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Abstract
Speech enhancement (SE) algorithms based on deep neural net-
works (DNNs) often encounter challenges of limited hardware
resources or strict latency requirements when deployed in real-
world scenarios. However, a strong enhancement effect typical-
ly requires a large DNN. In this paper, a knowledge distillation
framework for SE is proposed to compress the DNN model. We
study the strategy of cross-layer connection paths, which fuses
multi-level information from the teacher and transfers it to the
student. To adapt to the SE task, we propose a frame-level sim-
ilarity distillation loss. We apply this method to the deep com-
plex convolution recurrent network (DCCRN) and make target-
ed adjustments. Experimental results show that the proposed
method considerably improves the enhancement effect of the
compressed DNN and outperforms other distillation methods.
Index Terms: speech enhancement, knowledge distillation,
cross-layer connection, pairwise similarity

1. Introduction
Speech enhancement (SE) has been a hot topic in the field of
speech for decades. This paper focuses on the monaural SE
task. The traditional SE methods are mainly based on statisti-
cal signal processing that has a low requirement of computation
and hardware, thus having good real-time performance. Typi-
cal algorithms include spectral subtraction [1], Wiener filtering
[2], minimum mean square error (MMSE) methods [3], or non-
negative matrix factorization-based approaches [4]. However,
their implementations are often based on assumptions that are
unreasonable in real-world scenarios (such as the stationarity of
noise), which limits their performance.

Recent developments in SE methods based on deep neural
networks (DNNs) have shown superior performance compared
with traditional machine learning and signal processing meth-
ods [5, 6, 7]. Many deep learning-based SE models have report-
ed excellent performance on real-time and non-real-time track-
s in the recent deep noise suppression challenge (DNS) series
[8, 9]. However, a large DNN is generally required to achieve
ideal performance, which is both computationally intensive and
memory-consuming. Even if the real-time requirements of the
DNS Challenge are met, deployment difficulties will occur in
latency-sensitive applications or on resource-constrained de-
vices (e. g., headsets). Therefore, reducing the size of the DNN
has become increasingly important in deep learning-based SE
systems.

The mainstream model compression techniques, such as
pruning, quantization, and knowledge distillation, all have cer-

tain effects in reducing the complexity of the model [10]. This
paper mainly focuses on the knowledge distillation mechanism.
Its main idea is to shift knowledge from a large teacher model
into a small one. The research of knowledge distillation started
from the work of Hinton et al. [11] and has been further de-
veloped in recent years. PKT [12] performed knowledge trans-
fer by matching the probability distribution of the data in the
feature space. SPKD [13] modeled the knowledge as pairwise
similarities. The knowledge review framework [14] studied the
cross-stage connection paths of the teacher-student model. All
these solutions focused on the transformation of the intermedi-
ate representation.

However, the existing knowledge distillation methods are
mostly applied to classification tasks, and the related work on
regression tasks such as SE is rare. A low-latency online ex-
tension of wave-U-net was proposed in [15], which directly re-
duces the difference between the teacher and student output.
Teacher-student learning was used in [16] to train a general sub-
band enhancement model. However, these methods did not s-
tudy the intermediate representation of the DNN model. In this
paper, we propose a cross-layer knowledge distillation frame-
work for SE tasks. Inspired by the knowledge review method
[14], multi-layer feature representations are fused to guide the
single layer of the student network. The difference is that we
use the frame-level pairwise similarities distance as the distil-
lation loss instead of the hierarchical context loss (HCL) [14].
We apply this strategy to the DCCRN model [17] which ranked
first on the real-time track of the DNS Challenge. The exper-
imental results show that the proposed method achieves better
performance when compared to other distillation methods.

