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Abstract

We consider the homogenisation of a coupled reaction—diffusion process in
a porous medium with evolving microstructure. A concentration-dependent
reaction rate at the interface of the pores with the solid matrix induces a
concentration-dependent evolution of the domain. Hence, the evolution is
fully coupled with the reaction—diffusion process. In order to pass to the ho-
mogenisation limit, we employ the two-scale-transformation method. Thus,
we homogenise a highly non-linear problem in a periodic and in time cylin-
drical domain instead. The homogenisation result is a reaction—diffusion
equation, which is coupled with an internal variable, representing the local
evolution of the pore structure.

Keywords:-Homogenization, evolving microstructure, free boundary
problem, two-scale convergence, porous medium, reaction—diffusion process

2020 MSC:35B27, 35K57, 35R35

1. Introduction

Reaction—diffusion mechanisms in porous media often induce an evolution
of the solid matrix. Typical examples are reaction mechanisms producing or
consuming constituents which are part of the solid matrix, e.g. in concrete
carbonation (cf. [1], [2]) or crystal precipitation and dissolution (cf. [3], [4]).
Similarly, if biofilms are present, these can often be viewed as a solid-matrix-
type part of the porous medium on the pore scale. In this context, production
of biofilm can be modelled on the microscale similarly as production of solid
matrix (cf. [5], [6], [7]).

!Corresponding author, the author was partially supported by a doctoral scholarship
provided by the Studienstiftung des deutschen Volkes.
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Mathematical models for reaction and diffusion in porous media are typ-
ically obtained from upscaling processes on the pore scale by averaging or
homogenisation techniques. A classic method in this context is periodic
homogenisation (cf. [8], [9]), which has been extended to cope with (non-
periodic) evolving microstructures (cf. [10]). The extension relies on trans-
forming the non-periodic evolution to a periodic reference geometry, which
requires modelling of this (concentration-dependent) transformation in the
context of particular applications, for instance a detailed discussion for con-
crete carbonation can be found in [11].

homogenisation on the evolving domain

evolving microproblem > evolving macroproblem

J/transformation Tbacktransformation

. homogenisation on periodic reference domain
transformed microproblem > transformed macroproblem

(1)
The approach of transforming on a periodic reference domain has found also
application in the homogenisation of thermoelasticity [12] or the homogeni-
sation of advection-reaction-diffiusion problems in porous media (cf. [13]),
where the domains evolution is a priori given. Moreover, it has been recently
shown that the homogenisation of the substitute problem is equivalent to
the homogenisation of the actual problem in the non-periodic mirostructure,
i.e. that (1) commutes (cf. [14]). Furthermore, a new two-scale-transformation
rule has been derived there, which yields a transformation-independent ho-
mogenisation result after the back-transformation.

In the present paper, we use this approach to homogenise rigorously a
reaction—diffusion problem where the domain evolution is not a priori given
but coupled with the solution itself. The homogenisation of problems where
the evolving microstructure is coupled with the solution itself has been also
considered by a level-set approach. There, the domain is described by a
level-set function solving a level-set equation, which involves the other un-
knowns. In this framework, microscopic models for crystal precipitation and
dissolution (cf. [7]) or biofilm growth in porous media (cf. [15]) have been ho-
mogenised. However, the corresponding effective macroscopic problems have
been derived by formal asymptotic expansion only. Numerical simulations
and analytical discussion of such type of limit models can be found in [16],
[17], [18].

In this manuscript, we revisit the microscale model by [19] for one reaction—
diffusion equation and derive their upscaled model by a mathematically rigor-
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ous homogenisation procedure based on the recent results of [14]. In this con-
text, we show that such coupling of the pore structure with the solution of the
reaction—diffusion equation can be handled by the two-scale-transformation
method. For this purpose, we construct a concretes-scaled transformation

for thee-scaled domains by means of a generic parametrisable cell trans-

formation. There, the radius of the solid obstacles becomes the parame-
ter. By showing a certain kind of strong convergence for the radii of thee-

scaled model, we can verify the assumptions of the two-scale-transformation
method. Thus, we can pass rigorously to the two-scale limit in the substitute
problem. Moreover, using the two-scale-transformation rule of [14], we obtain
a two-scale limit problem in the actual non-cylindrical evolving two-scale do-
main, which is independent of the chosen transformation. There, we split the
macroscopic and microscopic variables in order to derive an effective equa-
tion. The result is a macroscopic reaction—diffusion problem coupled with an
internal variable, which represents the local radius of the solid. This local
radius is given by an ordinary differential equation and scales not only the
time-derivative term and the reaction rate of the reaction—diffusion equation
but also affects the effective diffusivity. The diffusivity is still computed by
solutions of cell problems as in the case of a rigid domain. However, the
domain for the cell problems is now parametrised by the internal radius and
affects in this way the local effective diffusivity. A similar macroscopic model
has very recently been derived in [20]. There the (slightly different) trans-
formed microscopic model is analysed by different methods and the strong
compactness results are derived by a different approach.

This paper is organised as follows: In section 2, we derive the microscopic
model (13)—(16), which consists of a reaction—diffusion problem coupled with
the evolution of the domain. Then, we state the corresponding weak formu-
lation in the evolving domain. Using a generic cell transformation, we trans-
form the weak form to the equivalent weak form (32)—(33), (44)—(46) on the
periodic substitute domain, which becomes highly non-linear. In section 3,
we show the existence and uniqueness of the solution of the transformed mi-
croscopic model by afixed point argument. There, we utilise the assumption
that the radii, which define the solid domain, are a priori bounded from below
and above. Moreover, we derive somee-independent a priori estimates. In
section 4, we use two-scale convergence in order to pass to the homogenisa-
tion limit. Since the coefficients in the equation depend on the solution itself,
the problem becomes highly non-linear and we need a strong convergence of
the solution. However, we can not derive easily a uniform bound of the time
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derivative of the solution of the diffusion equation. Therefore, we can not
use the classical Aubin-Lions lemma. Instead, we shift the solution of the
reaction—diffusion equation with respect to time and estimate the difference
to the actual solution. Then, we can conclude with the Simon-Kolmogorov
compactness criterion (cf. [21, Theorem 1]) the strong convergence of the con-
centration. Using this strong convergence, we can show a strong convergence
of the radii, which allows us to apply the two-scale-transformation method.
Thus, we can derive the two-scale limit problem in the cylindrical two-scale
reference domain rigorously. In section 5, we transform the limit problem
back and obtain the transformation-independent two-scale limit problem.
Then, we split the macroscopic and microscopic variable. This gives the ef-
fective problem (152), (153) with the effective diffusion coefficient (154) and
the cell problems (155), which depend on an internal variable representing
the local radius.

We use the following notations. Letf geL  2(U) andUCR ™ for
meN .o, then we write the scalar product and the norm by: (f,g)y =
[, f@)g(z)dz||fIl & = (f, f)u. ForfeH (U)' andgeH *(U), we write
the dual paring by(f, 9) v :=(f,9) m W) m W) -

Furthermore, we useCas generic constant which is independent ofeand
other variables and depends only onfixed constants. In cases, in which the
generic constant can depend on other variables as for instancee, we mark
this by a subscript, e.g. we writeC' .. Moreover, let the spatial dimension be
NeNwithN>2.

2. The mathematical model

LetQbe an open set inR ¥, which represents the macroscopic domain
of the porous medium and lete= (¢ ,),en be a positive monotone sequence
converging to zero withe ( sufficiently small. We assume that{)consists of
wholes-scaled cellsY = (0,1) ", i.e.Q=int (U, ek+e Y) forl . :={ke
ZN |(ek+eY)NQAD}.

We assume that the pore structure of the porous medium is given by
spherical obstacles in the cellsek+cYforkel . which can grow and shrink
on the time intervalS= (0,7) with 0< T" <oo. Thus, thes-scaled porous
medium is defined by

Q(t) =\ J B, btz ) (2)

kel



127 wherez 3y = (0.5,...,0.5) T is the centre of the reference cell andr . (¢) is
s thee ~!-scaled radius of the solid obstacle in the cell located atekat time
teS(cf. Figure 1).

Figure 1: The domain) (¢) fort= 0 (left) andt >0 (right)

129

We assume that the size of the obstacleseB ,_,)(k+x ) is affected
by reactions on their surfacesI' . x(t) :=0eB ,_,1)(k+x a). The reactions
rates f(u -(t,x),7.x(t)) depends on the concentration rateu . and on the
radiusr . ofS . ;. Because the reaction rate depends on the radius, we can
ensurer min <r o x(t)<r g.x for everykel . and everyteSfor constants
0< 7 min < Tmax <0.5 by the assumptions:

f('u T)ZO fOI"I“ST’ min (3)
f,r)<0 forr>r  ax-(4)

Moreover, we assume that fis uniformly Lipschitz continuous and bounded,
i.e. there exists a constantC'such that

flur,r)=fu 2,m2)<C(lu 1 —wa|+|r 1 —72|),(5)
|f(U1,7“1)|§C f (6)
1o foru ,us €ERandr 1,7y €R.

We consider the case that the formed or vanishing solid has a constant
concentration densityc ;. Thus, the conservation of mass yields

4B, olkte e = [ it n(t oo (7)
Fa,k(t)
wherej .(¢,7) is theflux throughl' . x(t) andnis the inner unit normal of

eB,_,(k+x pr). We note that thisflux consists of the diffusiveflux and
aflux which is induced by the evolution of the domain. We model the



diffusivefluxj p. =—DVu (¢,x) by Fick’s law with a diffusion coefficient
D. The secondflux, which is induced by the evolution of the domain, can be
understood in the following sense: when the carrier medium becomes solid
any excess dissolved concentration separates from the carrier medium and is
pushed away, i.e.j r.(t,7) =—v r_, @o)u(t,r), wherev p_, is the velocity of
the boundary deformation. We note thatv r_, can be formulated explicitly
byv r_, (t,x) =—e0 r.x(t)n(t, z). Thus, the totalflux on the boundary is

Je(t,x) =j pe(t,x) +jr.(t,2) =—DVu (t,2)—v r_, (t,z)u(t,z) (8)

forte Sandzel’ cx(t). On the other hand, theflux at the boundary in
the normal direction,j (¢, x)-n(t, z), represent the consumption or gain of
concentration due to the reactions onl" . x(¢), which yields

(=DVuc(t,r)—v r_, (t,2)uc(t, x))n(t,v) =j (t,2)n(t,r) =cflu (t,2),7rx(t))

(9)
and equivalently
—DVu.(t,x)n(t,x) +e0 rep(t)uc(t,x) =cf(u (t,z), 7. 1(t)).(10)

Inserting (9) in (7) yields

%|5BT€’k(t)(k:+x m)les = / efluc(t,z), e p(t))doy (11)

Fs,k(t)

and elementary calculus implies

%|€BTs,k(t)(k+x M)|:8 N%VN(TE’k(t» = NSN,1 (7”57k(t>)at7’€,k(t),

whereV y(r) denotes the volume of theN-ball with radiusrandS  y(r) de-
notes the surface of the N-sphere with radiusr. Thus, we obtain the following
ordinary differential equation for the radii:

—-N

8157’57;{(25) = m / €f(u5(t,x),rak(t))do-x-(lQ)

Fe,k(t)
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Combining the diffusion equation with the boundary condition (10) and the
evolution of the radii given by (12) yields the following strong formulation:

Oruc(t,x)—div(DVu .(t,z)) =f P(t, ) in U{t} xQ (1),
tes
(13)
—DVu (t,z)n(t,z) +e0 e k(t)u-(t, z) = f(u (t,x),r.1(t)) on U{t} xI' ok (1),
tes 10
—DVu (t,z)n(t,z) =0 onos2,
(15)
Ore(t) = oo / efluc(t,z), 1o p(t))do, forkel .
Le i (t)
(16)

forQ2 (t) given by (2),n(t,z) the unit outer normal ofQ2 .(¢) for every
teSand initial conditionsr  .(0) =r © € min, Tmax)hu (0, 2) =u O ¢
L*(Q:(0)).

We assume that f P is Lipschitz continuous in everye-scaled celle(k+Y)
for everykel . and everyneN. Note that this does not necessarily
implyf P €C(Q). We assume that there existsr (© inL 2(Q2) such that

TSZE(_Z) —r O inL 2(Q), wherek .(z)€l . is the index of the cell in whichx

is located. Moreover, we assume that there existsu 80) €L %(Q) such that the

extension ofu 20) by 0 toQtwo-scale converges with respect to theL 2-norm to

o) ('y)ug))('z) forY " :==Y\ B,(zy) and we assume that ul” ‘ () <
r () L,

C.

