(c/h)? by a rough
estimation then yields

(i) L(wh)=1,

(i) M (') <238 tmy(e/h)? < (L +1)H/R) < (CH/R)C.

Step 2. To approximate the inversion vec(S) +— vec(S™!), we utilize Theorem 3.10
to construct a suitable network ¥2. In order to do so, however, we first have to rescale
the input vec(S) with a value b,ese in such a way that HIdng — DreseS|l2 <1 -6 for
some ¢ € (0,1). Since all coefficients under consideration are bounded from below and
above by « and 3, respectively, there exist optimal values Uins, Bgup (dependent on
h, a, and () such that

vT'Sv vI'Sv

0<Yinr < inf < sup
verme\{0} VIV T cpne\foy VIV

< msup < o0

for any A € 2. That is, the spectrum of S is always contained in [Uin¢, Vsyp]. Choosing
(A.2) Orese € (0, V)
and setting 0 := 0yescUint, the symmetry of S then implies

[Td,2 — 0rescS|[, < 1 = VreseDing| =1 4.

The step of rescaling the input corresponds to feeding it through the one-layer net-
work ((esc Idni,Ong)). Moreover, it can be easily seen that if ((W,b)) is the neu-
ral network that implements v,escvec(S), then ((—W,—b + vec(Id,z))) implements
vec(Id,2 — brescS). For any 6 € (0,7), Theorem 3.10 then guarantees the existence of

_ 2
1707 Guch that

a neural network \I]inv,e

1-5 2
(A.3) H (UmSCS)fl _ mat (an[ (\Pl—é,ne) (vec(Idn§ — nmSCS))) H2 <86.

inv,0

Lastly, after the approximate inversion is performed, one has to scale the output
back to the original scaling to obtain an approximation to vec(S™!) rather than
(1/resc)vec(S™1). This is again done with the one-layer network ((0esc Idni,()n%)).
Taking those operations together, we define -
1—6,n2
U2 = ((brese Idnf,oni)) S SR (o Idng,vec(ldng))).

inv,n
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Combining Theorem 3.10 with Lemmas 3.4 and 3.7, we obtain the following bounds
for the inversion network W2:

(i) L(¥2) S log(m(6,6)) (log(1/6) + log(m(6,8)) + log(ne)) + 1,

(il) M(¥?) <m(0,0)log®(m(0,8))nd (log(1/6) + log(m(6,8)) + log(ne)) + n2.

Step 3: Similarly to step 1, multiplying the neural network approximation of S~!
with IZ' from the right can be implemented by a single-layer neural network. Since
both S~1 and its approximation are symmetric matrices (see Remark 3.11), it holds
for both matrices that S™'IZ = (I,,S™1)7, and therefore, vec(S™IL) = Qvec(I,S™1)
for a suitable permutation matrix Q that maps vec(M) to vec(MT) for an arbitrary
matrix M € RV¢*"¢ To implement the map vec(S™1) ~— vec(I,S™1), we consider the
parallelization of n, identical copies U3, ..., \Ilfu of the single-layer network

‘111w = ((Iw, ONZ))‘

Concatenating the output of this parallelization with the one-layer network ((Q, 0y,.n,)),
i.e., setting

\I/3 = ((Q)O’VlzNg)) i P(\I/:f’ A \Ilflg)’

then exactly implements the desired transformation. If the interpolation operator
Ty given in (2.4) is used, the corresponding matrix I, € RV¢*"¢ is a sparse matrix
that satisfies ||I,|jo < N¢(2H/h + 1)%. Moreover, since Q is a permutation matrix,
it does not change the number of nonzero parameters when concatenated with the
parallelization network due to Lemma 3.4. With Lemma 3.9, we finally obtain the
following complexity estimates:

(i) L(w?) =1,

(i) M(¥3)=n,Ne(2H/h+ 1) = (((2¢ +1)H/h —1)(2¢ +2)(2H/h + 1))¢

< (HJR(H/h+ 1)) S (CH/R).

