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Abstract

Analyses based on the body posture are crucial for top-
class athletes in many sports disciplines. If at all, coaches
label only the most important keypoints, since manual anno-
tations are very costly. This paper proposes a method to de-
tect arbitrary keypoints on the limbs and skis of professional
ski jumpers that requires a few, only partly correct segmen-
tation masks during training. Our model is based on the
Vision Transformer architecture with a special design for
the input tokens to query for the desired keypoints. Since
we use segmentation masks only to generate ground truth
labels for the freely selectable keypoints, partly correct seg-
mentation masks are sufficient for our training procedure.
Hence, there is no need for costly hand-annotated segmen-
tation masks. We analyze different training techniques for
freely selected and standard keypoints, including pseudo la-
bels, and show in our experiments that only a few partly cor-
rect segmentation masks are sufficient for learning to detect
arbitrary keypoints on limbs and skis.

1. Introduction

Video analysis is a commonly used method in many
sports disciplines in order to assess the performance and an-
alyze the technique as well as the tactics of the athletes. In
individual sports, the position of the body and the sports
equipment, if any is used, is at the center of interest. With
these measurements, coaches can derive evaluations of ac-
tions, body posture, speed, etc., of the athlete. For example,
ski jumpers are interested in body and ski angles measured
relative to the flight trajectory.

In order to automate the detection of the desired key-
points, 2D Human Pose Estimation (HPE) methods can be
used. Their usage reduces the time consumed for video
analyses. Therefore, performance analyses are available
to more athletes to improve their training outcome. Since
annotating a large amount of videos is usually infeasible
in the sports domain due to time and money constraints,

Figure 1: Two detection results of arbitrary keypoints on the
limbs and skis of ski jumpers using our model, visualized
with four equally spaced lines to both sides of each limb
including the outer boundary in pure color and the central
line in white and four equally spaced lines on the skis with
a color gradient from one side to the other.

the datasets for specific sports disciplines are typically very
small and comprise only the keypoints that are most im-
portant for the analyses. For sports disciplines with human
poses that are closely related to standard human activities
and keypoints that are common, this problem is solvable
with transfer learning. However, images of ski jumpers dif-
fer from images of everyday activities, and detecting sports
equipment such as skis adds a new complexity. These chal-
lenges are reasons why automated keypoint detection is usu-
ally bounded to a limited set of standard keypoints. How-
ever, the estimation of arbitrary keypoints could open the
possibility for more advanced video analyses.

The most common problem of 2D HPE is to estimate the
location of a standardized, predefined set of keypoints for
each human. A typical size of a keypoint set is around 15 to
30. Often, CNNs are used for the keypoint detection. They
involve a backbone network to extract features of the im-
ages and a small head network that estimates the location
of each predefined standard keypoint. A typical method to
predict the keypoint locations is to use a 2D heatmap as
the output for each keypoint. Adding additional keypoints
would add an additional output channel and require retrain-



ing the network head, which makes this approach infeasible
for the detection of arbitrary keypoints. Therefore, we use
an approach based on a Vision Transformer (ViT) [4] ar-
chitecture. For 2D HPE, a common ViT architecture is To-
kenPose [8]. This method appends a learnable token to the
sequence of input image tokens and generates the heatmaps
with a small Multi-Layer Perceptron (MLP) from the output
of the learnable tokens after the last Transformer layer. Our
approach uses the vectorized keypoint approach [13] for To-
kenPose with a slight adaptation for the skis. This approach
requires a segmentation mask for every image in order to
detect arbitrary points on the limbs of humans. Since many
images of ski jumpers are too far from the domain of com-
mon segmentation models, we are only capable of collect-
ing a few segmentation masks of body parts that are partly
correct and even fewer of the skis. The reason is that we
avoid to costly annotate the images by hand but use existing
segmentation models [16, 23] to obtain the masks. We pro-
pose and analyze different methods to train a model with
this small amount of segmentation masks. Results of our
model can be seen in Figure 1. The contributions of this
work can be summarized as follows:

• We propose an adapted representation for the vector-
ized keypoint query tokens introduced by [13] in order
to detect arbitrary keypoints on the skis of ski jumpers.