2.1. Weak formulation

We multiply (13) bypand integrate over(2 .(t) andS. Then, we integrate
the divergence term by parts and apply (14). Thus we obtain the boundary

integral [ [ €0yrep. () (t)uc(t, 2)—eflu o(t, ), 7 p.(2)(t, z))do,dt. The inte-
N0

gration by parts ofd ;u.with respect totcancels [ [ €91y (2)(t)us(t, z)do,dt

S T.(1)
due to the time-dependent domainf? .(¢) (cf. Reynold’s transport theorem).
Thus, we get (17). Furthermore, we multiply (16) by¢and integrate over

7
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Swhich gives (18). Altogether we obtain the following weak form of (2),

(13)-(16): Find (ue, 7)€L 2(S;H Y(Q(1)))xW 1°°(S)Il such that
/ / ue(t, x)0pp(t, x)dxdt— / ul® (2)@(0, z)dxdt
Q:(0)

+/ / DVu,(t,z)-Vo(t,x)dedt= / / Pt x)p(t, x)dxdt

S Qe(t)

—Z/ / efluc(t, ), rex(t))p(t, x)dosdt, (17)

kel. S F
/3t7‘sk t)dt= /#&k(m / efluc(t, @), rep(t))doo(t)dt,(18)
S Fs,k(t)
re(0) =r © (19)

for allpeC' *(|J{t} xQ.(t)) witho(T:- ) =0, allkel ., allpcL *(S)*!
tes

and allt€S. Note thatr . €W b°(S)ll cC O1(S)IEl which allows us to

evaluater ., pointwise in time and ensures that(2 .(¢) is well defined for every

tes.

2.2. Transformation of the domain

We transform (17)—(19) from |J{t} xQ.(t), whereQ) .(¢) is given by (2),
tes
on the in time cylindrical and in space periodic domainSx€) . with{) . =

O\ U eBy,(k+x ) forfixedr o withr pin <r ¢ <r max. Thus, we can show
kel
the existence and uniqueness of a solution of (17)—(19) and pass to the limit

e—0. We definel' . :=0eB ,,(k+x ) forkel . andl' . = Ukelg Ik

Although the geometry ofQ2 .(¢) is already completely defined by its
boundary, we need a transformation of the whole space and not only of the
boundary by means of the radii, in order to apply the two-scale-transformation
method. Sincer ., <r max, the solid obstacles remain inside their respective
cells so that the transformation can be defined for eache-scaled cell sepa-
rately using a generic transformation defined on the reference cell.

2.2.1. Generic transformation of the reference cell
We define the pore space of the reference cell byY * =Y * and the
interface of the reference cell byl' :=0B ,(xa). We construct a generic cell

8



transformationt)€C ([, Tmax] X Y) V, such that

Y(rp,Y™) =Y 2 forr r €[ min, "'max), (20)
Y(rr,y) =yfor (r 0 YEN min, Tmax] X ( Y45 UB p—s(2r)),(21)

e 2
y—(r r,y) is bijective from Yonto Y, (23)

det(Dyy(rr,y))>c ;>0 for (r 1, 9)E[r min, Tmax) X Y(24)

10 fordsmall enough.

P
A L

- Brmin—é (xM)
¢(T,')
_

I~

I lb(ﬁ K«I:nax+6)
- ¢(T7 BTmin—é(xM))

Y =¢(r,Y 7))

| —

Y* +—

Figure 2: Generic cell transformationy(r,-)

Note that due to (21), we can glue such cell transformationsi)(r r,-) for
different values ofr r next to each other. Such a generic cell transformation
1can be easily constructed using the radial symmetry of the geometry in
the reference cell. We define

(re,y) =2 +R(rolly—2 ulDpi=ry (25)

ly—z ]

for a smooth functionREC'  *°([rmin, Fmax] X [0,00)), which scales the distance
ofytor s and fulfils

R(rr,ro) =r 1 forr v €[1 min, Tmax) (26)
R(rp,r) =rfor (r 0 T)VET min, Tmax) X (R\[F min —0, 7 max +96]),(27)
||DR| |02([7'min,"’max]><[0700)) SC? (28>

Oy R(rp,r)>c >0 for (r p,7)E[" min, "max) x[0,00).(29)

Such a mappingRcan be obtained by linear interpolation and smoothing



(cf. Figure 3). First we define

;

r forr<r n —2 5,
c1(rp)(r—(r min —2 5)) 7 in —2 Oforr i —2 0<r<r 0— 5,
R(rp,r) = (r—r o) +rr forr g — 0<r<r o429,
Co(rp) (r—(r max + 25)) 7 e+ 20f0rT 0+ OSI<T ek + 25,
\/r fOFTZT max _2 S
(30)
161 f;or?" r €[ min, "max] Withe 1(rp) = —:E::;nig andc o(rp) = —:::::EIS and
d=0/3.
R(TFF)
25 5[5 25
0 Tmin T0 Tmax 0.5 "

Figure 3: Construction of R
162
Then, we define

R(rp,r) = /R(TF,S)U<%>ds(31)

R

1

o
@

1
forn(z) = (fexp( -1 )dy) exp (ﬁ) It can be shown easily thatR
R

1=[y|?
16a  fulfils (26)*(29) 5
165 We define the corresponding displacementfield by ¢ (rr, y) =(r r,y)—y.

=

w66 2.2.2.€-scaling of the transformation
Scaling ofiybycand combining with the radiir ., for each cell gives a
transformation for thee-scaled porous medium:

Vet ) = [2ley +eP(r e pe)(8) {2} e y) (32)

10
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where [z].y =¢ > |Z|e; is the position of the cell in whichzis located
i=1
and{z} .y = L(z—[z] .y (x)) is the position inside the upscaled cell.
For the corresponding displacementfield, we get

Ge(t, ) =1 o(t,w) == [z] oy +e(r ey () {2} cy) -
= [7]ey +5w(rske ( JAztey) +e{z} oy —v=¢ w(rska w)( )Artey)

We denote the Jacobian matrix ofiy) . and its determinant by
V. (t,z) =D . (t,x), Jo(t,z) = det(V.(t,x)).(33)
Moreover, we obtain the following uniform estimates fory .:

Lemma 1 (Uniform boundedness ofy .).Letr . €W 2(S)l withr .(t)€
[Pimin, Tmax] 2! for a.et€Sand let) . be defined by(32). Thenysp . €
WL (S0 Y(Q)Y)and there exist constantsC ¢ j,a>0independent ofe

such that

5_1 ||¢€ —id QEHLOO(SXQE) +||qj 6||L°0(S><Qg) +||J€||L°°(S><QE) SC?(34)

J(t,x)>c g, (35)
et HathHLOO o(Q2) +H8 Je HL°° S:0(Q= Haﬂ"e ke(a) || Loo(Sx0.) 2 ,(36)
19 e sy <€ (37)

N TL(t, )W (¢, 2) U T (8 2)E2all]| (38)

for a.e.(t,2)€SxQ . and everyteR V.

PROOF.The estimates (34)—(35) are a direct consequence of (20)—(24) and
the cell-wise construction ofy) .. The estimate (37)—-(38) follow from (34)-
(35) by simple computations. The estimate (36) follows with (20)—(24) and
the chain rule.

Furthermore, we obtain the following uniform Lipschitz estimates fory .
with respect to the radiir .. Thereby, we abuse slightly the notation ofr . by
7-(t, ) =7 ¢ p(2)(t). We will also use this notation in later proofs.

Lemma 2 (Lipschitz regularity ofy .).Letpc[l,00]andr — .; €W 2(S)/l
withr ¢ ;(£)€[r min, Tmax) ! for a.e.t€Sandic{1,2}. Let) - be defined by

11
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(32)withr . =r .; forie{1,2}. Then, there exists a constantCindependent
ofesuch that

5_1 ||¢6,1 _¢ 5u2||L°°(S><QE) SCHT e,1 -
||\Ije,1 _\IJ 572||L°°(S><Qg) +HJ5,1 _J
-1 —
[N e |
e |0y (ten —1

||VJ€,1 - VJ:—:,2||L°°(S><QE) <Ce

PRrROOF.Lemma 2 can be proven by similar computations as in the proof of
Lemma 1.

= | |TE,1 -r

8,2||LOO(SXQE) SCHT e,1 -r

5:2)HLP(S><QE) +10 (1

2.3. Transformation of the weak form

Using the diffeomorphismi) -, which is defined in (32), we define f?(t, T) =

S631/ / fP(t, )*dxdt<C||f pHSxQ

P ( ﬂﬁ (t,z
SxQe
S Q:(t)
We defineA . ==J W_!DU_T
weak form (
Find (",
and

andB

5u2||L°°(S><QE)’

S Q(t

(39)

s,2| |Loo(S><QE) )
(40)

<Cl|r c1—r E,ZHLOO(SXQE) ,(41)

_J€,2)HLP(S><QE) <C(|0 i(rez —r

6,1)HLP(SxQ€) :
(42)

6,2||Loo(5x95) (43)

) and note that Lemma 1 implies the uniform estimate for fp by

/f tae(t, z)) dwdt—//

Yt 2)) fP(t, x)*dadt

. =J U 10;).. Then, we transform the
),( ) (19) into the following equivalent weak form:
ro)eL 2(S;H () x Whe(S) !l such thatd ,(J.u. ) €L 2(S;H *(Q.)")

/ (Oc(J(7) "ul(7)) (7)) a.dm+ (A V4 V) sxa. + (B:"uVp) sxa.

S

- Fp _ "
(J=12.¢) sxa. ZO

kele

/&ﬁsk dt— /—CSSN (o)
S

S

2(0) =r O "y (0) = ) =

n—1
e,

£

r(ef("u, e ) p) sxr. s

(44)

/ EF(Cult, 2, e (1)) doa () (45)

(46)
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foroe L 2(S;H '(9.)), allkel . and allpcL '(S)/el wherey . depends on
r. and is defined by (32) andV¥ ., J. are defined by (33).

Lemma 3.Letyp V., J. be given by(32)and(33), respectively. Then,
(ue,re)is a solution of(2),(17)—(19)if and only if v - =u (-1, (-1, 2))is a
solution of(32)—(33),(44)—(46).

PRrROOF.The proof follows by a simple transformation and the density of
CH(SxQ )CL 2(S;H '(Q.)).

3. Existence and uniform a priori estimates

For the existence proof, we combine afixed-point argumentation with the
theory of monotone operators from [22].

Definition 1 (Monotone operator).LetVbe a Banach space. A func-
tionA:V—=V " ismonotoneif(A(u)—A(v),u—v) >0 for everyu, veV.

Definition 2 (Family of regular operators).LetWhe a separable Hilbert
space. A family of operators{ B(t)|[te  S}withB(t)eL(W,W ') for each
te SandB(-)u(v)eL  °°(S) for each pairu,v€Wis calledregularif for

each pairu, vEW, the functionB(-)u(v) is absolutely continuous on  Sand
there is aKeL '(S) such that

|G BOu@)I<K®)ull - [Jully (47)

for everyu,veWand for a.e.te S.

The monotone operator theory gives the following existence result for degen-
erate parabolic equations (cf. [22]).

Theorem 4. LetVbe a separable Hilbert space. Suppose thatWis a Hilbert
space containingVwith dense and continuous injectionVe—W. LetV =
L2(S;VyandWW =L %(S;W). We assume that for everyt€  Sthere are given
operatorsA(t)eL(V,V  "andB(t)e LW, W  ")such thatA(-)u(v)eL  °°(S5)
for each pairu, veVandB(-)u(v)eL *(S)for each pairu,veW.

In addition, we assume that{B(t)|te SYis a regular family of self-
adjoint operators,B(0)is monotone and there are numbers\,c >0such
that

2A(t)v(v) +AB(t)v(v) +B (t)v(v)>c||v|| | for allveVand allte S.
(48)

13



Then, for givenu O eWandfeL — 2(0,T:V ')there ewistsu€Vsuch that
L(B(t)u(t)) +At)u(t) =f(t)inY ' with(Bu)(0) =B(0)u .(49)

27 Combining Theorem 4 with afixed point argument allows us to derive the
205 existence and uniqueness of the solution of the system (32)-(33), (44)-(46)
200 foresmall enough.