Step 4. Analogous to the previous step, we consider N, identical copies ¥, ..., \I'jl\,Z
of the linear transformation network Uy = ( (1,,0 Nz)) that implements multiplication
of an input vector with I,,. Then define the parallelization

U= P(Uy,...,¥Y,),

which implements the desired transformation exactly. Note that in this step, no
permutation of the output of the parallelization is necessary. We obtain the same
bounds as in the previous step, i.e.,

(i) L) =1,

(i) M(TH) < (((20+1)H/h —1)(20+2)(2H/h + 1)) < (¢H/h)?4.

Step 5. This step is similar to step 2 and utilizes again Theorem 3.10 to approxi-
mate the inversion of Y :=1I,S™IL € RV¢*Ne. However, we have to consider that at
this stage the approximation

1-6
~

Y = L tresc mat(Rf (W) (vee(Id,,z — 0reseS)) )15

inv,0

instead of the true matrix Y will be given as the input to the network to be constructed
due to the inexact inversion of step 2 above. Observe that under the additional
condition

7Qt'rCSCHIw”%

0 < min {)\min(Y) )\mm(Y)},
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it holds true that

Panin(Y) = Amin (V)] < Y = Y2 < 0rescl| Lo 156 < 0.5 Amin (Y),
and therefore,
(A4) Aunin(¥) = Amin(¥) = (Aanin(¥) = Auwin (¥) > 0.5 Asnin(Y),

i.e., the minimal eigenvalue of Y can be bounded in terms of the minimal eigenvalue
of Y. This and the fact that Y is a symmetric and positive definite matrix (cf. also
the proof of Corollary 3.13) implies that Y is symmetric and positive definite as well,
since the neural network approximating matrix inversion can always be constructed
such that symmetry of the input matrix is preserved (cf. Remark 3.11). Further, we
have

(A5) Amax(Y) = [Y]l2 <Yz + Y = Y2 € Amax(Y) + 0.5 Amin (Y) < 2 Amax (Y).

This implies the existence of optimal values ﬁinf, ﬁsup (dependent on H, h, a, and
B) such that

- Ty Yv -
(A.6) 0<DYips < inf M T Y < sup M 7 Y < Vup < 00
VvERN\{0} VIV epNi\[o} VTV
and
~ Ty Ty ~
(A7) 0<Tir < inf v < sup o <Py < 0.

T — T
veRNI\{O} ViV VERN@\{O} A% A

For a discussion on the scaling of the values @inf7 i\]sup and the assumptions on 6 in
terms of the mesh sizes H and h, we refer to the proof of Corollary 3.13 below. When
the matrices Y and Y are rescaled with Byesc € (0,‘3_1 ), it holds that

sup

Mdyz = Bresc Y2 <1-0, aswellas [Idyz — Bresc Y2 <196,

with & := Erescﬁinf. The rescaling is implemented by the network ((3resc Id n2,0 Nf))‘
Moreover, changing this network to ((—ﬁmsc Id N£z7vec(Id Nf))) by switching signs of
the weight matrix and adding a vectorized identity matrix as a bias term leads to
the implementation of (Id N2 — Vrese Y) if vec(Y) is fed through this network. Theo-

< 2
rem 3.10 yields the existence of a neural network \Ililm_v(;N’Z such that
(A8) (Brese¥) " — mat RK}V?@(V*S’N?)( (Idy2 — B Y))) || <
. resc ma 7 inv,y vec Ng2 resc 9= -
Note that this, in turn, implies that
(A.9)
~ —1 Kzl\fig 173\,N2 ~ < Uresc ||Iw||§
H (Urech) — mat (Rp ¢ (\:[Jian £ ) (VGC(Ing — Urech))) H2 < m 0+ -
Indeed, it holds by the triangle inequality and (A.8) that
~ — Kl_g _I N2 R ~
| BreseY) ™ = mat (B, (0,5 (veo(ldz — B V) )|
' ¢ 2
~ -1 i~ Gyl
< t)rech - r]rechv
<[ Eew) - D),
o1 Ky, 1-3,N? ~ S
+ H (Bresc¥) " = mat (R, ™ (035 (vee(Idyz — Bresc V) H2 = (%) +7.
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Using |[A=! =B~ Y2 <||A — BJ2]|]A71||]2||B7 1|2, the term (%) can be estimated by

