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11  Statistical downscaling of future global 

climate change scenarios for Alpine high 

mountain regions
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Abstract

Global climate change is expected to show considerable impacts on the European Alpine high 
mountain region. However, global climate models show limitations concerning regional and 
local scales. Therefore, dynamical downscaling and statistical downscaling techniques have to 
be applied. Exemplarily for an especially simple method of statistical downscaling the Refer-
ence Class Forecast (RCF) method is explained and applied to the climatic time series at Zug-
spitze and Sonnblick. As a very different method, the technique of Artificial Neural Network 
(ANN) for downscaling is introduced. An important step is to find out an optimal set of predic-
tors. However, if predictor screening is done appropriately, remarkably high skill scores can be 
achieved, which allow for confidence on the projected future assessments. The results of the 
downscaling approach applied for future scenarios are discussed concerning the degree of 
warming at the presented example stations and the changes in precipitation which not only 
show reduced rainfall in future summers, how it is assumed widely in the literature, but partly 
suggest the possibility of future increases in summer rainfall for the Zugspitze at the northern 
edge of the Alps in contrast to the Sonnblick in the center of the Alps. Reasons are probably 
higher transport rates for humidity in warmer air masses which are more relevant at the edge 
of the Alpine ridge, while the interior might be affected more by increased anticyclonicity.

11.1 Intro: Alpine regions exposed to climate change

Climate change in the Alps has wide-ranged implications due to strong interrelations between 
the different spheres (atmosphere, hydrosphere, cryosphere, lithosphere, pedosphere and bio-
sphere) additionally intensified by distinct spatial complexity. The following short overview aims 
to give an idea about the broad potential effects of possible future temperature und precipita-
tion changes and thus outlines the significance of the subsequently presented downscaling 
efforts and results.

With an observed increase of +2 °C (total annual mean temperature) since the late 19th century, 
air temperature in the Alps rises twice as much as the Northern hemisphere average (Auer et 
al. 2007). Since 1980 the recent warming has further accelerated and a faster increase of annu-
al mean temperature (+ 0.5 °C per decade) is observed (European Environment Agency 2009). 
Alpine glacier retreat follows that trend and also increased in speed from 1980 onward (Euro-
pean Environment Agency 2017a). Since the beginning of the 20th century Alpine glaciers have 
lost nearly half of their ice masses (European Environment Agency 2017a, Huss 2012), an almost 
complete loss of their current volume is estimated until 2100 (84 and 90 % under RCP 4.5 and 
8.5, Radić et al. 2013).

While increasing summer temperatures are regarded most important for this development, 
further future warming is expected for all seasons and the whole Alpine region. Until the end 
of the 21th century air temperature is projected to rise to +3,3 °C on annual average (Gobiet et 
al. 2014). Models agree on the sign of the expected change and emphasize the robustness of 
the warming signal (Heinrich et al. 2013).

Precipitation changes at present vary stronger concerning seasonal and regional distributions 
as well as the observed period (Gobiet et al. 2014). Regarding the spatial distribution of annual 
means a north-west to south-east gradient from slight increases to significant decreases during 
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the 20th century is shown (Brunetti et al. 2006). This north-south oriented distribution is expect-
ed to sharpen until the end of the 20th century with more precipitation in the northern Alps in 
winter, according to the Northern Europe pattern of change, and reduced precipitation in the 
southern Alps in summer, following the climate change signal in Southern Europe (Gobiet et 
al. 2014).

However, not only the enhanced warming or mean precipitation changes alone are critical, but 
also their implications for other meteorological and hydrological variables, mainly air humidi-
ty, precipitation variability and above all the resulting impacts on the hydrological storage 
terms, i.e duration and depth of snowcover and glacier mass balance. Slight warming of just a 
few centidegrees can produce strong changes in the water budget e. g. if the melting point is 
reached for certain areas. The above mentioned accelerated glacier melting since 1980 for ex-
ample has increased the glacier contribution to late summer runoff of four main European 
rivers originating in the Alps, namely Danube, Rhine, Rhone and Po (by around 13 %, Huss 2011). 
Thus also the lowland parts, especially of catchments with high portions of glacial melt water 
in late summer, will be affected by future glacier retreat and lacking runoff contributions on the 
long-term. Lowered ground water levels, restricted water availability for agriculture or limita-
tions of ship traffic along the main European streams are mentioned as potential risks of the 
future warming-induced glacier retreat in the Alps (Huss 2011).

