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We continue the work of the previous paper (Hachenberger, Finite Fields Appl.,
in press), and, generalizing some of the results obtained there, we give explicit
constructions of free and completely free elements in GF(gq"") over GF(q), where
n is any nonnegative integer and where r is any odd prime number which does not
divide the characteristic of GF(q) or where r = 2 and ¢ = 1 mod 4. Together with
results on the case where r = 2 and ¢ = 3 mod 4 obtained in the previous paper
and results on the well-known case where r is equal to the characteristic of GF(g),
we are able to explicitly determine free and completely free elements in GF(g™)
over GF(q) for every nonnegative integer m and every prime power g. ©199

Academic Press, Inc.

1. PrRIME POwWER EXTENSIONS OVER A FINITE FIELD

Let GF(q) denote the Galois field of order g, where g > 1 is any prime
power. Given any finite dimensional extension of GF(q), say of degree m,
it is our aim to find elements w in GF(g™) which are free over GF(g), i.c.,
which generate normal bases in GF(g™) over GF(gq), or, which are com-
pletely free over GF(q), i.e., which simultaneously generate normal bases
in GF(q™) over GF(g%) for every intermediate field GF(g?) of GF(g™)
over GF(q).

The existence of completely free elements in finite fields was first proved
by Blessenohl and Johnsen in [1]. By Hilfssatz 4.4 in [1] (in the case of
finite fields see also Theorem 3.1 in [3] or, in the case of ordinary free
elements in finite fields, Lemma 1.1 in [9]) the existance problem is easily
reduced to the case where m is a prime power:
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If m;, m, = 1 are relatively prime integers and w,, w, are free in
GF(q") over GF(gq) and GF(gq™) over GF(q), respectively, then ww, is
free in GF(g™"2) over GF(q). Moreover, if w, and w, are completely free
in GF(g™) over GF(q) and GF(g"2) over GF(q), respectively, then w -
is completely free in GF(q"1™2) over GF(q).

This reduction is our motivation for studying extensions of GF(q) of
prime power degree.

In Hachenberger [3] we gave a constructive proof of the existence of
completely free elements in prime power extensions over finite fields and
even were able to determine the exact number of completely free elements

in those extensions. In the nresent paper, we continue the work of Hachen-
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berger [4], which will be our standard reference throughout. There, based
on results of [3], we have studied field extensions of prime power degree
over GF(q) with the aim of explicitly constructing normal bases and com-

nlataly fraa ala nte Tha than Af Thanrao
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3.3, 3.5, 3.6, and 4.3 and Algorithm 3.7 in [4] and of Theorem 2.1 and
Theorem 3.1 of the present paper; i.e., we describe free and completely
free elements in terms of a suitable root of unity which is used to obtain
a certain fieid extension of the ground fieid GF(g).

The construction of ordinary normal basis in extensions of prime power
degree is also studied in Semaev [9]. At the end of Section 2 of the present
paper we will shortly discuss some of the results of [9].

From now on, let r be a prime number. We will always assume that r is
different from the characteristic of GF(q). The case where r is equal to the
characteristic of GF(q) is conceptionally different but easy to handle (see
Theorem 3.2 in [3], Section 1 of [4], and, for ordinary free elements, Section
4 of [9]):

If r is equal to the characteristic of GF(q), then w € GF(g"") is completely
free over GF(q) if and only if w is free over GF(q) if and only if the GF(q)-
trace of w is nonzero.

Now, let n = 0 be any integer. In Section 2 of [4] (Theorem 2.4), based
on results of [3], we have given a characterization of free and completely
free elements in GF(q”") over GF(g), which led to a general recursive
construction scheme of these elements (Theorem 2.5 of [4]). In Sections 3
and 4 of [4], we have restricted our attention to the case where g — 1 is
divisible by r and have given explicit constructions of free and completely
free elements in GF(g™") over GF(q). In the present paper, we drop the
assumption that g — 1 is divisible by r and generalize some results obtained
in [4] (see Theorem 2.1 and Theorem 3.1 in Section 2 and Section 3 of the
present paper, respectively):

Besides the case where r = 2 and g = 3 mod 4, for every prime number

M - - . .
different from the characteristic of GF(q), we explicitly construct

(Up)n=0 in GF(q"") := U,1-0GF(g"") such that the partial sums w,, 1= 2;_,v;
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are free or completely free in GF(g"") over GF(g), depending on th

€C
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Brawley and Schnibben [2] for background information.

