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Abstract

We prove the two-scale-transformation method which allows rigorous homogeni-
sation of problems defined on locally periodic domains by transformation on
periodic domains. The idea to consider periodic substitute problems was origi-
nally proposed for the homogenisation on evolving microstructure and is applied
in several works. However, only the homogenisation of the periodic substitute
problems was proven, whereas the method itself was just postulated (i.e. the
equivalence to the homogenisation of the actual problem had to be assumed).
In this work, we develop this idea further and formulate a rigorous two-scale
convergence concept for microscopic transformation to prove this method. More-
over, we show a new two-scale transformation rule for gradients which allows to
derive new limit problems that are now transformationally independent.
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1. Introduction

Periodic homogenisation allows to derive effective macroscopic models for
processes described on a fine heterogeneous microscopic structure as for ex-
ample given in composite materials or porous media. Thus, effective physical,
biological or geological models, like the Darcy law, can be derived rigorously.5

The main assumption for periodic homogenisation is the microscopic periodic
structure, which can be scaled by a parameter ε > 0 and arbitrarily refined
in a limit process. However, this is too restrictive in many applications be-
cause it cannot capture local microscopic varieties or temporal changes of the
microstructure, which can have a considerable impact. For processes in which10

the periodic structure is only given by coefficients, as for example in composite
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materials, this assumption can be weakened. There, the convergence theory can
handle coefficients Aε(t, x) = A

(
t, x, xε

)
, which can capture spatial or temporal

changes in the microstructure. However, if the microstructure is also given by
the domain Ωε ⊂ Ω ⊂ RN itself, as for example in porous media problems, the15

procedure can not be transferred directly. Instead, special compactness results
are required. These, and often also the derivation of the solutions’ uniform
estimates, depend largely on the strict periodic structure (cf. [1], [2], [3]).

In order to overcome this strongly restricting microscopic periodicity, M. A. Pe-
ter proposed the following method in [4]. Instead of homogenising the actual20

problem, he transformed it into a substitute problem on a periodic domain.
There, the domain’s local periodicity becomes a local periodicity of the coef-
ficients, which can be handled by the two-scale convergence. Then, the ho-
mogenised equation can be transformed back to an associated evolving domain.
However, the homogenisation of the substitute problem is a priori not equiva-25

lent to the homogenisation of the actual problem, which would mean that (1)
commutes. Therefore, the method itself was only proposed and has not been
proven until now. Nevertheless, this method found wide application – in the
sense that the back-transformations is done formally and only the homogeni-
sation of the substitute problems is proven – since it allows to consider many30

interesting problems, particularly on domains evolving in time (see [5], [6], [7],
[8], [9]).

In this work, we develop the idea of [4] further, introduce a two-scale con-
cept for locally periodic domains and formulate a rigorous two-scale convergence
concept for this transformation method. Thus, we can show that these trans-35

formations actually commute with the two-scale convergence. Hence, we call it
two-scale-transformation method. This proves the method and also allows us to
show that (1) commutes. Furthermore, we prove a new two-scale-transformation
rule for gradients. Thus, we can improve the result for the limit problem in the
case of a slow process (flux scaling by ε0) significantly. Previously, the formal40

back-transformation could only tackle the homogenised problem and not the
two-scale limit problem. As a consequence, the back-transformed limit result
still depended on the chosen transformation. With the help of the new gradi-
ent transformation rule, we can directly transform the two-scale limit equations
back and derive a new (equivalent) homogenised problem which is independent45

of the transformation.
Moreover, the results developed in this work allow us to translate two-scale

compactness results from periodic domains to locally periodic domains. Conse-
quently a direct homogenisation of the actual problem becomes possible if it is
defined on locally periodic domains.

microproblem macroproblem

transformed microproblem transformed macroproblem

homogenisation on locally periodic domains

transformation back-transformation

homogenisation on periodic domains

(1)
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This paper is arranged as follows: In Section 2, we recap the two-scale
convergence (cf. [1]) as well as the unfolding operator (cf. [10]) and state results
about them, which we employ to prove the two-scale-transformation method.
In Section 3, we introduce the two-scale-transformation method and formulate
the assumptions on the locally periodic domain. Then, we show that the two-
scale convergence and the two-scale transformation commute, which allows to
perform (1) rigorously. Moreover, we derive the new two-scale-transformation
rule for gradients, which improves the results of the back-transformation. In
Section 4, we demonstrate the method by homogenising the following diffusion
process on locally periodic domains Ωε ⊂ Ω, which are defined in Section 3.
There, we consider the case of a fast flux (l = 0) as well as the case of a
slow flux (l = 2). Let Aε ∈ L∞(Ωε)

N×N be bounded and uniformly coercive,

i.e. there exist C,α > 0 such that ||Aε||L∞(Ωε)
≤ C and ξ>Aε(x)ξ ≥ α ||ξ||2 for

every ε > 0, a.e. x ∈ Ωε and every ξ ∈ RN and let fε ∈ L2(Ωε). Then, find
uε ∈ H1(Ωε) such that∫

Ωε

εlAε(x)∇uε(x) · ∇ϕ(x) + uε(x)ϕ(x)dx =

∫
Ωε

fε(x)ϕ(x)dx (2)

for all ϕ ∈ H1(Ωε). First, we transform (2) on the periodic reference domain and
show how to derive uniform estimates for the substitute problem. Afterwards,
we pass to the limit ε → 0 in the periodic substitute problem. By using the
two-scale-transformation method and particularly the new transformation rule50

for the gradients, we transform the limit problems back. The results are the
homogenised problem (26) (in the case of l = 0) and the two-scale problem (29)
(in the case of l = 2).

In the following, we use C > 0 as generic constant, which is independent
of ε. Let (εn)n∈N be a fixed sequence of positive real numbers converging to55

0 (when it is clear from the context, we omit the subscript n). Moreover, we
write ε′ for a subsequence (εnk)k∈N of ε. We denote the Jacobian matrix for a
(weakly) differentiable function u by Du and its transposed by ∇u = Du>.

2. Two-scale convergence and the unfolding operator

For the homogenisation of (2) and the assumption on the domain Ωε, we60

use the two-scale convergence (cf. [1], [11]). Let Ω ⊂ RN be a bounded open set
and let Y := (0, 1)N denote the reference cell. Nevertheless, all the arguments
can be transferred to arbitrary reference parallelotopes Y ⊂ RN .

Definition 2.1. We say that a sequence uε in L1(Ω) two-scale converges dis-
tributionally to u0∈ L1(Ω× Y ) if

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u0(x, y)ϕ(x, y)dydx (3)

for every ϕ ∈ D(Ω;C∞# (Y )). We write uε
D
⇀⇀ u0.
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Definition 2.2. Let p, q ∈ (1,∞) with 1
p + 1

q = 1. We say that a sequence uε
in Lp(Ω) two-scale converges weakly to u0 ∈ Lp(Ω× Y ) if

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u0(x, y)ϕ(x, y)dydx (4)

for every ϕ ∈ Lq(Ω;C#(Y )). We write uε
p
⇀⇀ u0.65

The main compactness result for the two-scale convergence is Theorem 2.3 (see
[11, Theorem 7]).

Theorem 2.3. Let p ∈ (1,∞) and let uε be a bounded sequence in Lp(Ω).

Then, there exists a subsequence ε′ and u0 ∈ Lp(Ω× Y ) such that uε′
p
⇀⇀ u0.

This compactness result can be improved for sequences of weakly differen-70

tiable functions by the following two standard two-scale compactness results.

Theorem 2.4. Let p ∈ (1,∞) and let uε be a bounded sequence in W 1,p(Ω).
Then, there exist a subsequence ε′, u0 ∈ W 1,p(Ω) and u1 ∈ Lp(Ω;W 1,p(Y )/R)

such that uε′
p
⇀⇀ u0 and ∇uε′

p
⇀⇀ ∇xu0 +∇yu1.

Theorem 2.5. Let p ∈ (1,∞) and let uε be a sequence in W 1,p(Ω) such that75

||uε||Lp(Ω)+ε ||∇uε||Lp(Ω)≤ C. Then, there exist a subsequence ε′ and u0 ∈
Lp(Ω;W 1,p

# (Y )) such that uε′
p
⇀⇀ u0 and ∇uε′

p
⇀⇀ ∇yu0.

Testing (4) with functions ϕ ∈ Lq(Ω) shows the following relation between
the weak two-scale convergence and the weak convergence in Lp(Ω).

Proposition 2.6. Let p ∈ (1,∞). Let uε be a sequence in Lp(Ω) and u0 ∈80

Lp(Ω× Y ) such that uε
p
⇀⇀ u0. Then, uε converges weakly in Lp(Ω) to u(·x) =∫

Y

u0(·x, y)dy and the sequence uε is bounded in Lp(Ω).

On the other hand, if the sequence is bounded, the set of test functions can
be reduced to smooth and, in a certain way, dense test functions, similar to the
weak Lp-convergence (cf. [11, Proposition 1])85

Proposition 2.7. Let p ∈ (1,∞). Let uε be a bounded sequence in Lp(Ω) and

u0 ∈ Lp(Ω× Y ) such that uε
D
⇀⇀ u0, then uε

p
⇀⇀ u0.

One desirable property of the two-scale convergence is that the product
and the limit process commute. The well known fact that in uniformly convex
Banach spaces the weak convergence plus the convergence of the norms are90

equivalent to the strong convergence motivates the following definition of the
strong two-scale convergence.

Definition 2.8. Let p ∈ (1,∞). We say that a sequence uε in Lp(Ω) two-

scale converges strongly to u0 ∈ Lp(Ω × Y ) if uε
p
⇀⇀ u0 and lim

ε→0
||uε||Lp(Ω) =

||u0||Lp(Ω). We write uε
p→→ u0.95
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Proposition 2.9. Let 1 < p, q, r < ∞ with 1
p + 1

q = 1
r . Let uε be a sequence

in Lp(Ω) which two-scale converges strongly to u0 ∈ Lp(Ω × Y ) and let vε
be a sequence in Lq(Ω) which two-scale converges weakly (resp. strongly) to
v0 ∈ Lq(Ω×Y ). Then, uεvε is a sequence of functions in Lr(Ω) which two-scale
converges weakly (resp. strongly) to u0v0 ∈ Lr(Ω× Y ).100

Using the unfolding operator Tε, which was introduced in [12], two-scale con-
vergence can be translated into convergence in Lp(Ω× Y ). Thus, we can give a
brief proof of Proposition 2.9 later.