With the consequences for the local economic sectors in mind, strong implications are expect-
ed from future changes of snow cover, entailing limitations for hydrological power generation 
(Kobierska et al. 2012) or especially the winter tourism (Steiger et al. 2010). For the entire Alps 
a dramatic decrease of snow cover duration and amount is projected until the end of 21th cen-
tury, mainly for altitudes below 1500–2000 m (Gobiet et al. 2014, Steiger et al. 2013). Above, 
gains are expected (due to potentially increasing heavy precipitation), which leads amongst 
others to an increased avalanche activity, e.g in the Western Alps in winter (Castebrunet et al. 
2014).

Higher temperatures as well as less solid but more liquid precipitation during the winter half 
year have particular strong effects in high altitude regions with high relief energy: wet winters 
e.g can reinforce the landslide activity in spring (Stoffel 2014). Being identified as one of the 
European “susceptibility hotspots for weather-induced landslides” (European Environment 
Agency 2017a), shallow landslides like rock falls, debris flows/avalanches but also ice falls and 
snow avalanches are expected to rise with future temperature and precipitation changes (Stof-
fel 2014). This gives rise not only to remarkable risks for summer tourism or transhumance but 
possibly endangers settling in the Alps in general.

In conclusion mountain landscapes are characterized by an exceptional complexity of geofac-
tors, enhancing the vulnerability to climate change. The above mentioned complex structure of 
interrelations is responsible for amplifying even small irregularities in the input variables, in 
this context temperature and precipitation. To know their future changes and associated tem-
poral and regional variations as exactly as possible is an essential base for accurate assess-
ments of adaptation strategies.

All the consequences for the inanimate parts of nature are more dramatic due to the high relief. 
Thus, retreating glaciers and permafrost regions change the hydrological cycle and cause land 
and rock slides, to mention only a few aspects which can affect also human society directly and 
harder than in low lands. The Alps besides the Pyrenees are identified as hotspots.

11.2 Global Climate Change and Modelling

Global climate models allow to estimate the reaction of the climate system of the earth to cli-
mate forcing factors in a quantitative way. However, in order to be able to use the information 
provided by climate models, it is absolute essential to understand in principle how they work 
and to know about the strength and weakness of this scientific tool. The core of each climate 
model is a general circulation scheme including physical laws of i) conservation of energy, ii) 
conservation of momentum and iii) conservation of mass. These three laws can be connected 
by the equation of state and transformed into a system of prognostic equations, which allows 
to calculate the state of the climate system based on its state at a time step before. In a strong-
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ly simplified way it could be said, that e. g. the distribution of airmasses (measured as air 
pressure) is causing winds which itself redistribute air and change the pressure field in a second 
time step, which itself causes – now modified – winds causing a newly modified pressure field 

in a third time step and so on and so on. However, beside wind and pres-
sure, it is of course neccesary to include density, heat, moisture, heat ca-
pacity etc., in order to represent all dependencies of the system. The result-
ing set of non-linear partial differential prognostic equations can be 
resolved not analytically but only by extensive numerical methods (which 
is the real reason for calling them numerical models). However, even if all 
processes of the atmosphere are included, there remains a fundamental 
problem for all models: the spatial, and depending on this, the temporal 
resolution of the calculations. In order to get a realistic description of the 
distribution of a certain variable, let’s say air pressure, over the globe, a 
regular network of grid points, e. g. on 32 latitudes and 64 longitudes what 
was state of the art in 1990ies, is defined.

However, with a limited number of discrete grid points for describing e. g. 
a low pressure system, only a limited degree of detail or only systems of 
a certain minimum size can be described. Although there is the possibility 
to represent the pressure changes over space by a set of overlaid continu-
ous sinus functions, following the scheme of Fourier series, which is called 
the spectral representation and is used for some effective calculations in 
numerical models, only a limited number of functions can be used which 
also allows only for a limited degree of detail. In order to increase the detail 
level, the number of grid points or, equivalently, the number of wave func-
tions, most often described by the so called triangular truncation number 
(e. g. T21), must be increased.