The case where r = 2 and g = 3 mod 4 requires special arguments and
therefore has already been considered separately in Section 4 of [4]. Since
the case where » = 2 and g = 1 mod 4 falls into the SCope of Section 3 in
[4], we may here restrict our attention to the case where r is odd. However,
all results hold at least in the case where r = 2 and g = 1 mod 4.

From now on we assume that the ground field GF(q) is given. Let s :=
ord,(q) denote the multiplicative order of g modulo r, i.e., the least positive
integer N such that gV — 1 is divisible by r. Since ¢* = 1 mod r, given
GF(g*) and applying the results from Section 3 in [4], we can construct all
free and all completely free elements in GF(qS’") over GF(q°) (see Theorem
J .) dIlU ﬂlgUI lLIlIIl D / lIl [‘i‘j} DUL, lJ. 5 > l, lllC qut‘:SuOﬁS arlse Ul WllCUlCl
and how one can construct free and completely free elements in GF(g"")
over GF(g) from those in GF(g*") over GF(gq®). Given an element w in
GF(q“”) which is free over GF(g*), one might guess that the (GF(g*"),
GF(g™"))-trace of w is a free element in GF(q’") over GF(g). But this is
not true in general. The following example illustrates that some work must

be done.

ExampLE 1.1. Letg:=5,r:= 3, and n := 1. Then s := ord;(5) = 2.
Let { be a root of the polynomial x> + x + 1. Then { is a primitive third
root of unity and GF(5?) is obtained by adjoining { to the field GF(5). Let
n be a root of the polynomial x> — £ Since this polynomial is irreducible
over GF(5?%), adjoining 7 to that field, we obtain GF(5°).

Now, an application of Theorem 3.5 in [4] shows that

=34 LH (A Ot dop

is free in GF(5°) over GF(5%). However, the following calculation shows
that 7T(y), the (GF(5%), GF(5°))-trace of v, is equal to 0 and thus is not at
all free in GF(5°) over GF(5):

T(y) =y +y™®
:3+§+n+§2n+£n2+3+§125+n125+§250n125+£125n250

3HLEmt Cnt i 43424 O 4w’ +

=1+{+2+A+{+ O+ A+ L+ 5P

= 0.

fl

What we are going to do in Section 2 of the present paper is the following:
Suppose, we are given an element v, which generates a normal basis in
GF(q°) over GF(gq). We construct a series (#,),-1 of elements in GF(g* )
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such that the partial sums 2;_o ; are free in GF(¢”") over GF(q). (These
elements are not necessarlly free over GF(g®).) Now, if for i = 1, we apply
the GF(q”) GF(q"))-trace function to the element u;, and if we replace
v, by any nonzero element v, of GF(g), we obtain a series of elements
(U)n=0 in GF(g"") such that the partial sums 2, v; are free in GF(g™")
over GF(q). In particular, it turns out that for s > 1, the field GF(g") is

needed nn]v for theoretical purposes; i.e., in order to solve our initial

problem we do not really need to have free elements in GF(¢*) over GF(q).
In Section 3, we modify the results from Section 2nand construct series
(vn)n=0 in GF(q"") such that the partial sums w, := 2o v, are completely

. b
free in GF(g" ) over GF(g).

Summarizing, together with the results in the case where r = 2 and g =
3 mod 4 obtained in Section 4 of [4] and the results in the case where 7 is
equal to the characteristic of GF(q), we are able to explicitly determine
free and completely free elements in any finite dimensional extension over
any finite field.