1 1 1
= ||Iw‘|§nresc0/\7/\77
Uresc Q}inf inf

(<)

FroeXY ¥ | [ )| ) <

where we have used (A.3) and the definitions as well as the spectral bounds given on
Y.,Y in (A.6), (A.7). This yields the inequality (A.9).
< 2
Rescaling the output of gl

inv,y
imation properties defined by

again, we get a network with the desired approx-

A~ 7/\ 2 o~
0o = ((nresc Ile%ONf)) ® \111 g © ((_Uresc Ing’VeC(IdNE)))'

inv,y

Further, we have the following bounds on depth and number of parameters:

(i) L(¥®) Slog(m(y,6)) (log(1/y) +log(m(~,6)) +log(Ne)) + 1,

(i) M(¥®) Sm(v,06)log®(m(v,8))N} (log(1/7) +log(m(y,6)) + log(N,)) + N7

Step 6. The multiplication of Y !, respectively Y !, with I,P,, x from the right
is analogous to step 3. Again, we have that both Y~! and Y- ! are symmetric and
thus the expression Y 1I, P, x can also be written as ((I,Py, x)TY1)T. With the
same argument as in step 3, the map vec(Y ') — vec(Y 'I,P, ) is thus exactly
implemented by

\IIG = ((Q?OQng)) .P(\I]?? c "\I/?Vz)7

where Q is a suitable permutation matrix of dimension N;2% x Ny2¢ and W§, ..., vy,
are identical copies of

‘II(Iwa,K)T = ((Iwa,K)T> 02d)-

Since I, is a quasi-interpolation operator on w and P, i is the prolongation oper-
ator from the element K to the whole patch, we roughly estimate ||I, P x|lo < 6.
Combining this with Lemma 3.9 yields

(i) L(W) =1,

(ii) M (V%) =69N, =692+ 2)4 < 0.

Step 7. Analogous to step 4, we consider the parallelization

U= P(W,...,¥Y,),
where W], ..., W] are identical copies of

\IIPEIE = ((PTIT Ozd)).

wTw?

Again, no permutation is necessary in this step. With our choice of the quasi-
interpolation operator, the rough estimate |PZIZ||o < 39N, holds, which leads to

(i) L(¥") =1,
(ii) M(VT) <3INF =3%(20+2)%d < 0%,
By connecting the individual networks ¥',..., U7 in series by sparsely concate-

nating them, i.e., defining
L ZCRE ANORRROR AN
we finally obtain a network with the desired properties. In particular, we have
Orese [P, ¢l [Pl 1Tl
202

inf

HSEg — mat(R%‘W (\Ifgg(AE’w))) H2 <

2
+ ||Pw,KH2 HPw”z ||Iw||2 s
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since with the abbreviation

—~ o~ K1—9 s N2 o~
inv(vpese Y) := mat (R,) Ne (\I/iani;N” ) (vec(Ing - tJrESCY)))7

it holds that
| see —mat(Re (w5E(A-))
= ” Iwagresc (/U\rech)il :[gPK,w - Iwaarescia(Eresc?)IZ:PK,w H2

e L2
<Pl 1P sl T B | 22 9y

resc ~inf
due to (A.9). Choosing 6, such that

Uresc ||Pw,KH2 HPUJHQ ||I
202

inf

w||4 2
20+ Puxlly Pully [Lollsy <0

then yields the estimate. As above, we refer to the proof of Corollary 3.13 below for
a discussion of the scaling of the relevant spectral norms in terms of the mesh sizes
H,h. Using Lemma 3.7, we obtain the following bounds for the final network:
(i) L(Pe) <37, L(TY) Slog(m(6,6)) (log(1/6) +log(m(6, 5)) + log(ny))
+ log(m(v,4)) (log(l/’y)-i-log(m('y, 5))+log(Ne)) +1,
(i) M(¥P%) S 327, M (V)
<m(6,0) logQ(m(G,é))ni’ (log(1/6) + log(m(8,6)) + log(ne))

+m(7,0)log? (m(v,8)) N3 (log(1/7)+log(m(y,8))+log(Ne)) +(CH/h)>.
This is the assertion.

