
Vol.:(0123456789)

SN Computer Science (2023) 4:48
https://doi.org/10.1007/s42979-022-01462-w

SN Computer Science

ORIGINAL RESEARCH

Controlling 3D Objects in 2D Image Synthesis

Stephan Brehm1 · Florian Barthel1 · Rainer Lienhart1

Received: 10 May 2022 / Accepted: 17 October 2022
© The Author(s) 2022

Abstract
In this work, we propose a method that enforces explicit control over various attributes during the image generation process
in a generative adversarial net. We propose a semi-supervised learning procedure that allows us to use a quantized approxi-
mation of object orientation for learning continuous object rotations. As a result, among many other attributes, our proposed
method allows us to control object orientation in scenes that are rendered according to our specifications.

Keywords Image synthesis · 3D rendering · Generative adversarial nets · Conditional · Regression · Rotation · Semi-
supervision · Cooperation

Introduction

Computer Graphics traditionally require a three-dimen-
sional model of the objects that are to be rendered. These
3D models are then texturized and placed in a virtual three-
dimensional space. This three-dimensional space is then
projected to two dimensions in order to show the result on
a screen. In this work, we explore the possibility of embed-
ding three-dimensional knowledge in a deep neural net. We
propose to omit 3D modeling and subsequent 2D projection
by directly rendering the 2D result from a given specification
of the desired scene. Adherence of the resulting deep neural
renderer to this specification is key to obtain useful results.
A particular focus of this work is to achieve fine-grained
control on the orientation of objects in the resulting scenes.

Our contributions are as follows:

1. We propose a training procedure that explicitly enforces
the adherence of a generative adversarial model to a
given specification of the scene that is to be rendered.

2. We propose a method to learn continuous rotations from
data that is only annotated categorically, i.e., angles are
quantized to the nearest 45◦ . We propose to leverage
the continuity and periodicity of rotations and extend
the formulation of conditional GANs to such continu-
ous targets. This effectively results in a regression-based
GAN formulation.

3. The above-mentioned categorical annotations of rota-
tions induce label sparsity when reinterpreted as con-
tinuous labels, i.e., our data do not provide any exam-
ples for angles in between the quantized annotations. To
overcome this limitation, we propose a semi-supervised
method that forces generator and discriminator to find
agreement for these intermediate rotations.

4. Given the novel focus on generation of continuously
changing object orientations, we propose novel methods
for evaluation.

5. We present a dataset that is annotated with a huge vari-
ety of attributes.

This work is organized as follows. In "Related Work", we
first discuss relevant related work. In "Dataset", we intro-
duce our dataset including the annotated attributes which
in combination form possible specifications. In "Goals and
Metrics", we discuss and propose metrics for evaluating our
proposed system. In "Conditional Object Synthesis", we
introduce our approach to enforce adherence of our model
to the specifications and discuss the proposed method for
learning continuous rotations. In "Results", we analyze our

 * Stephan Brehm
 stephan.brehm@uni-a.de

 Florian Barthel
 florian.barthel@uni-a.de

 Rainer Lienhart
 rainer.lienhart@uni-a.de

1 Department of Computer Science, University of Augsburg,
Universitätsstraße 6, 86159 Augsburg, Bavaria, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01462-w&domain=pdf

 SN Computer Science (2023) 4:48 48 Page 2 of 16

SN Computer Science

results both qualitatively as well as quantitatively. "Conclu-
sion" concludes this work.

Related Work

In this section, we cover related work for controlling the
output of synthesis methods and related work for generative
adversarial net (GAN)-based 3D rendering. Afterwards, we
cover the StyleGAN2 [1] method for image synthesis which
is the basis for our method.

Control in Image Synthesis Methods In GANSpace: Dis-
covering Interpretable GAN Controls [2], Härkönen et al.
propose a method for analyzing the latent space in GAN-
based methods. They identify important latent directions
based on Principal Components Analysis (PCA) applied in
activation space [2]. From PCA in activation space, they
derive directions in the latent space that correspond to a
change in certain semantics. In StyleGAN-based networks,
they show that they can find combinations of layer-wise
changes that allow to target certain semantics of the gener-
ated images. In contrast to that, our method enables direct
control over important semantics because we use semantic
labels to directly control the learning of our model.

GAN-based 3D rendering GANs can generally be consid-
ered neural renderers. The result of this process typically is
a 2D image in RGB-space or similar domains [3–5] Lately,
methods for GAN-based 3D rendering have been proposed.
They typically aim to construct a 3D model of an object or the
scene [6–8]. In Image GANs meet Differentiable Rendering
for Inverse Graphics and Interpretable 3D Neural Rendering
[7], Zhang et al. propose a model that uses an inverse graphics
network, i.e., a network that predicts 3D meshes, lighting and
textures from 2D images. They use this information to subse-
quently render a 3D scene with a differentiable renderer. To
learn this network, they use a StyleGAN as a neural renderer
to create images with approximate orientations. To do this,
they first needed to find the parts of the latent code as well
as the important layers that control these orientation manu-
ally. With these synthesized images, they then train the inverse
graphics network. In contrast to Zhang et al., we do not do
inverse graphics but rather aim for the opposite, i.e., we aim to
imitate 3D rendering with subsequent projection to two dimen-
sions without ever requiring a 3D representation explicitly.
However, we aim to explicitly control object rotation which
is a three-dimensional property. In GAN-Control: Explicitly
Controllable GANs [9], Shoshan et al. present a model that
is capable of controlling image semantics directly. They pro-
pose to enhance adversarial training with additional contrastive
objectives that they learn for each controllable attribute. Given
the resulting generative model, they then learn an encoder that
estimates a suitable latent code from a given specification.
They also showcase limited control over the orientation of

generated objects, i.e., in contrast to ours, their model cannot
perform full rotation cycles.

StyleGAN2

The StyleGAN2 model [1] is the basis for this work. It is a
deep generative model for image synthesis that has gained
a lot of popularity due to its capability of generating highly
realistic images. As the name implies, this model is learned
in an adversarial setting, i.e., the learning procedure requires
a discriminative model that is used to supervise the genera-
tive model. However, the generative model differs greatly
from standard convolutional feed-forward architectures.
This is due to the explicit separation of the convolutional
image generation from something that the authors term as
style. Here, style refers to the relative importance of indi-
vidual learned features that are used to compose the result-
ing image.

Architecture

The StyleGAN2 architecture consists of two feed-forward
networks running in parallel. For this work, we will term
them as the dense stream and the convolutional stream. The
convolutional stream is the part of the model that performs
the actual image generation task, i.e., it takes an input c1
and transforms it into an image by multiple convolution and
up-scaling operations. However, the input c1 to this main
convolutional stream is constant. Thus, the convolutional
stream, by itself, would only ever produce a constant output.
Variance in the output is produced by the dense stream. This
dense stream first embeds a random latent input z ∈ Z in a
mapped latent space W. Embeddings w ∈ W are then used
to modulate the weights of the main convolutional stream,
i.e., individual filters of the convolution layers are scaled in
order to reduce or increase their relative importance. Note
that, Z does not need to be completely random. In fact, we
can use the dense stream to explicitly control the output of
the convolutional stream by extending individual latents z
with conditioning information, i.e., add information about
the desired image to the latents. For this work, we will utilize
an abundance of attributes like object color, orientation, and
many more, to precisely control the output of the genera-
tive model. Learning such attributes requires a dataset with
corresponding annotations which we will further detail in
"Dataset".