2. Fret ELEMENTs IN GF(q"") over GF(q)

Throughout this section let g > 1 be a prime power and let  be an odd
prime number different from the characteristic of the finite field GF(q);
let s be the multiplicative order of g modulo r and, furthermore, let
p(q°) = 1 denote the largest integer N such that rV divides ¢* — 1.

Our general construction scheme of free elements in GF(g"") over GF(q)
is iterative (see Theorem 2.5 in [4]) and can be described as follows:

If n = 0, then every nonzero element in GF(q) is free over GF(g). If
n=1, by 1nduct10n hypothesis, we assume that we have an element w,,_,
in GF(q” ) which is free over GF(q). We then exnhc1tlv construct a particu-
lar element v, of the kernel of the (GF(g""), GF(g™""))-trace function such
that w, | + v, =: w, is free in GF(q"") over GF(g).

Moreover, every element in GF(g’") which is free over GF(q) can be

constructed in this way (see Theorem 2.4 in [4]).

In order to state our main result, i.e., Theorem 2.1 below, we need some
further notation, which will be used throughout the entire section:

Given an integer n = 1, let a(n) := min{p(g*), n}.

Cince » and o are ra]ofnrnln nrime the multinlicatinon wit a2 indncec o
SIHOLC 7 odiliu § div Ividauyvye priiic, e lllultlyll\.«ublull witll § HIUuULeS a

bijection on the set of units modulo r*. Furthermore, by the definition
of s and a(n), the order of that bijection is equal to s and all orbits of that
mapping have cardinality s.Now, let I be any complete set of representatives

()I unllb IHUUUIU r“‘ 1 anu 16[ "n g De dﬂy LUmple[e SCI OI q UrUl[ rc‘prcwuta-
tives of 1. Then
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likewise is a complete set of representatives of units modulo r*™.

THEOREM 2.1. Let q, r, s, and p(q°®) be as above. For an integer n = 1
let a(n) and J,,,, be as above and let 0 be a primitive r"*"9th root of unity.
Then the following holds:

Mm11
(L.1.1

Then w, := w, | + v, generates a normal basis in GF(q*") over GF(q).

(2.1.2) Assume thatw,_, is free in GF(q"" ) over GF(q). Let T, denote
the (GF(g*"), GF(q""))-trace function and let

vei= > Tu(n)).
jel

nr.q

Then w, := w,-, + v, generates a normal basis in GF(q"") over GF(q).

The proof of Theorem 2.1 proceeds in several steps. A short outline is
given in the following paragraphs:

During all our considerations, we use that the additive group of
GF(g*") is equipped with various module structures which are induced by
the Galois groups of this field over its subfields. All these structures can
be studied by considering the additive group of GF(g*") as vector space
together with the various Frobenius automorphisms over its subfields. More
details can be found in Section 1 of [3] and in Sections 1 and 2 of [4]. In
this context we also refer to Liineburg [7, 8] where the structure of finite
dimensional vector spaces together with an endomorphism is studied from
a constructive point of view.

Throughout this section, let  be a primitive #**44th root of unity, and
let £ := 7’". Then ( is a primitive 7*(¢7th root of unity. By the definition
of s and p(g°) we know that {is an element of GF(g*), and, from Theorem
2.81in [4], one can deduce that GF(g*"") is obtained by adjoining 1 to GF(g*).

Let o denote the Frobenius automorphism in GF(¢*"") over GF(g). Then
o* generates the Galois group of GF(¢*") over GF(g®). Now, since ¢* —
1 is divisible by r and since we have assumed that r is odd, the assumptions
of Section 3 in [4] are satisfied for the field extension GF(g*") over GF(g°):

In Theorem 3.3 of [4], we have proved that the g*-order of 7, i.e., the
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monic polynomial of least degree g over GF(g*) such that g(o°)(n) =

is an irreducible GF(g*)-divisor of the r"th cyclotomic polynomial. Since
®,» over GF(g°) splits into binomials (see Lemma 3.2 in [4]), we even were
able to explicitly determine the g*-order of 5’ for every integer j which is
not divisible by r (see Theorem 3.3 in [4] and its proof). This result is
summarized in Proposition 2.2 below.