In order to simplify the proofs of the two-scale convergence method, we
introduce the following notations.105

Notation 2.10. Let p ∈ (1,∞]. If uε is a sequence in Lq(Ω) and u0 ∈ Lq(Ω×Y )

for every q ∈ (1, p) such that uε
q
⇀⇀ u0 for every q ∈ (1, p), we write uε

<p
⇀⇀ u0.

If additionally uε
q→→ u0 for every q ∈ (1, p), we write uε

<p→→ u0.

Notation 2.11. Let Ω ⊂ RN and x =
N∑
i=1

xiei ∈ RN , where ei denotes the

euclidean unit vectors, then let

[x]Y :=

N∑
i=1

bxicei , {x}Y := x− [x]Y , [x]ε,Y := ε
[x
ε

]
Y
, {x}ε,Y :=

{x
ε

}
Y

Iε := {k ∈ εZN , k + εY ⊂ Ω} , Ω̃ε := int
( ⋃
k∈Iε

k + εY
)
, Λε = Ω \ Ω̃ε.

Definition 2.12. Let 1 ≤ p ≤ ∞. We define the unfolding operator Tε :
Lp(Ω)→ Lp(Ω× Y ) by

Tε(ϕ)(x, y) :=

{
ϕ([x]ε,Y + εy) for a.e. (x, y) ∈ Ω̃ε × Y,
ϕ(x) for a.e. (x, y) ∈ Λε × Y.

(5)

Note that we have defined Tε(ϕ)(x, y) = ϕ(x) on the cells that are not completely
included in Ω and not Tε(ϕ)(x, y) = 0 as in [10]. By this slight modification,110

Tε becomes isometric (cf. Theorem 2.13). Thus, we can not only translate
between the two-scale convergence of uε and the weak convergence of Tε(uε)
in Lp(Ω × Y ), as shown in [10], but we can also translate between the strong
two-scale convergence and the strong convergence in Lp(Ω× Y ).

Theorem 2.13. Let ϕ ∈ Lp(Ω) for 1 ≤ p ≤ ∞. Then∫
Ω

∫
Y

Tε(ϕ)(x, y)dydx =

∫
Ω

ϕ(x)dx, (6)

||Tε(ϕ)||Lp(Ω×Y ) = ||ϕ||Lp(Ω) . (7)
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Proof. We split the integral on Ω̃ε × Y and Λε × Y so that∫
Ω

∫
Y

Tε(ϕ)(x, y)dydx =
∑
k∈Iε

∫
k+εY

∫
Y

ϕ([x]ε,Y + εy)dydx+

∫
Λε×Y

ϕ(x)dydx.

Since [x]ε,Y = k on each cell k + εY , we obtain∫
k+εY

∫
Y

ϕ([x]ε,Y + εy)dydx =

∫
k+εY

∫
Y

ϕ(k + εy)dydx = |εY |
∫
Y

ϕ(k + εy)dy

=

∫
k+εY

ϕ(x)dx.

Combining these two equations yields∫
Ω

∫
Y

Tε(ϕ)(x, y)dydx =
∑
k∈Iε

∫
k+εY

ϕ(x)dx+

∫
Λε

ϕ(x)dx =

∫
Ω

ϕ(x)dx.

Since |Tε(ϕ)|p = Tε(|ϕ|p), (7) follows for p < ∞ by applying (6) to |ϕ|p. For115

p =∞, (7) follows directly from the definition of Tε.

Proposition 2.14. Let uε be a sequence in Lp(Ω) and u0 ∈ Lp(Ω × Y ) with
1 < p <∞. Then, the following statements hold:

1. uε
D
⇀⇀ u0 if and only if Tε(uε)ϕ → u0ϕ in L1(Ω × Y ) for every ϕ ∈

D(Ω;C∞# (Y )),120

2. uε
p
⇀⇀ u0 if and only if Tε(uε) ⇀ u0 in Lp(Ω× Y ),

3. uε
p→→ u0 if and only if Tε(uε)→ u0 in Lp(Ω× Y ).

Proof. In order to prove the first equivalence, it is enough to show that

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dx = lim

ε→0

∫
Ω

∫
Y

Tε(uε)(x, y)Tε
(
ϕ
(
·x,
·x
ε

))
(x, y)dydx

= lim
ε→0

∫
Ω

∫
Y

Tε(uε)(x, y)ϕ(x, y)dydx (8)

for every smooth test function ϕ ∈ D(Ω;C∞# (Y )). The first equality in (8)
follows directly from the definition of Tε and (6). For the second equality, it
is enough to show that Tε(ϕ

(
·x, ·xε

)
) converges strongly to ϕ in Lq(Ω × Y ) for

1
p + 1

q = 1. We note that for every x ∈ Ω there exists ε0 > 0 small enough such

that x ∈ Ω̃ε for every 0 < ε < ε0. Thus, we obtain the pointwise convergence

Tε
(
ϕ
(
·x,
·x
ε

))
(x, y) = ϕ

(
[x]ε,Y + εy,

[x]ε,Y + εy

ε

)
= ϕ([x]ε,Y + εy, y) →

ε→0
ϕ(x, y)
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for every (x, y) ∈ Ω × Y . Since |Tε(ϕ
(
·x, ·xε

)
)(x, y)| is also pointwise bounded

for a.e. (x, y) ∈ Ω × Y by ||ϕ||L∞(Ω×Y ), we can apply Lebesgue’s convergence

theorem and obtain the strong convergence of Tε(ϕ(·x, ·xε )) to ϕ in Lq(Ω × Y )125

for 1
p + 1

q = 1, which implies Proposition 2.14(1).

In order to prove Proposition 2.14(2), we note that both types of weak
convergences are equivalent to the boundedness of the sequence plus the corre-
sponding convergence of Proposition 2.14(1). Using the isometry of Tε, we can
translate the boundedness of the sequences. Then, the equivalence of the weak130

convergences follows directly from Proposition 2.14(1).
For the equivalence of the strong convergences, we note that the strong

convergence of Tε(uε) is equivalent to the weak convergence of Tε(uε) plus
lim
ε→0
||Tε(uε)||Lp(Ω×Y ) = ||u0||Lp(Ω×Y ) since Lp(Ω × Y ) is a uniformly convex

Banach space. Thus, Proposition 2.14(3) follows from Proposition 2.14(2) and135

the isometry of Tε.

Having these results about the unfolding operator, we can prove Proposition
2.9 as follows.

Proof of Proposition 2.9. We translate the strong two-scale convergence of uε
and the weak (resp. strong) two-scale convergence of vε with the unfolding140

operator Tε and Proposition 2.14 into the strong convergence of Tε(uε) in Lp(Ω×
Y ) and the weak (resp. strong) convergence of Tε(vε) in Lq(Ω× Y ). Employing
Hölder estimates, we obtain the weak (resp. strong) convergence of the product
Tε(uεvε) = Tε(uε)Tε(vε) to u0v0 in Lr(Ω × Y ). Proposition 2.14 transfers this
convergence back into the weak (resp. strong) two-scale convergences of uεvε to145

u0v0 ∈ Lr(Ω× Y ).

3. The two-scale-transformation method

In the following, let Y be divided into an open set Y ∗ ⊂ Y , which constitutes
the material part of Y , and a hole Y \Y ∗. Note, that the material part can also
be the whole set, i.e. Y ∗ = Y . We assume that the Y -periodic extension of Y ∗,150

denoted by Y ∗# := int
( ⋃
k∈ZN

k+Y ∗
)

, has a Lipschitz boundary. Moreover, from

now on we assume that the macroscopic domain Ω ⊂ RN is not only open and
bounded, but also has a Lipschitz boundary. Let Ω̂ε := Ω∩ εY ∗# be the ε-scaled
periodic reference domains. Then, we define the locally periodic domains Ωε by
transforming the periodic reference domains.155

Definition 3.1. We say that a sequence of open domains Ωε ⊂ RN is locally
periodic with two-scale limit domain Q =

⋃
x∈Ω

{x}×Y ∗x ⊂ Ω×Y , where Y ∗x ⊂ Y is

open for a.e. x ∈ Ω, if there exists a sequence of locally periodic transformations
ψε (see Definition 3.2) with a limit transformation ψ0 such that Ωε = ψε(Ω̂ε)
and Y ∗x = ψ0(x, Y ∗) for a.e. x ∈ Ω.160
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In order to give the definition of locally periodic transformations, we have to
consider the two-scale convergence for sequences uε defined on Ω̂ε. Therefore,
we extend them by 0 to Ω which we denote by ·̃. Moreover, for functions defined
on Ω× Y ∗, we analogously denote their extension by 0 to Ω × Y by ·̃.

Definition 3.2. We say a sequence of C1-diffeomorphisms ψε : Ω̂ε → Ωε, for165

Ωε := ψε(Ω̂ε) ⊂ RN , is a sequence of locally periodic transformations if:

1. there exists cJ > 0 such that Jε ≥ cJ with Jε := det(Ψε) and Ψε := Dψε,

2. there exists C > 0 such that ε−1
∣∣∣∣ψ̌ε∣∣∣∣C(Ω̂ε)

+
∣∣∣∣∇ψ̌ε∣∣∣∣C(Ω̂ε)

≤ C, where

ψ̌ε(x) := ψε(x)− x are the corresponding displacement mappings,

3. there exists ψ0 ∈ L∞(Ω;C1(Y ∗))N , which we call the limit transformation,170

such that

(a) ψ0(x, ·y) : Y → Y are C1-diffeomorphisms for a.e. x ∈ Ω with inverses
ψ−1

0 (x, ·y), where ψ−1
0 ∈ L∞(Ω;C1(Y ∗x ))N ,

(b) the corresponding displacement mapping, defined for a.e. x ∈ Ω by
ψ̌0(x, y) := ψ0(x, y) − y, can be extended Y -periodically such that175

ψ̌0 ∈ L∞(Ω;C1
#(Y ))N ,

(c) ε−1˜̌ψε <∞→→ ˜̌ψ0 and ∇̃ψ̌ε
<∞→→ ∇̃yψ̌0.