Theorem 5. There exists a unique solution("u.,7.)EL 2(S;H 1(Q))xWhoo(S) el
withd (J. 1,0, w €L *(S;H 1(Q)') of the system(32)-(33),(44)(46)and
thus™w. €C °(S;L2(.)). Moreover, the following uniform estimates hold

||A?3LHCO(§;L2(QE)) +HVA%HL2(S><QE) <C, (50)
||Ag||L°°(S><QE) <C, (51)
Tex(1)E[r mins Tmax] ™! for everyte  Sand everykel — .,(52)
Okre ]l oo () <C rei b for everykel  ..(53)

PROOF.In order to show the existence and uniqueness of the solution, we
divideSinfinitely many subintervalsS — ; = (¢;,t;41) with 0 =t ¢ < t; <

< t , =Tforie{0,...,N <fandN . large enough. Then, we show
iteratively that there exists a unique solution (“#s,, r|s,)EL 2(Ss;H '(Q:)) ¥
Whee (Sl withd (J. "als,),0¢ "#ls, €L 2(S;;H 1(£2.)") such that

tit1

[ @00

t;

5:(7)),(7)) a.drt (A V'u

SNV90) (tistit1) Qe + (BE Ay'Si?V90> (tistit1) xS

== (JEff;‘p?SO) (ti,ti+1)><95 - Z (:En’_klgf(/\y Sia r&,k)?¢> (54)
kel 0 (titit1)xDe g
tit1 tit1
/ Opre (1) p(t)dt= / # / ef(Culs, (t, @), re k(1)) dop(t)dt,(55)
t; Fe,k

20 holds for every (p,¢)€L  2(S;;H'(Q))xL 2(S;)/sl and the initial condi-
an tion (“#s,(ti),7els; (t) = (7 {0 r )) is fulfilled. Fori>1, the initial
212 values are defined by means of the solution on the previous time interval,
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213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

i.e. (A&i),réti)) = ("ds, ,(ti),7e|ls,_,(t;)). Then, we get the solution ( "z, r.)
for the whole intervalSby concatenating the solutions.

First, we chooset ; small enough such that we can apply Lemma 6. Then,
we get a solution (“2s,, 7e|s,)EL 2(So;H 1(Q))x W 1°(So) el withd ; “als, €
L2(So;H 1(9.)). Now, we proceed inductively. We assume that we have a
unique solution (“#(0.4,), 7|(0,)) of (32)—(33), (44)—(46) for the time interval
(0,t;) instead ofS. Then, we claim that there exists also an unique solution
on the time interval (0, ¢;,1) wheret ;11 —t; >0 . >0 for a constante . which
depends neither on the iteration numberinor on the exact timet ; as long as
t; <T. Hence, we obtain afterfinitely many steps a solution for the whole
intervalS. In order to show this uniform boundo ., we use Lemma 6 and
note that we have only to show that

Tsl(O,ti)<ti)E[r minyrmax]llg|7(56)
AM(O7ti)(ti)|‘Qe SKa (57)

for a constant Kwhich is independent on the iteration numberiand the
timet ; <T. Then, we can construct the solution on (¢ ;,¢;41) with Lemma
6 and can concatenate it with the solution on (0,¢;). The estimate (56)
follows directly from Lemma 6 sincer 6|(0,ti) was constructed by Lemma 6.
The estimate (57) can be derived like the estimates (80)—(87) but applied on
“2(0,;)- The crucial point is that the constant in (87) does not depend on
tas long ast<T. It depends only on the initial value. Since we do not
apply the estimates iteratively on the interval (¢;, ;1) forl€{0,... i—1}
but only once on the whole interval (0,t;), we do not have to take care if
the initial values multiply in a bad manner. However, we have to note that
these estimates only bound||"w/| ;o (g 4,):r2(q.)) uniformly. In order to get the
uniform bound not only for a.e.t€(0,¢ ;) but also fort ;, we use the following
argument. Sinced ; u€L 2((0,t;);H *(€.)'), the Lemma of Lions-Aubin gives
‘ueC( (0,t;);L%(Q)) and Since|’AUEHLOO((O,ti);LQ(QE)) :||AU€HC(W;L2(QE))7 we
get the uniform bound for HAM(Oyti)(ti)HQE'

Moreover, we note that the estimates (80)—(87) do not depend one. In
fact, ane-dependency would not be a problem for the proof of the existence
and uniqueness of "z on the whole time interval. However, due to their
e-independency, they give us immediately the uniform bound (50) since the

initial values “§ are uniformly bounded. Furthermore, (100) implies directly
(51).
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257

Lemma 6.LetS ; = (t;, t;q)with0<t ; < t; 1 <T. Let’u. €L *((0,;);L*(Q.))N
L2((0,,);H Y(Q))withd " u €L 2((0,t;);H ' ()" )be the solution of(44)-

(46)on the time interval(0,t ;)fore>0and u ) = “u(t;). Then, for
everyK >0, there exists a constantoc . >0, which depends only on
eandK, such that(32)—(33),(54)—(55), has a unique solution("u ., 7)€
L2(S;;H () x W b2(S) L withd ((J. 1,0 u €L 2(S;H 1)), w(t;) =

Aifi) andr (t;) =r &) for arbitmryAug") eL %(Q.)andr &) E[r mins Tmax] !,

) <Kand|S |<max{l,0c .x}. Moreover,y .(t)E[r wmin, max) ™,

OPAONEE e o et ol Al 26

PRrROOF.We show the existence and uniqueness by means of afixed-point ar-
gument for “u €L 2(S;H 1(Q.)) with thefixed-point operatorL . :L 2(S;;H '(Q.))—
L*(S;;H'(Q.)). First,L . inserts a given function(into the right-hand side

of (54)—(55), which yields

tit1

/ <at(J€<t) Ay@))#p(t» dit—i- (A EVA%L?VSO) (titit1)XQe + (B€ Ayﬁvw) (tistit1)xQe

ti

n—1

= (c]gfap,@) (ti,ti+1)XQE - Z (r%jkl

kele

€f(C> r E,k)a(p ) 7(58)
(t tZJrl)XFE k

tit1

7latrak tydt= /ﬁ/ ef(C(t, ), 7 o k(1)) doa(t)dt.(59)

ti

Then, it solves (59) forr .. Thisr . givesy) .,V ., J. via (32)—(33) for (58).
Then,L .(¢) := "uwhere “uis the solution of (58).

In order to show thatL . is well defined and is a contraction, we rewrite
L.("w) by means of the following both operators. LetV ,.(S;) ={re
WE2(SHEL |r()E[r  mins Tmax) ! and|0 o(1)| <O ;! for aeteS  ;}We
definel .; :L 2(S;H'(Q.))—=V ,..(S;) as the solution operator of (59),
i.e.L .1(¢) =r ., wherer . €V, .(S5;) is the solution of (58) for everykel .
and everype L %(S;) with initial conditionr .(t;) =r ) Moreover, we define
Le,2 :L Q(Si;Hl(Qs))XV r,s(Si>%L Q(Si;Hl(Qe)) byL E,2(<€7r6) = Aya where
“uis the solution of (58) for everypel 2(S;H '(€.)) with initial condition

“u(t;) = 47 Hence, we getL (Q) =L .2(C, Lea(Q)).

Note, that “uis aﬁxed point of L . withd ((J. w),0; ueL *(S;H ' (Q.

andr . =L _; uwithd . €L °°(S;)/el if and only if ("a r.) solves (54)—(5

))
5)-
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258 Hence, it is sufficient to show, thatL . has a uniquefixed point. First,
20 we show, thatL . ; is well defined and Lipschitz continuous. Then, we do the
260 same forL . 5. Thereby, we show that the Lipschitz constants ofL . ; andL . o
261 tend to zero for|S ;|]—0. Thus, we obtain thatL . is a contraction for|S ;|
»%2  small enough and the contraction theorem gives the existence and uniqueness
»3  of afixed point of L ..

20 oL .1 is well defined.Since (t,r)— #]:(TO)IFE,IC ef({(t, ), r)do , is glob-
x5 ally Lipschitz continuous with respect torand measurable with respect tot

s ifCEL  2(S;H '(£2.)), Carathéodory’s existence theorem yields the existence
%7 and uniqueness of a solutionr . €W 1(S;)ll of (55). Moreover, the As-
%5 sumption (3)-(4) ensure thatr .(£)€[r min, Tmax] ! for a.e.teS ; and (6)
20 that ‘#T(To) fFa,k e f({(¢, x),r)dcrx‘ <C yc;t. ThusL . is well defined with

270 Le,l(o =T ¢ GVT’E<SZ-).
o Lipschitz estimate ofL .1.Let( 1,(2 €L *(S;H '(Q.)). We definer .; =
L. 1(¢) forie{1,2}and test (59) for(=¢ ; forie{1,2}withx (0 (reape —
reoy) forte(t i, ti11). We subtract both equations. Then, we obtain with the
Lipschitz condition (5) off, the Young and the Cauchy—Schwarz inequalities

%|r£,1,k(t)_r a,Q,k(t)|2 = (at(ral,k: -r 5,27k)7 Telk —T a?,k)(ti,t)

= #T(m)df(fl,ra,l,k)—f@ 2,Te2,k) Te b —T a,Q,k)(ti,t)xFE,k

<(Ce —V+ / Cr, (167, 2)=C o, 2) [+ cax(PD =7 conPNEers(D—1 con(P)doadt
(tist)XTe g

<Ce - | G _CQH?tht)XFE’k +O||T gLk —T 6,2J<3| ?ti,t)

After collecting all the constants and applying Gronwall’s inequality, we get
e k()= c2x(®)]* <Ce G =Collg,er, (60)

for everyteS ;, which implies with thees-scaled trace inequality

2 — 2
Six(ek+eY ™) +Ce 2 ||V<C1 _<2)| Six(ek+eY*)
(61)

Hrs,l,k -r 5727k||i°°((ti,t)) ch N HCI _CZ‘

After multiplication bye ¥ and summing overk€l ., we get

2 2
e = callioeaprzny =C5 ™ D lrenr =7 ol 0
kel

2
SCHC 1 _C2HL2(S¢;H1(QE)) (62)
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Moreover, (61) gives an estimate ofr .; —r .o in theL *°-norm with respect
to space, but at the cost of ane-dependency in the constant:

[Ireq =7 cll oo,y x0) SC el =Callpa(sm o,y -(63)

Then, we test (59) for(=( ; forie{1,2}witho tre1k —0Teop and use
again the Lipschitz condition (5):

‘ |atrs,1,k —0 trs,Q,k| ‘Z‘l
=N

= 500 Qe e) = f(C 2:me20),0ire e =0 iTepn)sixr.,

csSn—1(ro
S& N C(HCI _<2| SixTe i +€ (N-1)/2 ||T6,1,k -r s,2,k||Si)6(N_1)/2 ||atrs,1,k _8trs,2,k

<C(e TN ¢ =y

s,

s,
(64)

SixTe +C||T e,k =T a,2,k||si)||8tra,1,k _atra,Q,k

Inserting (60) in (64) and employing the continuity of the trace operator for
I'. ;; yields

€N/2 Hatre,l,k _8 trs,Z,kHSi gC{;‘ 1/2 HCl _C2’ SiXFg,k +e N/QCHT e, 1,k - 5,2,]@“51.