In Prnnnmhnn 2.3 we determine the q- order of ,n] wher 1§ not divisible

is not
by r, i.e., the monic polynomial f of least degree over G ( ) such that
f(o)(w') = 0. This enables us to prove that the element v, in statement
(2.1.1) of Theorem 2.1 has g-order ®’»(x*), where x denotes an indetermi-

1t 1 d that th 1 +
nate (see Proposition 2.4). After that we can easily deduce that the element

w, in (2.1.1) has g-order x*”" — 1, which is equivalent to the fact that it
generates a normal basis in GF(g*") over GF(q).

Finally, statement (2.1.2) in Theorem 2.1 follows from similar arguments
in combination with Lemma 2.5, where the (GF(g*""), GF(q""))-trace func-
tion is considered.

PRrROPOSITION 2.2.  Under the assumptions above, let Q 1= q* and let
A = max{n, p(q°)}. Then Q = 1 + ur?, where u is an integer which is not

divisible by r. If j is any mteger which is not divisible by r, then the g*-order
of n’ is equal to

o a(n)

{,u,;»(qv atn 2.2)

Furthermore, this polynomial is an irreducible GF(q®)-divisor of the r'th
cyclotomic polynomial.

Before we determine the g-order of each 7/ with j not divisible by r,
we consider the complete factorization of the r"th cyclotomic polynomial
over GP( n\

LS SRS § §

With u as in the statement of Proposition 2.2 let

s—1
£ T (r™ W _ i pjur?@) a0y
Jn- 11\ AN -] ’)
i:=0
- (2.3)
_ (x,n—a(n) B {,»uqi,p(q’ra(n)).
=0

Since ¢ € GF(q®) and since o is the identity on GF(g°), we see that £,/ is
a polynomial oyer )GF(q) Furthermore, since uj is not divisible by r, we
I wnr“q an eactat o aln)als e

ﬂdVC that [ 1S a pflmlllVC re¥¥in root Ul uﬂlly 1VLUICUVCI Uy l[lﬁ
definition of a(n), the multiplicative order of ¢ modulo ™ is equal to s,
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whence f,/ is square-free and thus is a GF(g)-divisor of ®,~. Finally, as the
muitiplicative order of ¢ modulo #* by Theorem 2.8 in {4] is equal to sr**®),
which is equal to the degree of f,, we conclude that f,; is irreducible over
GF(q). (For the factorization pattern of cyclotomic polynomials see also
Jungnickel [5, Theorem 1.5.4] or Lidl and Niederreiter [6, Theorem 2.47].)

Next, due to the fact that J,,, , is a complete set of g-orbit representatives
modulo 7", we obtain that

b= | I1 foi (2.4)

Jjes

nr.q

is the complete factorization of ®,» over GF(g). (Observe that f,j and f«
are different for different j and k in J,,, , and that the degree of the product
in (2.4) is equal to

|Jn,r,q‘ .srn—a(n) — \In,r,ql . rn—a(n) — ra(n)—l(r _ 1)rn—a(n) — rn—l(r _1)’

where 1, , is as in (2.1). This number is equal to the degree of ®,.)

ProrosITION 2.3.  Suppose the general assumptions of this section. Let
n be a primitive r"*®9th root of unity, let j be any integer which is not
divisible by r, and let f,i be as in (2.3).

Then the g-order of v’ is equal to f,i(x*).

Proof. Since
fv () (@) = fr(a?), 2.5)

and since the g°*-order of n’ by Proposition 2.2 and the definition of f,/ is
a divisor of f,/, it is clear that the g-order of %/ is a divisor of f,;(x*). In
order to show that 7/ indeed has g-order f,(x*), we must consider various
module structures of the additive group of GF(g*"), which for simplicity
is denoted by E.

Let

V.={v € E|f, (o)) = 0} (2.6)

Then Vis a o-invariant GF(g)-subspace of £ which likewise is a o-*-invariant
GFE(q')-subspace of E. It can be characterized as the set of elements in E
having g-order dividing f,/(x*) or, alternatively, as the set of elements having
¢*-order dividing f,s (see Theorem 2.1 in [3]).