• Further, we improve their model such that keypoint
outputs are independent of the number of keypoint to-
kens in the input sequence.

• We release a new dataset with 2867 annotated ski
jumpers including 13 keypoints on the body and 4 key-
points on the skis together with 424 partly correct seg-
mentation masks sampled from 14 hours of TV broad-
cast videos during 10 competitions. The dataset is
available here: https://www.uni-augsburg.
de/en/fakultaet/fai/informatik/prof/
mmc/research/datensatze/

• We analyze different methods to train a model
with only a few partly correct segmentation masks
such that it is capable of estimating arbitrary key-
points on limbs and skis of ski jumpers while
maintaining similar performance on the standard
keypoint set. Our best approach is available
here: https://github.com/kaulquappe23/
arbitrary-keypoints-skijump

2. Related Work
Analyzing athletes in video footage of training or com-

petition scenarios is common for professional athletes in
most sports disciplines. This includes trajectory analysis,
e.g. the reconstruction of the 3D trajectory of a badminton

shuttle from monocular videos proposed by Liu et al. [10].
Furthermore, using the players’ trajectories, Wei et al. [22]
detect the basketball location from monocular basketball
video footage. In individual sports, the poses of athletes are
of great importance. Using the swimming style as an ad-
ditional input, Einfalt et al. [5] estimate swimmers’ poses
and improve the resulting poses by using a pose refinement
over time. Furthermore, computer vision is also used in
different ski disciplines, mostly for human pose and ski es-
timation. Wang et al. [20] propose a pose correction and
exemplar-based visual suggestions to freestyle skiers using
human pose estimation. Ludwig et al. [11] calculate the
flight angles for ski jumpers during their flight phase by
using robust estimation methods for human and ski pose
recognition. Stepec et al. [19] use estimated poses of ski
jumpers and their trajectories in order to automatically gen-
erate the style score.

As already mentioned, 2D HPE is an important method
among computer vision based analysis applications in
sports. The best scores on common benchmarks like COCO
[9] or MPII Human Pose [1] are still based on CNNs [7, 2],
although Transformer [18] based architectures are increas-
ing in popularity. Among CNN architectures, the High Res-
olution Net (HRNet) [21] is often used, like in [7]. It differs
from encoder-decoder architectures that are used in former
best performing backbones like [6, 15, 24] as it keeps large
resolution feature maps in the whole network and uses a
continuous information exchange between different resolu-
tions. Among Transformer [18] based HPE approaches, To-
kenPose [8] is usable without any convolutions, but using
the first stages of an HRNet as feature extractor leads to its
best results. TokenPose uses a ViT [4], which embeds small
image or feature patches to 1D token vectors serving as the
input sequence to the Transformer. Apart from the image
patches, learnable keypoint tokens are appended to the in-
put sequence and their output is then transformed through
an MLP to heatmaps. Ludwig et al. [12] adapt this ap-
proach to estimate arbitrary keypoints that lie on the straight
line between the fixed keypoints of a dataset and further im-
prove the method to detect freely selected keypoints on the
limbs of humans [13]. Shi et al. [17] propose the first fully
end-to-end multi person pose estimation framework based
on Transformers. Zeng et al. [25] cluster the tokens of the
Transformer such that less important image areas like the
background are represented by less tokens than the humans.

3. Dataset
We collect broadcast TV footage from 10 skijump com-

petitions available on YouTube in order to provide a pub-
licly available dataset for benchmarking arbitrary keypoint
detection in ski jumping images. Each video consists of
24 to 62 individual jumps with a total of 370 jumps. We
annotate at maximum 8 frames per jump to have a broad di-



Figure 2: Example images from our dataset. The images are darkened and the segmentation masks (that are sometimes only
partly correct or incomplete) are visualized with an overlay. Annotated keypoints are displayed with white circles.