Tab. 1: model resolutions

Truncation lat × lon km at Equator deg at Equator

T21 32x64 625 5.625

T42 64x128 310 2.8125

T62 94x192 210 1.875

T63 96x192 210 1.875

T85 128x256 155 1.4

T106 160x320 125 1.125

T255 256x512 60 0.703125

T382 576x1152 38 0.313

T799 800x1600 25 0.225

Table 1 shows a set of most commonly used horizontal spatial resolutions for numerical circu-
lation models. It is apparent, that decreasing the distance between two grid points by a half, at 
the same time the number of grid points quadruplicates. If an increase of the number of levels 
in the vertical direction is considered additionally, it is clear that the computational effort increas-
es dramatically, when the spatial resolution and thus the number of calculations for all grid 
points or spectral functions is increased. (National Center for Atmospheric Research Staff 2017).

However, the situation is even more difficult, because of the so called Courant-Friedrich-Levy 
(CFL) criteria.

|u · dt/dx| ≤ 0

This criterion is saying that the time step dt for the prognostic computations must be smaller 
than the distance between two  grid points dx divided by the speed of flow in the model, e. g. 
wind u. Since the speed of flow in the model is something which is given by the physical cir-
cumstances, e. g. the subtropical jet stream in the upper troposphere, only the spatial (dx) and 

Fig. 1: Grid cells in T21 horizontal reso-
lution used to describe the global land-
sea-mask for GCMs. Values vary be-
tween 0.0 (blue) for grid cells 
completely covering ocean areas and 
1.0 (red) for cells completely on land. 
Note that pixels covering coast lines as 
for western Africa are mixture pixels, 
half sea half land, indicating the low 
level of detail for such a low resolution.
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temporal resolution (dt) can be changed by the modeller. If a certain spatial resolution is chosen, 
it subsequently demands for a certain maximum time step length with which the set of prog-
nostic equations is solved repeatedly. The principle of the CFL criterion is saying nothing else 
than that a flow of mass, impulse or energy should not be faster, than that it reaches a distance 
not more than one grid point far within one time step, or in other words, no transport process 
within the model should skip a grid point along its way. What happens, when this criterion is 
violated can be seen in Fig. 2: the variables show a totally unrealistic pattern and extreme val-
ues outside the physically plausible range. The model „crashes“.

Essentially it is the CFL criterion which prevents the model resolution becoming much more 
increased, while a limited capacity of compute power is available, even though, it is numerical 
modelling for which the most extensive compute clusters are build. However, when the spatial 
(and accordingly the temporal) resolution is limited, small and short term phenomena in the 
atmosphere, like thunderstorm cells or showers of rain, may be missed because they happen 
on the sub grid scale.

Another problem which is limiting the detail level of general circulation models, is just the 
complexity of certain phenomena in the atmosphere, which cannot be expressed by a reason-
ably small set of equations. One prominent example is precipitation. The process of generating 
precipitation is such complex that, apart from its high spatial variability, it is virtually impracti-
cable to simulate it with the necessary precision directly. Especially the initiation and growth 
of cloud and later rain droplets interacting with condensation nuclei or its changes between ice 
and liquid phase is a highly complex subject of microphysics which has to consider effects 
down to the molecular scale. Calculation of all these effects, if they are understood at all, for 
the whole globe is simply impossible. In order to still include those processes, rough, empirical 
estimations of their quantitative dependence on its most important influences, described by 
certain parameters are used. Without these so called parametrisations, a climate model which 
should include most of the relevant processes is unimaginable and impracticable.

Fig. 2: Zonal wind component at surface level as displayed by the PLASIM interactive model environment (Fraedrich et al. 2005) 
immediately before a model crash due to violation of the Courant-Friedrichs-Levy criterium (see text). Negative values (easterly 
wind) is colored orange to red (–15 m/s), positive values (westerly wind) yellow to violet (55 m/s). Model resolution was T21, time 
step intervall was 60 minutes. Note the unrealistic wave like pattern of alternating easterly and westerly winds extending from a 
center at the Antarctic coast with common high wind speeds, where the CFL-criterium was violated first.



180 Chapter 11

11
However, both the spatial and the processual limited resolution obstructs a high level of detail 
of the model output, concerning the spatial details but also the processual details. This problem 
is not the same for all variables, thus, the global pressure field is much less affected than the 
temperature or the precipitation field (Raisanen 2007), since the complexity of the relevant 
processes is lower. Additionally the vertical level is important, thus, temperature in the mid and 
high troposphere can be modelled much more precisely than directly above the surface in the 
planetary boundary layer because there the influences are much more divers.