Now, let g be the g-order of 5/ and let U be the o-invariant GF(gq)-
subspace of E which is generated by n’. Then
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U= {v € Elg(o)(v) = 0}, 2.7)

and, since g divides f,/(x*), we have that U is contained in V. Moreover,
U is equal to V if and only if g is equal to f,/(x*). It therefore remains to
show that V is contained in U. This is done in what follows.

Fori=0,let V;be the o*-invariant GF(q*)-subspace of E which is generated

hv ,,.t(,,,j\ = 7;1‘1 From Proposition 2.2 we know that the g*-order of n-‘(-nf\

SARAL L A MPVRERIVAL Ll WL DAV I8N MAAN il a UL

is equal tox” — 7,4, Where y;; 1= '/ fr Aol (with a(n) mln{p(qs) n}
and 1 being the cofactor of the maximal r-power dividing g*" “o —1). There-
fore, V; can be characterized as the GF(q*)- elgenspace of the GF(g°)-linear

n--a(n)

mapping o* belonging to the eigenvalue Yiis i€.,
— spt 4l _
Vi={vEE/ (v) = y;v} (2.8)

#noaln)

As f, is square-free and 11§} (x — ;) is its complete factorization
over GF(g%), we know that ®:f V; is the complete decomposition of V
into o*-invariant GF(g")-subspaces. In order to complete the proof, it there-
fore remains to show that V; is contained in U for every i.

Since x’ for any integer i = 0 is relatively prime to g, we have that

Iy

Il = Fif Y = (vi{ A )
Y v i) \V )

likewise has g-order g. Thus o’(»’) is contained in U for all i. If we know
that U is invariant under the multiplication with scalars from GF(g%), we
can conclude that V; is contained in U for all i = 0. As we did not succeed
to show this directly, we use an argument which also is very interesting
in itself:

We define a scalar-multiplication - on E by

o: GF(q)[x] X E— E, (h,v) — h(a*)(v) (2.9)

(where GF(g)[x] denotes the polynomial ring in the indeterminate x over
GF(q)). For v in E, let the c-order of v be the monic polynomial 4 of least
degree in GF(q)[x] such that A(o")(v) = 0. Of course, V is a -submodule
of E. Furthermore by the definition of V, the --order of every nonzero w
in V is a GF(g)-divisor of f,; of degree at least one. Since f,; is irreducible
over GF(q), we see that every nonzero element of V indeed has --order
f.. Thus, we have shown that - induces an F-vector space structure on V,
where Fis isomorphic to the field GF(q)[x]/f,/GF(q)|x] of residues modulo

1ULITOL L 1T 1 Ied Rl o E A N WL 2 COHIUILIL D 11U

fo. Since f,s has degree s, we obtain that F is isomorphic to
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GF(g*" “"). Furthermore, it is clear that U and V; for all i are =-invariant
subspaces of V and therefore are F-subspaces of V.

Of course, there is a subfield of F which is isomorphic to GF(g*), whence
U likewise carries the structure of a GF(g*)-vector space. But the proof is
not yet finished, since the --multiplication and the ordinary multiplication
with GF(g®)-scalars are different operations. So, we proceed by counting
the F- dlmcnsmn of the spaces involved:

The GF(q)-degree of Vis equal to the degree of f,i(x*). Since the GF(q)-
degree of F is equal to the degree of f,/, we obtain that the F-dimension
of Vis equal to s.

Now, since V = @;Z}, V;and V, is an F-subspace of V for all i, we conclude
that V;is a one-dimensional F-subspace of V. Therefore, this decomposition

is a complete decomposition of V as F-vector space. Furthermore, we know
that rr’{mf\ is a nonzero element of V.. whence V Fﬂ’(ﬂf\ for alli = Q.