For a.e. x ∈ Ω, we denote the Jacobians of ψ0(x, ·y) by Ψ0(x, ·y) := Dyψ0(x, ·y)
and J0(x, ·y) := det(Ψ0(x, ·y)). Moreover, we denote the displacement map-
pings of the back-transformations by ψ̌−1

ε (x) := ψ−1
ε (x) − x and ψ̌−1

0 (x, y) :=180

ψ−1
0 (x, y)− y.

We obtain the following uniform estimates and additional strong two-scale con-
vergences as a direct consequence of the definition of the locally periodic trans-
formations ψε.

Lemma 3.3. Let ψε be locally periodic transformations with limit transforma-
tion ψ0. Then, there exist constants cJ , C > 0 such that

||Ψε||C(Ω̂ε)
+
∣∣∣∣Ψ−1

ε

∣∣∣∣
C(Ω̂ε)

+ ||Jε||C(Ω̂ε)
≤ C,

||Ψ0||L∞(Ω;C(Y ∗)) +
∣∣∣∣Ψ−1

0

∣∣∣∣
L∞(Ω;C(Y ∗))

+ ||J0||L∞(Ω;C(Y ∗)) ≤ C,

J0(x, y) ≥ cJ for a.e. x ∈ Ω and every y ∈ Y ∗.

Furthermore,

Ψ̃ε
<∞→→ Ψ̃0, Ψ̃−1

ε
<∞→→ Ψ̃−1

0 , J̃ε
<∞→→ J̃0, J̃−1

ε
<∞→→ J̃−1

0 .

Proof. The uniform estimate of ∇ψ̌ε directly gives one for Ψε = Dxψ̌ε + 1.185

Since Jε and the entries of Ψ−1
ε are polynomials in J−1

ε and the entries of Ψε,
the uniform estimates for these follow with the additional uniform bound of
Jε ≥ cJ from below.

We rewrite Ψε = Dψε = Dψ̌ε+Dx = Dψ̌ε+1 and Ψ0 = Dyψ0 = Dyψ̌0 +1.

Then, D̃ψ̌ε
<∞→→ D̃yψ0 together with χΩ̂ε

<∞→→ χY ∗ imply Ψ̃ε
<∞→→ Ψ̃0. Note190
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that χΩ̂ε

<∞→→ χY ∗ holds because we can write χΩ̂ε
(x) = χY ∗#(xε ) for χY ∗# ∈

Lq#(Y ;C(Ω)) for every q ∈ (1,∞) (cf. [11, Theorem 3]).

Since J̃ε and J̃0 are polynomials with respect to the entries of Ψ̃ε and Ψ̃0,

respectively, Proposition 2.9 implies J̃ε
<∞→→ J̃0.

The uniform boundedness of Jε ≥ cJ from below gives Tε(J̃ε)(x, y) ≥ cJ195

for a.e. (x, y) ∈ Ω × Y ∗. Then, the strong convergence of Tε(J̃ε) to J̃0 in
Lp(Ω × Y ) transfers the uniform boundedness from below to J0(x, y) ≥ cJ for
a.e. (x, y) ∈ Ω × Y ∗. By Definition 3.2, J0 ∈ L∞(Ω;C(Y ∗)), which implies
J0(x, y) ≥ cJ for a.e. x ∈ Ω and every y ∈ Y ∗.

We rewrite Tε(J̃−1
ε ) = (Tε(J̃ε) ˜|Ω×Y ∗)−1 and obtain∣∣∣∣∣∣Tε(J̃−1

ε )− J̃−1
0

∣∣∣∣∣∣
Lp(Ω×Y )

=
∣∣∣∣∣∣(J0 − Tε(J̃ε))/(J0Tε(J̃ε))

∣∣∣∣∣∣
Lp(Ω×Y ∗)

≤ 1

c2J

∣∣∣∣∣∣J0 − Tε(J̃ε)
∣∣∣∣∣∣
Lp(Ω×Y ∗)

=
1

c2J

∣∣∣∣∣∣J̃0 − Tε(J̃ε)
∣∣∣∣∣∣
Lp(Ω×Y )

→ 0,

which implies J̃−1
ε

<∞→→ J̃−1
0 .200

Since the entries of Ψ̃−1
ε are polynomials in J̃−1

ε and the entries of Ψ̃ε, the
strong two-scale convergence can be directly transferred to the strong two-scale

convergence of Ψ̃−1
ε to Ψ̃−1

0 .
Moreover, we obtain that

∣∣∣∣Ψ−1
ε

∣∣∣∣
L∞(Ω;C(Y ∗))

≤ C and ||J0||L∞(Ω;C(Y ∗)) ≤ C
from the fact that ||Ψ0||L∞(Ω;C(Y ∗)) ≤ C and J0(x, y) ≥ cJ for a.e. x ∈ Ω and205

every y ∈ Y ∗ by using the same argumentation as for Jε and Ψ−1
ε .

For example, a family of diffeomorphisms ψε which are locally periodic trans-
formations in the sense of Definition 3.2 can be obtained as follows.

Example 3.4. Let Θ : Ω→ [Θmin,Θmax] ⊂ R be a continuous function, which
describes, for example, the local porosity. Let ψ : [Θmin,Θmax] × Y → Y be210

a smooth mapping such that, for every Θ ∈ [Θmin,Θmax], ψ(Θ, Y ∗) gives a
cell with porosity Θ and ψ(Θ, ·) : Y → Y is a C1-diffeomorphism. Moreover,
we assume that there exist C, cJ > 0 such that ||Dyψ||C([Θmin,max]×Y ) ≤ C,

det(Dyψ) ≥ cJ and that the corresponding displacement mapping ψ̌(Θ, y) =
ψ(Θ, y) − y has compact support in the interior of Y . Then, ψε(x) := x +215

εψ̌ (Θ([x]ε,Y ), {x}ε,Y ) are locally periodic transformations with limit transfor-
mation ψ0(x, y) := ψ̌(Θ(x), y) in the sense of Definition 3.2.

Before we continue with the transformation of the two-scale convergence,
we recap the main two-scale compactness results for periodic domains. Since
the extension by 0 does not preserve the W 1,p-regularity, these compactness220

results cannot be derived directly from the previous W 1,p-compactness results
(cf. Theorem 2.4 and Theorem 2.5). Instead, their derivation extensively utilises
the domains’ periodic structures.
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Proposition 3.5. Let uε be a bounded sequence in Lp(Ω̂ε) for p ∈ (1,∞).

Then, there exists a subsequence ε′ and u0 ∈ Lp(Ω× Y ∗) such that ũε′
p
⇀⇀ ũ0.225

Moreover, if uε is a sequence in W 1,p(Ω̂ε) such that

||uε||Lp(Ω̂ε)
+ εl/2 ||∇uε||Lp(Ω̂ε)

≤ C

for l ∈ {0, 2}. Then, the following statements hold:

1. If l = 0 and Y ∗# is connected, then there exist a subsequence ε′, u0 ∈
Lp(Ω) and u1 ∈ Lp(Ω;W 1,p

# (Y ∗)/R) such that ũε′
p
⇀⇀ χY ∗u0 and ∇̃uε′

p
⇀⇀

χY ∗∇xu0 + ∇̃yu1.

2. If l = 2, then there exist a subsequence ε′ and u0 ∈ Lp(Ω;W 1,p
# (Y ∗)) such230

that ũε′
p
⇀⇀ ũ0 and ε′∇̃uε′

p
⇀⇀ ∇̃yu0.

Proof. Let uε be bounded, then ũε is bounded as well and Theorem 2.3 gives a
subsequence which two-scale converges weakly to a limit function u0 ∈ Lp(Ω×
Y ). Employing two-scale test functions ϕ which are 0 in Ω × Y ∗ yields u0 = 0
in Y \ Y ∗. Thus, we can rewrite the limit as ũ0 for u0|Ω×Y ∗ ∈ Lp(Ω× Y ∗).235

A proof of Proposition 3.5(1) is given in [2, Theorem 4.6] for the case p = 2.
It can be generalised to arbitrary p ∈ (1,∞) in the same way as the standard
H1-two-scale compactness result.