Dataset

For this work, we use an extended version of the cars30k
dataset [10]. This extended version contains a total of 73,784
images with multiple new annotations. In addition to the

SN Computer Science (2023) 4:48 Page 3 of 16 48

SN Computer Science

existing body color annotations, we annotated body style,
background scenery, and the rotation of the cars. To speed
up the annotation process we adopted the following strategy:

• We annotate approximately 600 images for every new
class. We find these images by selecting a few images
manually and searching for nearest neighbors via a per-
ceptual distance, i.e., we are looking for nearest neigh-
bors in the deep features of a convolutional neural net-
work (CNN). We then select matches manually.

• We keep ≈ 120 images per class for testing and use the
remaining images to finetune a Resnet50 [11] that is pre-
trained on the ImageNet dataset [12]. These classifiers
typically achieve ≈ 90% accuracy on the test data.

• We use the learned classifiers to label the remaining
images automatically.

• We check the resulting classifications manually and
remove all images that are not correctly assigned to each
of the new classes. Thus, we can safely assume that most
of our annotations are correct, i.e., annotation accuracy
is considerably higher than our 90% test accuracy. Note
that the removed images not only include wrong labels
but also include some rare instances of images that show
multiple cars or images of the interior of cars.

Body Colors

In Fig. 1, we show the distribution of body colors. We dis-
tinguish between 11 different colors as well as an additional
undefined/other color which describes all types of cars that
are not colored uniformly. In total, we have 30,016 images
that are annotated with the body colors of the cars that are
shown.

Manufacturers and Models

Figure 2 visualizes the distributions of car manufactur-
ers and car models in the dataset. There are 18 different
manufacturers and 67 different car models annotated in the

dataset. In total, we annotated 70.461 images with manufac-
turer labels and 70.420 images with car model labels.

Object Rotation

In Fig. 3, we illustrate our rotation annotations. Note that
the crafting of precise object rotation annotations is virtually
impossible as it involves manual estimation of 3D object
pose. Such a process would not only require precise manual
annotations but also requires the camera to be calibrated.
Both requirements are infeasible or even impossible to fulfill
when working with images that are randomly downloaded
from the internet. Thus, we opt for a simpler annotation pro-
cess. Similar to the color annotations we adopt a quantiza-
tion process. We quantize the rotations of cars shown in the
images to eight categorical rotations (see Fig. 3 for a listing).
This categorical definition of object rotation simplifies the
annotation process massively because it does not require
to measure the exact rotation of an object. As visualized in
Fig. 3, we define the rotation as the direction of the hood of
the car as seen from the position of the camera. Instead of
measuring, we can annotate the rotation by simply identify-
ing the approximate direction of the hood of a car, e.g., the
annotated class is profile left if the car is visible from the
side and the hood points to the left or similarly the annotated
class is front center if the hood of the car points directly
towards the camera.

Body Style

In Fig. 4, we illustrate all different body style categories that
we annotated in our dataset. Note that the hatchbacks form
the most frequent class while off-road vehicles and pickup
trucks are not as common in the dataset. As such, the distri-
bution of body styles probably resembles a distribution that
is closer to a European distribution of body styles. In total,
39,187 of all 73,784 images are annotated with the body
style of the cars that are shown.

Background Scenery

Fig. 1 Histogram of car body
colors in our dataset sorted by
frequency of the individual
colors

label white red black silver gray blue yellow undefined brown orange green purple
#examples 5524 5120 4728 4042 3455 3244 965 775 717 611 595 240
color

 SN Computer Science (2023) 4:48 48 Page 4 of 16

SN Computer Science

label bmw mercedes audi porsche opel dodge
#examples 11214 9485 8639 5714 5513 4564
color
label mazda vw ferrari dacia fiat honda
#examples 4447 4206 3928 2756 2597 2436
color
label cadillac lada hyundai tata goggomobilsubaru
#examples 1247 941 891 884 542 457
color

Fig. 2 Distribution of car manufacturers and car models in the dataset. Top: car manufacturers. Bottom: car models

label front left profile left profile right front right rear left rear center front center rear right
#examples 24059 18161 8634 6864 4435 3695 3258 1752
color

Fig. 3 Different rotations labeled in our dataset. We quantize rota-
tions to 8 discrete labels. Top: histograms of rotation frequency.
Top left: histogram (logarithmic scale) sorted by object rotation
in a top-down view. The black box represents the camera. Rotation

labels describe the orientation of a car, i.e., the direction in which the
hood of the car points as observed from the camera. Top right: his-
togram (linear scale) sorted by the frequency of the individual rota-
tions. Bottom: table of class frequencies and legend

SN Computer Science (2023) 4:48 Page 5 of 16 48

SN Computer Science

In Fig. 5, we illustrate the different background annotations
in our dataset. We differentiate six different types of com-
mon background sceneries:

1. Showroom Mostly indoors, often some sort of marketing
poster in the background.

2. City Outdoors, usually on a street, buildings in the back-
ground.

3. Countryside Outdoors, usually on a street, nature in the
background.

4. Off-road Outdoors, no street, nature in the background.

5. White No scenery, white background.
6. Black No scenery, black background.

In total, 43,883 of all 73,784 images are annotated with one
of the above background scenery labels.

Aspect Ratio

We quantize aspect ratios of our images to five categories.
For this purpose, we define the aspect ratio RI of an image
I in our dataset D as the ratio between image width WI and
image height HI:

label Hatchback Sports
Car

Limousine SUV Coupé Convertible Van Station
Wagon

Off-
Road

Pickup
Truck

#examples 8796 8072 4915 3592 2964 2451 2435 2392 2156 1414
color

Fig. 4 Body style labels in our dataset. Top left: histogram of body style labels. Top right: color-coded examples for each of the annotated body
styles. Bottom: Table of class frequencies and legend

label showroom city countryside off-road white black
#examples 14961 11474 9574 3971 3173 730
color

Fig. 5 Background labels in our dataset. Top left: histogram of background labels. Top right: color-coded examples for each of the background
labels. Bottom: table of class frequencies and legend

 SN Computer Science (2023) 4:48 48 Page 6 of 16

SN Computer Science

We quantize RI ∀I ∈ D to the nearest category
yR ∈ [1.2, 1.4, 1.6, 1.8, 2.0] . Note that these are all aspect
ratios for landscape images as portrait images are practically
non-existent in the dataset. Note that we need these annota-
tions to explicitly control the aspect ratios of the images that
are generated by our proposed method. Due to this demand,
we want the aspect ratios of our image to be exactly correct
during training. We achieve this by cropping the training
images to the exact aspect ratio as defined by the annotation
yR
I
 . We create minibatches for training by zero-padding all

training images to a quadratic shape. The complete process
is visualized in Fig. 6.