MAGL © A5 & aNJiadla AL I AL UL Y, VYaALAILR 4872

Now, as U likewise is an F-subspace of V and as ‘(%) is contamed in U
for all i, we finally obtain that

s-1 s—1
D Fo(n))=2Vi=V
i:=0 i:=0

is contained in U. This completes the proof of Proposition 2.3. =

Using Proposition 2.3 and the GF(g)-factorization of ®,» in combination
with Fact 2.2 or Lemma 3.3 from [4], which state that the g-order of u +
v is equal to fg provided f and g are relatively prime and u and v have g-
orders f and g, respectively, we are now able to construct an element in
GF(g*") having g-order ®,(x").

ProrosiTION 2.4. Suppose the general assumptions of this section. Let

v. be as in the first statement o nf Theorem 2.1. Then the q- order o nfn is eaual

Up VU0 B0 e/t iiel fei o Dl v Lvae = Siaatd

to ®,n (x°).

Proof. By Proposition 2.3, in particular for every j in J,, ,, the g-order
of n/ is equal to f,i(x*), where f,/ as in (2.3) is an irreducible GF(g)-divisor
of the r"th cyclotomic polynomial ®,». As (2.4) is the complete factorization
of ®&,» over GF(g), we obtain that

Do) = 1 £00. (2.10)
jer

nr.q

Since the polynomlals f,7 i(x*) and f,i(x*) are relatively prime for different
i and j in J,,,,,q, an app lication of Fact 2.2 from [4] or Lemma 3.3 from [3]

shows that
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>
JjeJ

nrgq

has g-order ®,+(x*). m

We are now able to complete the proof of the first part of Theorem 2.1:

If w,-; generates a 1normal basis in GF(q“’"_l) over GF(q), then its g-
order is equal to x"  — 1. Applying once more Fact 2.2 of [4], we see
that w, := w,-; + v, has g-order

" = Ddpa(xt) = 27— 1, (2.11)

which is equivalent to being free in GF(g*") over GF(g). =

Now the following lemma enables us to find an element in GF(g"") having
g-order @,

LEMMA 2.5. Let q, r, and s be as above. Assume that n = 1 and let v €
GF(q"") be an element having q-order ®(x*).

Tho thao FE{nsr Y (YFR(AT \\ traro nf 1w hae o or (b 4
Ji 13 u L

L rc t’lC \(l }’ L \(1 ]}_LIULC UJ ¥ nuo q'U r
Proof. Let
=1 =,
T:=———= D x", (2.12)

and let o be the Frobenius automorphism in GF(g*") over GF(q). Then
T(o) is the (GF(q*"), GF(q""))-trace function.

Comparing (2.11) and (2.12), we sce that ®,»(x*) can be written as @S,
where S is the greatest common divisor of T and @ ,(x*). It can furthermore
be shown that the cofactor R of S in 7 is relatively prime to ®,». Conse-
quently, if » has g-order ®,+(x*), then S(o)(v) has g-order ®,~. Moreover,
as R is relatively prime to @, the element T(o)(v) = R(S(o)(v)) likewise
has g-order ®,». This completes the proof of the lemma. ®

We are now able to complete the proof of Theorem 2.1:
The element v, in the statement (2.1.2) of Theorem 2.1 is cqual to

T(o)(v,), where v, = E,EJMI n’. Since v, by Proposition 2.3 has ¢-order
d,+(x*), we see that v, has g- 01d<:1 @, Fullhc:lmom (sce Theorem 2.5 in
40, 11 Wno has g-order x” - 1, i.c., generates a normal mma in
GF(q"" ) over GF(¢), then w, := w, | + v, is free in GF(q"") over

GF(g). =
rks and an example.

VvV S 1 T a
Theorem 2.1 is also correct if r = 2 and ¢ = 1 mod 4. The only case not
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covered here is r = 2 and ¢ = 3 mod 4. However, this case is already

handled in Section 4 of [4] fnr ree and comnpletelv free elements

IAGAINALIV N 1AL v wuiUR 7] 1YL iz Apfiviviy iV Viviiiviius.

If s = 1, the content of Theorem 2.1 is essentially the same as the second
part of Theorem 3.3 in [4], where we have chosen J,,, = {1 < k < r'"ik
not divisible by r}.