Proposition 3.5(2) can be proven analogously to Theorem 2.5 by using the
Lp(Ωε) compactness result of Proposition 3.5 instead of Theorem 2.3.240

Before we can analyse the two-scale convergence under the two-scale trans-
formation, we have to consider what two-scale convergence of sequences on
Ωε means. We note that the definition of the locally periodic transforma-
tions ψε does not ensure that Ωε = ψε(Ω̂ε) is contained in Ω. However, it
ensures that

∣∣∣∣ψ̌ε∣∣∣∣C(Ω̂ε)
≤ εC, which implies that |Ωε \ Ω| ≤ εC as well as245

Ωε ⊂ {x ∈ RN | dist(x,Ω) ≤ εC}. Therefore, we expect a limit defined on the
macroscopic domain Ω, which could suggest to formulate the two-scale conver-
gence for functions defined on Ωε by restricting them on Ω ∩ Ωε and then ex-
tending them by 0 to Ω. However, it turns out that this ansatz would not yield a
natural translation between the two-scale convergence in the untransformed and250

the transformed setting. Instead, we consider Ω(δ) := {x ∈ RN | dist(x,Ω) < δ}
for fixed 0 < δ << 1 as the macroscopic domain and note that Ωε ⊂ Ω(δ) for ε
small enough. We extend functions defined on Ωε by 0 to Ω(δ), which we denote
by ·̃. Then, we can use the normal two-scale convergence, but for the macro-
scopic domain Ω(δ) instead of Ω. However, we will show that the corresponding255

two-scale limits have support on Q ⊂ Ω× Y .
Therefore, we introduce the following Banach spaces spaces. Let p ∈ [1,∞]

and q ∈ [1,∞), then we define

Lp(Ω;Lq(Y ∗x )) := {f(·x, ψ−1
0 (·x, ·y)) | f ∈ Lp(Ω;Lq(Y ∗)},

Lp(Ω;W 1,q(Y ∗x )) := {f(·x, ψ−1
0 (·x, ·y)) | f ∈ Lp(Ω;W 1,q(Y ∗)},

Lp(Ω;W 1,q
# (Y ∗x )) := {f(·x, ψ−1

0 (·x, ·y)) | f ∈ Lp(Ω;W 1,q
# (Y ∗)},

10



with the corresponding norms

||u||Lp(Ω;Lq(Y ∗x )) :=


(∫

Ω

||u(x)||pLq(Y ∗x ) dx
) 1
p

if p <∞,

ess sup
x∈Ω

||u(x)||Lq(Y ) if p =∞,

||u||Lp(Ω;W 1,q(Y ∗x )) := ||u||Lp(Ω;Lq(Y ∗x )) + ||Dyu||Lp(Ω;Lq(Y ∗x )) ,

||u||Lp(Ω;W 1,q
# (Y ∗x ))

:= ||u||Lp(Ω;Lq(Y ∗x )) + ||Dyu||Lp(Ω;Lq(Y ∗x )) .

Note that, the integrability of ||u(x)||pLq(Y ∗x ) over Ω is ensured by the transfor-

mation ||u(x)||pLq(Y ∗x ) =
∫
Y ∗

J0(x, y)u(x, ψ0(x, y))dy. Moreover, these function

spaces and the corresponding norms does nether depend on the chosen refer-
ence domain Y ∗ nor on the diffeomorphism ψ0. Furthermore, the assumptions260

on ψ0 ensure that Q is measurable with respect to the 2N -dimensional Lebesgue
measure and Lp(Ω;Lq(Y ∗x )) can be identified with the subset of Lp(Ω;Lq(Y ))
which contains functions that are zero on (x, Y \ Y ∗x ) for a.e. x ∈ Ω.

In order to use these function spaces for the two-scale convergence, we extend
the corresponding functions by 0 to Ω(δ) × Y , which we denote by ·̃. If Ωε ⊂ Ω,265

we do not have to enlarge Ω and all the following results hold for Ω(δ) = Ω.
Note that the assumptions on ψ0 and the uniform estimates given in Lemma

3.3 ensure that the transformations by ψ0 and ψ−1
0 induce an continuous iso-

morphism between Lp(Ω;Lq(Y ∗x )) and Lp(Ω;Lq(Y ∗)) in the sense that

||f(·x, ψ0(·x, ·y)||Lp(Ω;Lq(Y ∗)) ≤ C ||f ||Lp(Ω;Lq(Y ∗x )) ,∣∣∣∣∣∣f̂(·x, ψ−1
0 (·x, ·y)

∣∣∣∣∣∣
Lp(Ω;Lq(Y ∗x ))

≤ C
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

Lp(Ω;Lq(Y ∗))

for every f ∈ Lp(Ω;Lq(Y ∗x )) and f̂ ∈ Lp(Ω;Lq(Y ∗x )). Moreover, ψ0 and ψ−1
0 give

also an continuous isomorphism between Lp(Ω;W 1,q(Y ∗)) and Lp(Ω;W 1,q(Y ∗x ))
as well as between Lp(Ω;W 1,q

# (Y ∗)) and Lp(Ω;W 1,q
# (Y ∗x )).

In order to shorten out notation, we define

ϕε,ψε(·x) := ϕ

(
ψε(·x),

ψε(·x)

ε

)
, ϕψ0

(·x, ·y) := ϕ(·x, ψ0(·x, ·y)),

ϕψ−1
0

(·x, ·y) := ϕ(·x, ψ−1
0 (·x, ·y))

for functions which depend on x and y. For functions, which have already an270

index themselves, we write u0,ψ0
(·x, ·y) = u0(·x, ψ0(·x, ·y)) and û0,ψ−1

0
(·x, ·y) =

û0(·x, ψ−1
0 (·x, ·y)).

First, we consider the two-scale convergence of continuous functions under
the locally periodic transformation ψε.

Lemma 3.6. Let ϕ ∈ C(Ω(δ);C#(Y )). Then, ϕ̃ε,ψε
<∞→→ ϕ̃ψ0

.275

Proof. Because of Proposition 2.14, it is enough to show that Tε(ϕ̃ε,ψε) converges
strongly to ϕψ0

in Lp(Ω × Y ) for every p ∈ (1,∞). It can be reduced to the
strong convergence in Lp(Ω× Y ∗) since supp(Tε(ϕ̃ε,ψε)),supp(ϕ̃ψ0

) ⊂ Ω× Y ∗.
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Using ψε(x) = x + ψ̌ε(x) and the Y -periodicity of ϕ, we can rewrite, for
a.e. (x, y) ∈ Ω× Y ∗ and ε > 0 small enough such that x ∈ Ω̃ε

Tε(ϕ̃ε,ψε) = Tε
( ˜
ϕ
(
ψε(·x),

ψε(·x)

ε

))
(x, y) = ϕ

(
ψε([x]ε,Y + εy),

ψε([x]ε,Y + εy)

ε

)
= ϕ

(
[x]ε,Y + εy + ψ̌ε([x]ε,Y + εy),

[x]ε,Y + εy + ψ̌ε([x]ε,Y + εy)

ε

)
= ϕ

(
[x]ε,Y + εy + Tε(˜̌ψε)(x, y), y +

Tε(˜̌ψε)(x, y)

ε

)
.

The strong two-scale convergence of 1
ε
˜̌ψε to ˜̌ψ0 implies the strong convergence

of 1
εTε(

˜̌ψε) to ˜̌ψ0 in Lp(Ω × Y ). Then, there exists a subsequence ε′ such that

1
ε′ Tε′(

˜̌ψε′)(x, y) → ˜̌ψ0(x, y) for a.e. (x, y) ∈ Ω × Y . Moreover, [x]ε,Y converges

to x and εy to 0. Since ϕ ∈ C(Ω(δ);C#(Y )), we can carry over these pointwise
convergences to the pointwise convergence

ϕ

(
[x]ε′,Y + ε′y + Tε′( ˜̌ψε′)(x, y), y +

Tε′( ˜̌ψε′)(x, y)

ε′

)
→ ϕ(x, y + ψ̌0(x, y)) = ϕ(x, ψ0(x, y))

for every (x, y) ∈ Ω × Y ∗. Furthermore,
∣∣∣ϕ(Tε′(ψ̃ε′)(x, y), y + Tε′ (

˜̌ψε′ )(x,y)
ε′

)∣∣∣ ≤
||ϕ||C∞(Ω(δ)×Y ) ≤ C for a.e. (x, y) ∈ Ω × Y ∗. Thus, we can apply Lebesgue’s280

dominated convergence theorem and get the strong convergence of Tε′(ϕ̃ε′,ψε′ )
to ϕ̃ψ0

in Lp(Ω × Y ∗). Indeed, this argumentation holds for every arbitrary
subsequence, too, which implies the strong convergence for the whole sequence.

The next lemma shows that the transformations by ψε and ψ−1
ε are uniformly285

continuous. Together with Lemma 3.6, this allows to translate between the weak
two-scale convergence of sequences defined on Ωε and Ω̂ε, respectively.

Lemma 3.7. Let p ∈ (1,∞). Let uε and ûε = uε◦ψε be sequences of measurable
functions on Ωε and Ω̂ε, respectively. Then, the following statements hold:

1. The sequence uε is bounded in Lp(Ωε) if and only if the sequence ûε is290

bounded in Lp(Ω̂ε).

2. Let l ∈ {0, 2}. Then the sequence εl/2∇uε is bounded in Lp(Ωε) if and
only if the sequence εl/2∇ûε is bounded in Lp(Ω̂ε).

Proof. Transforming the following integrals by ψε and using the uniform esti-
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mates on Jε and J−1
ε imply Lemma 3.7(1)

||uε||pLp(Ωε)
=

∫
Ωε

|uε(x)|pdx =

∫
Ω̂ε

Jε(x)|ûε(x)|pdx ≤ C
∫
Ω̂ε

|ûε(x)|pdx = C ||ûε||pLp(Ω̂ε)
,

||ûε||pLp(Ω̂ε)
=

∫
Ωε

J−1
ε (ψ−1

ε (x))|uε(x)|pdx ≤ cJ
∫
Ωε

|uε(x)|pdx = cJ ||uε||pLp(Ωε)
.

From the chain rule, we get (∇uε)(ψε(x)) = Ψ−>ε (x)∇ûε(x). Using the
uniform estimates for the Jacobians and their inverses (cf. Definition 3.2 and
Lemma 3.3), we can estimate as follows

||∇uε||pLp(Ωε)
=

∫
Ωε

|∇uε(x)|pdx =

∫
Ω̂ε

Jε(x)|Ψ−>ε (x)∇ûε(x)|pdx

≤ C
∫
Ω̂ε

∣∣∣∣Ψ−>ε (x)
∣∣∣∣p |∇ûε(x)|pdx ≤ C

∫
Ω̂ε

∣∣∣∣Ψ−>ε (x)
∣∣∣∣p
L∞(Ω̂ε)

|∇ûε(x)|pdx

≤ C
∫
Ω̂ε

|∇ûε(x)|pdx = C ||∇ûε||pLp(Ω̂ε)
,

||∇ûε||pLp(Ω̂ε)
=

∫
Ω̂ε

|∇ûε(x)|pdx =

∫
Ωε

J−1
ε (ψ−1

ε (x))|Ψ>ε (ψ−1
ε (x))∇uε(x)|pdx

≤ cJ
∫
Ωε

∣∣∣∣Ψ>ε (ψ−1
ε (x))

∣∣∣∣p |∇uε(x)|pdx ≤ cJ
∫
Ωε

∣∣∣∣Ψ>ε ∣∣∣∣pL∞(Ω̂ε)
|∇uε(x)|pdx

≤ C
∫
Ωε

|∇uε(x)|pdx = C ||∇uε||pLp(Ωε)
,

which yields Lemma 3.7(2).