A.2. Proof of Corollary 3.13. The claim follows directly from Theorem 3.12
with n ~ H* and the estimation of the quantities 6,v,d,0 in terms of the mesh sizes
H, h. Starting with 6 and 7, we have the condition that

Amin (I, S™1IT
(A.10) 6 < min Hk,)\min(IwS_lIZ;)?(—Zw) )
2 0resc || L I3

which requires an estimation of the smallest eigenvalue of I,S~!IZ. Observe that

Amin(:[w]:z;—') > Amin(]:u.z:[z:)
Amax(S) ™ hd=2 7

Amin (ToS ™ L) > Ain (S ™) Amin (LIL) =

where we have used the well-known fact that Apay(S) ~ k%2 as the maximal eigen-
value of a finite element stiffness matrix. In order to estimate the eigenvalues of I,,IZ,
we have to look into the practical computation of the matrix I,. It holds that

L, =R¢wEcw (Mgi)_l(ng)TMggcnga

where E. , is the algebraic realization of the averaging operator Ep introduced in
(2.4), Mgi and M8 are the mass matrices corresponding to Q1 discontinuous finite
element functions on Tz (w) and 7Ty, (w), respectively, P98 is the prolongation map from
Ta(w) to Tp(w) for Q1 discontinuous finite element functions, C,, maps the vector
representation of a continuous finite element function to the vector of its discontinuous
representation, and R, is a restriction operator that removes all entries corresponding
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to boundary nodes of the patch w on the fine mesh. The restriction operator R,
removes coarse boundary nodes on dD only. Since I, has full rank, it holds that
)\min(IwIZ:) Z )\min (Rc,wR£w> Amin (Ec,wEZ:w) )\min((Mgi)_Q) )\min((ng)Tng)
: )‘min((Mgg)Q) )‘min(cgcw) /\min (RwRZ:)
Using that )\min(Rc,wRCT,w) = Amin(R,RL) =1, )\min(Ec,sz—:w

)
2 H724 Apin(M28)?) 2 b4, Apin (P28)TPEE) Z (H/h)* and
obtain

~
A

Amin(LID) > 274 g 2424 (H /p)4 > (h/H)?.
This, in turn, yields

(h/H)* W
pi2 g

Amin(1,S™'I]) 2
With a similar argument for the maximal eigenvalue, we also get ||L,|3 < (h/H)®.
Further, we have

1 1
o, N Gy
S Bowp — Amax(S)

Combining the above estimates, we arrive at

Amin (I,S™1IT) S h2/Hd ~1
Urescnlwng ~ h2=d(h/H)4 .

Recall that according to Theorem 3.12, the parameter v has to satisfy the condition

Oresc ”Pw,KHz ”Pw”Q ||I
minf

ol 2
20+ [Py ||y [Pully | Lull3y < HE.

Since P, and P, g realize prolongations, we have |P, s < (H/h)%? as well as
Pkl < (H/h)%2. With a suitable choice of 6, i.e.,

-1
h? He
~—HF 1+ —
o~ (+h2>,

the estimate (A.10) is fulfilled. Further, we have with (A.4) that

~ 11T h?
Q]inf ~ Amin(IwS_ Iw) 2 ﬁ

Choosing « = 6 thus leads to the rough estimate

Dresc ||POJ,KH2 HPWHZ ||I
232

inf

wlla >
20+ [1Pu sl [Pl L[5y

_ W R () E
~ (ht/H?d)
H Hd> ( HY

~ (e T )es (1 0 ) (14 05) e =

0+ (H/h)"(h/H)"y
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-~

In order to estimate the quantities m(6,4) and m(y,d), we derive lower bounds on

0, g, and 6. If v, is chosen close to ‘ZTS’ulp, we have that

s'ninf Amin (S) hd 2
0= by EUin ~ ~ ~ =h s
S By Amax(S) A2

using the fact that Apin(S) = he. Analogously, for a choice of Dyese close to @S_ulp we
obtain
h2 H—d