versity of jumps in the dataset. We select images during in-
run and during the flight until the moment right before the
landing. Over 80% of the images correspond to the flight
phase. The dataset consists of images of various quality
and lighting conditions, male and female athletes, and var-
ious perspectives of the ski jumpers. We annotate frames
during the slowmotion replays as well, since their fidelity
is often higher. We include the information if a frame was
collected during a slowmotion replay in the dataset. Fur-
thermore, the athlete’s names provided in the TV broadcast
were collected and added to the dataset. We split the dataset
in a train, test and validation subset such that each athlete is
only present in one subset. Our dataset consists of 2867 an-
notations: 2159 for training, 148 for validation, and 560 for
testing. The annotated keypoints are head, left/right shoul-
der, left/right elbow, left/right wrist, left/right hip, left/right
knee, left/right ankle, left/right ski tip, left/right ski tail.

We use the detectron2 [23] framework to generate seg-
mentation masks for our dataset. In a first step, we use
DensePose [16] to obtain segmentation masks of the body
parts. Since images of ski jumpers are far from the domain
of DensePose, most of the masks are completely or partly
wrong. We select all masks that are mostly correct and dis-
card the other ones, which results in 424 images. As detec-
tron2 is also trained to segment skis, we feed the remaining
images through an instance segmentation model in the sec-
ond step. However, only a small proportion of skis is de-
tected, and even less skis are detected correctly. A second
look shows that some skis are detected, but wrongly classi-
fied as snowboards, surfboards, etc. Hence, we select and
aggregate all masks that belong to skis by hand and split the
ski masks in left and right ski. In many cases, only one ski is
detected and/or only parts of a ski are contained in the mask.
Some example images are displayed in Figure 2. Segmenta-
tion masks of the head, torso, left/right upper arm, left/right

forearm, left/right hand, left/right thigh, left/right lower leg,
left/right foot, and left/right ski are contained in the dataset:
326 segmentation masks in the train subset, 81 in the test
subset and only 17 in the validation subset. Because these
are too few masks for profound decisions, we coarsely label
additional images with the body parts that are of interest for
our research (limbs and skis), such that the validation set
consists of 46 images.

4. Method
4.1. Architecture Design

The basis of all models used in this work is the
TokenPose-Base architecture [8]. It is a combined convo-
lutional and Transformer architecture. It uses the first three
stages of an HRNet [21] as a first feature extractor. The
resulting features of the branch with the highest resolution
are then split into feature patches and converted to visual
tokens by a linear projection. These tokens are fed to a ViT
[4]. All methods proposed in this paper are also usable with
any other TokenPose variant.

4.1.1 Generation of Ground Truth Keypoints

We follow the strategy presented in [13] to generate labels
for arbitrary keypoints on the limbs. At first, a random point
is selected on the straight line between two keypoints en-
closing a body part, called the projection point p. Second,
a line orthogonal to this straight line through p is created.
This line has two intersection points c1 and c2 with the bor-
der of the segmentation mask of the corresponding body
part. Now, a random point r either between c1 and p or be-
tween c2 and p is selected such that both sides are equally
likely and more points lie close to the intersection points, as
these keypoints are more difficult for the model to detect.



Figure 3: Examples for the ground truth keypoint generation process on skis. p is visualized in green, the orthogonal line in
white, c1 and c2 in yellow and the generated point in red. The middle and right image show that the projection point can be
located outside of a ski mask.

However, this method is not directly applicable for arbi-
trary points on skis because the straight lines between ski
tips and ski tails do not necessarily lie entirely within the
segmentation mask of the skis, depending on the perspec-
tive and the bending of the skis. As a consequence, p might
also lie outside the segmentation mask of the ski. See the
middle and right images of Figure 3 for examples. Hence,
we randomly select a point r between c1 and c2, with a high
probability that the point is located close to one of the in-
tersection points and a lower probability that it lies in the
middle, as evaluations show that it is harder for the model
to learn the keypoints close to the boundary.