<C(L+ VISiD"? ¢t —Colls ., <Ce V2 IG0 —Collg xr.,, -(65)

After summing overk€l . and applying thee-scaled trace inequality, we get

Hath,l _atr&QHZ’ixQE = NCZ Hatrs,l,k _atrs,Q,kH?gi

kel
2 2
<eC|¢ 1 —=Callgxr., <CIC 1 =Callza(s,mi(q.)) -(66)

Furthermore, we can conclude with the fundamental theorem of calculus and
the Holder inequality for everyteS ;:

t
‘Ts,l,k(t)_r 5,2,k(t>|: at('re,l,k - s,2,k)(7—)d7—§||]'H S ||at7ns,1,k _a tre,2,k|’5i

t;

< VISHCG =Callpe(s, o) -
Thus,

|[req —r 572HL°°(SZ-><QE) < VISilCe |G _CQHLQ(Si;Hl(QE)) .(67)

Moreover, (65) gives with the trace inequality

||atra,1 _atr572||L°°(Q€;L2(Si)) SOE ||C1 _C2||L2(Sz’§H1(Qs)) (68)
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o oL 5 is well defined.First, we show the existence of a solution “u. €L ?(S;H (2.))
o withd 4(J."w)eL 2(S;;H '(2.)") of (58) using Theorem 4. With the regular-
o3 ity ofJ ., we can concluded ; u €L ?(S;;H *(€.)). Afterwards we test (58)
2 with "z which shows the uniqueness of the solution of (58) and thus that
o u=L .5(¢,r.) is well defined for every¢eL 2(S;;H *()).
Using the setting of Theorem 4, we setV=H 1({0.) andW=L 2(€2.). Let
¥,V . andJ . be given by (32)—(33). For eachte[t ;,t;11] andu, veV, we de-
fineA .(t) V=V by (A.(t)u)(v) = (A (t)Vu,Vv) .+ (B:(t)u,Vv) .. For
eachte[t ;,t;11] andu, veW, we defineB  .(t) :W—W ' by (B.(t)u)(v) =
(Jo(t)u,v)q.. For(,veV, we definef  .((-) :V—Rby

1(G0) = (Lf? 0)sx = 3 (

kel

Tn—l
£,

klgf(grs,k)av) .
SZ‘XF&)C

==
To

In order to apply Theorem 4, we verify its assumption in the following. The
Lipschitz regularity of fand the continuous embeddingH  *(Q.)<—L (T )
ensure thatf .(¢;-)€V / for every(eL  %(S;H '(€).)). Moreover, it is clear
that A (t)eL(V,V "),B ()eL(W,W ) for everyte[t ; t;+1]. Sincer . €
V,2(Si), we can conclude with Lemma 1 thatA .(-)u(v)eL (S) for every
pairu,veVandB  .(-)u(v)eL °°(S) for every pairu, veW. Furthermore,

it is clear that{B .(t)|t€[t i, tit1]}s a family of self-adjoint operators.
From Lemma 1, we get the time regularity ofJ . which can be transferred on
B. so that{B .(t)[te[t ;, t;y1]}is a family of regular operators. Using the
uniform boundedness ofJ . from below given by Lemma 1, we get thatB(0)
is monotone. It remains to show the estimate (48). Using the coercivity of
JoU-MW T given by Lemma 1, we obtain for everyve H  1(€2.) and every
te S

(A (t)VoVu)q. >a|| V| é .(69)

Using the estimates onV ., J. andd ;2. of Lemma 1 as well as the Holder and
Young inequalities, we get for everyd>0 a constantC' 5 such that for every
veH '(Q.) and everyte S

—(B:()o,Vv) o, <Cllol| o [[Vullg, <Csllollg, +6l[Vell o, (70)

Combing (69)—(70) with the definition ofA .(t) yields foré=a/2
A:(t)o(v) = (A:(t) V0, V) o, + (Be(t)0, V) o, 2a/2/[Vul| o —Capllllg,
(71)
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277

278

279

The estimate onJ . from below implies
B.(t)o(v)>c s [v]]5, (72)
and the boundedness off|0 ;7| (s,) <Ctogether with Lemma 1 gives
~B'(t)o(v) = (9 J(t)v,v)a. <Cllo]| o, (73)
Thus, we get

AB-(t)v(v) +B ' (t)v(v)=(Ae 5 —O)||v]| 5, -(T4)

Combining (71)—(74) forA= (a/24+C-C ,)2)/c; gives (48). Thus, we have
shown that all prerequisites of Theorem 4 are fulfilled and we get a solution
‘wel 2(S;;H () withd (J."weL 2(S;H '(Q)'). Then, the regularity of
J. implies thatd ; "u=(0 +(J. &), J-* ). —(J 10 J. "1-) o. €L *(S;;H 1 (2.)').

In order to show thatL ., is well defined, it remains to show the unique-
ness of the solution of (58). Due to the linearity of the equation (58), it is
sufficient to show that "“u= 0, if ) = 0, fep = 0 and f= 0. Therefore, we
test (58) with the solutiony () “sforteS ;, which yields

t

/(at(Js(T)A@(T)%A%(T»Qedﬂ‘ (A VUV U)o + (B 6wV u) 1, 1yxa. =0,
ti

(75)

We note that the left-hand side of (75) can be rewritten to

t

0.0 u0), we)adr= ]

ti

VI )], +

8t=] & Té)(t )X Qe s

E

(76)

thus (75) becomes

VI (t) ut) ’ + (AV 7y V© %)(t £)x Q.
s uV’© u)(ti,t)sz - §(at<]eA%A@)(ti,t)x98~(77)

(B

20



Using the uniform boundedness from below ofJ . and the coercivity ofA .
given by Lemma 1, we can estimate the left-hand side of (77) by

<ifvam |, +

2

_+al|V©

AV (TAVA lé)t £)xQ. -
(78)

ser | ult)

E

The right-hand side of (77) can be estimated with the Cauchy—Schwarz and
Young inequalities for arbitraryé>0 and a constantC' s by

—(Bs A%VA%)(ti,t)ng - %(atjs A@A%)(ti,t)xﬂg
SCE”VAU‘EH?QJ)XQ +C's ||Ayl|?tl-,t)><ﬂ +C||Au€||?ti,t)x§2 (79)
After combining (77)—(79) and collecting all the constants, we get foré=a/2

1 R
seallus()l, + (a=a/2)|IV u.

9 A2
(ts,t) X Qe S(C /2 +C)|| uaH(ti,t)XQg

20 Then, Gronwall’s inequality shows “w= 0 which gives the uniqueness of "u
261 and thusL .5 is well defined.

e Uniform bound ofL (¢, r.).In order to derive a uniform bound for “wu,
we test (58) withy «, . ufor a.e.t€S ;, which gives

t

/@(JE(T) un), w (7)) o.dr+ (A SV u V) pxa. + (B uV 4, 0%

t

N Tnfl R
= (Jaff, @)(ti,t)xﬁe - E (72%1 5f€(€7 ra,k)v 1&) .
0
kel (tivt)xre k
(80)

We rewrite thefirst term of (80), similar to (76), by

t

/ (Ou(-(7) (). 1e(7)) .

3| exo)

N,

atJ & @é)(t )X Qe -
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282

Thus, (80) can be rewritten into
Hv )"u \

kel

AV UV W 10, = (JofP W @ nxa

E

ACran), u) (B uY W o,

(t‘ t)XFe: k

— (0. "0 W) ¢, ) x0. + ‘

Thefirst two terms of the right-hand side of (81) can be estimated with
the Cauchy—Schwarz and Young inequalities and thee-scaled trace operator
(117) by

(Jgff,ATé)(ti,t)ng o Z (:2:21 f(g Tsk) u’)

kel. (tit)xTe
gc‘f?2 e e
<C+||"u maxé‘ISiHTlerC "l |Gy
<C+C +4||V” uEH?thQE (82)

Similarly, we obtain

(Bs ZJ,V lé) t)xQe =
- §(ath 8w <. <C||°

v v,

Combining the estimates (78), (82)—(85) with (81) yields fordsmall enough
and after collecting all the constants

~ 2
" u®)]l,

Then, Gronwall’s inequality implies

1" u(t)llg,

+4]|V" UEH i )X Qe ,(83)
,(84)

;E <C k. (85)

<C g +C||AU€||?ti,t)><Qg '(86)

<Ckg (87)

for a.e.teS ;.
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By employing (87), we get from (58)
Hat(JEAy’)HLQ(&Hl(QE)/) SO K<88>
Moreover, we get withd ; "u=(0 ((J. "v), J ')q. —(0J. "u J7 1 )q.

-1
‘ |W1 ©(Sx0e)
C KCS —|—CK SC K75(89)

100"l 25,0110,y 110 (e )||L2(SH1 0.y

[0 eIl oo (s |7 1HL°° SxQ.) =

oL -estimate ofL .2(C,r.).Let “ucls, ==L .2(( 7e) forr o €V, ((0,ti41)).
Then, “wcan be extended to a solution of (44) on the time interval (0,%;41).
We define

“ut, x)—kif “u (¢, 2)>0,
P(t,a) = g HETITRE 020 (90)
0 if “alt, z)<0
forkeRwithk>max ‘ e H + 1. Testing (44) byx (0,0 g% yields
86(0,1) LOO(QE)

t

/@t(JsA@L)(T)ﬂff) (M) a.drt (A VA Vi) pxa. + (B "V 1) 0.

0
~ 7‘"—1
= (Jf2, ) 0.0 x0. — Z (T(f);kls “u, ), ) .
(O,t)XFE’k

kel.

We rewrite thefirst term by

t

/ O (1), () = L

0

2
YZORGIOIN
Sincek>|[u -(0)|[ (., We get

VI ||

+%(athAZ=’eAzgk )(0,6)x % + (OpJck, ?i

€

1
2

+ (AV P V) 0 yxa. =—(B < uV ) 0,0,
—% atj &, Zék (0,£)x Qe ——&:Jl{? é Ot)xQE

"i_(Jef;):Aék))(o,t)xﬁ8 - Z ( 5f Y, Tek ék )

kel (Ovt)xrs,k

(91)

1
2

23



Using Lemma 1, we can estimate the left-hand side of (91) by

HVE® W), + a7 .94
> 5| @) HQE o Hvﬂc H(O,t)XQS (92)
For the right-hand side of (91), we get with Lemma 1

_(BaA%vnéfk))(o,t)xﬂE :_(B aAﬁc)aVAék))(O,t)xQE _(B akavAék))(O t)xQ
<C |["B | g.yxa. IV E 00+ fuzmy 1V ] 000,
<eC HA?f)H?o,t)xQE +eC HVAﬂC)H?O,t)sz +€HkH %”@Zk} ’(93)

where{ "« >k} ={(t,2)€(0,t 4+1)xQ o | w(t,x)>k}. Similarly, we get

—20, ) 0 yxe. <

(94)

‘ ’ (0,t)xQ ?

(=72 800, <A iy 1] g, <

(95)

—Z( e f(Cura), 12”)

kel. Ot)XFE,k

’ )HLl((O,t)xQE) +eC HV gC)HLl((O,t)XQE)

<CIU oy 1" ooyxa, TECUU frmmy IV N 00000
~ 2 " 2

<C s 1oy T 18 000, 70 1V ] ), -(96)

‘ |L1((0,t)><1“5)

We choose delta small enough, combine (91)—(96) and collect all the con-
stants:

1@, + 1V Vo n e C 1| ea, +CF 21{us >k}(97)

Then, Gronwall’s inequality implies

N 2
oenozz@n T Y P10, xa, SOk 2H{us 2k}(98)
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284

285

Likewise, it can be shown that

]|V (=0® <Ok 2| {u. 2k}|(99)

| ‘(_ 27 ¥ | ‘L°°((07ti+1)§L2(QE)) ‘ |(0’ti+1)XQE

Thus, we can conclude with [23, Theorem 6.1]

||A%L||L°°((O,t,-+1)><QE) <C'.(100)

We note that the constantCin (100) is explicitly given in [23, Theorem 6.1]
and depends also on the embedding constant of

L=((0, T);L *(Q:))NL *((0,T):H H(Q:))—L "((0, 7)< )

for suitabler. However, using the extension from Corollary 14 this embed-
ding constant can be chosen independent ofe(cf. [24] for a more detailed
discussion).

e Lipschitz estimate ofL .o.Letr .; €V ,.(S;) withr .1(t;) =r .2(t;) and
G €L?(S;HYQ.)) forie{1,2}. We define "u .; =L .o(¢;,re;) forie{1,2}
as well astp .; andV . ;, J.; by (32)—(33) forr . =r ., andA ., ==J ., V_ 1\11“ ,
B.;, =J . ;V_ 18t¢“ We test (58) forie{1,2}withy (o) (C#1 — 1@,2) and
subtract the correspondmg equations:

t

/<3t(Ja,1(T)Au,1(T)—J e2(7) "ua(7), w1 (1) = "u-a(7)) o dr

ti

+ (A1 Viur —A V7w, V( w1 —"w2)) wx.

+ (Be "s1 =B oo 12, V(Tu1 —"w2)) ) x 0.