2. Methodology
2.1. System Overview

The state-of-the-art SE model DCCRN is chosen as the baseline
model to perform the knowledge distillation method. Although
it meets the real-time requirements of the challenge, it still has
3.7M parameters. Compared with the RNNoise model [19] (on-
ly 0.06M parameters) designed for real-time applications, there
is still a big gap. Therefore, it is necessary to perform further
compression of the DCCRN model. The encoder and decoder
are composed of complex convolution/deconvolution layers and
complex long-short-term memory (LSTM) layers are inserted
between the encoder and decoder to model the temporal de-
pendencies. According to the symmetrical structure, we set the
position of distillation in the encoder, decoder and the middle
complex LSTM layers respectively. The overall framework of
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Figure 1: The overall framework of the proposed method. The
intermediate representation features of the student model are
recursively integrated through the feature fusion method intro-
duced in Section 2.2, so that the single layer of the student
model can learn the effective information from multiple teach-
er layers. The feature fusion is expanded to both sides with
the complex LSTM layer as the center, and the arrows in Fig-
ure 1 represent the flow of features. SKD represents the frame-
level similarity knowledge distillation loss introduced in Sec-
tion 2.3. The backbone loss of the teacher and student networks
is the multi-resolution STFT (MRSTFT) loss [18] between the
enhanced waveform and the clean waveform.

the proposed method is shown in Figure 1. For the distillation of
the encoder and decoder, the residual learning strategy in [14] is
adopted to progressively extract useful information through the
fusion of multiple-layer teacher output. For the middle complex
LSTM layers, frame-level similarity distillation is performed on
the output of the real and imaginary parts, respectively.

2.2. Feature Fusion

The feature fusion is set at the output of each complex convolu-
tional layer of the encoder and decoder. In the design of the o-
riginal DCCRN model, the real and imaginary parts of the com-
plex convolutional layer output will be concatenated and pro-
cessed by complex batch normalization. Therefore, the feature
fusion is performed on the concatenated output without addi-
tional diversion. Given the intermediate features of the n stages
to be distilled in the student model

(
F1

S ,F2
S , . . . ,Fn

S

)
, the fea-

tures of the i-th teacher layer can be similarly defined as Fi
T .

To preserve the effective information contained in the teacher
model, we only transform the student features. The one-to-one
knowledge distillation loss can be expressed as

Lsingle =
∑

i∈I

D
(
Mi

S

(
Fi

S

)
,Fi

T

)
, (1)

where I denotes the intermediate representation feature set of
multiple layers to be distilled in the student model. M repre-
sents the feature transformation; here, the up-sampling method
of nearest interpolation is used to execute the transformation.
D describes the distance of the intermediate features. Similarly,
the one-to-many distillation loss is written as

Lmultiple =
∑

i∈I

(
i∑

j=1

D
(
Mi,j

S

(
Fi

S

)
,Fj

T

))
. (2)

For the encoder, the teacher’s first i levels of features are used
to guide the current layer of the student model, while for the
decoder, we use the last i layers. In order to avoid the mutual
interference of multi-layer features and reduce redundant calcu-
lations, we adopt the residual learning strategy [14]. Assuming
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Figure 2: The architecture of the recursive fusion U ′ (·, ·) from
the i-th layer to the i + 1-th layer. res i and fea i denote the
cumulative recursive features and the current layer features of
the i-th layer, respectively. The concat operation is performed
on the channel dimension. The input and output convolutions
are both 2D convolutions. The former is used to unify the chan-
nel dimension of the recursive features and the current layer
features, and the latter is used to restore the channel dimension
of the current layer features.

that n stages of features are distilled, we can switch the order of
the two summations of i and j in (2) as

Lmultiple =
n∑

j=1

(
n∑

i=j

D
(
Ti,j

S ,Fj
T

))
, (3)

where the transformed student features Mi,j
S

(
Fi

S

)
are abbre-

viated as Ti,j
S . However, there are still n (n + 1) /2 pairs of

features that need to be calculated. The sum of multiple dis-
tance pairs is approximated as the distance of the fused features
using the n-dimensional operator U [14]:

n∑

i=j

D
(
Ti,j

S ,Fj
T

)
≈ D

(
U
(
Ti,j

S , . . . ,Ti,n
S

)
,Fj

T

)
. (4)