4.1.2 Keypoint Query Tokens

TokenPose is only able to detect the fixed keypoints defined
for each dataset. For each keypoint, it learns a token that
is appended to the sequence of visual tokens created by ex-
tracting features from the input image or the input image
directly. As shown in [12], these tokens exhibit no corre-
lation. Therefore, it is necessary to redesign the tokens to
control their meaning. In order to represent arbitrary tokens
on the segmentation masks, we use the vectorized keypoints
approach presented in [13] for the limbs and adapt it for
skis. Hence, a keypoint vector vp and a thickness vector vt

are designed and converted via a learned linear projection to
a vector of half of the embedding size used in the ViT. Then,
vp and vt are concatenated to a single keypoint query token.
All keypoint query tokens are appended to the sequence of
visual tokens and then fed jointly through the Transformer
network. A positional encoding is added only to the visual
tokens after each Transformer layer. After the last layer, a
small MLP with shared weights is used to convert the key-
point query tokens to heatmaps.

For a dataset with n keypoints, the projection point is
encoded as a vector vp ∈ Rn. Let ki, kj be the keypoints
enclosing the body part. Then, each projection point p can
be formalized as p = αki + (1− α)kj and vp is created as

vph =

 1− α, h = j
α, h = i
0, h ̸= i ∧ h ̸= j

h = 1, ..., n (1)

If a standard keypoint should be detected, α = 1. The po-
sition of an arbitrary keypoint r is now encoded relative to
p which we call thickness. If r is a point on a limb, it can
be formalized as r = βp+ (1− β)c1/2, with c1/2 being the
intersection point closer to r. If r is a point on the skis, it
can be formalized as r = βc1 + (1 − β)c2. Furthermore,
we define the thickness vector vt ∈ R3 as

vt =


(1− β, β, 0)

T
, r is on limb ∧ c1/2 = c1

(0, β, 1− β)
T
, r is on limb ∧ c1/2 = c2

(β, 0, 1− β)
T
, r is on ski

(2)

For standard points on limbs and skis, (0, 1, 0)T is used.

4.1.3 Attention Targets

Evaluations show that the method presented in [13] works
well if the number of keypoint query tokens used during in-
ference is similar to the number of keypoint query tokens
used during training. If a lot more tokens are used, the
detection performance decreases. See Figure 4 for some
examples. Thus, the model output for one keypoint query
affects the other queries, which is an undesired behavior.
The reason for this behavior is the attention mechanism. In
TokenPose, the attention of layer i+ 1 is calculated as

A(Li+1) = softmax(
LiWQ(L

iWK)T√
d

)(LiWV ) (3)

where Li = (T i
vis, T

i
kp) are the visual and keypoint query

tokens of the previous layer, WQ,WK ,WV ∈ Rd×d are
the learnable parameters to generate the queries, keys and
values and d is the dimension of the tokens. Hence, the
attention is calculated between all tokens, so there is an in-
formation flow from the keypoint query tokens to the vi-
sual tokens. Therefore, the keypoint query tokens have an
influence on each other directly and through the visual to-
kens. In TokenPose, this is a desired behavior, as always the
same keypoints are detected and the information of other
keypoint tokens can help to detect occluded keypoints [8].
In [12], it is observed that the detection performance is de-
creasing if the keypoint tokens corresponding to the stan-
dard keypoints are always present during training, but left



(a) Adapted att. (ours) (b) All points (c) 50 points (d) 10 points (e) 50 points w/o masking

Figure 4: Examples for model detections depending on the number of keypoint query tokens per model call. The images
show four equally spaced lines regarding the thickness on each body part. For the limbs, the projection line is colored white
with a color gradient to the edges. For the skis, the color gradient is from one side to the other. The keypoint query tokens are
identical for all images. Image (a) is the result for the adapted attention, independent of the number of keypoint queries per
model execution and without random sampling. Images (b) - (d) use the original attention with random sampling like [13],
image (e) without random sampling. In image (b), all keypoints are computed with one model execution. In image (c) and
(e), only 50 points are computed in one inference step and in image (d), 10 points are computed at once.

out during inference. Their solution is to include a random
sampling and permutation of the keypoint query tokens, but
this does not solve the problem of the undesired influence
of the keypoint tokens on each other. Therefore, we adopt
the attention mechanism according to

Â(Li+1) = softmax(
LiWQ(T

i
visWK)T√
d

)(T i
visWV ) (4)

which is also visualized in Figure 5. The keypoint tokens
serve only as the queries during the attention and the visual
tokens as queries, keys and values. This strategy is similar
to [3]. The information flow in the Transformer network
is now restricted within the visual tokens and from visual
tokens to keypoint tokens. Hence, the position of a detected
keypoint is only dependent on the image and independent of
the other keypoints that should be detected at the same time.
This is the desired behavior. Furthermore, the dimension of
the softmax is now fixed to the number of visual tokens and
independent of the number of keypoint tokens.