Now, we give a rigorous translation between the weak two-scale convergence295

of sequences defined on Ωε and the corresponding sequences defined on Ω̂ε.
First, we prove the following back-transformation, which was proposed in [4].

Theorem 3.8. Let p ∈ (1,∞). Let uε be a sequence in Lp(Ω̂ε) and ûε =

uε ◦ ψε. Then, ũε
p
⇀⇀ ũ0 for u0 ∈ Lp(Ω;Lp(Y ∗x )) if and only if ˜̂uε p

⇀⇀ ˜̂u0 for
û0 ∈ Lp(Ω× Y ∗). Moreover, û0 = u0,ψ0

holds and equivalently u0 = û0,ψ−1
0

.300

Proof. First, we assume that ˜̂uε two-scale converges to ˜̂u0 in Lp(Ω) for 1 < p <

∞. Proposition 2.6 implies that ˜̂uε is bounded and by Lemma 3.7(1), ũε is

bounded as well. Moreover, ˜̂u0,ψ−1
0
∈ Lp(Ω(δ) × Y ). Therefore, it is enough to

show the distributional two-scale convergence, i.e.

lim
ε→0

∫
Ω(δ)

ũε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ω(δ)

∫
Y

˜̂u0,ψ−1
0

(x, y)ϕ(x, y)dydx (9)
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for every smooth function ϕ ∈ D(Ω(δ);C∞# (Y )). We transform the integrand of
the left-hand side by ψε∫

Ω(δ)

ũε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ωε

uε(x)ϕ
(
x,
x

ε

)
dx =

∫
Ω̂ε

Jε(x)ûε(x)ϕε,ψε(x)dx

=

∫
Ω

J̃ε(x)˜̂uε(x)ϕ̃ε,ψε(x)dx.

We note that ϕ ∈ C(Ω(δ);C#(Y )) and Lemma 3.6 imply ϕ̃ε,ψε
∞→→ ϕ̃ψ0

. Using

the strong two-scale convergence J̃ε
<∞→→ J̃0, we can pass to the limit ε→ 0 and

get

lim
ε→0

∫
Ω

J̃ε(x)˜̂uε(x)ϕ̃ε,ψε(x)dx =

∫
Ω

∫
Y

J̃0(x, y)˜̂u0(x, y)ϕ̃ψ0
(x, y)dydx.

Then, we transform the Y -integral back with ψ0(x, ·y)∫
Ω

∫
Y

J̃0(x, y)˜̂u0(x, y)ϕ̃ψ0(x, y)dydx =

∫
Ω

∫
Y ∗

J0(x, y)û0(x, y)ϕ(x, ψ0(x, y))dydx

=

∫
Ω

∫
Y ∗x

û0(x, ψ−1
0 (x, y))ϕ(x, y)dydx =

∫
Ω(δ)

∫
Y

˜̂u0,ψ−1
0

(x, y)ϕ(x, y)dydx.

Combining these equations shows (9).

Now, we assume that ũε
p
⇀⇀ ũ0. By using Proposition 2.6 and Lemma 3.7(1),

we obtain the boundedness of ûε. Then, Proposition 3.5 gives the existence of

a subsequence ε′ and a function û0 ∈ Lp(Ω × Y ∗) such that ˜̂uε′ p
⇀⇀ ˜̂u0. The

previous argumentation applied to this subsequence yields û0 = u0,ψ0
. Since305

this argumentation also holds for every subsequence, the whole sequence ˜̂uε
two-scale converges weakly to ˜̂u0 for û0 = u0,ψ0 .

In the next step, we consider the weak two-scale convergence for weakly
differentiable functions. We start with the case of large gradients, i.e. ε∇uε ≤ C,
and show that the same transformation rule as for the functions themselves hold.310

Theorem 3.9. Let p ∈ (1,∞). Let uε be a sequence in W 1,p(Ωε) and ûε =
uε ◦ ψε a sequence in W 1,p(Ω̂ε) such that uε is bounded in Lp(Ωε). Then,

ε∇̃uε
p
⇀⇀ ∇̃yu0 for u0 ∈ Lp(Ω;W 1,p

# (Y ∗x )) if and only if ε∇̃ûε
p
⇀⇀ ∇̃yû0 for û0 ∈

Lp(Ω;W 1,p
# (Y ∗)). Moreover, û0 = u0,ψ0

holds and equivalently u0 = û0,ψ−1
0

.

Proof. First, we assume that ε∇̃ûε
p
⇀⇀ ∇̃yû0. Proposition 2.6 implies that

ε∇̃ûε is bounded and by Lemma 3.7(2), ε∇̃uε is bounded as well. Moreover,
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∇̃yû0,ψ−1
0
∈ Lp(Ω(δ) × Y ). Therefore, it is enough to show the distributional

two-scale convergence, i.e.

lim
ε→0

∫
Ω(δ)

ε∇̃uε(x) · ϕ
(
x,
x

ε

)
dx =

∫
Ω(δ)

∫
Y

∇̃yû0,ψ−1
0

(x, y) · ϕ(x, y)dydx (10)

for test functions ϕ ∈ D(Ω(δ);C∞# (Y ))N , where ∇yû0,ψ−1
0

denotes the gradient

of y 7→ û0(x, ψ−1
0 (x, y)). We transform the integral on the left-hand side by ψε

and use the chain rule, which gives ∇uε(ψ−1
ε (x)) = Ψ−>ε (x)∇ûε(x). Thus, we

get ∫
Ω(δ)

ε∇̃uε(x) · ϕ
(
x,
x

ε

)
dx =

∫
Ω

J̃ε(x)Ψ̃−>ε (x)ε∇̃ûε(x) · ϕ̃ε,ψε(x)dx.

In order to pass to the limit ε→ 0, we proceed as in the proof of Theorem 3.8

and additionally use the strong two-scale convergence of Ψ̃−>ε . In the limit, we
transform the Y -integral back with ψ−1

0 and obtain

lim
ε→0

∫
Ω(δ)

ε∇̃uε(x) · ϕ
(
x,
x

ε

)
dx = lim

ε→0

∫
Ω

J̃ε(x)Ψ̃−>ε (x)ε∇̃ûε(x) · ϕ̃ε,ψε(x)dx

=

∫
Ω

∫
Y

J̃0(x, y)Ψ̃−>0 (x, y)∇̃yû0(x, y) · ϕ̃ψ0
(x, y)dydx

=

∫
Ω(δ)

∫
Y

∇̃yû0,ψ−1
0

(x, y) · ϕ(x, y)dydx.

Now, we assume that ε∇̃uε
p
⇀⇀ ∇̃yu0. Using Proposition 2.6 and Lemma315

3.7(2), we obtain the boundedness of ε∇ûε. Moreover, Proposition 3.7(1) trans-
fers the boundedness of uε in Lp(Ωε) to the boundedness of ûε in Lp(Ω̂ε). Then,
Proposition 3.5 implies the existence of û0 ∈ L2(Ω;H1

#(Y ∗)) and a subsequence

ε′ such that ε′∇̃uε′
p
⇀⇀ ∇̃yû0. The previous argumentation applied to this subse-

quence yields û0 = u0,ψ0
. Since this argumentation holds for every subsequence,320

it holds for the whole sequence.

The last part of the two-scale transformation is the case of small gradients,
i.e. ||∇uε||Lp(Ωε)

≤ C. Following the approach of the case of large gradients

yields Ψ−>0 (x, y)∇xû0(x) + Ψ−>0 (x, y)∇yû1(x, y), which has to be transformed
back. However, the Jacobian Ψ−>0 only vanishes by the back-transformation325

of the y-gradient and remains in front of the x-gradient. This remaining Ja-
cobian is basically the reason why the back-transformation did not yield a
transformationally independent limit problem in the hitherto existing works.
In order to overcome this problem, we separate the purely macroscopic part of
Ψ−>0 (x)∇xû0(x) and put the remaining part into the transformation rule for330

the y-gradient. Thus, we can prove the following new transformation rule.
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Theorem 3.10. Let p ∈ (1,∞) and assume that Y ∗# is connected. Let uε be

a sequence in W 1,p(Ωε) and ûε = uε ◦ ψε a sequence in W 1,p(Ω̂ε) such that

uε is bounded in Lp(Ωε). Then, ∇̃uε
p
⇀⇀ χQ∇̃xu0 + ∇̃yu1 for u0 ∈ W 1,p(Ω)

and u1 ∈ Lp(Ω;W 1,p
# (Y ∗x )/R) if and only if ∇̃ûε

p
⇀⇀ χY ∗∇xû0 + ∇̃yû1 for û0 ∈335

W 1,p(Ω) and û1 ∈ Lp(Ω;W 1,p
# (Y ∗)/R). Moreover, û0 = u0 holds and also

u1 = û1,ψ−1
0

+ ψ̌−1
0 · ∇xû0, which is equivalent to û1 = u1,ψ0 + ψ̌0 · ∇xu0.