The process of feature fusion can be carried out in a progressive
manner. We redefine the fusion operation as a recursive function
U ′ (·, ·), and the fusion distillation loss can be calculated as

Lfusion = D (Tn
S ,Fn

T ) +

1∑

j=n−1

D
(
U ′
(
Tj

S ,Tj+1
S

)
,Fj

T

)
,

(5)
where Tj+1

S denotes the fusion from Tn
S to Tj+1

S . Here, the
loop starts from the n − 1-th in reverse order and there is on-
ly a dimensional transformation in the n-th layer. The recursive
fusion process from the i-th layer to the i+1-th layer is illustrat-
ed in Figure 2. First, the up-sampling method is used to resize
the high-level features to the same shape as the lower-level fea-
tures. Then, the current layer features and the recursive features
are weighted by attention using 1×1 convolution and are added
to update. The entire process is shown in Figure 1, the complex
LSTM layers are used as the center of symmetry to perform a
recursive fusion on both sides of the encoder and decoder. We
believe that due to the symmetry of the DCCRN model, the stu-
dent high-level stage close to the middle has a strong ability to
learn effective information from the low-level features near the
two ends of the teacher.

2.3. Similarity Knowledge Distillation (SKD)

After the feature fusion process, the feature dimensions of the
teacher and student models become the same in the encoder
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Figure 3: The calculation of similarity distillation loss. Given
an input minibatch with dimensions (b, c, t, f), first, the input
is sliced along the time dimension T into feature maps (b, c, f)
of t groups. Then, we derive b × b pairwise similarity matrices
from the feature maps, and the similarity distance is calculated
on the matrices produced by the student and the teacher.

and decoder stages, but there are still differences in the mid-
dle complex LSTM layers. For consistency, a distance calcula-
tion method that is not restricted by feature dimensions is need-
ed. Inspired by [13], we derive the pairwise similarity matrices
from the intermediate feature representations of the teacher and
student models. Such similarity distillation loss can simultane-
ously achieve dimensional compression and similarity informa-
tion transmission. Given a mini-batch input, the feature map of
the complex convolutional layer is OT ∈ Rb×c×t×f , and the
output size of the complex LSTM layer is (b × t × f), where
b is the batch size, c is the number of output channels, t the
number of speech frames, and f is the dimension of the fea-
ture space. Unlike [13], we independently calculate the simi-
larity matrix of each frame because the information of different
frames may interfere with each other, and we hope that each
frame has a unique contribution to the distillation, while di-
rect flattening will smooth out the differences between frames.
The specific process of similarity distillation is shown in Fig-
ure 3. We first perform frame-level segmentation on the fea-
ture map of the l-th layer, and then flatten the features into two
dimensions. Let the transformed feature of the j-th frame be
Q

(l,j)
T ∈ Rb×f ′

, the similarity matrix of the teacher and the
student are calculated separately, and then, L2 normalization is
applied to each row of the matrix:

Q̃
(l,j)
T = Q

(l,j)
T · Q

(l,j) T
T ; G

(l,j)

T [i,:] = Q̃
(l,j)

T [i,:]

/∥∥∥Q̃(l,j)

T [i,:]

∥∥∥
2

Q̃
(l,j)
S = Q

(l,j)
S · Q

(l,j) T
S ; G

(l,j)

S[i,:] = Q̃
(l,j)

S[i,:]

/∥∥∥Q̃(l,j)

S[i,:]

∥∥∥
2

(6)

where [i, :] denotes the i-th row in a matrix. The dimension of
the similarity matrix G

(l,j)
T , G

(l,j)
S calculated for each frame is

b × b. Finally, the distillation loss of the l-th layer is defined as
the accumulation of all frames’ similarity distances:

Ll
SKD =

1

b2

t∑

j=1

∥∥∥G(l,j)
T − G

(l,j)
S

∥∥∥
2

F
, (7)

where ∥·∥F is the Frobenius norm.