Goals and Metrics

In this work, we aim to produce a series of images that show
a specific car, i.e., a specific model with a specific body style
and a certain color, in different rotations. In particular, we
aim to create a series of images that exhibits continuous rota-
tion of the car of interest. Evaluating a system that produces
such a series of images, however, is non-trivial as we need
to measure an abundance of aspects in the resulting images.
First, we obviously want the generated images to be of high
quality, i.e., the images should look realistic. Note that this
requirement should ideally hold for all possible conditions,
i.e., we also want to produce high quality for combinations
of target labels that do not exist in the dataset. Here, we
specifically aim to produce continuous rotations despite the
fact that our dataset is only annotated with discrete rotation
labels. In "Image Quality", we discuss metrics that capture
these aspects in the generated images.

In addition to image quality, we expect the generated
images to follow our conditioning guidance, i.e., the gen-
erative model should produce images that show a car that
exactly fulfills our specifications. These specifications
include all annotations in our dataset, i.e.,

(1)RI =
WI

HI

.
1. body color
2. car manufacturer
3. car model
4. rotation
5. body style
6. background scenery
7. image aspect ratio

. In "Conditioning" we introduce metrics that measure the
realization of these specifications.

Our goal is to rotate a specific car in a specific scenery.
As such, it is important to maintain all conditions across
a series of different rotations, i.e., ideally, the only aspect
that changes in a series is the rotation/orientation of the
car. Besides that, it should still be the same car in the same
scene. In "Conditioning" we discuss measuring the quality
and consistency of conditions under different rotations.

Finally, we need to measure the quality of the rotation
in a series of images. Here, we aim to measure two aspects.
First, we need to find a measurement to properly quantify
the deviation of generated rotations from our specified rota-
tion. Second, ideally, we would like to perform complete
rotation cycles, i.e., rotate from 0 ◦ to 360◦ as smooth and
steadily as possible.

Image Quality

In this section, we will shortly introduce the Fréchet Incep-
tion Distance (FID) for evaluating image quality. Evaluat-
ing the quality of generated images is highly non-trivial as
any metric basically needs to replicate human perception
of images. As such, there is no perfect method to do so.
However,

Fréchet Inception Distance [13] is the most widely used
measurement for quantitatively assessing the quality of a set
of generated images. Note that, as the name states, FID is
not a metric but a measurement of distance. Fréchet Distance
[14], in its origins, is a measure of similarity between two
curves. However, it can also be used to measure the simi-
larity between probability distributions. Note that we can

Fig. 6 The aspect ratio quanti-
zation process. We categorize
each image into the nearest of
one of 5 aspect ratios. We then
crop the image to the exact
ratio. The resulting images are
padded to a quadratic shape for
training

aspect ratio 1.2 1.4 1.6 1.8 2.0

source

crop

pad

SN Computer Science (2023) 4:48 Page 7 of 16 48

SN Computer Science

interpret a set of images as samples from a probability dis-
tribution. Thus, Fréchet Distance can be used to approximate
the distance between two datasets, i.e., two sets of images
that are sampled from different distributions. The central
idea of FID is to measure this distance not in RGB-space but
instead use a semantic representation from an intermediate
layer of an Inceptionv3 [15] network trained on the Ima-
geNet [12] dataset. Note that quantitatively measuring the
quality of a set of images as perceived by humans is inher-
ently hard and is the topic of ongoing research. However, at
the time of writing, FID is the most common measurement
for assessing generative models and has been shown to cor-
relate well with human perception. However, we want to
clearly state that FID is not a metric. Due to the calculation
of Fréchet Distance in the feature space of a deep network,
it also highly depends on the data that was used for training
this network, i.e., natural images from the ImageNet dataset.
Thus, it is reasonable to assume that FID works best when
assessing data that is similar to this dataset. Our dataset,
similar to the ImageNet dataset, mostly shows a single object
of interest and images are often captured in a natural envi-
ronment. However, we also have a lot of images with uni-
formly colored backgrounds as well as many urban scenes.
Thus, this measurement cannot be perfect for assessing the
quality of our generated images.

Fréchet Distance d(X, Y) between two one-dimensional
distributions X and Y is defined as

where X and Y are univariate normal distributions. � and �
are the mean and standard deviation of the respective dis-
tributions. Assuming that samples from X and Y are deep
feature representations, we can calculate FID as the multi-
variate case of Eq. 2:

where ΣX and ΣY are the covariance matrices of X and Y. Tr
is the trace, i.e., the sum of the diagonal values of a matrix.
Note that

√
Σ refers to the matrix square root of Σ

Although Eq. 3 is equivalent to Eq. 4, the second is the com-
mon formulation in literature because it requires less com-
putation. Note that FID has various shortcomings. First, we
have to assume that both X and Y are normal distributions.
This is most likely not correct. However, by calculating fea-
ture statistics like mean and covariance, we effectively fit a
normal distribution to our data. Thus, at the very least, we
have to assume that this distribution is a proper approxima-
tion for the actual distributions X and Y. Second, Chong and

(2)d(X, Y) = (�X − �Y)
2 + (�X − �Y)

2,

(3)FID(X, Y) = �����X − �Y
�
�
�
�
2
+ Tr

��√
ΣX −

√
ΣY

�2
�

,

(4)FID(X, Y) = �����X − �Y
����
2
+ Tr

�
ΣX + ΣY − 2

√
ΣXΣY

�
.

Forsyth [16] empirically found that FID linearly depends on
the sample size. As a result, FID scores are not comparable
across sample sizes as well as across different image resolu-
tions. Our simple solution is to always calculate FID with
images on a fixed resolution of 256 × 256 pixels. We com-
pare image sets that each consist of 50,000 images. In the
following, we will simply refer to this measure as FID50k.

Conditioning

In this section, we discuss measuring the realization of our
specifications in the generated images, i.e., how accurate is
the generative model in generating images that comply with
our specifications.

Conditioning Accuracy In order to measure compliance
with our specifications, we define the conditioning accuracy
(CA). With CA, we implement a quantitative method that
allows us to look and rate the generated images from a speci-
fication standpoint. We achieve this by learning a simple
CNN with the target of classifying images into our various
annotations. This can be achieved in a straight forward fash-
ion by training on the annotated data from our dataset. We
then use the resulting model to assess the generated images.
If a generated image complies with our specification, then
the classification model should simply output our specifi-
cation. In case, the generated image does not comply with
our specification, the output of our classification model will
be different from our specification. CA is then simply the
accuracy of the classification model. In order to rely on this
metric, we have to assume that the classification model is
sufficiently good in its task of classifying images according
to our annotations. If this is the case, CA, which we compute
as the accuracy of the generative model in combination with
the classification model, now mainly depends on the con-
tents of the generated images. In order to capture all possible
specifications as defined in our dataset, we train individual1
classifiers for each of the annotations, i.e., body color, car
manufacturer, car model, rotation, body style, background
scenery, and image aspect ratio.

Conditioning Consistency When considering a series
of images on a predefined interpolation path, we often
aim to only alter a single specification. Typically, this is
the rotation of a car. In that case, we expect that this is
the only aspect that changes in the images. To capture
this, we again use the trained classifiers from the previous
paragraph. However, instead of calculating the accuracy,
we capture the consistency of all unchanged specifications.
We do this by measuring the standard deviation � of the
output of the classifiers that we learned for CA across

1 We also learned a single classifier for all annotations which, how-
ever, was inferior to multiple individual classifiers.

 SN Computer Science (2023) 4:48 48 Page 8 of 16

SN Computer Science

individual interpolation paths and then average standard
deviations across multiple interpolation paths.