To conclude this, it can be said that general circulation models allow to simulate the global 
atmospheric state realistically on a rough level of detail. However the high demand for compute 
power, which is caused by the spatio-temporal and processual resolution, when simulating 
processes directly, prevents from a sufficient detail level of some variables especially near the 
surface, where applications of model outpout data mostly take place. In order to solve this 
problem several downscaling methods have been developed.

11.3 Downscaling methodology

Downscaling techniques try to close the gap between the low level of detail provided by gen-
eral circulation models and the needed high level of detail for applications, which is caused 
mainly by the difference in spatial scale between global models and local applications.

In principle two main groups of downscaling techniques may be discerned: dynamical downscal-
ing using regional climate models (RCM) on the one hand and statistical downscaling on the  
other. The latter using transfer functions to apply empirically determined dependencies between 
local variables of interest and global or large scale circulation data generated by GCMs for distinct 
scenarios. Other ways to categorize downscaling techniques are suggested by Maraun et al. (2010), 
however for the sake of clarity the two-fold distinction between dynamical and statistical methods 
is preferred here. Both ways have their advantages and disadvan tages. For dynamical downscal-
ing a highly resolved numerical simulation model, the RCM, is nested into a GCM. This means that 
only a certain area of the earth is simulated on a high resolution level, while the boundary condi-
tions at the borders of the RCM are determined by the GCM output data. Regional climate models 
for dynamical downscaling need extensive compute power, usually not quite as much as GCMs 
do, since only a region of interest is simulated and not the full globe. However, the saved amount 
of computations is considerably reduced because of the increase in spatial resolution. Thus dy-
namical downscaling without parallelized high performance compute environments is not feasible. 
Another disadvantage for dynamical downscaling is the problem of discrepancies between spatial, 
temporal and processual detail at the boundary between highly resolved regional models and low 
resolution GCMs. Since at the border of the spatial domain of a RCM the highly resolved RCM data 
and the less resolved GCM data may show unrealistic steep gradients of the climate variables, this 
border has to be excluded from interpretation, leading to the necessity to configure a much larger 
RCM domain than actually needed. In order to achieve a smooth transition between GCM and 
RCM, usually a whole series of RCMs of successively increasing resolution are nested into a GCM 
and into itself by increasing the resolution slowly from step to step in order to reduce the inho-
mogeneities at the borders. This of course increases the demand of compute time additionally. 
RCMs also cannot avoid parametrisations, like GCMs do. However, RCM parametrisations can be 
tuned to a much higher level of detail than GCM ones. Thus e. g. precipitation can be much more 
realistically simulated concerning dynamical (e. g. orographic) or thermal convection. However, 
in areas of extreme relief energy, as it is the case for high mountain regions, simplifying assump-
tions may lead to unrealistic results. Even though the parametrisations of a RCM reflect empirical 
dependencies observed in the past, RCMs are able to simulate meteorological conditions that have 
not been observed before, because the driving circulation and most of the exchange processes 
are still simulated on basis of physical laws which are universally valid. However, remaining errors 
of RCM estimations are usually subject to so called model output statistics (MOS) for statistical 
correction of the results e. g. concerning the mean and distributions of the target variables, by 
shifting or scaling of the simulated values.

The full dependence on observations of the past is the most important disadvantage of statis-
tical downscaling methods. Statistical downscaling is using significant relationships between 
the local target variable of interest, the so called predictand, and the large scale or synoptic 
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atmospheric conditions, described by so called predictor variables. If a certain manifestation 
of the variables of such a relationship was not observed in the past, it may lead to erroneous 
predictions of the state of the target variable for a scenario where new conditions of the pre-
dictors appear. If the relationship is a continously linear function, the problem might be ne-
glectible. However, unfortunately most relationships in the atmospheric sciences are non-line-
ar. Using statistical methods which account for non-linear functions, which is shown below, 
therefore is of large importance. They also cannot extra polate relationships beyond known parts 
of the spectra, but much better capture the links within the observed boundaries.

Sometimes only atmospheric circulation is used as predictor, usually described by the pressure 
field of the troposphere, since this is the variable which can be best simulated by GCMs and 
shows the highest spatial autocorrelation among all climate elements. However, other GCM 
variables are also used, and it is the main task of the so called calibration step in the statistical 
downscaling scheme to find optimal predictor combinations of variables in order to maximize 
the statistically explained fraction of variance of the predictand. However, the performance of 
statistical models not only depends on the kind of variables used (pressure, temperature, hu-
midity etc.) but also on the size and position of the area from which the predictor is taken, the 
predictor domain. Additionally it is important which atmospheric level is used. Also building 
seasonal subsamples is of great relevance, since some processes are realized differently de-
pending on the annual cycle. Many additional factors may be subject to the optimization of the 
statistical downscaling models.