4.2. Training Strategies

As a baseline, we train a model with our adaptations
on the images with available segmentation masks. As we

Visual Token

Keypoint Token

… …

… …

Layer i

Layer i + 1

Figure 5: Visualization of the information flow in our
adapted attention modules. The attention is computed such
that only the visual tokens serve as keys and values. Hence,
the visual tokens exchange information and keypoint tokens
aggregate information from the visual tokens. The keypoint
tokens do not influence other tokens.

only have a few masks available and the train subset is thus
small, this model underperforms regarding standard key-
points. Therefore, we evaluate different strategies for in-
cluding the full dataset in the arbitrary keypoint training.
One approach could be the finetuning of a segmentation
net with our segmentation masks in order to generate seg-
mentation masks for all images. However, this approach
is infeasible as the segmentation masks of our dataset are
only partially complete and only partially correct. Finetun-
ing a segmentation net on these masks would not let the
model learn useful masks. This is especially the case for
skis because many images have annotations for only one,
no ski, or only parts of the skis. For a direct training on
arbitrary points, this is not a problem. Arbitrary points are
only generated on available (possibly partial) segmentation
masks. This does not deteriorate the model’s performance.
The only challenge are segmentation masks with incorrect
borders, since this leads either to a wrong calculation of the
intersection points and a mismatch of the thickness vector
and the generated point or to a generated point that does not
lie on the limb/ski. However, our experiments show that the
model can cope with this challenge and learns the correct
points in most cases, because the number of correctly cre-
ated points is by far larger than the number of false points.

4.2.1 Combined Training of Arbitrary and Standard
Keypoints

The most straightforward approach is to use all available
images for the training on the standard keypoints and the
segmentation masks for the arbitrary keypoints. This strat-
egy increases the performance on the standard keypoints
a lot, but also deteriorates the ability to detect arbitrary
points. Another technique includes the detection of pro-
jection points as presented in [12]. In order to generate
arbitrary keypoints on the straight line between two key-



points, which we call projection points, segmentation masks
are not necessary. Hence, we can use all images for train-
ing on standard and projection points and jointly train with
arbitrary points on the images with available segmentation
masks.

4.2.2 Pseudo Labels

The aforementioned approaches include the full train set
during training, but the model still learns to detect arbitrary
points only from a small subset. Therefore, we also experi-
ment with pseudo labels. This means that we use a trained
model in order to generate labels of arbitrary points for all
images. With this strategy, it is possible to train a model on
arbitrary keypoints with the whole training set. After con-
vergence on the pseudo labels, a finetuning is executed with
arbitrary points generated from the available segmentation
masks, because these ground truth keypoints are more pre-
cise than the pseudo labels. Another strategy is to add the
pseudo label training as a third part to the already described
combined training approaches.

Looking at visualizations of the generated pseudo labels
reveals some wrong pseudo labels. Furthermore, we ob-
serve that the network’s scores have no direct relation to the
correctness of the pseudo labels. Hence, we use another
technique to filter the labels. First, we obtain the model’s
predictions from the original image and some augmented
variants. Second, we remove all keypoints with low scores,
since a low score should indicate that a keypoint is not vis-
ible and augmentations like rotations might move the key-
point outside of the augmented image. We remove all key-
points from the pseudo labels with too few detections. Next,
we transform the detections belonging to the augmented
versions back to their location in the original image. Then,
we calculate the standard deviation of these keypoints rela-
tive to the torso size. We use the standard deviation as the
confidence measure instead of the network score. We select
the pseudo labels with the least standard deviation per body
part, that the number of pseudo labels per body part is equal
in the pseudo label dataset. This approach is similar to [14].