= ( € 1fp(‘ta¢e 1(‘t7' :c))_ € 2fp('ta¢a,2('t,' x)),AU:,l _A%,Q)(ti,t)xﬁg

—€Z<Elk (Crsrene)— :‘;—“ (C2: e o), %1—@,2) .(101)

t;,t)xI'
kEIs (z ) e,k
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Employingr . 1(t;) =r -2(t;) and " (t;) = “we(t;), we can rewrite thefirst
term of (101) into
t
SO0 ()= a(0) w2 ()= ()
t;

+ %(atjs,l(Aéél —"u2), u _A%,Z)(ti,t)ng

£

VO Cao -]

+ (0u(Jeq —J c2) w2, U _Aqé,2>(ti,t)><(25
t

+/<3tA@42(T),(Je,1(T)—J e2(1)("ua ()= "uea(7)) o

t;

Thus, we can rewrite (101) by:

VTR0 wea®)],

=— %(8tJ5,1(Ay,1 —A%,z)f'té,l _A'Lé,2)(t¢,t)><§ls —(815(:]5,1 —Js,z) A&ézflé,l _A'Lé,2)(ti,t)><ﬂs
t

—/<3tA%42(T)7(Ja,1(T)—J e2(7)) (" (1) ="uca(n)) o.dr

+ (Aca V(T2 —"12), V(41 — %2)) @0 x0.

Il—f—IQZ:%

t;

—((A el —A 5,2)VA?EL,27V(A@,1 —AUg,z))(ti,t)ng —(B e,1 A@h —B e,zA@éz,V(A@,l _AUz,2))(ti,t)><Qs
+ (Ja,lfp('tawe,l('ta' x))_J a,2fp('t7w5,2('ta' :c))f@,l _Alé,2)(ti,t)><QE

T,nfl 7’” 1 N R
e > (B G rari) — S (o) s~ w2)
kel 0 0 (ti,t)XFE,k

IZIg+I4+Iﬁ+I7+IS+Ig

(102)

26 In the next step, we estimatel |, I from below andl[ 3,..., Is from above:
I1,I 5:Lemma 1 implies:

VTR0 Can )= weae))| [

(At V(T = 42),V(Tu1 = w2)) x>V (T — 1w )|

> g || () =2 (0|5, (103)

2
(ti,t)xQe -~

(104)

13:Using Lemma 1, we get:

—5(0Jen (T —"w2), g —"w2)yxa. <O uey —A?é,2||?ti,t)xgs .(105)
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I,;:Application of Lemma 2, (87), the Cauchy—Schwarz and the Young
inequalities yields for everyu >0 a constantC' ,, such that:

_(at(t]al _Ja,2) AH%Alé,l _A%,Q)(ti,t)xﬁg

<Cl9 y(req —r 872)||L00(QE;L2(ti7t)) ||A?9€2||Loo((ti7t);L2(QE)) "u1 —"w (tit)x Qe
SCH@ t(ra,l -r €,2)||LOO(QE;L2(ti7t)) Ck ||A@,1 _AU,T,QH(ti’t)XQE

2 ~ - 2
<pl|0 ¢(req —r 6,2)|’L00(QS;L2(t,-7t)) +C kC,, " — %,QH(ti,t)XQE (106)

I5:Application of (89), Lemma 2 the Cauchy—Schwarz and the Young
inequalities yields for everyd>0:

t

—/<3tA%42(7)7(Ja,1(T)—J e2(1)(Tua ()= "uea(n)) . dr

t;
<10 s2ll 2 oy (1en =T el o(uayxany HIVTer =T e2)ll 1, 0 20))
U s = w2l w0, TIVCwr ="w2)ll i, 0x0.)
<C e lIre =7 call o ey (1t =l i, IV =02l )

<Crkesllres —r 6,2||ioo((ti7t)><gs) +{ g =" ?ti’t)xga +O|V (Tt —"w )| ?ti,t)xgs :
(107)
Is:We estimate similar as (107) and use (87) and Lemma 2:
(A1 —A2)V 7w, V("uy _Alé,2))(ti,t)><ﬂg
<Irex =7 eall g myxan IV 8e2ll @ xa, IV ="w2)ll g, 1 xa,
<O ke llreq =7 el iyeon) TNV ten = w2l o, (108)

I7:The Cauchy-Schwarz inequality gives
—(B &1 AHI —B.> A%t,2,v( A@,l _A%,Z))(ti,t)xﬁg
<[IB a1 =B e w2l yxa. IV ="w2)ll 4, 1 x0. (109)
Using (100), Lemma 1 and Lemma 2, we get
1Bea s =B ep w2l g, yyxa. =I[(B ey —Beg) aul
SHB e,1 _B e,2| (ti,t)XQa +5C||Aue,1 _Alé,2|

§50| |'r el —T €,2|

(ti,t) X Qe +||B€:2<A@91 _Au«'ﬂ)| (ti,t) X Qe

(ti,t) X e

(<) TECHO e(ren =7 c2)ll 1, o
—|—8C’||Au571 _A%v2||(ti,t)><ﬂs (110)
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Inserting (110) in (109) and applying the Young inequality yields

—(Bep tn =B oo w2, V(" w1 —"%2)) 1,6 x00

<ellr c1 =7 collfme(ayxan) TECHO t(rer =7 <o)l wa. +ECI uer = walll,, o
+e|V(Cten = w2l o, - (111)

Is : By the same procedure as in the estimate ofl ¢ and employing that
fP is Lipschitz continuous in eache-scaled cell, we can estimate:

(Jalfp('tawal('ta'a:))_J 872fp('t7¢a,2('t7'x));Alé,l _Aié72)(ti,t)><ﬂg
= ((Jeq =T ) fPCt0 1oy ) T e2(fPCetben (o a))—f PCetben(er2))), %1 — % 2) (nxa.
<Clr cp —r 5a2||i°°((ti,t)><§l€) +ClY cq =¥ (ti ) X% +O uey =",
<Cl|r cp -1 €,2||ioo((ti,t)xg)e) +C[| e _A%,2H?ti,t)xgg (112)
Iy: Using the Cauchy-Schwarz inequality gives
=1
52 ( Elk (Cryrepp)— O—Tf(Céﬂ’st) U1 —AU;,2>

kel

(ti,t)XFS’k

(113)

nfl 71*1
rn—l (Clarsl) i—’irf(C%Ts,Z) ||A?€€1 —"u,
0 To (ti,t)xTe

We estimate thefirst factor of the right-hand side of (113) using the
Lipschitz continuity of fand the boundedness ofr .; andr .

<e

G ren)— B fCorrea)|, S e ||
n—1 )y L E, T(r)z—l )y L E, (ti,t)Xl—‘g —J max Tg_l (ti,t)><1"€

+C||f(g 17T671>_f(c 27T8,1) (ti,t)xTe +C||f(§ Zvra,l)_f(g 27T672) (t3,8)xTe
e VPCr ey —r e2ll oo (1t x0.) € “201¢ —Callr2(s,m(an) -(114)

Combining (113)—(114), applying the Young and thes-scaled trace inequality
(117) as well as the estimate (87) yields:

,r_nfl Tnfl R N
82 <7§—i1f(C1,7"5,1,k)— TZZQ_”ff((mTe,z,k), %1 %,2)

kel
SC(HT el T 572|’L°°((ti,t)><Qg) +||<1 _C2HL2(Si§H1(Qs)))
(Cs ll"wr =", V2]V (Cug — )
2 2
SCHT el —T 572HL°O((ti,t)><QE) +IUHC 1 _CQHLQ(Si;HI(QE))
+C .G || w1 —"u, W' 2OV (g —"uo)

(ti’t)xrs,k

(t:,6) x Qe )

2
(ti )X Q% (115)
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287

288

290

291

292

Now, we combine (102) with (103)—(115). Then, we choosecanddsmall
enough such that the gradient terms on the right-hand side, which arise in
the estimates of (107), (108) and (111) can be compensated by the gradient
on the left-hand side. After collecting the constants, we get fore<1

1Mu1 () ="uea(t)|lg, + (1=eC=6C [V ("1 = wa)l]]
<(C K, +C§CM)HA@,1 =

(ti,6) %X
+uCl|0 ¢(req — EQ)HLOO(QE;L?((ti,t)))

2 2 2
+5CH8t@hl_Tsﬂﬂhmﬁxﬂe+{7Kﬁﬁ“T&1_TEQHLm«%ﬂM%)+NCm<‘1_C2HHQ%HWQay

Then, Gronwall’s inequality gives
" (8)— e (B[, + (1—eC=6C IV ("ug = w2)||:
<exp(S41(Cicg +C 5Ci)) (O u(res =1 )l g oo

2
+C ke llren —r 5,2||Loo(sixgg) +uCl[¢ 1 _C2||L2(Si;H1(Qs))>

) TeC]

’a (rs,l _T5,2) 21

(116)

e Lipschitz estimate ofL. ..We combine (116) with (66),(67),(68) and get for

rei =L :1(¢) forie{1,2}:

(1—eC O —6C L A(Q)~L (25,0 @)
= (1—50 @ _5CF(L2))||L572(C17T671)_L 62(§2)r€ 2)||32 S"Hl

<exp(19 il(Crep +C 5C)) (BCUO 1ot =7 <2) [} wirsrags

2
+C ke Iren =7 callieqs,cy +1CIC 1 =Col Fagsan o »)

(€2))
+EO|

2
|a (7‘5,1 -r 872)||Si><QE

3 4 7
<exp(|S|(CE), +C OO (eC® +C ) 51Sil+uC BNIC1 —Callas ) -

where we have added the superscript at the constants in order to clarify
the followmg choices of the parameterpandd. First, we assumee<

max{(4CM)~1 (24C )~1}. Then, we chooseu§(24C'

(8)) 1

, afterwards

we choosed<(4C' 9)’1. Finally, we chooseo . <max{ln(2)(C S)u +

C§4)Cﬁ5))_1,(246’9&’5)_1}andL - becomes a contraction for|S ;|<o . k.
Hence there exists a unique solution of (32)—(33), (54)—(55).

Rescaling the trace inequality of the reference cell ontof? . yields for every

6>0 a constantC' ; such that for everysandue H  '(.)

2 2 - 2
lullpq, <edllVull o, +& 7 Cs llulliaq

29
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307

308

309

310

311

312

313

314

315

316

317

4. Derivation of the limit problem for the periodic substitute prob-
lem

We use the notion of two-scale convergence which was introduced in [8]
and [9].

Deﬁnition 3 (Two-scale convergence).Letp, ¢,p s, ¢s €(1,00) with %—i—
=1 and + — = 1. We say that a sequenceu . inL P+(S;L P(2)) two-scale
converges Weakly tou o €L P+(S;LP(2xY)) if

lir%// ue(t, x) t x, d:):dt— /// uo(t, z,y)p(t, z, y)dydxdt(118)
E—

SQY

for everypeL 9 (S;L 9(;C »(Y))). In this case, we writeu . 22" —=—u
Moreover, we say thatu . two-scale converges strongly tou ¢ if additionally

S5,

liir(l) el pos (5.0(0)) =l Los(s.0(@xs))- In this case, we writeu = 0-

The notion of two-scale convergence provides the following compactness
results. Proposition 7 and Proposition 8 are time dependent versions of
compactness results that can be found in [§].

Proposition 7.Letp 4, pe(1l,00)and letu . be a bounded sequence in
LPs(S;LP?(Q2)). Then, there exists a subsequencesandu o €L P*(S;LP(2xY))
such thatu . 22—y

For the sake of simplicity, let in the following proposition the domainf2 . be
given as in the previous sections andY * =Y\B , (z)s) (for more general
domains cf. [8]). We use “in order to denote the extension of functions which
are defined onf) . orQ .(¢) by 0 to©2. We use it also for the extension by 0
toYfor functions which are defined onY” * or onY * withre[r i, Tmax]-

Proposition 8.Letp 4, pe(1l,00)and letu . be a bounded sequence in
LP<(S;W 1P(Q.)). Then, there erists asubsequenceeand(u 0,up)EL P=(S;W LP(Q)) x

Lps(S;LP (W 1p(Y*)/]R))such that uy 222~y ynd Ve 220~ —-Noyo+
Vyul.