Proof. First, we assume that ∇̃ûε
p
⇀⇀ χY ∗ û0 + ∇̃yû1. Proposition 2.6 implies

that ∇̃ûε is bounded and by Lemma 3.7(2), ∇̃uε is bounded as well. Moreover,

∇̃yu1 ∈ Lp(Ω(δ) × Y ) for u1 = û1,ψ−1
0

+ ψ̌−1
0 · ∇xû0. Therefore, it is enough to

show the distributional two-scale convergence, i.e.

lim
ε→0

∫
Ω(δ)

∇̃uε(x) · ϕ
(
x,
x

ε

)
dx

=

∫
Ω(δ)

∫
Y

(
χQ(x, y)∇̃xû0(x) + ∇̃yu1(x, y)

)
· ϕ(x, y)dydx (11)

for u1 = û1,ψ−1
0

+ ψ̌−1
0 · ∇xû0 and for test functions ϕ ∈ D(Ω(δ);C∞# (Y ))N . We

transform the integral on the left-hand side and pass to the limit ε → 0 like
in the proof of Theorem 3.9. After transforming the Y -integral back, we use
Ψ−>

0,ψ−1
0

(x, y) = Ψ−>0 (x, ψ−1
0 (x, y)) = ∇yψ−1

0 (x, y) = 1 +∇yψ̌−1
0 (x, y)

lim
ε→0

∫
Ω(δ)

∇̃uε(x) · ϕ
(
x,
x

ε

)
dx = lim

ε→0

∫
Ω

J̃ε(x)Ψ̃−>ε (x)∇̃ûε(x) · ϕ̃ε,ψε(x)dx

=

∫
Ω

∫
Y

J̃0(x, y)Ψ̃−>0 (x, y)(χY ∗(x)∇xû0(x) + ∇̃yû1(x, y)) · ϕ̃ψ0
(x, y)dydx

=

∫
Ω(δ)

∫
Y

(
Ψ̃−>

0,ψ−1
0

(x, y)χQ(x, y)∇̃xû0(x) + ∇̃yû1,ψ−1
0

(x, y)
)
· ϕ(x, y)dydx

=

∫
Ω(δ)

∫
Y

(
χQ(x, y)∇̃xû0(x) + ∇̃yψ̌−1

0 (x, y)∇̃xû0(x) + ∇̃yû1,ψ−1
0

(x, y)
)
· ϕ(x, y)dydx,

where ∇yû1,ψ−1
0

denotes the gradient of y 7→ û1(x, ψ−1
0 (x, y)). Thus, ∇̃uε

p
⇀⇀

χQ∇̃xu0 + ∇̃yu1 with u0 = û0 and u1 = û1,ψ−1
0

+ ψ̌−1
0 · ∇xû0.

Now, we assume that ∇̃uε
p
⇀⇀ χQ∇xu0 + ∇̃yu1. Then, we obtain ˜̂uε p

⇀⇀340

χY ∗∇xû0 + ∇̃û1 with û0 = u0 and û1 = u1,ψ0
− ψ̌−1

0,ψ0
· ∇xu0 by the same

argumentation as in the proof of Theorem 3.9. Rewriting ψ̌−1
0 (x, ψ0(x, y)) =

ψ−1
0 (x, ψ0(x, y)) − ψ0(x, y) = y − ψ0(x, y) = −ψ̌0(x, y) gives û1 = u1,ψ0

+ ψ̌0 ·
∇xu0.
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With the transformation results Theorem 3.8, Theorem 3.9 and Theorem345

3.10, we can translate the two-scale compactness results for periodic domains
Theorem 2.3, Theorem 2.4 and Theorem 2.5 directly into the following com-
pactness results for locally periodic domains.

Theorem 3.11. Let p ∈ (1,∞). Let uε be a bounded sequence in Lp(Ωε). Then,

there exist u0 ∈ Lp(Ω;Lp(Y ∗x )) and a subsequence ε′ such that ũε′
p
⇀⇀ ũ0.350

Theorem 3.12. Let p ∈ (1,∞). Let uε be a sequence in W 1,p(Ωε) such that
||uε||Lp(Ωε)

≤ C and ε ||∇uε||Lp(Ωε)
≤ C. Then, there exist u0 ∈ Lp(Ω;W 1,p

# (Y ∗x ))

and a subsequence ε′ such that ũε′
p
⇀⇀ ũ0 and ε′∇̃uε′

p
⇀⇀ ∇̃yu0.

Theorem 3.13. Let p ∈ (1,∞) and assume that Y ∗# is connected. Let uε be

a sequence in W 1,p(Ωε) such that ||uε||Lp(Ωε)
+ ||∇uε||Lp(Ωε)

≤ C. Then, there355

exist u0 ∈ W 1,p(Ω), u1 ∈ Lp(Ω;W 1,p
# (Y ∗x )/R) and a subsequence ε′ such that

ũε′
p
⇀⇀ χQũ0 and ∇̃uε′

p
⇀⇀ χQ∇̃xu0 + ∇̃yu1.

Now, we consider the transformational behaviour of the strong two-scale
convergence. This allows us to translate the strong two-scale convergence of the
coefficients into the strong two-scale convergence of the transformed coefficients.360

Theorem 3.14. Let p ∈ (1,∞). Let uε be a sequence in Lp(Ω̂ε) and ûε =

uε ◦ ψε. Then, ũε
p→→ ũ0 for u0 ∈ Lp(Ω;Lp(Y ∗x )) if and only if ˜̂uε p→→ ˜̂u0 for

û0 ∈ Lp(Ω× Y ∗). Moreover, û0 = u0,ψ0 holds and equivalently u0 = û0,ψ−1
0

.

Proof. Assume that ũε
p→→ u0. Because of Theorem 3.8 it is sufficient to show

that lim
ε→0

∣∣∣∣∣∣˜̂uε∣∣∣∣∣∣
Lp(Ω)

=
∣∣∣∣∣∣˜̂u0

∣∣∣∣∣∣
Lp(Ω×Y )

. We transform via ψε and obtain

∣∣∣∣∣∣˜̂uε∣∣∣∣∣∣p
Lp(Ω)

=

∫
Ω

|˜̂uε(x)|pdx =

∫
Ω(δ)

˜J−1
ε ◦ ψ−1

ε (x)|ũε(x)|pdx

=

∫
Ω(δ)

∫
Y

Tε( ˜J−1
ε ◦ ψ−1

ε (x)|ũε(x)|p)dx =

∫
Ω(δ)

∫
Y

Tε( ˜J−1
ε ◦ ψ−1

ε (x))|Tε(ũε(x))|p)dx

(12)

In order to pass to the limit ε → 0, we note that J̃−1
ε

<∞→→ J̃−1
0 . Then,

Theorem 3.8 implies that ˜J−1
ε ◦ ψ−1

ε
<∞
⇀⇀ J̃−1

0,ψ−1
0

and thus Tε( ˜J−1
ε ◦ ψ−1

ε ) con-

verges weakly in Lp(Ω(δ) × Y ), for every p ∈ (1,∞), to J̃−1

0,ψ−1
0

. Because∣∣∣∣∣∣∣∣Tε( ˜J−1
ε ◦ ψ−1

ε )

∣∣∣∣∣∣∣∣
L∞(Ω(δ))

is uniformly bounded by c−1
J , Tε( ˜J−1

ε ◦ ψ−1
ε ) converges

weakly-∗ in L∞(Ω × Y ). Moreover, ũε
p→→ u0 implies that Tε(ũε) converges

strongly in Lp(Ω× Y ) to u0, which gives the strong convergence of |Tε(ũε)|p to
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|ũ0|p. Thus, we can pass to the limit in (12) and obtain

lim
ε→0

∣∣∣∣∣∣˜̂uε∣∣∣∣∣∣p
Lp(Ω)

= lim
ε→0

∫
Ω(δ)×Y

Tε( ˜J−1
ε ◦ ψ−1

ε (x))|Tε(ũε(x))|pdx

=

∫
Ω(δ)×Y

J̃−1

0,ψ−1
0

(x, y)|ũ0(x, y)|pdx =

∫
Ω×Y

|ũ0,ψ0
(x, y)|pdx =

∫
Ω×Y

|˜̂u0(x, y)|pdx

The proof of the other implication follows in the same way.

Note that Theorem 3.8 transfers χΩ̂ε

<∞→→ χY ∗ into χΩε
<∞→→ χQ. This implies365

that Q is uniquely defined up to a set N ⊂ Ω × Y of measure zero. Moreover,
since Definition 3.1 postulates that Y ∗x is open for a.e. x ∈ Ω, Y ∗x is uniquely
defined for a.e. x ∈ Ω. Therefore, the two-scale limit domain should not be seen
as subset of Ω× Y but rather as the sets Y ∗x for a.e. x ∈ Ω.

Furthermore, Theorem 3.14 implies also the strong two-scale convergence of370

the displacement fields of the back-transformations. After rewriting ψ̌−1
ε ◦ψε =

−ψ̌ε, we get 1
ε
˜̌ψ−1
ε

<∞→→ ˜−χY p,ψ−1
0

˜̌ψ0,ψ−1
0

= χQ
˜̌ψ−1

0 .

4. Homogenisation on locally periodic domains

In order to pass to the limit ε→ 0 in (2), we have to assume that there exists

A0 ∈ L∞(Q)N×N , which is coercive, such that Ãε
<∞→→ Ã0 and that there exists375

f0 ∈ L2(Ω;L2(Y ∗x )) such that f̃ε
2
⇀⇀ f̃0. Note that it is not necessary to assume

that these two-scale limits are 0 outside of Q. It is sufficient to assume only the
existence of the two-scale limits A0 and f0. Then, the two-scale compactness
results for locally periodic domains ensures that A0 = χQA0 and f0 = χQf0. In
the following, we assume that Y ∗# is connected if l = 0.380

4.1. The periodic substitute problem

We transform the coefficients Aε and the source functions fε into Âε :=

Aε ◦ ψε and f̂ε := fε ◦ ψε, respectively. Lemma 3.8 implies that
˜̂
fε

2
⇀⇀

˜̂
f0 with

f̂0 := f0,ψ0 and Lemma 3.14 implies that
˜̂
Aε

<∞→→ ˜̂
A0 with Â0 := A0,ψ0 . Moreover,

note that these transformations carry the uniform boundedness and coercivity385

from Aε over to Âε as well as from A0 over to Â0. Then, the transformation of
(2) with ψε gives the following weak form (cf. Proposition 4.2):

Find ûε ∈ H1(Ω̂ε) such that∫
Ω̂ε

εlJε(x)Ψ−1
ε (x)Âε(x)Ψ−>ε (x)∇ûε(x) · ∇ϕ̂(x) + Jε(x)ûε(x)ϕ̂(x)dx

=

∫
Ω̂ε

Jε(x)f̂ε(x)ϕ̂(x)dx (13)