5. Experiments
The backbone for all experiments is TokenPose-Base [8]

with three stages of an HRNet-w32 [21] for feature extrac-
tion. We crop the ski jumpers and resize all images to
256 × 192. Cropping is performed by creating the tightest
bounding box containing all standard keypoints and enlarg-
ing its width and height by 20% to all sides. Visual and
keypoint tokens are of size 192. We use 2D sine as po-
sitional encoding. After the Transformer layers, we use a
two-layer MLP to obtain heatmaps of size 64× 48 from the
keypoint tokens. Keypoints coordinates are obtained from
the heatmaps via the DARK [26] method. We pretrain our

models with the COCO [9] dataset, either with TokenPose -
only on the standard keypoints - or with the vectorized key-
points approach using arbitrary keypoints on the limbs. Ad-
ditional to the model that is being trained, we keep an Ex-
ponential Moving Average (EMA) of the model’s weights
with an EMA rate of 0.99. The EMA model behaves like a
temporal ensemble and achieves slightly better results than
the original model. Therefore, we evaluate all experiments
with the EMA model. As described in Section 3, we eval-
uate on the test set with 560 images in total and 81 images
with segmentation masks. We generate 200 arbitrary key-
points with a fixed seed for each image during the arbitrary
keypoint evaluation, resulting in 16,200 total keypoints.

5.1. Evaluation Metrics

The first evaluation metric that we use is the Percentage
of Correct Keypoints (PCK). A keypoint is considered as
correct according to the PCK at a certain threshold t, if the
euclidean distance between the ground truth keypoint and
the detected keypoint is less or equal than t times the torso
size. We use the euclidean distance between right shoulder
and left hip joint as the torso size and a threshold of 0.1. For
this dataset, this threshold corresponds to approx. 6cm.

We use the terminology thickness for the distance be-
tween a keypoint and its projection point. As described in
[13], the PCK is not sufficient to measure if the model pre-
dicts the thickness of the arbitrary points correctly. A model
predicting only the projection points would achieve a high
PCK score although the thickness might be wrong, because
the projection points are close enough to the ground truth
points. Therefore, like in [13], the Mean Thickness Error
(MTE) and the Percentage of Correct Thickness (PCT) are
used as additional metrics. Let g be the ground truth key-
point, d the detected keypoint, p the projection point, cg the
intersection point closer to g and cd the intersection point
closer to d. Then, for keypoints on the limbs, the desired
thickness tg and the estimated thickness td are calculated as

tg =
||p− g||2
||p− cg||2

, td =


||p−d||2
||p−cg||2 , cg = cd

||p−d||2
||p−cd||2 + tg, cg ̸= cd

(5)

The thickness error e is defined as e = |tg − td|. Hence, the
maximum thickness error is 2, which is set for estimated
keypoints that are located outside of the corresponding seg-
mentation mask. In this case, projection and intersection
points can not be computed. For arbitrary keypoints on the
skis, we adapt this metric to fit the slightly different thick-
ness logic as described in Section 4.1.2. Let g be the ground
truth keypoint, d the detected keypoint, c1 and c2 the inter-
section points, then the desired thickness tg and the esti-
mated thickness td are calculated as

tg =
||c1 − g||2
||c1 − c2||2

, td =
||c1 − d||2
||c1 − c2||2

(6)



Method Pretraining Std. KP Seg. M. Proj. KP PL Std. PCK Full PCK MTE ↓ PCT ↑
TokenPose Std. KP ✓ 77.2
TokenPose VK ✓ 75.4

Vectorized Keypoints VK ✓ 52.7 88.1 18.2 77.7

Std. & Seg. VK ✓ ✓ 77.1 90.1 18.3 76.6
Seg. & Proj. VK ✓ ✓ 76.5 91.8 17.5 77.7
Seg. & Proj. Std. KP ✓ ✓ 77.8 91.5 18.0 76.4

all PL VK all 76.3 90.4 18.7 76.0
finetune all PL VK ✓ all 76.3 90.4 18.9 75.2

all PL & Std.& Seg. VK ✓ ✓ all 76.4 90.9 19.2 74.7
all PL & Proj. & Seg. VK ✓ ✓ all 76.9 91.0 18.4 75.6