In order to have (1) commutative, we use the concept of locally periodic
transformations, which was introduced for the stationary case in [14] and is
extended to the time-dependent case here:
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330

331

332

333

334

335

336

337

338

339

340

341

342

343

Definition 4.We say a sequencet) . :Sx Q— , is a sequence of locally
periodic transformations if
1.9 . €L =(S;C 1 (Q)V,
2. there exists a constantc ; such thatJ .(¢)>c ; for a.e.t€Swith
J(t,x) = det(V.(t,x)) and¥ . =D ,9.(t,x),

3. there exists a constantC' >0 such thate | ‘QZJE| ‘LOO(S~Ci(§)) <Cforie

{0,1}, where 9.(t,z) =1 .(t, 2)—xis the corresponding displacement
mapping,
4. there existsy o €L *(SxQ;C 1(Y)) N, which we call limit transforma-
tion, such that
(a)y o(t,z, ) :Y=YareC  !'-diffeomorphisms for a.e. (¢, z)€SxQ
with inversesy ;' (¢, 2, ) fory -1 €L *°(SxQ;C (Y)Y,
(b) the corresponding displacement mapping, defined for a.e. (¢, z)€
Sx by %(t, z,y) =y o(t, z,y)—y, can be extendedY-periodically

such that ¢y €L *(SxQ;C L(Y)) N,
(c)e ~1p=—Esfy andV @/V)gﬂévyﬂo for everype(1,00).

For a.e. (t,2)eSx, we denote the Jacobian matrix and determinant of

yf—>77Z) 0(t7 &Z, y) by\IJ O(ta x, y) =D yw0(t7 x, y) andJ0<ta X, y) = det<\110(t7 x, y))
Moreover, we denote the displacement mappings of the back-transformations

by ¥ (t, @) =y Mt x)—zand oy (L @, y) = o (L T, y)—y.

Notation 1.For a functionu, we introduce the following notations:

uy, (t, ) =u(ty (t,2)), w1 (t, ) =u(t,y Tt ),
Uy (t, 2, y) =u(t,z,y o(t,z,y)), uwo_1(t,x,y) =u(t,z0 ot 2,9)).

Remark 1.Lety) . be a sequence of locally periodic transformations in the
sense of Definition 4. If additionallyd . €L P=(S;C( Q)N forp , >1,

we can concludey . €C( S;C( Q))N, which allows us to evaluateQ .(t) =
V. (t,Q,) for everyte 5. Moreover, ifd 1)y €L (L7 (S;:C(Y))) N, we
gety) o €L *©(Q;C( S;C(Y))) N which allows defining the local reference cell

Y(t) = o(t, z,Y™*) for a.e.xeQand everyte S.

In our case, wherey . is given by (32), we can show thatiy . is a locally
periodic transformation in the sense of Definition 4 ifr . converges strongly.
In order to prove this, we use the unfolding operator

LP:(S;LP(Q))—L P=(S;LP(QxY)), T cu(t,z,y) =u(t,z] .y +ey).
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345

346

347

348

349

350

351

352

353

354

355

It allows us to rewrite, two-scale convergence as convergence inL P (S;L P(£2x
V), iew . 2P pifand if onlyT cu. —u o inL P+(S;LP(QxY)). In our
caseT . is isometric, because{2consist only on wholeec-scaled cells. Thus,
u—2% o if and only ifT .u. —u o inL Ps(S;LP(Q2xY)). Moreover, the
unfolding operator can be defined for the periodic boundary in the same
way, i.e.

LP:(S;LP(I.))—L P(S;LP(QxD)), T cult,z,y) =u(t,[z] .y +ey).

In the limit process, we use the following properties of7 . which can be
found in [25]: ForueL P=(S;W P(Q)) it holdse 'V, Tcu=T .V, uand for

wel P+(S;LP(T.)) it holdse [ [ u(t,x)do,dt= fff’Tu (t,z,y)do,dxdt.
S T. sQr

Lemma 9.Letiypbe defined by(25)andy) < by(32), whereRfulfils the
assumptions(26)—(29). Letr min <r -x(t)<r m.x for everykel . and
a.e.teSand assume thatr ek () Converges strongly torinL — '(SxQ).
Then,y) . 1s a sequence of locally periodic transformations in the sense of
Definition 4 with limit transformation

¢0(t7 Z, y) :¢(T(tv I), y)(119>

PROOF.The properties 1-3 of Definition 4 follow directly from the construc-
tion oftp . and the uniform boundedness ofr . x(¢) from above and below. The
strong convergence ofr . () tortransfers this boundedness to its limit:
Tmin <T(t, 2)<r pax for a.e. (t,2)€SxQ. Thus, the properties 4a—4b of
Definition 4 follow from the construction ofy .

It remains to show Property 4c, which is equivalent to the strong conver-
gencese ~'To). — by andT Vo, =¢ ~'V, Tob. — Vg inL P(QxY). Due
to the strong convergence ofr ek(-s), We can pass to a subsequencessuch
thatr . () (t)—=r(t, x) for a.e. (t,2)€SxQ. Employing the continuity of
r— (r,y) andr— V ,(r, ), we obtain:

5_17;77/35(757 r,y) = 7vZ’<7"6,l~cs([nz:}s,y-kaz»/)(t>={[x] &Y +ey} 6,Y> = 1&(7’87;%@)(25), y)— 1[’(7"(75’

ﬁvxr&a (tv ZL‘, y) =€ _1vy7;¢€ (tv l’, y) :v y@L(Ts,ks(x) (t)’ y)_> V y@L(T(tv I)? y)

for a.e. (t,2)eSxS). Since these functions are uniformly bounded in
L>(SxQxY) we obtain the convergence of these functions inL, P(SxQxY).
Because the argumentation holds for every arbitrary subsequence, we obtain
the desired convergences.
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356 We obtain the strong convergence of the Jacobian matrix and determinant
57 of the transformations:

s Lemma 10.Lety) . be a locally periodic transformation in the sense of Def-
0 nition 4 with limit transformatiom) o and Jacobian matrices and determi-
wo nants® ., J.Uo, Jo. Then,U —25%0 . J —25J o, U E_lﬂ»\If o for every
361 pE(l,OO).

32 PROOF.Lemma 10 is the time-dependent version of [14, Lemma 3.3] and
3 can be proven analogously to the stationary case there.

s« Using the notation of locally periodic transformations, we can show that the
s two-scale limit and the transformation commutes in the following sense:

36 Proposition 11 (Two-scale transformation).Lety) . be a locally peri-
7 odic transformation in the sense of Definition 4 with limit transformation
s g Letp s, pe(l,00)andu o, u =u (4,00 (-4, 2))EL P(S;LP(Q)). Then,
w0 the following statements hold:

370 lu o 22 fomu o €L P+(S;LP(QXY))if and only if v . 22~ —foru

. “8=u 0,4, and equivalentlyu o = Ay%l;

372 2u B o foru o €L P(S;LP(QXY))if and only if u ——2uy for
373 "= 0y, and equivalentlyu o = A@)g%_L

s PROOF.Statement 1 is the time-dependent version of [14, Theorem 3.8] and
ws statement 2 is the time-dependent version of [14, Theorem 3.14]. They can
ss  be proven analogously to the stationary case there.

377 We can apply Proposition 11 for functions defined on the porous subset
ss by extending them by 0 to{2. However, this can not be transferred directly
ss to the case of weakly differentiable functions because the extension by 0 is
0 not regularity preserving. Therefore, we use the following transformation
;1 rule for functions defined on the porous domain.

382 For the sake of simplicity, in the following Proposition let the domainsS .
3 and(2 .(t) be given as in the previous sections andY” *(¢) :=v o(t, z, Y*).

1 Proposition 12 (Two-scale transformation of gradients).Lety) . be a
s locally periodic transformation in the sense of Definition 4 with limit transfor-
s mation) o. Letp 5, pe(1,00)andu . €L P*(S;W P(Q.(1))), w =u (4,0 (-+, )€
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392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

LP+(SW 12(Q.)), whereQ (t) = (tQ.)for a.e.t€S. Then,  Vu, 22—
N o () Vatto Vg Jor(u o,un) €L 7 (S5 59(Q)) x L= (S,L P(Q:W 37 (V2 (1)) /)
if and only ifﬂ Rt AN gy\fufm”uj = g and u =u 1 4, +xy+Uo-

Vg, which is equivalent tou | = Aﬂ%,l +x Y(*.z)(-t)wo_l v

PROOF.Proposition 12 is the time-dependent version of [14, Theorem 3.10]
and can be proven analogously to the stationary case there.

In order to homogenise the non-linear boundary terms of (17)-(18), we
need a strong convergence of “x This can be achieved by extending the
functions with the following result (cf. [26], [27]):

Proposition 13.There exists a family of extension operatorE . € L(H *(Q.);H *(Q))
such that

|| EBeucl|g <Cllu €||Q6 IIVE  cucllg <Cl|[Vu €||Q£
for everyu . €H ().

Applying Proposition 13 for a.e.teSgives the following time-dependent
version of this extension operator.

Corollary 14.Letp 5 €[l,00]. There exists a family of linear extension
operatorsE . fromL P+(S;H ' (Q.))toL P+(S;H *(Q2))such that

||E€u||Lps(S;L2(Q)) <Cul| LPs (S;L2(Q2)) ,(120)
HVEEuHLPS(S;LQ(Q)) <C||Vul LPs (S;L2(02)) ,(121)
[|Ecu(®)l]g <Cllu®)]| q. (122)

for everyue L P+(S;H '(Q.))and a.e.teS.

In order to show the strong convergence ofF . u, we show the uniform
convergence ofd ;, “uto 0 forh—0, where we defined  ,p(t) =p(t+h)—p(t)
forh >0 and time dependent functionsy. Then, we apply the compactness
result of [21]. This approach has been presented in the context of homogeni-
sation in [28]. However, in our setting the uniform convergence ofd , “u can
not be concluded from a uniform bound of the time derivative as in [28] since
O u=(0 ¢(J."8), J V. —(04J: " J7)q, is not uniformly bounded in our
setting. The critical point is thee ~!-scaling of V.J .. Therefore, we derive the
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408

409

410

411

412

413

414

415

416

417

418

uniform convergence ofd , “uto 0 from the weak form in Lemma 16. In order
to get rid of theV.J . term, we integrate the solution “u over a byh-scaled
time interval before we use it as test function in the weak form. Thus, we can
shift the time derivative on this more regular test function and it becomes
sufficient to estimateJ . instead ofV.J ..

Lemma 15.Let"u . be a sequence inL *(S;H *(£2.))such that
||A%LHL2(S;H1(Q€)) <C, (123)
|](5hAM](O7T,h)XQE M()umformly with respect toe.(124)

Then, there exists"uy €L 2(SxQ)and a subsequencessuch thatE - U con-
verges strongly to"uy inL 2(SxQ).
Proor.LetE . "ube the extension of "z Then,

H(;hE€AgM(O,T—h)><Q SCH(S hAy“(o,T—h)ng —0 (125)

converges uniformly (with respect tog) to zero forh—0. Moreover, we can
estimate for every 0<t | < to, <Swith the Holder inequality

2
to to ) to )
/Egy(t)dt - / (/E;y(t,x)dt) d+ /(/VE;y(t,x)dt) dz
ty H(Q) Q t1 Q t1
< / 1[5 / (B ) (t, x)dtdz+ / 1] / (VE. "w(t, x)dtdx
Q S Q S

~ 2 ~ 2
:|5| ||E e %4|L2(5;H1(Q)) SCH u5||L2(S;H1(Qs)) <C.

to
Since [ E. #(t)dtis uniformly bounded inH '(2), it is compact inL ().
t1

Thus, we can conclude with [21, Theorem 1] thatE . “uis compact inL ?(S;L %(Q2)) =
L*(SxQ).

Lemma 16.Let" u . be the solution of(32)—(33),(44)—(46), then
16" 4] 0.7 nyx. =0 (126)

forh—0uniformly with respect toe, i.e. there exists a continuous mono-
tonically decreasing functionw: [0,00)—Rwithw(0) = Osuch that

||5hAyH(0,T—h)><QE <w(h)

for everyd>0.
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PRrROOF.First we note that
On(Je"w) =J 6p w40 pJ: "a(-+h).
Thus,

CJ H(;hAyH?O,T—h)xQE <(J On w0 n "W 0,r-h)x0.
<6 n(Je"2),0 0" ) 0. 7—nyxe. | F1(0 nJe"a(-4h),0 b 4)0,r—n)x0.|-(127)

Since||0 i7e|| poo (5. <C; Lemma 1 implies||0 1 Je|[ o (g.0(00)) <Cand thus,
we can estimate the last term of (127) by

|(0nJ2 "u(-+h),0 hA@)(O,T—h)XQE’§|Ch(Aus('+hf)75 hAy)(O,T—h)xQJ
<Ch|"u:(-+ +h)|| (0,7—h)x Qe ||A?EL||(0,T—h)><Qe <Ch.

a0 Hence, it is sufficient to show that (0n(J:"2),0 5 %) (0,1—h)x0. converges uni-
a0 formly to zero forh—0.
We note that we can rewrite thefirst term in (44) forpeL  2(S;H *(£2.))
withd ;peL 2(S;H *(€.)) by

/ (Ou( ()" H(1)) o 1)) .l

S

==(01p, J: "W sxa. + (J(T) "u(T),¢(T)) a. =(J(0) #(0),¢(0)) q..