With w1 ng nhnv

YY iL11 l’ J and fn/l ao uuuve allu V'l

A" OR(L" \\_
9 Js P A\Y

trace function, a similar argument as used in the proof of Lemma 2.5 shows
that the g-order of T,(n’) is an irreducible GF(g)-divisor of ®,». Further-
more by the choice of Jn ra> every irreducible GF (q)- divisor of (IJ n occurs
induction on n, for every irreducible GF (q) divisor of x”" — 1 one can find
a generator of the corresponding irreducible o-invariant GF(g)-subspace
of the additive group of GF(q’") Asa consequence similarly as in Theorem
35 in l‘*J all free elements in UF(q' ) Over GF \q) can be described in
terms of a primitive »**#(47th root of unity 7.

We have already mentioned Semaev’s paper [9]. There, in order to
construct free elements in GF(q ) over GF(g), likewise the decomposmons
of the additive group of GI \q ) as o-invariant Ur\q) Space and as -
invariant GF(q®)-space are studied in connection with the GF(g*"),
GF(q""))-trace function (o again denotes the Frobenius automorphism in
GF(g*") over GF(q)). (See Lemma 2.3, Theorem 2.4, and the discussion
after Theorem 2.4). Here, in contrast to [9], we have used an induction
argument which led to the iterative construction scheme outlined in Section
2 of [4] and could therefore direct our interest towards the structure of the
subspaces of GF(g*") and GF(g"") which are annihilated by the polynomi-
als ®,~(x*) and ®,, respectively. As described in Section 2 of [4], this
approach is absolutely necessary in order to understand and construct
completely free elements. The latter topic is not considered in [9]. We
should also mention that we have explicitly described the g°-orders and
the g-orders of the roots of unity %’. This likewise is not done in 9], but
is crucial in our approach, since this enabled us to prove the first part of
Theorem 2.1, according to which we are able to explicitly give a free element
in GF(g*") over GF(q), provided we are given a free element in GF(g*)
over GF(g). Together with the property of the trace-function proved in
Lemma 2.5, the second part of Theorem 2.1 is obtained as a corollary from
its first part.

We finally consider an example.

ExampLE 2.6. Let r be an odd prime number which does not divide g.
Assume that the multiplicative order of g modulo r is equal to » — 1 and
that p(g”!), the largest integer N such that r" divides g" ! — 1, is equal to
1. Then (see, e.g., Theorem 2.8 in {4]) for every n = 1, the muitiplicative
order of g modulo " is equal to r* ! (r — 1).
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Now, for n = 0, let », be a primitive r"*'th root of unity.

By Theorem 3.3.2 of [5], the element 7, generates a normal basis in
GF(g" ') over GF(q) Therefore, an application of the first part of Theorem
2.1 shows that 2. 7, generates a normal basis in GF(q” V") over GF(q).

Furthermore, the second part of Theorem 2.1 gives that « + 2, -1 Ti(ny)
generates a normal basis in GF(¢"") over GF(q), where « is any nonzero
element in GF(g) and where 7; denotes the GF(q'~ ])’\ GF(g" ﬂ trace

function.

3. CompLETELY FREE ELEMENTS IN GF(q"") OVER GF(gq)

In this section we modify the results obtained in Section 2 and construct
completely free elements in GF(g”") over GF(g). Again, we assume that 7
is an odd prime number which does not divide g. As in Section 2, our
construction is iterative and based on results from Section 2 of [4]. It can
be summarized as follows:

If n = 0, then every nonzero element in GF(g) is completely free over
GF(q). If n = 1, by 1nduct10n hypothesis, we assume that we have an
element w,_; in GF(q ') which is completely free over GF(gq). We then
explicitly construct an element v, in GF(gq"") satisfying the property

(Vurq) the g”-order of v, is equal to @, i for every
jef{o,1,...,n—1}

(see Problem 2.6 in [4]). An application of Theorem 2.5 in [4] then gives
that w, := w,_; + v, is completely free in GF(g"") over GF(g).