The core of statistical downscaling is the method chosen as transfer function. As a basic meth-
od often multiple linear regression (LM) is used to model the predictand. In order to estimate 
a whole grid point field of predictants at once by linear regression, canonical correlation mod-
els may be used. However, LM relie on a normal distribution of the residuals, i.e. the unex-
plained variation of the target variable, which is often not fulfilled. Therefore it is often a better 
choice to use generalized linear models (GLM). Apart from these linear methods, several ap-
proaches exist to model non-linear functions of dependence between predictors and pre-
dictands. A much more simple method than regression techniques which actually is able to use 
non-linear relationships is the analog method (AM) presented e. g. by Zorita and von Storch 
(1990). The idea of this method is rather intuitive: for any situation of the circulation in the GCM 
where the state of a local target variable is of interest, chose the most similar situation from 
observation data in the past and use the referring value of the target variable from this analog 
situation as the downscaling result. It turns out that the performance of this method can be as 
good as that of regression models, while it can be applied without statistical prerequisites.

Exemplarily for the possible large bandwidth of the method spectrum used for downscaling, 
two selected methods, will be described more in detail below, since they have been applied 
recently in intensive downscaling studies in high mountain areas, i. e. for the Zugspitze and the 
Sonnblick. The first is the more simplistic reference class forecast method (RCF) based on cir-
culation type classification (CTC), the second the more sophisticated technique of artificial 
neural networks (ANN).

11.4 Circulation Type Classification

A derivate of the analog method is the so called reference class forecast method (RCF) and its 
functional principle is described straightforwardly. This method is based on weather or circu-
lation type classifications (CTC) of observed predictor fields (often pressure maps) from the 
past. Most prominent examples for often used weather type classifications are e. g. the Lamb 
classification for Great Britain (Lamb 1972) or the Hess-Brezowsky classification for central 
 Europe (Hess and Brezowsky 1977) produced manually by assigning daily weather maps to 
subjectively defined weather types or the automatically produced classification of the german 
meteorological service DWD (Bissoli and Dittmann 2003). However many more classifications 
are available (see e. g. Huth et al. 2008).

In order to model a certain state, e. g. in the future, the expected predictor field for this situation, 
e. g. as simulated by a GCM, is assigned to its most similar class. The predictand value is then 
chosen as the mean of the target variable for this reference class in the past.
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Even though this method is rather simple and easy to apply, it can show considerable good 
skill (see below). Its main limitations result from the fact, that this method assumes, that all 
relevant climatic changes in the (future) scenario are caused by changes in the frequencies of 
weather and circulation types. However, such actualistic principles are used for most of the 
downscaling methods based on known states of the large scale predictors. And even dynami-
cal downscaling is affected by this problem, since many assumptions for setting up RCMs are 
based on observations of the past. Besides, the skill of RCF depends on several methodological 
technical factors, mainly concerning the underlying circulation type classification.

There are plenty of methods for weather and circulation type classifications that can be used 
for downscaling and the question arises which method is suited to achieve the best classifica-
tion in order to maximize the downscaling skill, i. e. to minimize the model errors. A compre-
hensive comparison of classification methods was done within the COST Action 733 “Harmo-
nisation and Applications of Weather Type Classifications for European regions” and the main 
results of these studies are also relevant for downscaling applications. First it has been found 
that the classifications resulting from 33 examined classification methods are surprisingly dis-
similar among each other, i. e. they do not have significantly more in common than classifica-
tions based on purely randomly defined types, except for some methods based on non-hierar-
chical cluster analysis (Philipp et al. 2016). Second it has been found that there is no single 
method which can always provide the best skill in discriminating different states of a predictand 
variable, however methods based on cluster analysis (more generally spoken those using 
optimization algorithms) show a tendency to higher skills compared to others (Beck and Philipp 
2010). This does not mean that cluster analysis is always the best, but it suggests that it is not 
the worst choice to consider them for downscaling.