Now, we assume thatoe H 1((=h,T);H () withp(—h) =p(T) = 0.
Then, we test (44) withd _ppand use

(Orp(-+ —h), J - Wsxa. = (Owp, Je(-t +Dh) “u(-t +h)) (—hr—n)xa.,(128)

which yields

(Or0,0 n(Je"1) (0.7—-n)x 02

=—(0p, Je(-t +h) "u(-t +h)) (—=h,0)xQ T (O, JsAy)(T—h,T)XQ .
+ (J=(0)"2(0),0(0)) . =(J (1) "u(T),0(T=h)) «.

+ (A V7 ul), VO _pp)sxa. + (B:(t) "ut), VI _np)sxa.

~(J OO n@)sxer. + 3 For (e ult) ren(D) S nf)gr,,

ry
kel

= My +--+M s (129)
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Now we choose

t+h

t) =h ! / "u(7)dr(130)

where we implicitly extend “2(7) by 0 form> Tand forr<0. Thus, we get
for a.e.teS

h=1 " u(t+h)t <0,
Op(t) = ¢ K 1("ut+h)—"u (1)) 0<t<T-h, (131)
—h~ 1 u(t)t > T—h.

Then, the left-hand side of (129) can be rewritten by

(0,0 n(Je ") 0,r—myx2. =h ~1 (0 w8 n(J: 1) 01—n)xer.-(132)

w21 Hence, it is sufficient to show thatM {, M,, ..., Mg are uniformly bounded
w2 forpgiven by (130).

oM 1,..., My.Since||"u || po(s.p2(q.)) SO, we can estimate

—(h - "+ +h), J (o +h) u( +h)) (—h,0)x Q% <C,(133)
My = (h™" " Je wr—nnxa. <C, (134)

M; = (JE(O)Ay(O),h_l/ Ay(T)dT)QS <C,(135)

My = (1.(1) (D), / A@A(T)df)gg <C.(136)

oM 5,M ¢ andM . We show the estimate forM 5. The estimate forM ¢
follows analogously and the estimate forM 7 is similar. We rewrite

My =h~! A
5 =h /( (V7 u(t) /Vy dT)Qadt
t—h
t+h
—h 1/ (V" u(t) /Vy dT)Q dt=: My, +M s,
S
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Then, we get with the Holder inequality

M, <h ! / / IV w(t)||g, |V ult—h7)]| g didr

<Ch ™ / IV tllsxq, IV 4l =47 g0, dT<CIV u |50, <C

»3 and by the same argumentation we can estimateM s,.

oM g.We splitM g into two sums as we already did forM 5. We show the
estimate for thefirst summand. The estimate for the second summand can
be done in the same way. With thee-scaled trace inequality, the uniform
bound ofr . and fwe get

Y (S )

kel t—h

h

<! / / " u(t—h-r, @)\ drdadt
0 kel gyT,,

<eCl|” uEHLl(SXFS) SOHAUEHLI(SxQE) +C€||VAUE||L1(S><QE) <C.

2+ Combining the estimates of M 1, M, . .., Mg shows, thath =1 (6, w0 1 (J- "#)) 0,7—n)x0.
s is uniformly bounded and hence that (65, “#0 (J: "#))(0,7—n)x0. converges uni-
a6 formly to 0.

Theorem 17.Let("u ., r.)be the unique solution of(32)—(33),(44)—(46).
Then, there exists for every subsequence a further subsequenceesuch that

Tgt2—’2>%x v o with respect to theL * —norm,(137)
Vu iQ—\—y»—VXA@H— 6;/@ with respect to theL * —norm,(138)
Te k() —TINL (S, LP(2))for everype[l,00),(139)
O () —0 ¢1inL P(SxQ)for everype[l,00),(140)
wr where("w, y,r)EL *(S;H '(Q))x L (S;L2(QH 4 (Y™*)/R))xW>(S;L 2(2))

w8 18 a solution of(141)—(142).
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Find ("¢, "y, 7)€L 2(S;H 1(Q)) ><L2(S;L Q(Q;H#(Y*)/]R)) ><W1’°°(S;L 2(Q))
such that

/ 1=V (0, 2))) f () (0, 2)dr— / / 1=V n(r(t, 2))) wlt, 2)Byp(t, )t

Q S Q
[ [ Aalta ) (9wt ) 49, )V splt ) +9 gt ))dydod

S QYy*

= //(I—V N(r(t, ) fP(t, x)p(t,x)—0 {VN(r(t, x))csp(t, z)drdt(141)

/S/ﬂatr(t,x)qﬁ(t,x)dxdt: [ [ ECutta) o opdsdaaz

2o for every (p,p1,0)€H 1(SXxQ)xL *(S;L*(LH 4, (Y*)/R))x L *(SxQ) with

w0 initial valuesr(0) =r © and A&)) =u O,

ProOOF.Having the uniform estimates (50), we can apply Proposition 8,
which gives “w €L *(S;H (), "weL *(SxH 4(Y*)/R) such that for a

subsequence:
~ 22 . —— 22 . —
u———y—g Vu. ——=—5-Vx u+ V, u(143)

With (50) and (126), we can apply Lemma 15 and get (after passing to a
further subsequence and identifying the limits)

E. u—"w €L ?(SxQ).(144)
Thus thefirst convergence of (143) is strong. Moreover, this implies
T-E. u—"1 inL ?(SxQxY) (145)

and we get withT .VE. u=¢ ~'V, T, u the isometry of7 . and the uniform
boundedness of||V " w%|| g,

IVyTeE ] gy gy =T VE ] gp0xy =ElIVE & tllguq SCe||V e[ g0 —0.
Thus, we can conclude with the trace operator onI’
||7;Ay_A1@||S><Q><F :||T5E5Ay_Au)||S><Q><F

SCHT €E€Ay_Au)||S><Q><Y* +CHV yIEEéAy_ VyAU“sXQxy* _>0-(146>
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431

432

433

434

435

437

438

In order to pass to the limite—0 in the non-linear bulk and boundary
terms, we show the strong convergencer . () —ratfirst. We definere
W1°(S;L 2(Q)) as the unique solution of (142) with initial valuer(0) =r ©
and “ggiven by (144). Then, we test (45) byx (0,6) (7 k() —7()) for a.e.teS,
a.e.x€ck+eYand everykel <, integrate overek+cYand sum overkel  .:

(04T e ke (-0) Terke(-2) —T) (0,4)xO2

t
://#]:(m) / efCUT, Y), T e ko (2)) dOy (Te k() (T) =7 (T, @) ) drdT
0 © r

e,ke ()

= (Mf(ﬁ@é Teke())s Te k() _T)(O,t)xQxF (147)

We test (142) withx (o4 (7e k() —7) and subtract it from (147):

(O4(Teka(n) =T)s T ke(a) —T) (0,4)x02

- CSSNil(ro)(f(,]'EAy’ Teke(2)) =S U0, T)s Te o) =) (0.4)xQxT

Then, we rewrite the left-hand side and estimate the right-hand side using
the Cauchy—Schwarz inequality, the Lipschitz condition (5) and the Young
inequality:

2
rg)]za(z) -r (O)HQ _l_ % Hrsaks(z)(t)_r(t) H; SCHT EAz’L_u OH?O,t)XQXF +C Hr&ks('z) -r H?O,t)XQ

1
2

We estimate further with Gronwall’s inequality and pass to the limit using
(146) and the strong convergence of the initial values:

2

—0.

(0) 0
TE,k'a('x) _T( ) 0

2 ~ 2
| ‘Té,ke('ac) - 0} ‘LOO(S;LQ(Q)) SC'| ’7— e H—U 0‘ |S><Q><F +C

Sincer . . (.,) andr o are uniformly bounded inL *(SxQ), we get ||re . (.)

—7 o ‘LOO(S;LP(Q))
for everype[l,00). Thus, Lemma 9 shows thatiy) . are locally periodic trans-

formations in the sense of Definition 4 and we can conclude with Lemma 10

the strong two-scale convergence ofJ ., W ., W ! which we need in order to

pass to the limite—0 in (44). Moreover, Definition 4, Proposition 11 and 10

can be also formulated for the two-scale convergence without time parameter

(cf. [14]). Thus, we can conclude the strong two-scale convergence also for

‘T

the initial data, i.e.J .(0) two-scale converges strongly toJ ¢(0) and ) two
scale converges tox v« (.(y) Aég)(-x) with Aég) =u (()D)(-x,wo((),- o y))-
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440 The strong convergenced 7. i (.,) —0 ¢rfollows similarly. By testing (45)

ar and (142) witho (rc.(,) —r) and then subtracting the equations, we can

a2 conclude the strong convergence inL 2(Sx (). Subsequently, the boundedness
a3 InL *(Sx Q) implies the strong convergence inL P(Sx ) for everype[1,00).

was  However, we do not need this strong convergence in order to pass to the
ws  limit, although the termB . =J .U_'0;¢). contains the time derivative of
ws 1. The reason is that||d tngLm 5%9) <eC H@tr&ks(.z) and thus the

L>(5xQ)
w7 boundedness of H&trg ke (-2) is already sufficient for the limit process.

In order to pass to the limit in (44), we test it byp(- ¢, 2) €0 1(t, ) =)
for (p,p1)€C 2(S;C>(Q))xD(S;C = (4,0 F(Y))) withe(T) = 0 and
integrate the time derivative term by parts:

/J(tmy ) () (0(0,2) +ep 1 (0,7, 2)) dx

Qe

—// Je(t,x) "ut, ) (Oup(t, ©) +0 401 (¢, 2, L)) dadt
S Q

[ [ AoV st o) (Vaplto) 429 s (1,2) +9 o1 (t0,2)) dode

S Qe

+ // B.(t, z,y) "ut, z)- (ngp(t,x) +eV .1 (t,x, f) +V 01 (t,x, f)) dxdt
S Qe

= // J.(t,x) fP(t, x) (¢(t, ) +epq (t,2,%)) dudt

S Qe

(t,x), 7 x(t))(p(t, x) +ep 1(t, x))do,dt.
keleg 7,

We rewrite the boundary integral with the unfolding operator7 ., so that we
can pass to the limite—0 using the strong convergences of 7 .u. andr . ;_(.,)
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448

4

N
©

450

451

452

453

and the continuity off:

S [ [ Rt n) s ) (0,3) o100

T o () -
— [ [ [ Ea 1 st w0

s QT
(Top(t, ) +eT- (1 (t7 » %)) (t,x,y)) doyddt

N / / / M) ot ), et @) )t @) do dadt(148)

Using (142) andS ,,_1(r) =0 ,Vn(r), we can rewrite the right-hand side of
(148):

/ / / wlt, @), r(t,2))p(t, 2)do dadi= / / OV (r(t. 2wt )

Moreover, the uniform boundedness ofd ,r. given by (52) impliesd ;1. —0
inL *°(SxQ). Thus,B . wvanishes in the limite—0 of (148) and we obtain

// Jo(0,z,y) &)) (0, z)dydx— /// Jo(t,x,y) “wlt, v)Opp(t, x)dydxdt

S QY+
/ / / Ao(t, 2, 9) (V. slt,2) +V sl 2,9V wp(t, 2) +V you(t, 2, y))dydadt
S QY=
_ / / / (Jolt, 2, ) P (8 2)dy—0 (Ve (r(t 2))es)o(t, ) dadt
S QY=

which can be rewritten into (141). By a density argument it holds for every
(pup1)€H H(SxQ)xL 2(S:L*(QH 4(Y™)/R)).
5. Backtransformation

Now we transform the two-scale limit problem back from its substitute do-
main to its actual two-scale domain and obtain the following transformation-
independent weak two-scale formulation.