Random Rotations and Latent Space Interpolation

In this section, we describe metrics suitable for the evalu-
ation of mixed conditions. Mixed conditions, in our sense,
are intermediate target labels that do not exist in the anno-
tations of our dataset. However, due to the nature of our
generative model, we can still input such intermediate
specifications. This can be useful for multiple purposes.
First, we can generate images with unseen specifications,
e.g., generate a convertible version of a car model that is
not available as a convertible. Second, we can interpolate
between different specifications, e.g., interpolate from an
off-road vehicle to a convertible. Similarly, we can inter-
polate between the discrete object rotation annotations
in our dataset to create a complete series of images that
shows a full rotation cycle of a car.

FID for Random Rotations When rotating objects, we
expect the generated images to maintain high image qual-
ity. In "Image Quality", we already discussed FID as a
metric for image quality. Applying FID to rotated objects
in images is just as reasonable as calculating it on images
that are generated with our quantized rotation conditions
that we draw from the dataset. However, intermediate
rotations between these quantizations do not exist in our
dataset. As such, we expect image quality to be worse than
on standard conditions. In order to capture this effect, we
calculate FID with random rotations separately from the
standard FID. Here, we draw conditions randomly from
our dataset. Given such a set of conditions, we then choose
a target rotation randomly. We then calculate FID between
our dataset and a set of images generated with random
target rotations.

Learned Perceptual Image Patch Similarity (LPIPS)
LPIPS [17] is a measurement for image patch similarity. It
is calculated as a weighted distance between deep features
for individual image patches. The distances of the patches
are then used to learn a small neural network that maps them
to a single value. In The Unreasonable Effectiveness of Deep
Features as a Perceptual Metric the creators of learned per-
ceptual image patch similarity (LPIPS) show that such a
metric consistently outperforms traditional measures like the
structural similarity index measure (SSIM) and L2-Distance
in estimating the perceived distance of image patches. Note
that patch similarity can be trivially applied to measure
image similarity by simply increasing patch size such that
it matches the image size. In this case, LPIPS between two
images x1 and x2 can be calculated as

where yl
1
 and yl

2
 are the deep feature representations of x1

and x2 respectively after layer l. Hl and Wl represent the
spatial dimensions of the representations after layer l. wl
is a layer-wise scaling factor for individual representations.
Based on the distances, Zhang et al. then supervise a small
network that is supposed to replicate human perception of
image patch similarity. To learn this network, they collect a
dataset that is composed of triplets of images. Each triplet
consists of a reference image as well as two distorted ver-
sions of this image. They then ask humans to decide which
of the distortions is more similar to the reference image.
The distortions are sampled from a wide variety of tradi-
tional distortions that include photometric changes to image
colors as well as noise and blur distortions. Other distortions
include spatial changes like affine transformations as well
as JPEG compression artifacts. A second set of distortions
is sampled from various CNN-based methods in order to
include typical artifacts generated by common CNNs. The
metric learning task is then modeled as a binary classifica-
tion problem where similar patches are supposed to result
in a distance of zero and dissimilar patches are supposed to
result in a distance of one. They show that such a learned
metric correlates very well with human perception of image
distance.

Perceptual Path Smoothness (PPS) When rotating objects,
we aim for a rotation that is as smooth as possible, i.e., each
fixed size interpolation step in the latent space should result
in a constant rotation of the object in the image. To better
capture this effect, we define the perceptual path smoothness
(PPS) sZ:

that measures variance along interpolation paths. Note that
PPS is based on the learned LPIPS metric, i.e., like FID
and various other measurements, both are just approximate
indicators of generator performance and need to be consid-
ered in conjunction with other metrics as well as qualitative
analysis. A downside of PPS is that rotation is not measured
directly, but, instead it measures changes in the image. To
at least partly overcome this issue, we only measure PPS
on images that are generated with a constant black or white
background. By this, we remove the dependency of PPS on
background features.

Measuring Continuous 3D Rotation Note that rotation is
just another label in our dataset. In this work, however, we
specifically target good rotations. Thus, in addition to sim-
ply measuring rotations with CA. We explore an additional
method that allows measuring of continuous rotation. In 3D

(5)d(x1, x2) =
∑

l∈layers

1

HlWl

Hl,Wl∑

h,w

|
|
|
|
|
|
wl ⊙ (yl,h,w

1
− y

l,h,w

2
)
|
|
|
|
|
|

2

2
,

(6)sZ = �

[
1

�2
d
(
G
(
slerp(z1, z2;t)

)
,G(slerp(z1, z2;t + �))

)]

SN Computer Science (2023) 4:48 Page 9 of 16 48

SN Computer Science

Bounding Box Estimation Using Deep Learning and Geom-
etry [18], Mousavian et al. present a model that is capable
of detecting 3D bounding boxes in two-dimensional images.
Their model is learned on the KITTI [19] dataset which is a
dataset of urban street scenes. The authors specifically target
the detection of vehicles in those scenes. Using the resulting
3D bounding boxes, it is possible to approximate an object’s
rotation with respect to the camera. Note that, in theory, this
requires a properly calibrated camera. However, we tested
the algorithm on a small test set of our data and found that
the object rotation estimates are very accurate. Note that we
do not require high precision measurements for rotations
and also do not expect to be able to generate objects that
are precisely oriented in a specific angle. Instead, we only
expect approximately correct orientations and continuous
rotations. Given a series of images that show a full rota-
tion cycle, we use the estimated rotations to evaluate the
generated rotations. Here, we calculate an average distance
between our specification and the rotation estimated by the
3D bounding box detector. Note that we found that the 3D
bounding box detector often cannot distinguish between
rotations that are 180◦ apart from each other. To mitigate
the effects of these errors, we map all rotation estimates to a
range between 0 ◦ and 179◦ . During qualitative analysis, we
have never found an example in which our model confuses
rotations. If we measure conditional rotation accuracy on
the quantized rotations, all models consistently achieve an
accuracy above 95% . Thus, we argue that such errors almost
solely stem from the bounding box estimation, i.e., we get
a better measurement of rotation quality by compensating
for these errors.

Conditional Object Synthesis

In this work, we aim to generate a series of images. Each of
these images is supposed to show the same car in the same
scene. However, we want to control the orientation of the car
in the series. In particular, a series of images is supposed to
show a full continuous rotation cycle of the car.