2.4. Training Procedure

This section describes the entire training procedure shown in
Figure 1. The multi-resolution STFT (MRSTFT) loss [18] is
used as the backbone loss to train the teacher model, and then,
it is frozen during the training of the student model, and knowl-
edge distillation is performed simultaneously with the training

of the student network. During the forward inference of the stu-
dent and teacher networks, the output of each layer is saved for
the calculation of the knowledge distillation. The distillation is
set in the encoder, decoder, and the middle complex LSTM lay-
ers, respectively. For the encoder and decoder, the features of
the student model are first transformed using the feature fusion
method in Section 2.2. Given the transformed features of the s-
tudent l-th layer Tl

S|x and the corresponding teacher model fea-
tures Fl

T |x, where x represents the encoder or the decoder, the
distillation loss of the encoder Lenc

distill and that of the decoder
Ldec

distill is calculated using the similarity distillation method in
Section 2.3:

Lenc
distill =

M∑
l=1

Ll
SKD(Fl

T |enc,T
l
S|enc),

Ldec
distill =

N∑
l=1

Ll
SKD(Fl

T |dec,T
l
S|dec),

(8)

where M and N represent the number of layers of the encoder
and decoder, respectively. For the middle complex LSTM lay-
ers, distillation is performed on the output of the real and imag-
inary parts, respectively. Given the features of the student l-
th complex LSTM layer Fl

S|y and the corresponding teacher
model features Fl

T |y , where y represents the real part or the
imaginary part, the distillation loss of complex LSTM layers
LCLSTM

distill is:

LCLSTM
distill =

K∑

l=1

Ll
SKD(Fl

T |real,F
l
S|real)

+

K∑

l=1

Ll
SKD(Fl

T |imag,Fl
S|imag),

(9)

where K denotes the number of complex layers. The overall
loss of the student model LStu is the combination of the back-
bone loss LMRSTFT and the distillation losses:

LStu = LMRSTFT + Lenc
distill + Ldec

distill + LCLSTM
distill . (10)

3. Experiments and Analysis
3.1. Dataset

The Interspeech 2020 DNS Challenge dataset [8] is used to pre-
pare the training and test sets. The DNS dataset contains 500
hours of clean clips from 2150 speakers and 65,000 noise clips
in a total of 180 hours. We randomly split the corpus into 60,000
and 1,000 utterances each in the training set and the validation
set. The noisy utterances are generated by mixing randomly s-
elected speech and noise at random SNR between -5 and 15 dB
using official scripts provided by DNS Challenge [8]. The offi-
cial non-reverb test set is used for objective scoring comparison.

3.2. Implementation Details

The DCCRN-CL model [17] is chosen as the baseline mod-
el. The kernel size and stride of the teacher and the s-
tudent model are both set to (5, 2) and (2, 1) in the fre-
quency and time axes. The number of channels for the
teacher is {32, 64, 128, 256, 256, 256}, while the student is
{8, 16, 32, 64, 64, 64}. The teacher model uses the complex L-
STM with 128 units for the real part and the imaginary part,
respectively, while the student model has 32 units. The com-
pressed student model has only 0.23M parameters, which is 6 %
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Table 1: Comparison of objective speech indicators between
distilled and undistilled models in the non-reverb test set

Distillation
Mechanism Model Param.(M) WB-PESQ STOI(%)

- Noisy - 1.582 91.52
None NSNet [20] 1.26 2.145 94.47
None RNNoise [19] 0.06 1.973 -
None DTLN [21] 0.99 - 94.76
None DCCRN-T [17] 3.67 2.803 96.43
None DCCRN-S 0.23 2.396 94.98

Diff [15] DCCRN-S 0.23 2.429 95.28
PKT [12] DCCRN-S 0.23 2.425 95.30

ReviewKD [14] DCCRN-S 0.23 2.404 94.94
SPKD [13] DCCRN-S 0.23 2.464 95.13

SKD DCCRN-S 0.23 2.500 95.19
CLSKD DCCRN-S 0.23 2.518 95.29

1 3 5 7 9 11 13 15 17 19
Epoch

1.85

1.9
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2

2.05
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B
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E
S
Q

Figure 4: The WB-PESQ score curve of the validation set

of the teacher model (3.7M). For the feature fusion, convolu-
tional layers with a kernel size of (5, 1) are used as input and
output convolutions.