42



Theorem 18 (Two-scale limit problem).Let(u ., r.)be the solution of

(2),(17)—~(19). Then, there exists for every subsequence a further subsequence

esuch that
~ 22

XY

T*(t ‘z)

Vus 124_,,*4 () Vguo + ﬁul with respect to thel > —norm(150)

(-t

() uo with respect to thel * —norm,(149)

s and the convergences(139)—(140)hold, where(u — o,uy, 7)€L 2*(S;H '(Q2))x
ws L*(S;L Q(Q;H#(Yﬁzm))/ﬂ%)) X L2(S;L2(Q))is a solution of the following weak
w6 form:
Find(u o, ur, 7)€L *(S;H Q)< L2(S;L 2 (G H (Y5, 1) /R))xWH2(S;L 2(Q))
withd (1=V ,(r))ug)€L %(S;H *(Q0)")such that

/ O((1=V (1)) )uolt)) o(8)) st

// / (Vauo(t, v) +V yui(t, 2,9))-(V o0(t, x) +V yo1(t, z,y))dydzdt

Q Y'r*(t x)

= //(1—V N(r(t, ) fP(t, x)p(t,x)—0 Vi (r(t, x))esp(t, x)daxdt(151)

/ / Dur(t, ) (L, ) dudi— / / L fluo(t, @), r(t, 2))(t, 2)dadt(152)

w1 hold for every(p,p 1,9)€L 2(S;H 1(Q))x LA (SxUH (Y, ) /R)x L?(SxQ)
ws with initial valuesr(0) =r @ and(1=V  n(r))uo)(0) = (1=V n(r©))ul”.

PROOF. We test (141) with (0,0 1. +%0- V) for (0,0 1)EC ©(S;C *(Q))x
C®(S8;C > (Q;H ,(Y)) withe(T) = 0. Then, we transform theY” * integral
in (141) withy _l(t x) by

///Aotxy )V, ot 2) 4V, ult, 7, y)

(V xw(t, ) +V (0140 + Yot 2,9)V op(t, 1)))dydzdt

/// (s, y) Ve ot 7)Y o (E 2, y))

rtm)

(W fz, (2,9 Vap(t, ) +V (01t 2, y) + G o1 (6, 2,9) Y 2p(t, 2)))dydadt
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459

460

461

462

UsingW¥ g;,l(t, x,y) =14V y@%—l(t, x,y), we can rewrite
"Po

‘Ij 11/,—1(t7 ZL’, y>vzu0(t7 .T) +v yAP,%—l(ta LU, y)

=V, olt, ) +V (o (2, y) + 05 (8 2,9) Y u(t, o))
:V xuO(ty $> +v yul (t7 X, y))

for a.e. (t,x)eSxQand a.e.yeY rt) Withu o = "gwandu | = A}ewa1 +

XYy, )1/30_1 -V . "# Using the fact that

1;071/;0_1@7%’ y) = 1;0@7 x,wgl(t,x, y)) :1/j O(ta xawal(t>x7y))_w al(t> :C?y)
=y— o (ta,y) =— b ' (t,2,)

we get

\Ij(;ﬂlpo*l(tv z,Y)Vaep(t, z) +V , (o1(t, 7, y) + %7%1(1&’ z,y)V ot )

=V x@(t, Z’) +V y(&o_l(ta x, y)v :cgp(tv l’) +90 l(ta x, y) + éo,wo’l(ta Z, y)v x(ﬂ(t, .Z'))
=V x%p(tv x) +V yP1 (t7 z, y)

Thus, we get

/ / / Aolt, 7,9)(Valt, 2) +V " ult, 2,3)

V o0(t, ) +V (0140 + Yot 2,y)-V wo(t, 2)))dydudt

// / (Vauo(t, z) +V yur(t, z,y))-(V w0t ) +V 41 (t, 2, y))dydadt,

r(t )

which allows us to rewrite (141) into (151) after integrating the second term
of (141) by parts with respect to time. By a density argument (151) holds
for all (p,p1)€L *(S;H Y(Q)xL *(SxQH (Y}, ,))/R). Then, the two-
scale-convergences (149)—(150) follows from Proposition 11 and Proposition
12.

Theorem 19 (Homogenised limit problem).A tuple(u o, r)is part of a
solution of the two-scale limit problem(151)—(152)given by Theorem 18 if
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465

466

468

469

470

471

472

473

474

and only if it solves

/&: (1-V n(7(t))uo(t)), (1)) adt+ (A hom(r) V1o,V 20) sxa
S

= ((1=V n(r) f? =0 Vn(r(t,x))cs,) sxa (153)

and(152) for every(p,p)€L 2(S;H Y(Q))x L 2(SxQ)with initial value
1=V n(r(0)))ug(0) = 1=V n(rO))ul’ | whereAis given by

(Ahom)ij(r) = /5ij +0 ,w;(r;y)dy(154)

Y *

T

andw ;(r)is the unique solution inH 4(Y}*)/Rsuch that

/ (Vw3(r55) +¢ 1)V yip(y)dy= 0.(155)

Yo*

T

for everype H L (Y)).

N
PRrROOF.Choosingp= 0in (151) impliesu (£, z,y) = > O, uo(t, v)w;(r(t, ), y).

i=1
Inserting this in (151) yields (153) forA pom given by (154).

Note that we formulate the initial condition in Theorem 18 and Theorem
19 only for (1-V n(7))uo and not foru . The reason is that 1—V y(r) is a
priori not regular enough in space in order to transfer the time regularity of
(1—=V n(r))ug onu o. However, this is not a drawback since (1—V n(7))ug is
the actual physically measurable quantity.

In our model the total mass is given by the sum of the mass in the pore
space and the mass in the solid space. Thus, the conservation of mass reads
O ((1=V n(r))ug) +0:Vn(r)cs = density of external sources. Testing our limit
model (153) withpeC'  *°(95) yields exactly this

O ((1=V n(r))uo) = 1=V n(r)) [P —0Vn(r)cs.(156)

6. Acknowledgements

We would like to thank M. Gahn for fruitful discussions and for pointing
out an oversight in the original manuscript.

45



475

476

477

478

479

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

References

1]

2]

3]

[10]

J. Kropp, Performance Criteria for Concrete Durability, CRC Press,
1995. doi:https://doi.org/10.1201/9781482271522.

T. A. Bier, Karbonatisierung und Realkalisierung von Zementstein und
Beton, Ph.D. Dissertation, University of Karlsruhe, 1988.

A. M. Tartakovsky, P. Meakin, T. D. Scheibe, B. D. Wood, A smoothed
particle hydrodynamics model for reactive transport and mineral precip-

itation in porous and fractured porous media, in: Water Resources Re-
search, volume 43, 2007. doi:https://doi.org/10.1029/2005WR004770.

T. L. van Noorden, Crystal precipitation and dissolution
in a porous medium: Effective equations and numerical ex-
periments, Multiscale Model. Simul. 7 (2008) 1220-1236.

doi:https://doi.org/10.1137/080722096.

M. Thullner, J. Zeyer, W. Kinzelbach, Influence of microbial growth on
hydraulic properties of pore networks, Transport in Porous Media 49
(2002) 99122. doi:https://doi.org/10.1023/A:1016030112089.

G. E. Kapellos, T. S. Alexiou, A. C. Payatakes, Hierarchi-
cal simulator of biofilm growth and dynamics in granular porous
materials,  Advances in Water Resources 30 (2007) 1648-1667.
doi:https://doi.org/10.1016/j.advwatres.2006.05.030.

T. L. van Noorden, I. S. Pop, A. Ebigbo, R. Helmig, An upscaled model
for biofilm growth in a thin strip, Water Resources Research 46 (2010).
doi:https://doi.org/10.1029/2009WR008217.

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math.
Anal. 23 (1992) 1482-1518.

G. Nguetseng, A general convergence result for a functional related to
the theory of homogenization, STAM J. Math. Anal. 20 (1989) 608-623.

M. A. Peter, Homogenisation in domains with evolving microstructure,
C. R. Mécanique 335 (2007) 357-362.

46



504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

[11]

[12]

[13]

[14]

[15]

[19]

M. A. Peter, M. Bohm, Multiscale modelling of chemical degradation
mechanisms in porous media with evolving microstructure, Multiscale
Model. Simul. 7 (2009) 1643-1668.

M. Eden, A. Muntean, Homogenization of a fully coupled thermoelas-
ticity problem for a highly heterogeneous medium with a priori known
phase transformations, Math. Methods Appl. Sci. 40 (2017) 3955-3972.

M. Gahn, M. Neuss-Radu, I. S. Pop, Homogenization of a reaction-
diffusion-advection problem in an evolving micro-domain and including
nonlinear boundary conditions, J. Differ. Equations 289 (2021) 95-127.

D. Wiedemann, The two-scale-transformation method,  Asymp-
totic Analysis Pre-press (2022) 1-24. doi:https://doi.org/10.3233/ASY-
221766.

R. Schulz, N. Ray, F. Frank, H. S. Mahato, P. Knabner, Strong solv-
ability up to clogging of an effective diffusion—precipitation model in an

evolving porous medium, European Journal of Applied Mathematics 28
(2016) 179207. doi:https://doi.org/10.1017,/S0956792516000164.

S. Gaerttner, P. Frolkovi, P. Knabner, N. Ray, Efficiency and accuracy of
micromacro models for mineral dissolution, Water Resources Research
56 (2020) 1-23. doi:https://doi.org/10.1029/2020WR027585.

S. Gaerttner, P. Frolkovi, P. Knabner, N. Ray, Efficiency of
micro-macro models for reactive two-mineral systems, SIAM Jour-
nal on Multiscale Modeling and Simulation 206 (2022) 433-461.
doi:https://doi.org/10.1137/20M1380648.

M. Kelm, S. Gaerttner, C. Bringedal, B. Flemisch, P. Knabner, N. Ray,
Comparison study of phase-field and level-set method for three-phase
systems including two minerals, Computational Geosciences 26 (2022)
545-570. doi:https://doi.org/10.1007/s10596-022-10142-w.

A. Muntean, C. Nikolopoulos, Colloidal transport in locally periodic
evolving porous media - an upscaling exercise, SIAM J. Appl. Math. 80
(2020) 448-475.

47



534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

[20]

[21]

[22]

23]

[24]

[27]

[28]

M. Gahn, I. S. Pop, Homogenization of a mineral dissolution and
precipitation model involving free boundaries at the micro scale,

arXiv:2205.03077 (2022).

J.  Simon, Compact
nali di Matematica

sets in the spacel P(0,T}B), An-
Pura ed Applicata 146 (1986) 6596.
doi:https:/ /doi.org/10.1007 /BF0O1762360.

R. E. Showalter, Montone Operators in Banach Space and Nonlinear
Partial Differential Equations, American Mathematical Society, 1997.

O. A. Lady "zenskaja, V. A. Solonniov, N. N. Ural’ceva, Linear and Quasi-
linearEquations of Parabolic Type (Translated from the Russian by S.
Smith), American Mathematical Society, 1988.

A. Bhattacharya, M. Gahn, M. Neuss-Radu, Homogenization of a non-
linear driftdiffusion system for multiple charged species in a porous

medium, Nonlinear Analysis:

Real World Applications 68 (2022)

103651. doi:https://doi.org/10.1016/j.nonrwa.2022.103651.

D. Cioranescu, A. Damlamian, P. Donato, G. Griso, R. Zaki, The peri-
odic unfolding method in domains with holes, STAM J. Math. Anal. 44
(2012) 718-760. doi:https://doi.org/10.1137/100817942.

D. Cioranescu, J. S. J. Paulin, Homogenization in open sets with holes,
Math. Anal. Appl. 71 (1979) 590-607. doi:https://doi.org/10.1016 /0022~

247X(79)90211-7.

U. Hornung, W. Jager,

tion of chemicals in porous media,

Diffusion, convection, adsorption, and reac-

J. Diff. Eq. 92 (1991) 199-225.

doi:https://doi.org/10.1016,/0022-0396(91)90047-D.

M. Gahn, M. Neuss-Radu, P. Knabner, Homogenization of reaction—

diffusion processes in a two-component porous medium with nonlinear
flux conditions at the interface, STAM J. Appl. Math. 76 (2016) 1819—

1843.

48