Categorical Generator Conditioning

Conditioning the generator on the annotations from our
dataset is relatively straight forward. We simply extend the
latents z ∈ Z with the one-hot encoded conditions. However,
our annotations are not independent, e.g., car manufacturer
and car model are related. Thus, we cannot just draw random
specifications during training. Instead, in order to get realis-
tic specifications, we draw them from our dataset. Learning a
conditional generator means that the discriminator also needs
to provide conditional training feedback. We adopt a class-
wise discrimination strategy, i.e., in addition to the standard

GAN loss, we employ additional GAN losses that provide
learning feedback for individual classes. We effectively ask
the discriminator to distinguish between, e.g., real mercedes
and fake mercedes or real countryside and fake countryside.
We do this for all annotated classes and gate the gradient dur-
ing backpropagation such that only the relevant classes are
considered. That is because the answer to real or fake mer-
cedes? is useless if the currently considered image displays a
car from another manufacturer. Another issue is that our data is
only sparsely annotated, i.e., for most images, we do not have
all attributes annotated. Thus, our training procedure must be
able to handle these sparse annotations. For one-hot encoded
target specifications this can be achieved by simply feeding an
all-zero vector to G when a certain attribute is not annotated
and ignoring the respective outputs of D in the loss calcula-
tion for G and D, e.g., if we do not know whether the image is
supposed to show a mercedes, asking whether it shows a real
or fake mercedes is unreasonable. Thus, we simply do not ask.
Let m(a, b) be a derivable distance metric between a and b.
We give a general error function LD,gan for a discriminator D
as well as a general error function LG,gan for a generator G in
Eqs. 7 and 8, respectively:

Here, we use the standard sigmoid cross-entropy error for
the distance metric m. We extent the general error functions
from Eqs. 7 and 8 to error functions that are defined for all
of our specifications. Let, yt

a
 be a target specification for a

single attribute a, i.e., yt
a
 is a one-hot encoded target attrib-

ute, e.g., yt
color

 is a one-hot vector with 11 entries. Each of
these entries corresponds to one of the possible target colors.
An entry yt

a,c
 in yt

a
 equals one if we want the synthesized

image to show the corresponding characteristic c. Otherwise
yt
a,c

 is zero. yt then is a multi-hot vector that consists of the
one-hot vectors that represent all individual attributes, i.e.,
yt is a representation of our specification. Similarly, y is a
multi-hot representation of the annotation of a training sam-
ple � . Note that due to the sparse annotations in our dataset,
individual components ya of y are not always one-hot vectors
but may also be all-zero vectors. We define the class-wise
loss LD,gan for discriminator D in Eq. 9 and the class-wise
loss LG,gan for generator G in Eq. 10:

Here, i iterates all individual characteristics for all possible
attributes in y and yt . Since y and yt are zero for all classes
that are currently irrelevant, the gradient for these classes

(7)L
D,gan = m(D(G(z)), 0) + m(D(�), 1),

(8)L
G,gan = m(D(G(z)), 1).

(9)L
D,gan

i
= m(D(G(z))i, 0) ⋅ y

t
i
+ m(D(�)i, 1) ⋅ yi

(10)L
G,gan

i
= m(D(G(z))i, 1) ⋅ y

t
i

 SN Computer Science (2023) 4:48 48 Page 10 of 16

SN Computer Science

is also zero. The full adversarial loss for D and G then is
simply the mean of all individual components of LD,gan
and LG,gan respectively. This procedure is reasonable for all
attributes except for the orientation annotations as we will
discuss in the next section.

From Categorical Orientation to Continuous
Rotation

The input of the convolutional stream of StyleGAN2 is a
constant. Thus, as we already discussed in "StyleGAN2",
the dense stream controls the output of the generator.
Conditioning the generator of StyleGAN2 can be trivially
achieved by stacking a multi-hot encoded representation
of the categorical specifications to the input of the dense
stream, i.e., by extending the style with the desired speci-
fications. However, even though we only annotated cate-
gorical rotations in our dataset, we still aim for continuous
rotation. Rotation, by definition, is inherently continuous
as well as periodic, i.e., an angle � ∈ [0◦;360◦] is continu-
ously defined and � = � + 360◦∀� ∈ ℝ . This behavior is
perfectly implemented by both the sine and the cosine func-
tion, i.e., sin � = sin (� + 360◦) and cos � = cos (� + 360◦) .
However, both sine and cosine do not result in distinct val-
ues for individual angles � , e.g., sin 45◦ = sin 135◦ . Thus,
we cannot simply use one or the other, but instead, need to
encode the orientation by both sine and cosine of the angle
� to resolve these ambiguities. Such a formulation explicitly
encodes continuity and periodicity of rotations and thus, in
theory, should be superior to a categorical representation
of rotations. In order to proof this theory, we conduct two
experiments. First, we train a simple deep classifier on the
categorical rotations. Second, we train a regression model
with identical network architecture on the continuously
encoded rotations. For both models, we measure classifica-
tion accuracy. This can be trivially computed for the classifi-
cation model. For the regression model, we simply quantize

each rotation estimate to the nearest categorical label. Both
models use our discriminator architecture which additionally
allows us to verify that the rotation target can be properly
learned by it. This is obviously important because the dis-
criminator creates the supervisory signal for learning the
generator during training. Figure 7 visualizes validation per-
formance of both models. We see that the regression model
outperforms the classification model by approximately one
accuracy point which equates to a 19% relative reduction in
classification error. In addition, it seems to be less prone to
overfitting as the validation performance towards the end of
the training does not drop as fast as with the classification
model.

In summary, using a continuous representation for object
rotations seems to be advantageous as it explicitly encodes
the natural ordering and periodicity of rotations. In addition,
it is easier to learn for our discriminator. Thus, we opt for
such a continuous representation throughout all experiments.

A continuous representation of rotations, however, can-
not be learned in a standard adversarial setting, because
it is unclear how to differentiate between real continuous
rotations and fake continuous rotations in the discriminator.
However, in an adversarial setting, we can see the genera-
tor as a model that strives to produce images that produce a
specific output in the discriminator. Thus, we define a loss
function for the generator that fulfills this requirement.

Given a target rotation label yf ,rot and latents z ∈ Z , we
calculate the rotation error LG,rot for generator G as

where i ∈ {0;1} iterates the two regression targets (sine and
cosine) and the corresponding outputs of discriminator D,
i.e., given a target rotation, we aim to produce an image
for which the discriminator confirms this rotation. LG,rot ,
however, is only useful if the discriminator is actually able

(11)L
G,rot =

∑

i

||
|
||
|
y
f ,rot

i
− D(G(y

f ,rot

i
, z))i

||
|
||
|

2

2
,

Fig. 7 Left: the combination of sine and cosine yields a unique tuple
representation for all possible angles. Right: learning orientation with
a regression model (continuous) actually improves performance when

compared to a classification model trained on categorical annotations.
Maximum performance for each model is highlighted by the dashed
lines

SN Computer Science (2023) 4:48 Page 11 of 16 48

SN Computer Science

to properly estimate object rotation. This can be learned on
the real data. Given a real image xr and corresponding rota-
tion ground truth yr,rot , we define the rotation loss LD,rot for
discriminator D as

Again, orientation is not annotated for all images. Thus, in
such cases, similarly to the categorical attributes, we set both
sine and cosine inputs of G to zero and ignore the rotation
in the loss calculation for G and D. Here it is important to
choose a distinct combination of sine and cosine values that
cannot conflict with any annotated orientations. Setting both
to zero satisfies this requirement as none of the possible
rotation angles � can result in both sin � = 0 and cos � = 0.

Semi‑supervised Cooperative Rotation Learning

Our dataset only labels quantized rotations, i.e., rotations
have been quantized to the nearest 45◦ . While this makes
the annotation process easy and even feasible at all, it
results in two issues. First, multiple different rotations get
quantized to the same orientation, i.e., we do not know
the exact rotation. Second, there are no annotated images
for intermediate rotations. The first issue can be solved
by simply not requiring exact regression values. This
is already implemented by the squared error in Eqs. 11
and 12 because the gradient of the squared error func-
tion diminishes when the rotation output is close to the
desired target rotation, i.e., the impact on the overall error
is lower the closer we are to the target rotation. Thus,
estimated rotations only need to be in close vicinity to
the quantized target rotation.