Besides the classification method, the skill depends on the selection of the predictors, which is 
generally true for all statistical models. This includes the climatological variables used as pre-
dictors (e. g. pressure, wind components, large scale temperature, humidity etc.) as well as the 
location where they were measured. This includes the atmospheric level (near the surface or in 
the middle or upper troposphere) as well as the topographic region, i. e. the location, shape 
and size of the section of the grid point field used, what is usually called the model domain. The 
optimal model domain has been examined by Beck et al. (2013). It has been found that there 
are actually systematic preferences, e. g. for temperature the domain should be larger than for 
precipitation and west-east-elongated domains are often superior, however in order to achieve 
the optimal model for a certain predictand, it is necessary to empirically test potential config-
urations by a systematic predictor screening. An additional way to optimize a classification for 
a certain target is to include the target variable already during the classification process in the 
calibration step. Then the classification produces types with members that are not only similar 
concerning the pressure field e. g., but also concerning the target variable, like temperature 
e. g., which is called a conditional classification scheme. It could be shown that this method can 
improve classification based downscaling schemes in general if an optimal weighting between 
the predictor and the predicant variable is found (Lutz et al. 2011).

11.5 Artificial Neural Networks

Compared to RCF artificial neural networks (ANN) represent the other end of the scale of complex-
ity of transfer functions for downscaling. As the name suggests this method tries to imitate the 
neural network of a brain consisting of neurons which receive a signal generated originally by a 
sensory organ at the one side and – depending on the result of an activation function – further 
transmit the signal to the next neurons on the other side. The strength of the forwarded signal 
depends on the transmitting neuron. Thus, after moving through the network, a signal can be fil-
tered out competely or amplified leading to a corresponding reaction at the output of the system.

In statistics this principle is realized by defining an array of nodes connected by weigthing fac-
tors. The array consists i) of an input layer, where the input neurons imitate the sensory organs 
and receive the values of the predictors, ii) the neurons responsible for the transport of the 
signals, which are called hidden neurons since they are not directly connected to external data 
and iii) the output layer where the output neurons (often only one) represent the predictands. 
In order to automatically get the desired result in the output layer in dependence from a certain 
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state of the predictors in the input layer, the weighting coefficients of the links between the 
layers have to be optimized by a learning algorithm. The most often used learning algorithm is 
the so called backward progagation (backprob) scheme, where the estimation error of the output 
neuron is propagated backwards through the net in order to optimize the weights of the links to 
the hidden neurons and then of the links to the input neurons. In order to reach optimal weights 
for all pairs of observed predictor and predictand data, this is done repeatedly for all elements 
(days) of the training data subset. Each time the network was shown all training data once (a so 
called training epoch) the weigths are adjusted a bit better to learn the dependencies of the 
target variable. However the training has to be stopped before the absolut optimum is reached 
in order to keep a minimum level of abstraction in the net and avoid overfitting. Overfitting is 
given, when the network has memorized all single situations it was trained for but is not able to 
perform well for a new situation it hasn’t seen before. Therefore, in order to decide for the stop-
ping, an independent data subset (the validation subset) has to be kept aside the training data 
subset, which is only used to check the current network for its skill with unknown data. Otherwise 
the skill would not be representative for the application to the scenario GCM data.

11.6 Combination of ANN and CTC

Since CTC based downscaling is extremely fast compared to ANN training, it has been tested 
whether it is possible to combine both methods and still reach or even outperform the perfor-
mance of ANNs. Therefore a non-hierarchical classification scheme is applied to the variables 
determined by predictor screening and the target variable in order to train an ANN for each 
class separately. The idea is, that it might be easier for a network to discern different factors for 
dry, normal and wet conditions and therefore reach a higher level of detail and model perfor-
mance.

11.7 Skill

Before applying downscaling methods to GCM data in order to derive estimates of possible 
future regional or local scale climate change it is necessary to assess the confidence that can 
be attributed to the simulated future climate. This is typically done by determining the skill of 
the downscaling approaches via model validation experiments.

Such a model validation comprises firstly the derivation of estimates of the predictand variable 
(e. g. daily mean air temperature at a certain location) by applying the downscaling model to 
large-scale atmospheric predictor fields from available observational or reanalysis data sets 
and – secondly – the comparison of the downscaling model output to observed predictand data.

These comparisons utilize suitable performance measures which quantify the accordance or 
the mismatch between observed and modeled data. For continuous predictands commonly 
used measures are for instance the mean error, the mean absolute error, the mean squared 
error or the correlation coefficient. Furthermore, based on the comparison of these measures 
estimated for the downscaling model and for a reference model (e. g. utilizing the climatolog-
ical mean of the predictand) respectively, skill scores can be calculated (e. g. the mean squared 
skill score based on the mean squared errors of the downscaling model and the reference) 
indicating in how far the downscaling model outperforms the reference model and thus is 
suitable to provide valuable future climate simulations.