18



for every ϕ̂ ∈ H1(Ω̂ε).
Using the uniform estimates of the transformations, we show the existence

and uniqueness of solutions of (13) as well as their uniform boundedness.390

Proposition 4.1. For every ε > 0, there exists a unique solution ûε ∈ H1(Ω̂ε)
of the weak form (13) such that

||ûε||L2(Ω̂ε)
+ εl/2 ||∇ûε||L2(Ω̂ε)

≤ C. (14)

Proof. Using the uniform bounds of the Jacobians of ψε, we can estimate

||∇u||2L2(Ω̂ε)
≤ 1

cJ

∣∣∣∣∣∣√JεΨ>ε Ψ−>ε ∇u
∣∣∣∣∣∣2
L2(Ω̂ε)

≤ 1

cJ

∣∣∣∣Ψ>ε ∣∣∣∣2C(Ω̂ε)

∣∣∣∣∣∣√JεΨ−>ε ∇u∣∣∣∣∣∣2
L2(Ω̂ε)

≤ C
∣∣∣∣∣∣√JεΨ−>ε ∇u∣∣∣∣∣∣2

L2(Ω̂ε)
≤ C

α

∫
Ω̂ε

Jε(x)Ψ−1
ε (x)Âε(x)Ψ−>ε (x)∇u(x) · ∇u(x)dx

for every u ∈ H1(Ω̂ε). This implies the ε-independent coercivity of the left-hand
side of (13) in H1(Ω̂ε)∫

Ω̂ε

εlJε(x)Ψ−1
ε (x)Âε(x)Ψ−>ε (x)∇u(x) · ∇u(x) + Jε(x)u(x)u(x)dx

≥ C
(
εl ||∇u||2L2(Ω̂ε)

+ ||u||2L2(Ω̂ε)

)
. (15)

Furthermore, the left-hand side of (13) can be estimated for every u, v ∈ H1(Ω̂ε)
with the Cauchy inequality and the uniform estimates of the transformations∫
Ω̂ε

εlJε(x)Ψ−1
ε (x)Âε(x)Ψ−>ε (x)∇v(x) · ∇u(x) + Jε(x)v(x)u(x)dx

≤ εlC
∣∣∣∣∣∣√JεΨ−>ε ∇v∣∣∣∣∣∣

L2(Ω̂ε)

∣∣∣∣∣∣√JεΨ−>ε ∇u∣∣∣∣∣∣
L2(Ω̂ε)

+ C ||v||L2(Ω̂ε)
||u||L2(Ω̂ε)

≤ εlC ||∇v||L2(Ω̂ε)
||∇u||L2(Ω̂ε)

+ C ||v||L2(Ω̂ε)
||u||L2(Ω̂ε)

.

This implies the continuity of the left-hand side.
The right-hand side of (13) can be estimated with the uniform estimates

from Lemma 3.3∫
Ω̂ε

Jε(x)f̂ε(x)ϕ̂(x)dx ≤
∣∣∣∣∣∣Jεf̂ε∣∣∣∣∣∣

L2(Ω̂ε)
||ϕ̂||L2(Ω̂ε)

≤ ||Jε||C(Ω̂ε)

∣∣∣∣∣∣f̂ε∣∣∣∣∣∣
L2(Ω̂ε)

||ϕ̂||L2(Ω̂ε)
≤ C ||ϕ̂||L2(Ω̂ε)

. (16)

Note that
∣∣∣∣∣∣f̂ε∣∣∣∣∣∣

L2(Ω̂ε)
is bounded since

˜̂
fε two-scale converges in L2(Ω).

These estimates allow us to apply the Theorem of Lax–Milgram, which gives
the existence and uniqueness of a solution ûε ∈ H1(Ω̂ε). Combining (13) with
(15) and (16) for ϕ̂ = ûε and employing the Young inequality yield the uniform395

estimate (14).
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Proposition 4.2. Let uε ∈ H1(Ωε) be the solution of (2) and let ûε ∈ H1(Ω̂ε)
be the solution of (13). Then, ûε = uε ◦ ψε.

Proof. The Theorem of Lax–Milgram ensures the existence of a unique solution
of (2).400

Testing (2) with ϕ̂ ◦ ψ−1
ε , gives∫

Ωε

εlAε(x)∇uε(x) · ∇ϕ̂ ◦ ψ−1
ε (x) + uε(x)ϕ̂ ◦ ψ−1

ε (x)dx =

∫
Ωε

fε(x)ϕ̂ ◦ ψ−1
ε (x)dx.

(17)

Transforming the integrals with ψε and using the product rule yield∫
Ω̂ε

εlJε(x)Ψ−1
ε (x)Âε(x)Ψ−>ε (x)∇uε ◦ ψε(x) · ∇ϕ̂(x) + uε ◦ ψε(x)ϕ̂(x)dx

=

∫
Ω̂ε

Jε(x)fε(ψε(x))ϕ̂(x)dx.

It follows by the uniqueness of the solution of (13) that ûε = uε ◦ ψε.

4.2. Homogenisation of the periodic substitute problem

In the following, we pass to the homogenisation limit ε→ 0 in (13) by using
the compactness result for periodic domains (cf. Proposition 3.5).

Proposition 4.3. Let l = 0 and let Y ∗# be connected. Let ûε be the solutions of

(13) given by Proposition 4.1. Then, ˜̂uε 2
⇀⇀ χY ∗ û0 and ∇̃uε

2
⇀⇀ χY ∗∇xû0+∇̃yû1,

where (û0, û1) ∈ H1(Ω)× L2(Ω, H1
#(Y ∗)/R) is the unique solution of∫

Ω

∫
Y ∗

J0(x, y)Ψ−1
0 (x, y)Â0(x, y)Ψ−>0 (x, y)(∇xû0(x) +∇yû1(x, y))

· (∇xϕ̂0(x) +∇yϕ̂1(x, y))dydx

+

∫
Ω

∫
Y ∗

J0(x, y)û0(x)ϕ̂0(x)dydx =

∫
Ω

∫
Y ∗

J0(x, y)f̂0(x, y)ϕ̂0(x)dydx (18)

for every (ϕ̂0, ϕ̂1) ∈ H1(Ω)× L2(Ω, H1
#(Y ∗)/R).405

Proof. Testing (13) with ϕ̂0+εϕ̂1

(
·x, ·xε

)
for ϕ̂0 ∈ C∞(Ω) and ϕ̂1 ∈ C∞(Ω;C∞# (Y ))

gives∫
Ω

J̃ε(x)Ψ̃−1
ε (x)Âε(x)Ψ̃−>ε (x)∇̃ûε(x) ·

(
∇xϕ̂0(x) + ε∇xϕ̂1

(
x,
x

ε

)
+∇yϕ̂1

(
x,
x

ε

))
+J̃ε(x)˜̂uε(x)

(
ϕ̂0(x) + εϕ̂

(
x,
x

ε

))
dx =

∫
Ω

J̃ε(x)
˜̂
fε(x)

(
ϕ̂0(x) + εϕ̂

(
x,
x

ε

))
dx.

20



The uniform estimate of uε, given by Proposition 4.1, and the compactness
result for periodic domains (cf. Proposition 3.5) yield the existence of (û0, û1) ∈
H1(Ω) × L2(Ω;H1

#(Y ∗)/R) and a subsequence ε′ and such that ˜̂uε′ 2
⇀⇀ χY ∗ û0

and ∇̃ûε′
2
⇀⇀ χY ∗∇xû0 + ∇̃yû1. Then, we pass to the limit ε′ → 0 and obtain

(18) for smooth test functions. By a density argument, (18) follows for test410

functions in H1(Ω)× L2(Ω;H1
#(Y ∗)/R).

The existence and uniqueness of the solution (û0, û1) ∈ H1(Ω)×L2(Ω, H1
#(Y ∗)/R)

follow from the Theorem of Lax–Milgram. The necessary uniform coercivity and
continuity estimates of the left-hand side can be proven in a standard way, while
the uniform coercivity of J0Ψ−1

0 Â0Ψ−>0 can be proven like in Proposition 4.1.415

Since this argumentation holds for every subsequence, the uniqueness of the
solution of (18) implies that the convergences hold for the whole sequence.

We rewrite the two-scale limit problem (18) into the following homogenised
problem, which is defined on the cylindrical two-scale domain Ω× Y ∗ and con-
tains the transformation coefficients J0 and Ψ0.420

Proposition 4.4. Let û0 ∈ H1(Ω) be the solution of (18). Then, it solves∫
Ω

B̂0(x)∇û0(x) · ∇ϕ̂(x) + Θ(x)û0(x)ϕ̂(x)dx =

∫
Ω

∫
Y ∗

J0(x, y)f̂0(x, y)dy ϕ̂(x)dx

(19)

for every ϕ̂ ∈ H1(Ω), where Θ(x) =
∫
Y ∗

J0(x, y)dy and B̂0 ∈ L∞(Ω)N×N is given

by

(B̂0)ij(x) :=

∫
Y ∗

J0(x, y)Ψ−1
0 (x, y)Â0(x, y)Ψ−>0 (x, y)(ej +∇yŵj(x, y)) · eidy

(20)

and ŵj is defined as the unique solution in L2(Ω;H1
#(Y ∗)/R) such that∫

Ω

∫
Y ∗

J0(x, y)Ψ−1
0 (x, y)Â0(x, y)Ψ−>0 (x, y)(∇yŵj(x, y) + ej) · ∇yϕ̂1(x, y)dydx = 0

(21)

for every ϕ̂1 ∈ L2(Ω;H1
#(Y ∗)/R).

Proof. Choosing ϕ̂0 = 0 in (18) yields∫
Ω

∫
Y ∗

J0(x, y)Ψ−1
0 (x, y)Â0(x, y)Ψ−>0 (x, y)(∇xû0(x) +∇yû1(x, y)) · ∇yϕ̂1(x, y)dydx = 0,

(22)
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which implies û1 =
N∑
j=1

∂xj û0ŵj , where ŵj is the unique solution of the cell

problem (21). Inserting û1 =
N∑
j=1

∂xj û0ŵj in (18) and choosing ϕ̂1 = 0 yield

(19) for B̂0 given by (20).