For the second issue, we exploit the natural order of
our continuous rotation representation. Given that the
input to our generator can be any rotation angle, we
simply let it generate intermediate rotations. In order to
properly estimate the rotation in a generated image that
shows such an intermediate rotation angle, we need the
discriminator to also learn those rotations, i.e., we can
keep the loss formulations given in Eqs. 11 and 12 and
add an additional rotation loss LD,semi that learns rotation
from the generated fake images, i.e.,

where we randomize yf ,rot in 20% of the cases by sampling
a random angle between 0 ◦ and 359◦ . We do the same for
L
G,rot . As a result, for unlabeled intermediate angles, both

networks learn to agree on a specific object rotation.

(12)L
D,rot =

∑

i

|
|
|
|
|
|
y
r,rot

i
− D(xr)i

|
|
|
|
|
|

2

2

(13)L
D,semi =

∑

i

||
|
||
|
y
f ,rot

i
− D(G(y

f ,rot

i
, z))i

||
|
||
|

2

2
,

Empirical Loss Scheduling

In preliminary experiments, a common issue was that the gen-
erator did not learn to create full rotation cycles, i.e., between
some of the annotated 45◦ steps the car would collapse and
then, from the collapsed image, an image that shows a car
close to the next step would arise. We have also found that
rotation is learned very early in the training. While the rota-
tions become smoother and cleaner when training progresses,
the generator never recovers from fundamental issues like col-
lapsing cars and orientations that are fundamentally wrong.
This observation is consistent with the findings of Karras et
al. [1] who also observed that the fundamental composition of
the generated images, i.e., the low frequency parts, are learned
very early. Given these observations, we conclude that we need
to enforce the learning of rotations early. However, learning
our model is driven by multiple losses. Here, we will first dis-
cuss the discriminator loss:

which is a combination of many losses that need to be bal-
anced properly. Here, � gives the weight of the individual
losses. Note that it is the knowledge of the discriminator D
that drives the learning of the generator G. Thus, before G is
able to learn about rotations, we require it to have rudimen-
tary image generation capabilities, i.e., in the very begin-
ning, learning has to be driven by the GAN-Loss Lgan . How-
ever, once G is capable of the aforementioned rudimentary
image generation, G needs to learn rotation. Thus, we reduce
�gan and simultaneously increase rotational learning for G.
Note that D learns rotation from real images from the very
beginning (see Eq. 19). Finally, when G has learned to cre-
ate properly oriented objects, we can scale �gan back up and
learn to improve image quality. This intuition results in the
following schedule for �gan . At the current training progress
i as measured by the number of thousands of images seen
by the discriminator, i.e., i = 1 after having seen a thousand
images, we calculate �gan(i) as a combination of two func-
tions as given below. Here, �(i) is a mixing function for the
two components �(i) and �(i):

where � is the sigmoid function. � is an approximate offset
at which �(i) begins to dominate the expression. �� and ��
control the steepness of the two functions and � controls the
width of the valley at the intersection between �(i) and �(i) .

(14)L
D = �D,ganLD,gan + �D,rotLD,rot + �D,semi

L
D,semi

(15)�(i) = �

(
10.0

�
(i − �)

)

,

(16)�(i) = �(��(−i + �),

(17)�(i) = �(��(i − � − �)),

 SN Computer Science (2023) 4:48 48 Page 12 of 16

SN Computer Science

Given the two individual functions �(i) and �(i) as well as
the mixing function �(i) and desired minimal value �gan and
desired maximum value �gan , we calculate

We set � = 400 , �� = 0.004 , �� = 0.003 , � = 1500 ,
�gan = 0.5 and �gan = 10.0 which results in the loss schedule
shown in orange color in Fig. 8. Note that this schedule is
identical for both the generator G as well as the discrimina-
tor D.

As mentioned above, D learns rotation from real images
from the very beginning. However, as G begins to learn
the quantized rotations that are annotated in our dataset,
we need to reduce the importance of this loss in order to
facilitate the learning of intermediate and continuous rota-
tions by semi-supervision. The schedule

results in the dashed gray schedule shown in Fig. 8. Here,
we set �D,rot = 1500 , �D,rot = 5.0 and �D,rot = 20.0 , i.e., �D,rot
starts at a high value of 20 and then decays to 5 after 1.5
million training images.

Similarly, we define

 We set �D,semi = 1500 , �D,semi = 10.0 , �D,semi = 20.0
and �D,semi = 0.1 which results in the green loss schedule
shown in Fig. 8. In the beginning, G is not able to produce

(18)
�gan(i) = (�gan − �gan)[(1.0 − �(i))�(i) + (�(i)�(i))] + �gan.

(19)�D,rot = min

(

max(
�D,rot�D,rot

i + 1
, �D,rot), �D,rot

)

(20)

�D,semi = min

(

max(
�D,semi�D,semi

i + 1
, �D,semi), �D,semi, i�D,semi

)

.

anything meaningful. Learning rotation from the early
images produced by G hampers the training. Thus, with
increasing image quality, we scale up the impact of the
semi-supervision for D. After some time, both G and D
have agreed on the intermediate rotations which allows us
to reduce �D,semi towards the later parts of the training and
thus, allow for a higher importance of the GAN training.

Similarly to LD , the generator loss LG is a combination
of a GAN-Loss LG,gan and the rotation-based loss LG,rot).

�G,gan follows the schedule given in Eq. 18. In the beginning,
G cannot learn proper rotations from D because D needs to
learn that first. Thus, with increased rotational knowledge
of D, we can scale up rotational learning in G. However, G
can learn to create continuous rotations because its learning
of rotation does not depend on the quantized annotations of
our dataset. Instead, G learns from D. Thus, we do not need
to reduce �G,rot towards the end of the training. We calculate
�G,rot as

Here, we set �G,rot = 20.0 , �G,rot = 0.2 which results in the
dotted loss schedule shown in Fig. 8.

Results

In this section, we detail and discuss our results both quan-
titatively as well as qualitatively.

(21)L
G = �G,ganLG,gan + �G,rotLG,rot

,

(22)�G,rot = min(i ∗ �G,rot , �G,rot).

Fig. 8 Loss schedules for semi-supervised rotation estimation and
rotation generation. In the beginning, it is important facilitate image
generation, i.e., we need high �gan . Simultaneously, D needs to learn
rotation, i.e., we need high �D,rot in the beginning. We need to enforce
proper rotation in G throughout the training, i.e., we need a high �G,rot
at all times. In the beginning, learning in a semi-supervised fashion
hampers the training progress because G only produces random noise

images, i.e., trying to estimate rotation from such images is pointless.
However, fundamental image composition that includes rotation is
learned very early, thus we need to increase �D,semi fast and decrease
�gan until rotations are learned properly. After rotation is learned,
we can reduce rotation learning in D and increase importance of the
GAN training to improve image quality

SN Computer Science (2023) 4:48 Page 13 of 16 48

SN Computer Science

Quantitative Results

In Table 1, we give quantitative results for image quality.
Here, it is important to compare models at identical reso-
lutions. For this work, we chose to compare models at an
image size of 256 × 256 pixels. In addition, we present
results of our full model at a higher resolution of 512 × 512
pixels that improves image quality. We see that both our
semi-supervised rotation objective as well as our class-wise
discrimination strategy improve image quality as measured
by FID. Both also improve image quality for random rota-
tions. However, our rotational measures generally seem to
decrease with improved image quality. The negative effects
however are marginal and we were not able to verify them
qualitatively. Moreover, without our semi-supervised objec-
tive, objects frequently collapsed during a rotation cycle.
Unfortunately, this is an effect that does not seem to be cap-
tured by the rotational measurements. It may be the reason
for the considerable improvements in the FID50k random
rotation measure. The improvements in overall image qual-
ity are immediately obvious in qualitative comparisons.