Exemplary, the calculation of the mean squared skill score (MSSS) based on the mean squared 
error estimated for the downscaling model (MSEmod) and for the climatological reference 
(MSEclim) is illustrated in the following three equations (see also Wilks 2006).
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With n being the number of observations, o being the observed values of the predictand,    

__
 o   

being the mean of the observed values and y being the simulated predictand values. Thus, an 
MSSS of 1 indicates a perfect model while an MSSS less or equal zero indicates a model per-
forming equal or even worse than the climatological reference.

Those skill scores essentially describe the absolute errors of the model, i. e. the magnitude of 
the difference between o and y. However, it can happen, that there is a systematic error and the 
model values are always too high or too low compared to the observations by a certain amount, 
called bias. Then the model output can be corrected by subtracting the bias afterwards. Repeat-
ing the skill score calculation with bias corrected model results then increases the performance. 
The same might be true for the scaling, and dividing by a correction scale coefficient might 
improve the performance of the model.

In order to estimate the performance of the downscaling model directly, besides of any sys-
tematic bias or scale, i. e. just evaluating the coincidence of positive and negative anomalies 
relatively but not concerning the absolute values, correlation coefficients may be used. For that, 
the output values of the downscaling model for the historical reference period are correlated 
with the actually observed values of the target variable. Correlation coefficients can give infor-
mation on how many percent of variance in the target variable is captured by the model if the 
squared correlation coefficient is considered : r2 = d, where d is called the coefficient of deter-
mination.

However, as the skill estimate may be artificially high when calculated on the basis of the data 
that has been used to fit the downscaling model, it is necessary to validate the model on data 
that has not been used for model calibration. This is done by so called cross-validation. Here, 
the time period for which predictor data and observed predictand data are available is divided 
into two or more non-overlapping sub-intervals and the downscaling models are then in turn 
calibrated using all but one of these sub-intervals and validated in the remaining independent 
sub-interval. Variants of this cross validation approach include the use of varying lengths of the 
sub-intervals and varying methods for defining the sub-samples used for calibration and vali-
dation, including random sampling techniques.

For the overall performance of the regional to local scale future climate simulations beside the 
skill of the statistical downscaling approach it is in addition of crucial importance how well the 
GCMs simulate the large-scale input data for the statistical downscaling models. For instance, 
it is well known that many GCMs feature warm and as well cold biases in sea surface temper-
atures over different parts of the North Atlantic leading to an incorrect representation of the 
large-scale atmospheric circulation over Europe (Keeley et al. 2012). Such biases – model errors 
relative to observations – need to be considered utilizing varying approaches for bias correction 
(see for example Teutschbein and Seibert 2021 for a review of common approaches). For in-
stance, one rather simple method – linear scaling (Lenderink et al. 2007) – uses the differences 
in the mean between GCM and observations (or reanalyses) for bias correction of the GCM 
output.

In addition, climate processes are partly differently represented in GCMs from different climate 
modelling groups leading to accordingly diverging future climate projections. To account for 
this source of uncertainty so called multi-model ensembles comprising projections from sev-
eral GCMs are used to derive quantitative estimates of the range of uncertainty in future climate 
projections.

Furthermore, uncertainties may also arise from differences between projections of variants of 
the same GCM run with varying values of certain model parameters or run from varying start 
dates. So called perturbed physics ensembles are used to determine the range of uncertainty 
in future projections related to variants in model parameters whereas initial condition ensem-
bles consider the effect of differing start dates.