All the utterances are sampled at 16 kHz and chunked to 2
seconds. The window length and hop size are 32 ms and 16 ms,
and the FFT length is 512. The MRSTFT loss [18] is used as
the loss function of the baseline model instead of the SI-SNR
loss used by the original DCCRN, because its variation range
is more suitable for distillation tasks. We use Pytorch to imple-
ment the method. All models are optimized using Adam with a
learning rate of 0.0006, a batch size of 32, and an epoch number
of 20.

3.3. Experimental Results and Discussion

Since this paper focuses on real-time SE applications, the low-
complexity methods NSNet [20], RNNoise [19] (data from
[22]), and DTLN [21] which have objective scores reported on
the DNS Challenge 2020 are chosen as the undistilled models.
We retrain the original DCCRN as the teacher model DCCRN-
T, and use the compressed one as the student model DCCRN-S.
Regarding the comparison of distillation methods, the method
that reduces the difference of model output (Diff) [15] is first
chosen for comparison. Since the distillation for the intermedi-
ate representation of the model is rare to find in the SE field, we
select the mainstream distillation methods in the image process-
ing field for comparison. The reviewKD [14] framework that
uses the hierarchical context loss (HCL) as the distillation loss

and the SPKD [13] method that calculates similarities between
the same level’s features are selected as the comparison algo-
rithms to prove the effectiveness of the proposed cross-layer
similarity knowledge distillation (CLSKD) method that com-
bines the two strategies. PKT [12] uses cosine similarity to
compress the intermediate representation of the model, which
is similar to the idea of this paper, so it is also used for com-
parison. Wideband PESQ (WB-PESQ) [23] and STOI [24] are
used as objective indicators for speech quality assessment.

Figure 4 compares the WB-PESQ indicators of each distil-
lation method for the intermediate representation on the valida-
tion set. It is worth noting that the frame-level similarity knowl-
edge distillation method (SKD) has achieved a more stable and
effective improvement than the original SPKD algorithm. And
the proposed CLSKD method has the largest improvement.

Regarding the indicators shown in Table 1, compared with
the Diff method that directly narrows the output distance, the
proposed CLSKD has an improvement on WB-PESQ, which is
brought by the distillation of intermediate representation. A-
mong feature distillation methods, the PKT method shows ad-
vantages in STOI indicators, but its improvement on WB-PESQ
is limited. The SPKD’s comprehensive performance on the test
set and the validation set is slightly better than the one of PKT,
which shows that compared to the probability distribution, the
use of pairwise similarity to model knowledge from the teach-
er is more suitable for the SE field. Compared with SPKD,
the frame-level similarity distillation method (SKD) proposed
in this paper has a further improvement in each indicator. The
ReviewKD method, which uses HCL as the distillation loss,
fails to achieve advantages in both indicators. This may be due
to the loss of frame-level effective information by the down-
sampling operation of HCL. The proposed CLSKD ranks first
on WB-PESQ and is equivalent to PKT on STOI, reflecting that
the introduction of cross-layer information on the basis of SKD
can achieve further improvements. Compared with other low-
complexity undistilled models, the distilled student model us-
ing the CLSKD method maintains a competitive enhancement
effect at a low parameter level (0.23M). Moreover, the proposed
distillation method is completely cost-free at test time, because
the student model remains the same during inference.

4. Conclusions

In this paper, we proposed a new knowledge distillation frame-
work for SE. Intermediate features of multiple layers in the
teacher are used to guide one layer in the student, and a frame-
level pairwise similarity distance is calculated as the distillation
loss. To the best of our knowledge, this is the first time that the
intermediate representations of the network were used to distill
SE models. Experimental results show that the proposed cross-
layer similarity distillation method can considerably improve
the enhancement effect of the student model, and outperforms
other distillation methods. For future work, we hope to apply
our distillation method to more structures.
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