Moreover, every element in GF(g"") which is completely free over GF(q)
can be constructed in this way (see Theorem 2.4 in [4]).

The explict construction of an element v, satisfying (V,,,) is an applica-
tion of Theorem 2.7 in [4] in combination with the results obtained in
Section 2 of the present paper:

First, let s again denote the multiplicative order of g modulo r and let
p(g®) be the largest integer N such that rV divides ¢° — 1. Furthermore,
for an integer n = 1, let again a(n) := min{p(q®), n}. By Theorem 2.8 in
[4], the multiplicative order of ¢ modulo 7" is equal to sr”* “(".

Now, the first nﬂrt of Theorem 2.7 in [4] says that v satisfies (V Y if

nrgs 2%
and only if its g"-order is equal to @, ¢, where t is the integer part of
(n — a(n))/2. We therefore only have to turn from GF(g) to GF(g"') as

ground field and apply the results from Section 2 to the field extension

r“:‘fnr Y Aver ﬂt{nr Y Thic i¢ dnana in what fallaweg
I \([ } UV\J]. Ul \q }q ‘.llla 1y GUuUlLiv lll Wllal, LUllUWD

Let Q := ¢" and let N := n — 1. As r is relatively prime to s, the
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multiplicative order of Q modulo r is likewise equal to s. Furthermore, an

1. +3 ~Ff Th I Q Al ch that
appic lication of Theorem 2.8 in L ] SIIOWS inat

p(Q°) = p(q°") = plg*) + 1, (3.1)

whence

p(Q°) + N=p(q°) +t+n —t=p(g°) + n. (3.2)

Therefore, let 7 again be a primitive »**#(7)th root of unity.

The main ingredient required to obtain completely free elements instead
of ordinary free elements is that we now have to consider a complete set
JIn.,.0 of Q-orbit representatives of any complete set I of representatives
of units modulo r*™, where A(N) := min{p(Q°), N}. Then

= anl
i

2
¥n o

\g|

jEJN,r,Q

has Q-order ®,~(x%), i.e., ¢”-order @, r(x ). Furthermore, an application
of Lemma 2.5 shows that the (GF(Q*"), GF(Q""))-trace of ,, i.c., the
(GF(¢*"), GF(¢""))-trace of v, has Q-order ®,~, ie., g"-order ®,~« and
thus satisfies (V,,,,).

We finally mention that by the definition of ¢, an easy calculation shows
that A(n) = a(n) + t. We therefore have proved the following resuit on
completely free elements:

THEOREM 3.1. Let g be a prime power and let r be an odd integer different

frnm tlao rhnrnr‘fprn'hr nfpp{n\ I ot ¢ he fho mulhnhr‘nhno nr/’or nfn mnr,n]n
e eniC LRGIGLIET Sl U SO0 \{ j. 4805 O il FRldeee JoelLGec UT UFRCT ({201 122220,

r and let p(q°®) be the largest integer N such that g° — 1 is dwzszble by rV.
For an integer n = 1 let a(n) := min{p(q®), n} and let T, denote the
(GF(q¢*"), GE(q""))-trace function. Let 5 be a primitive r"*"9 th root of

uynty laf t ’10 tl’lv lntegor palyt Of (n — n(n\\/') nn/‘i lar T ’10 a cnmplete Saf nf
representatives of q"-orbits of units modulo r*™*",
Then
I 7
ni= 2, Tu(m)
jEJ
j .

has q"-order ®,n i for every j € {0, 1, ,n— 1}

Moreover, if w, | is any completely free element in GF(q"" ) over
GF(q), then



34 DIRK HACHENBERGER

Wyi= Wy + Un

is completely free in GF(q"") over GF(q).

We finally remark that similar to the discussion at the end of Section 2,

any irreducible divisor of ®,~ occurs exactly once as Q-order for some
T.(n’) with j € Jy,o (Where N and Q are as above). Therefore, using
induction on n, similarly as in Algorithm 3.7 in [4], one can explicitly
describe all completely free elements in GF(g’") over GF(g) in terms of a
primitive r**44)th root of unity 7.

(98]
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