80% PL VK 80% 76.3 90.8 18.7 74.8
finetune 80% PL VK ✓ 80% 76.1 91.3 18.3 75.8

80% PL & Std.& Seg. VK ✓ ✓ 80% 77.3 90.7 19.4 73.4
80% PL & Proj.& Seg. VK ✓ ✓ 80% 76.7 91.4 18.1 75.3

Table 1: Recall values for the skijump test set in % at PCK@0.1. The second column displays the pretraining, Std. KP
refers to the pretraining with the standard keypoints, VK to the pretraining with the vectorized keypoints approach, both on
the COCO dataset. The third table section shows the used training steps. Std. KP means training on the standard keypoints,
usable on the whole training set. Seg. M. refers to the training on arbitrary keypoints with available segmentation masks.
Proj. KP stands for the training on the projection keypoints which is also usable on the whole training set and PL refers to
the pseudo labels, whereby either all pseudo labels are used or the 80% with the least standard deviation during filtering. The
first column of the last table section displays the average PCK of the standard keypoints, evaluated on the test set containing
images with and without segmentation masks. The average PCK score including the arbitrary points is given in the second
column, the third column shows the MTE and the last column the PCT at threshold 0.2. These scores are evaluated on the
test set with available segmentation masks.

The MTE metric is the mean of all thickness errors and the
PCT is defined analogous to the PCK. At threshold t, the
PCT considers all estimated thicknesses as correct with a
thickness error less or equal than t. As the maximum thick-
ness error is 2, we use the PCT@0.2 for our evaluations.

5.2. Results

Table 1 displays the results for all experiments. For the
TokenPose approach, we evaluate two pretrainings. The
pretraining on the COCO dataset with the standard key-
points achieves a better standard PCK than the pretrain-
ing with the vectorized keypoint approach from [13] on the
COCO dataset. This is expected, as TokenPose detects also
only the standard keypoints of the skijump dataset.

Furthermore, we use the vectorized keypoints approach
with a generation of 5 to 50 arbitrary keypoints for each im-
age and with the improved attention mechanism described
in Section 4.1.3. It achieves good results for the full PCK,
the MTE and the PCT, but the PCK on the whole test set
decreases by absolute 24.5% in comparison to TokenPose.
Therefore, we use the combined strategies like described in
Section 4.2.1 to improve the standard PCK. In the first ex-
periment (Std. & Seg. in Table 1), we alternately train on
the standard keypoints and the arbitrary points. This leads
to nearly the same PCK on the standard keypoints, but the
PCT is absolute 1.1% lower than for the vectorized keypoint

approach. Training with the projection keypoints instead of
the standard keypoints (experiment Seg. & Proj. in Table
1) leads to better results. With the vectorized keypoint pre-
training, it achieves the same PCT as the vectorized key-
point approach, while the PCK decreases only slightly.

The results of the Seg. & Proj. seem promising. There-
fore, we evaluate this strategy with two pretrainings, the
vectorized keypoint pretraining and the standard keypoints
pretraining. With the standard keypoints pretraining, the
standard PCK is even higher than the standard PCK for the
TokenPose approach which is trained only on the standard
keypoints. But all other metrics decrease for this experi-
ment. Therefore, we focus on the vectorized keypoints pre-
training for all other experiments.