2
Z H,d Nh7

’é-\N @inf _ )\min(IwS_IIZ;)
T 0.0 Amax(I,S7ID)

where we have used that Apax(I,S™IL) < H~? which can be derived analogously
to the scaling of the smallest eigenvalue. For 8 (and thus ), a very rough estimation
yields

—1
h2 k Hd k—1312 h2 k—1314

Therefore, we obtain

(k= Dllog(H)| + 6|log(h)|

<
~ h2 )

_ [log(0.500) log (0.5 H =1 h6)
m0.0)= | | St

and similarly,

~ ~ (k=1)[log(H)| + 6]log(h)|
m(y,0) S W2

Moreover, it holds that Ny < ny < (|log(H)|H/h)® and thus
log(ne) < dlog(H|log(H)|/h) < [log(h)].

Inserting all these results into the bounds derived in Theorem 3.10 and using without
loss of generality that 8 <~ and § < ¢, we obtain

L(WYE,) S log(m(6,6)) (10g(1/6) + log(m(6,8)) + log(ne)

< (1tog(n)] + Nog k)] ) (10g(h)] + 1og(k) )
< [log(h)|* + [ log(k)|*

as well as

M(W5) S m(6,0)log? (m(6,8))n (10g(1/6) + log(m(6.4)) +log(ne) )
+ (| log(H)|H/1)*
<12 (k| 1og()| + [1og(h)|) (1o (k) |* + [1og(k) ") (1og(H) | H/h)™".

This is the assertion.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/10/25 to 137.250.100.44 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NN APPROXIMATION IN NUMERICAL HOMOGENIZATION 1481

Appendix B. Proofs in section 4.
B.1. Proof of Lemma 4.1. Taking the difference of (2.7) and (2.8) leads to
a((id — Q) (ufy — ), (id — Q°)urr) = al(id — Q)ulf, Qo)
for all vy € V. Therefore, with vy = (u§; — u}?), we have
a((id — Q°)(ufy — ulf), (id — Q) (ugy — ujf))
=a((id — Q")ulf, Q (ufy — ujy))
= a((id — Q)uyf, Q" (ufy — ul)) +a((Q — Q)ul, Q (ufy —uiy))

=0
< eXP(*Cé)HVU};{gHm(D) [l (id — QZ)(“?{ - u%[g)”LQ(D)

using (2.11) in the last step. This leads to

[V (id — Q) (u§; — ub¥)||L2(py S exp(—cl)||[Vuhe | r2(p)

and, with the Friedrichs inequality, interpolation estimates, and the stability of the
solution uby, we get

[ufr — ufFllL2(py S exp(—cl).
Further, we have
[u® —uPs|ly < CH™2||ufy — uif | 12(p) S H V2 exp(—cf),

which is the assertion.

B.2. Proof of Lemma 4.2. Due to the definition of (2.7) (which defines S¢),
we have for any vector v with corresponding function v € Vi that

v!'Sv =a((id — Q")v, (id — Q°)v) > a||V(id — Q°)v|72(p)

(B.1) B
> aC 2|Vl 72p)

using the interpolation estimate (2.3) and Zg(id — Q%)v = v. With the Poincaré-
Friedrichs inequality with constant Cp and the estimate (4.5), we further get
(B.2) vI'Sey > aCi2C§2||v||2L2(D) =aC72C*vIMv > cH?||v|3.

The claim follows since the minimal eigenvalue is bounded from above by the Rayleigh
quotient.