In Table 2, we show that our method generally adheres
to our specifications. Note that accuracy values generally
should be considered with the number of possible classes

in mind, i.e., a higher number of possibilities for a spe-
cific attribute naturally reduces accuracy. In other words,
both the generative model and the classifier that we trained
to assess the generated images generally have to solve a
harder task when compared to attributes with a low num-
ber of classes. In addition, note that due to the nature of
our measurements that use imperfect classifiers to assess
the attributes of the generated objects small changes by
a few percent cannot be indicative of relevant improve-
ments. As such, we consider the conditioning accuracy
for the attributes car model (67 classes), body style (10
classes), and aspect ratio (5 classes) to be almost identical
across all methods that we analyzed. However, we see a
significant improvement of around 7.1 absolute percentage
points for the manufacturer (18 classes). This is equivalent
to a 23% reduction in the conditioning error. On the other
hand, simultaneously, we observe that color accuracy is
reduced by 5.4% and background accuracy is reduced by
7.5%. The consistency measurements in Table 3 paint a
similar picture. Here background consistency and aspect
ratio consistency during rotation decreased with our full
method. We also see a small reduction in color consist-
ency. However, all other consistency measures improve
considerably with our full model which matches our

Table 1 Quantitative results for image quality

Starting with a baseline model that uses StyleGAN2’s standard loss definition and our rotation target (top) we improve by adding semi-super-
vision to the rotation training. Changing StyleGAN2’s standard loss to our class-wise discrimination strategy improves the model even further.
Bottom: our model trained on a higher resolution
Bold means best for given resolution (“Train res”)

Model #train img (m) Train res ↓FID50k ↓FID50k random
rotation

↑quantized rota-
tion acc (%)

↓avg. rotation
distance

↓PPS

Coop. 5 256 7.27 7.46 99.8 19.23◦ 0.0069
Coop. + semi 5 256 5.70 6.76 98.5 18.71◦ 0.0113
Coop. + semi + class D 5 256 5.43 6.27 96.7 21.48◦ 0.0099
Coop. + semi + class D 5 m 512 5.15 5.40 96.3 22.70◦ 0.0087
Coop. + semi + class D 18 m 512 3.53 3.64 93.33 23.93◦ 0.0101

Table 2 Quantitative results for conditioning accuracy

Higher values correspond to a higher level of control, i.e., higher accuracies mean that a model better adheres to our specifications
Bold means best for given resolution (“Train res”)

Model #train img (m) Train res ↑model (%) ↑manufacturer
(%)

↑color (%) ↑body (%) ↑background (%) ↑ratio (%)

Coop. 5 256 48.05 70.09 69.96 79.06 90.92 99.31
Coop. + semi 5 256 52.26 73.74 68.83 78.32 89.92 98.61
Coop. + semi + class D 5 256 47.81 77.25 64.60 78.36 83.46 97.81
Coop. + semi + class D 5 512 46.99 78.15 57.62 78.65 83.84 94.97
Coop. + semi + class D 18 512 71.62 90.55 66.33 78.94 86.71 97.61

 SN Computer Science (2023) 4:48 48 Page 14 of 16

SN Computer Science

Table 3 Quantitative results for conditioning consistency, i.e., classifier standard deviation for rotating objects

Lower values mean that objects are rendered more consistently when undergoing rotations
Bold means best for given resolution (“Train res”)

Model #train img train res ↓model ↓manufacturer ↓color ↓body ↓background ↓ratio

Coop. 5m 256 0.01915 0.03834 0.0391 0.0617 0.03609 0.00411
Coop. + semi 5m 256 0.01911 0.04552 0.03567 0.06981 0.04480 0.01727
Coop. + semi + class D 5m 256 0.01590 0.03240 0.04031 0.04945 0.04458 0.01163
Coop. + semi + class D 5m 512 0.01460 0.03089 0.04029 0.04739 0.04350 0.01961
Coop. + semi + class D 18m 512 0.01097 0.02159 0.03645 0.04234 0.04175 0.01454

Fig. 9 Qualitative example for rotations under changing specifica-
tions. Each line shows a full rotation cycle. Top: initial image showing
an Audi A3 hatchback in red on a black background. Upper middle:
initial image with body style changed from hatchback to convertible.

Lower middle: convertible with body color changed from red to black.
Bottom: black convertible with background scenery changed from
black to countryside

Audi A3

Convertible

Black

Countryside

Fig. 10 Qualitative examples
for mixed conditions that are
not in the dataset, i.e., out-of-
sample results

mercedes
panamera coupé

cadillac cayenne
black

cadillac cayenne
white

dodge challeger
pickup

ferrari duster
pickup

ferrari cayenne
limousine

fiat challenger
pickup

goggomobil a1
hatchback

SN Computer Science (2023) 4:48 Page 15 of 16 48

SN Computer Science

qualitative observations the we will further discuss in the
next section.

Qualitative Results

In Fig. 9, we show examples of generated rotation cycles.
We showcase control by changing individual attributes.
The first row shows an initial image series. The second row
shows the same series with the body style of the car changed
to convertible. In the next row, we change the color of the
convertible from red to black. Here, we can also observe
a very common case of failure. The body color does not
remain constant during the rotation cycle. This is a common
problem when generating silver, gray and black cars. These
colors seem to be particularly hard to differentiate and often
get confused.

In the third row, we place the black convertible from the
previous row in the country side. Here, we observe similar
issues with the body color. However, the background scen-
ery is properly changed. In Fig. 10, we show out-of-sample
results based on combinations of attributes that are not avail-
able in the training data.

Conclusion

In this work, we have proposed a method for control over
image synthesis systems. Our method is able to handle data
with multiple labels that is only sparsely annotated. We
have also shown that, in an adversarial setting, a cooperative
regression target that is jointly optimized by both generator
and discriminator can be used for fine-grained and continu-
ous control of object orientation. We have shown that such a
cooperative target can be learned in a semi-supervised fash-
ion which allows us to learn continuous orientations from
quantized orientation annotations.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T.
Analyzing and improving the image quality of stylegan. In: 2020
IEEE/CVF conference on computer vision and pattern recogni-
tion, CVPR 2020, Seattle, WA, USA, June 13–19, 2020. Com-
puter Vision Foundation/IEEE. 2020. pp 8107–16. https:// doi. org/
10. 1109/ CVPR4 2600. 2020. 00813.

 2. Härkönen E, Hertzmann A, Lehtinen J, Paris S. Ganspace: discov-
ering interpretable GAN controls. In: Larochelle H, Ranzato M,
Hadsell R, Balcan M, Lin H, editors. Advances in neural informa-
tion processing systems 33: annual conference on neural informa-
tion processing systems 2020, NeurIPS 2020, December 6–12,
2020, Virtual. 2020.