Hence, we use the Std. & Proj. experiment with the vec-
torized keypoints pretraining in order to generate pseudo
labels, because it achieves the best results regarding the
thickness metrics. We generate 1000 pseudo labels for each
image in advance and select 25 of them randomly in each
training step. The results of the pseudo label training with
all pseudo labels are slightly worse than the results of the
other experiments. As we did not use the existing segmen-
tation masks during that experiment, we execute a finetun-
ing on the best weights of this experiment in the vectorized
keypoints manner in order to improve the results, but unsuc-
cessful. From the validation curve, we observe a decrease



Figure 6: Qualitative examples for model detections. The images show four equally spaced lines regarding the thickness on
each body part. For the limbs, the projection line is colored white with a color gradient from it to the edges. For the skis, the
color gradient is from one side to the other. The model from experiment Seg. & Proj. is used to generate the images.

in the standard PCK from step to step. Therefore, we con-
sider a combined training in the next experiment, training
alternately on the arbitrary keypoints, the pseudo labels and
the standard keypoints (experiment all PL & Std. & Seg. in
Table 1) or the projection points (experiment all PL & Proj.
& Seg. in Table 1). Training with the standard keypoints
achieves lower scores for all metrics in this case, also for
the standard PCK.

Including pseudo labels in the training process did not
lead to better results. A look at the quality of the generated
pseudo labels shows that some are wrong. Therefore, we re-
peat the pseudo label experiments with the best 80% of the
labels. We use a filtering technique based on the standard
deviation of the detected keypoints for multiple, differently
augmented images like described in Section 4.2.2. The aug-
mentations that we use are horizontal flipping, 45◦ rotation
(clockwise and counterclockwise) and scaling of 65% and
135%. We expected better results with more correct labels,
but the results are similar.

These experiments show that it is most important to have
more images to train on. In our case, including pseudo la-
bels does not increase the number of images, because we
can use all images already by training on standard key-
points or projection points. Using the projection points re-
sults in the best scores because they are more similar to the
desired arbitrary keypoints in comparison to the standard
keypoints. Figure 6 shows some example predictions for
different poses.

6. Conclusion

This paper proposes a method to detect arbitrary key-
points on the limbs and skis of ski jumpers. We publish a
new dataset with annotated images of ski jumpers from 10
TV broadcast videos of ski jumping competitions with a to-
tal of 370 jumps in order to provide a public benchmark.
We provide annotations for 17 standard keypoints for 2159
images and a test, train and validation split such that each
athlete is only contained in one subset. Furthermore, we
generate 242 usable segmentation masks and include them
in the dataset. The segmentation masks are only partly cor-
rect, many of them contain no or only one ski segmentation

mask. Therefore, we cannot finetune a segmentation net-
work in order to generate segmentation masks for all other
images. But for our method, this is not a problem, since
keypoints are only generated on the available segmenta-
tion masks. Problematic are only segmentation masks with
wrong borders.

This paper is based on the vectorized keypoint approach
presented in [13]. For the keypoints on the skis, we modify
the technique because the projection points do not necessar-
ily lie in the middle of the skis. Therefore we do not include
the line of projection points and only use the intersection
points with the segmentation mask. All other keypoints are
represented relative to the intersection points. The evalua-
tion metrics for the thickness are adapted accordingly.

Training on the images with available segmentation
masks with the vectorized keypoints approach shows two
drawbacks. If a lot more keypoint query tokens than during
training are used in a single inference step, the detection
performance deteriorates. This is an effect of the attention
mechanism. In the standard attention, all tokens are corre-
lated with all tokens. Hence, the keypoint query tokens have
an influence on each other and on the visual tokens as well.
We adapt the attention mechanism in a way that the key-
point query tokens do not have an influence on other key-
point query tokens and on the visual tokens. Only the visual
tokens are correlated with each other and with the keypoint
query tokens. This solves the problem, as evaluations show.

The second drawback is the large decrease in the stan-
dard PCK, so the detection performance on the standard
keypoints is a lot worse. This is caused by the small num-
ber of images that the model sees during training. Hence,
we experiment with different training strategies on both the
segmentation mask dataset and the full dataset. Our exper-
iments show that training jointly on arbitrary and standard
keypoints lifts the standard PCK to a large extent, but the
PCT and MTE deteriorate. Training on the projection points
instead of the standard keypoints leads to better results on
these metrics.

Hence, the model proposed in this paper is the first model
capable of detecting arbitrary keypoints on the limbs and
skis of ski jumpers. Moreover, it can be trained using only
a few partly correct segmentation masks.
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