Proposition 4.5. Let l = 2 and let ûε be the solution of (13) given by Propo-

sition 4.1. Then, ˜̂uε 2
⇀⇀ ˜̂u0 and ε∇̃ûε

2
⇀⇀ ∇̃yû0, where û0 is the unique solution

in L2(Ω, H1
#(Y ∗)) such that∫

Ω

∫
Y ∗

D̂0(x, y)∇yû0(x, y) · ∇yϕ̂(x, y) + J0(x, y)û0(x, y)ϕ̂(x, y)dydx

=

∫
Ω

∫
Y ∗

J0(x, y)f̂0(x, y)ϕ̂(x, y)dydx (23)

for every ϕ̂ ∈ L2(Ω;H1
#(Y ∗)), where D̂0 = J0Ψ−1

0 Â0Ψ−>0 .425

Proof. The uniform estimate of ûε, given by Proposition 4.1, and the compact-
ness result for periodic domains (cf. Proposition 3.5) imply the existence of a

subsequence ε′ and û0 ∈ L2(Ω;H1
#(Y ∗)) such that ˜̂uε′ 2

⇀⇀ ˜̂u0 and ε′∇̃ûε′
2
⇀⇀

∇̃yû0. We test (13) with ϕ̂
(
·x, ·xε

)
for ϕ̂ ∈ C∞(Ω;C∞# (Y )). After passing to the

limit ε′ → 0, we obtain (23) for smooth test functions. Since C∞(Ω;C∞# (Y )) is430

dense in L2(Ω;H1
#(Y ∗)), (23) holds for any ϕ̂ ∈ L2(Ω;H1

#(Y ∗)).

The existence and uniqueness of the solution û0 ∈ L2(Ω, H1
#(Y ∗)) follow

from the Theorem of Lax–Milgram. The necessary uniform coercivity and con-
tinuity estimates can be proven in a standard way, while the uniform coercivity
of J0Ψ−1

0 Â0Ψ−>0 can be proven like in Proposition 4.1.435

Since this argumentation holds for every subsequence, the uniqueness of the
solution of (23) implies that the convergences hold for the whole sequence.

4.3. Back-transformation

Using Theorem 3.8, Theorem 3.10 and Theorem 3.9, we can transform the
two-scale limit problems back. Thus, we can derive the two-scale limit problems440

of (2) for l = 0 and l = 2. Moreover, these limit problems do not depend on the
chosen transformations ψε and ψ0.

Theorem 4.6. Let l = 0 and let Y ∗# be connected. Let uε be the solution of (2).

Then, ũε
2
⇀⇀ χQũ0 and ∇̃uε

2
⇀⇀ χQ∇̃xu0 + ∇̃yu1, where (u0, u1) is the unique
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solution in H1(Ω)× L2(Ω;H1
#(Y ∗x )/R) of∫

Ω

∫
Y ∗x

A0(x, y)(∇xu0(x) +∇yu1(x, y)) · (∇xϕ0(x) +∇yϕ1(x, y)) + u0(x)ϕ0(x)dydx

=

∫
Ω

∫
Y ∗x

f0(x, y)dy ϕ0(x)dx

(24)

for every (ϕ0, ϕ1) ∈ H1(Ω)× L2(Ω;H1
#(Y ∗x )/R).

Proof. Proposition 4.2 shows that ûε = uε ◦ψε, where ûε is the unique solution

of (19). By Theorem 3.8, we obtain ũε
2
⇀⇀ χQũ0 and, by Theorem 3.10, ∇̃uε

2
⇀⇀445

χQ∇̃xu0 + ∇̃yu1 for u0 = û0 and u1 = û1,ψ−1
0

+ ψ̌−1
0 · ∇xu0, where û0 and û1

determine the two-scale limits of ûε and ∇ûε.
Then, we test (18) by (ϕ0, ϕ1,ψ0

+ ψ̌0 · ∇xϕ0) for (ϕ0, ϕ1) ∈ H1(Ω) ×
L2(Ω;H1

#(Y ∗x )) and transform the Y ∗-integral by ψ−1
0 so that∫

Ω

∫
Y ∗x

A0(x, y)
(

Ψ−>0 (x, ψ−1
0 (x, y))∇xû0(x) +∇yû1(x, ψ−1

0 (x, y))
)

·
(

Ψ−>0 (x, ψ−1
0 (x, y))∇xϕ0(x) +∇y

(
ϕ1(x, y) + ψ̌0(x, ψ−1

0 (x, y)) · ∇xϕ0(x)
))
dydx

+

∫
Ω

∫
Y ∗x

u0(x)ϕ0(x)dydx =

∫
Ω

∫
Y ∗x

f0(x, y)ϕ0(x)dydx, (25)

where ∇yψ̌0(x, ψ−1
0 (x, y)) denotes the gradient of y 7→ ψ̌0(x, ψ−1

0 (x, y)). Using
that Ψ−>0 (x, ψ−1

0 (x, y)) = 1 +∇yψ̌−1
0 (x, y), we can rewrite

Ψ−>0 (x, ψ−1
0 (x, y))∇xû0(x) +∇yû1(x, ψ−1

0 (x, y))

= ∇xû0(x) +∇y(û1(x, ψ−1
0 (x, y)) + ψ̌−1

0 · ∇xu0(x)) = ∇xu0(x) +∇yu1(x, y).

Employing that ψ̌0(x, ψ−1
0 (x, y)) = y − ψ−1

0 (x, y) = −ψ̌−1
0 (x, y), we get

Ψ−>0 (x, ψ−1
0 (x, y))∇xϕ0(x) +∇y(ϕ1(x, y) + ψ̌0(x, ψ−1

0 (x, y)) · ∇xϕ0(x))

= ∇xϕ0(x) +∇y(ϕ1(x, y) + ψ̌0(x, ψ−1
0 (x, y)) · ∇xϕ0(x) + ψ̌−1

0 (x, y) · ∇xϕ0(x))

= ∇xϕ0(x) +∇yϕ1(x, y).

Thus, (25) can be simplified to (24).

From (24), we can derive the following homogenised limit problem, which is
defined on Ω with cell problems defined on Y ∗x . However, in contrast to previous450

works, it does not contain Jacobians of the chosen deformation ψ0.
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Theorem 4.7. Let u0 ∈ H1(Ω) be the solution of (18). Then, it solves∫
Ω

B0(x)∇u0(x) · ∇ϕ(x) + Θ(x)u0(x)ϕ(x)dx =

∫
Ω

∫
Y ∗x

f0(x, y)dy ϕ(x)dx (26)

for every ϕ ∈ H1(Ω), where Θ(x) :=
∫
Y ∗x

1dy = |Y ∗x | and B0 ∈ L∞(Ω)N×N is

given by

(B0)ij(x) :=

∫
Y ∗x

δij + ∂yiwj(x, y)dy (27)

and wj is defined as the unique solution wj ∈ L2(Ω;H1
#(Y ∗x )/R) such that∫

Ω

∫
Y ∗x

(∇ywj(x, y) + ej) · ∇yϕ(x, y)dydx = 0 (28)

for every ϕ ∈ L2(Ω;H1
#(Y ∗x )/R).

Proof. The proof of Theorem 4.7 runs as the proof of Proposition 4.4.

Note that Θ in (26) is the same as in (19) and gives the local porosity of the
domain. With Lemma 3.3, we see that Θ is bounded from below by cJ and Θ455

is obviously bounded from above by 1.
The back-transformation of the two-scale limit problem (23) (the case l = 2)

in its actual two-scale domain is straightforward and yields the following limit
problem.

Theorem 4.8. Let l = 2 and let uε be the solutions of (2). Then, ũε
2
⇀⇀ χQũ0

and ε∇̃uε
2
⇀⇀ ∇̃yu0, where u0 is the unique solution of the following weak form.

Find u0 ∈ L2(Ω;H1
#(Y ∗x )) such that∫

Ω

∫
Y px

A0(x, y)∇yu(x, y) · ∇yϕ(x, y) + u(x, y)ϕ(x, y)dydx =

∫
Ω

∫
Y px

f(x, y)ϕ(x, y)dydx

(29)

for every ϕ ∈ L2(Ω;H1
#(Y ∗x )).460

Theorem 4.8 follows by testing (23) with ϕ(·x, ψ0(·x, ·y)) and back-transformation
with ψ−1

0 .

5. Direct homogenisation on the locally periodic domains and further
comments

The compactness results for locally periodic domains which we have devel-465

oped in this work (cf. Theorem 3.8, Theorem 3.10 and Theorem 3.9) allow us to

24



pass directly to the limit ε→ 0 in (2). The argumentation is the same as in the
periodic case. However, the problem which we have considered is an easy linear
problem and uniform a-priori estimates can also be derived on the locally peri-
odic domain. If the homogenisation of a more difficult problem is considered,470

for instance the Stokes problem or non-linear problems, the derivation of further
two-scale compactness results as well as the derivation of uniform estimates can
be easier in the strict periodic setting. Indeed, the results of this work allow to
transform those back from the periodic into the locally periodic domain. There-
fore, the passage to the limit ε → 0 can be done in the locally periodic setting475

as well. Moreover, it can be reasonable to transform the limit problem from the
actual non-cylindrical two-scale domain to the cylindrical coordinates Ω × Y ∗
in order to derive uniform estimates on the homogenised tensor and the cell
problems.

The original motivation for this two-scale-transformation method originates480

from problems on evolving microstructures. There, problems are considered on
a time interval S and a time dependent domain Ωε(t) (cf. [4], [5], [6], [7], [8], [9]).
The two-scale-transformation method is basically the same for these problems
since time is only a parameter in the concept of the two-scale convergence.
Thus, our results can be carried over to these problems, where the domain485

Ωε(t) := ψε(t, Ω̂ε) is defined with a family of locally periodic transformations
ψε : S × Ω̂ε → Ω which are dependent on time.
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