 3. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville AC, Bengio Y. Generative adversarial
nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND,
Weinberger KQ, editors. Advances in neural information pro-
cessing systems 27: annual conference on neural information
processing systems 2014, December 8–13 2014, Montreal, Que-
bec, Canada. 2014. pp 2672–80.

 4. Xu H, Li C, Rahaman MM, Yao Y, Li Z, Zhang J, Kulwa F,
Zhao X, Qi S, Teng Y. An enhanced framework of generative
adversarial networks (ef-gans) for environmental microorgan-
ism image augmentation with limited rotation-invariant training
data. IEEE Access. 2020;8:187455–69. https:// doi. org/ 10. 1109/
ACCESS. 2020. 30310 59.

 5. Li X, Zhengshun D, Huang Y, Tan Z. A deep translation (gan)
based change detection network for optical and sar remote sens-
ing images. ISPRS J Photogramm Remote Sens. 2021;179:14–
34. https:// doi. org/ 10. 1016/j. isprs jprs. 2021. 07. 007.

 6. Chan ER, Monteiro M, Kellnhofer P, Wu J, Wetzstein G. Pi-gan:
periodic implicit generative adversarial networks for 3d-aware
image synthesis. In: IEEE conference on computer vision and
pattern recognition, CVPR 2021, virtual, June 19–25, 2021.
Computer Vision Foundation/IEEE. 2021. pp 5799–809.

 7. Zhang Y, Chen W, Ling H, Gao J, Zhang Y, Torralba A, Fidler
S. Image gans meet differentiable rendering for inverse graphics
and interpretable 3d neural rendering. In: 9th international con-
ference on learning representations, ICLR 2021, virtual event,
Austria, May 3–7, 2021. OpenReview.net. 2021.

 8. Tewari A, Elgharib M, Bharaj G, Bernard F, Seidel H, Pérez P,
Zollhöfer M, Theobalt C. Stylerig: rigging stylegan for 3d control
over portrait images. In: 2020 IEEE/CVF conference on computer
vision and pattern recognition, CVPR 2020, Seattle, WA, USA,
June 13–19, 2020. Computer Vision Foundation/IEEE. 2020. pp
6141–50. https:// doi. org/ 10. 1109/ CVPR4 2600. 2020. 00618.

 9. Shoshan A, Bhonker N, Kviatkovsky I, Medioni GG. Gan-con-
trol: explicitly controllable gans. In: 2021 IEEE/CVF interna-
tional conference on computer vision, ICCV 2021, Montreal,
QC, Canada, October 10–17, 2021. IEEE. 2021. pp. 14063–73.
https:// doi. org/ 10. 1109/ ICCV4 8922. 2021. 01382.

 10. Brehm S, Harzig P, Einfalt M, Lienhart R. Learning segmenta-
tion from object color. In: 3rd IEEE conference on multimedia
information processing and retrieval, MIPR 2020, Shenzhen,
China, August 6–8, 2020. IEEE. 2020. pp. 139–44. https:// doi.
org/ 10. 1109/ MIPR4 9039. 2020. 00036.

 11. He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: 2016 IEEE conference on computer vision and
pattern recognition, CVPR 2016, Las Vegas, NV, USA, June

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1109/ACCESS.2020.3031059
https://doi.org/10.1109/ACCESS.2020.3031059
https://doi.org/10.1016/j.isprsjprs.2021.07.007
https://doi.org/10.1109/CVPR42600.2020.00618
https://doi.org/10.1109/ICCV48922.2021.01382
https://doi.org/10.1109/MIPR49039.2020.00036
https://doi.org/10.1109/MIPR49039.2020.00036

 SN Computer Science (2023) 4:48 48 Page 16 of 16

SN Computer Science

27–30, 2016. IEEE Computer Society. 2016. pp. 770–78. https://
doi. org/ 10. 1109/ CVPR. 2016. 90.

 12. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. Imagenet: a
large-scale hierarchical image database. In: 2009 IEEE computer
society conference on computer vision and pattern recognition
(CVPR 2009), 20–25 June 2009, Miami, Florida, USA. IEEE
Computer Society. 2009. pp. 248–55. https:// doi. org/ 10. 1109/
CVPR. 2009. 52068 48.

 13. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S.
Gans trained by a two time-scale update rule converge to a local
nash equilibrium. In: Guyon I, von Luxburg U, Bengio S, Wallach
HM, Fergus R, Vishwanathan SVN, Garnett R, editors. Advances
in neural information processing systems 30: annual conference
on neural information processing systems 2017, December 4–9,
2017, Long Beach, CA, USA. 2017. pp. 6626–37.

 14. Fréchet M. Sur la distance de deux lois de probabilité. Comptes
Rendus Hebdomadaires des Seances de L Academie des Sciences.
1957;244(6):689–92.

 15. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethink-
ing the inception architecture for computer vision. In: 2016 IEEE
conference on computer vision and pattern recognition, CVPR
2016, Las Vegas, NV, USA, June 27–30, 2016. IEEE Computer
Society. 2016. pp. 2818–26. https:// doi. org/ 10. 1109/ CVPR. 2016.
308.

 16. Chong MJ, Forsyth DA. Effectively unbiased FID and inception
score and where to find them. In: 2020 IEEE/CVF conference on
computer vision and pattern recognition, CVPR 2020, Seattle,

WA, USA, June 13–19, 2020. Computer Vision Foundation/IEEE.
2020. pp. 6069–78. https:// doi. org/ 10. 1109/ CVPR4 2600. 2020.
00611.

 17. Zhang R, Isola P, Efros AA, Shechtman E, Wang O. The unrea-
sonable effectiveness of deep features as a perceptual metric. In:
2018 IEEE conference on computer vision and pattern recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018.
Computer Vision Foundation/IEEE Computer Society. 2018. pp.
586–95. https:// doi. org/ 10. 1109/ CVPR. 2018. 00068.

 18. Mousavian A, Anguelov D, Flynn J, Kosecka J. 3d bounding box
estimation using deep learning and geometry. In: 2017 IEEE con-
ference on computer vision and pattern recognition, CVPR 2017,
Honolulu, HI, USA, July 21–26, 2017. IEEE Computer Society.
2017. pp. 5632–40. https:// doi. org/ 10. 1109/ CVPR. 2017. 597.

 19. Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite. In: 2012 IEEE confer-
ence on computer vision and pattern recognition, Providence,
RI, USA, June 16–21, 2012. IEEE Computer Society (2012). pp.
3354–61. https:// doi. org/ 10. 1109/ CVPR. 2012. 62480 74.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR42600.2020.00611
https://doi.org/10.1109/CVPR42600.2020.00611
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2017.597
https://doi.org/10.1109/CVPR.2012.6248074

	Controlling 3D Objects in 2D Image Synthesis
	Abstract
	Introduction
	Related Work
	StyleGAN2
	Architecture

	Dataset
	Goals and Metrics
	Image Quality
	Conditioning
	Random Rotations and Latent Space Interpolation

	Conditional Object Synthesis
	Categorical Generator Conditioning
	From Categorical Orientation to Continuous Rotation
	Semi-supervised Cooperative Rotation Learning
	Empirical Loss Scheduling

	Results
	Quantitative Results
	Qualitative Results

	Conclusion
	References