B.3. Proof of Theorem 4.3. We only show the first estimate. The second one
follows directly from the equivalence

(B.3) HY2|[uP® — ™|y S [Juff — wif | o) S HY? [[uP® =™,
which follows from (4.5). With Lemma 4.1, we have
(B4)  [[uP® —u™l2 < u® —uCfa + [u —up S H- el 4 uf — uo.

We now bound the second term. Note that the right-hand side involving f is deter-
ministic and thus equal for the discrete problems (2.8), (2.7), and the system based
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on the neural network. Denoting the vector-version of the right-hand side with f, we
particularly have the linear systems

(B5) SpPeyPe — f’ S = f, SN hn — f,

where SP8 is the PG-LOD stiffness matrix, S¢ the (symmetric) C-LOD stiffness ma-
trix, and S™® the one assembled from the neural network. Using (B.5), we estimate

||uc _ unn”2 — H (Sc)_lf —_ e ) — H (Sc)_l(snnunn _ SCUHH)HQ
¢ -1 nn C nn
<)) [, 18" =87, f[u

(B.6) |

With the eigenvalue bound on S€ that is proven in Lemma 4.2, we obtain
e —1 ey —1 _
(B.7) 1(8) [l = (Aain(89)) S H™™
For the second factor on the right-hand side of (B.6), we estimate
8™ — 82 <[[S™ — SP8[|3 4 [|SP® — S°2.

With the choice k =2d+1 in Corollary 3.13 and (4.2)—(4.4), we obtain the bounds in
(4.6) as well as

|S™ — SPE, < Z H(I)K(@K - Sﬁf(x))m
KeTu
< > 1@k~ Spie ll, SH Y S HO
KeTu

(B.8)

The difference of the C-LOD and the PG-LOD stiffness matrices can be bounded as
follows. Let v be a vector (with corresponding function v € Vi) such that

B |vT(SPe — S%)v|

8P = S%l2 = | Amax (SP® — S°)| T

v
With the definition of SP& and S€¢ corresponding to the discrete problems (2.8) and
(2.7), respectively, we thus have

_ la((id — Q@%)v,v) — a((id — Q%) (id — Q"))

A%

||Spg—SCH2— Ty
_ Ja((id = )0, Q)| _ [a((Q— Q")v, Q)|
vy ~ H‘d||v||2LQ(D)

using the definition of the globally defined correction Q := Q> and (4.5) in the last
step. Employing the estimate (2.11), the stability of the correction operator Q°, and
a classical inverse inequality, we arrive at

lal(Q= @9, @%)| _ BIIV(Q~ Q)02 IV Q0] 2oy
H]o] ~ H0]22 )

e Cloct

[SP8 =82 <

2

L*(D)
|Vv||2L2(D)

~ H‘d+2||Vv||%2(D) ~

(B.9)

d—Qe—clocﬂ.

For the last term on the right-hand side of (B.6), we estimate

™2 < [[uP® — ™l + uPe[lz < [[u”® — a2 + CH™?|luf || 12(p)

< [uP® —u™ o + CH 2| f 12(p),
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where we employ the stability of the solution u}? and the Friedrichs inequality. We
now go back to (B.4) and (B.6) and obtain

s — o < CH e () 87 -5,
< OH 3ot |(8) 1, 87 - 8, CH 2l

(B]'O) c\— nn c nn
1) [l = 8 [ — e

< CH—d/2€—010c€ 4 CHl_d/2||f||L2(D) + %”upg _ unn”Q.
In the last step, we have used that
c\—1 nn ¢ — —2 _—Cloc 1
1(8) [l 18" = 8%, S B (H™ + B 2em o) SH <

according to (B.7), (B.8), and (B.9) if H is chosen small enough and ¢ 2 |log(H)|
large enough with respect to the respective hidden constant. Absorbing the last term
on the right-hand side of (B.10) leads to

[uPe —u |y S H™ el 4 H' 2| £ L2 ().
Omitting the dependence on f and using again that £ > |log(H)|, we finally get
”upg _ unnH2 S Hlfd/Q'

Employing (B.3), this directly leads to

[uBE — w0 L2y < H. o
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