Finally, uncertainties are also due to varying properties of the statistical downscaling models. 
For instance, using different techniques for cross validation or using different time periods for 
calibrating the final model which is then applied to GCM data may lead to differing statistical 
models and accordingly to varying future regional climate simulations. Thus, in addition to the 
above mentioned numerical ensembles as well statistical ensembles have been introduced to 
quantify uncertainty in climate projections.
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11.8 Case study Zugspitze and Sonnblick

The success of developing a useful downscaling scheme for locations in high mountain areas 
is especially affected by two factors concerning the mountain relief. On the one hand high 
mountain places can be exposed to the free atmosphere, compared to the low land. This means 
that the large scale circulation and associated atmospheric parameters which can be simulated 
well by GCMs on the synoptic scale play a larger role for the variability of the local target var-
iable than atmospheric processes working near the surface on the meso- and microscale, i. e. 
the subgrid scale for GCMs. This means that the downscaling models based on large scale GCM 
output as discussed above should perform especially well. On the other hand, the high relief 
energy of the mountains also includes areas affected strongly by GCM-subgrid processes, like 
luv/lee effects, channeling of wind, gradients in friction or radiation energy uptake, slope winds, 
mountain plane winds or increased turbulence which is mixing air from the boundary layer into 
the area up-stream of the measurement site (footprint area) etc. Thus, locations in high moun-
tain areas which are less exposed to the free atmosphere but significantly affected by meso- and 
microscale processes, may be even less suitable for downscaling than low land stations.

A high mountain station especially suited for downscaling is the meteorological observatory 
at the Zugspitze (2962 m) maintained by the German weather service DWD. It offers a long time 
series of observation data (see Tab. 2) even though not all data can be used as explained below. 
Moreover, the location of the Zugspitze as a comparatively high peak, exposed at the northern 
edge of the high mountain range makes it a promising object for downscaling. Another high 
mountain observatory maintained with long records is the Sonnblick observatory at the Hoher 
Sonnblick (3106 m) operated by the Austrian meteorological service (ZAMG) and located in the 
Alpine main ridge. Compared to the Zugspitze the Hoher Sonnblick is surrounded by mountain 
ridges in all directions.

Tab. 2: Start time of daily records for the target variables precipitation and temperature at Zugspitze and 
Hoher Sonnblick

Station Variable Start of available records

Zugspitze Precipitation 01.01.1901

Temperature 01.08.1900

Hoher Sonnblick Precipitation 01.08.1890

Temperature 01.10.1886

In order to calibrate and validate the downscaling models, large scale circulation data have 
been obtained from the 20th century reanalysis dataset version 2 (Compo et al. 2011). They have 
been generated by a weather forecast model initiated by historical and recent station and 
 radiosonde observations and are used as equivalent to large scale GCM output, however not 
for certain scenarios but for the past where also the target variables temperature and precipi-
tation from Zugspitze and Hoher Sonnblick are known. The variables which have been examined 
as potential predictors include air pressure at sea level (slp), thickness of the layer between 
850 hPa and 500 hPa (thi), geopotential height of several pressure levels (hgt), as a common 
way to describe air pressure distribution in upper levels, zonal wind speed (uwnd), meridional 
wind speed (vwnd), total horizontal wind speed (swnd), vertical wind speed (omega), air 
 temperature (air), spezific humidity (shum), relative humidity (rhum), zonal and meridional 
moisture flux (umf and vmf) as well as vorticity (vor) and divergence (div) of the wind field. In 
order to cover the whole vertical extent of the troposphere but at the same time restrict the 
number of variants, the variables have been extracted for the levels 850 hPa, 700 hPa, 500 hPa 
and 250 hPa.

In order to obtain useful and robust models, it is necessary to reduce the set of potential pre-
dictors to the most important ones. Even though the influence of less important variables is 
reduced by weighting in the classification scheme as well as during training of the neural net-
work, it is much more effective and avoids to end up in less stable solutions of the model op-
timisation process if they are excluded and if the set of predictors is kept as small as possible. 
However, to obtain still a well-performing model it is very important to find out which variables 
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are the most important ones by a systematic predictor screening. This is done by applying a 
fast training algorithm (resilient backward propagation) iteratively to all possible predictor 
combinations including the different tropospheric levels and varying the domains defined by 
the sector latitudes and longitudes. Tab. 3 shows the results of the predictor screening. As is 
clearly apparent, precipitation can be predicted best by variables describing large scale humid-
ity (shum, rhum), horizontal wind (uwnd, vwnd) and variables associated with vertical circula-
tion (omega, div and vor) for both stations. Station temperature is best explained by the large 
scale temperature itself (thi, air) as well as vorticity and divergence, which are also associated 
with cyclonic activity.

The model calibration has been done not only once for the whole available period starting 
around the beginning of the 20th century but for 30-year subperiods, which are shifted by 1 year 
steps through the overall period in order to examine the eventually varying link between target 

Tab 3: Optimal predictor combinations determined by screening through all possible configurations of 
variables (air pressure at sea level (slp), thickness of the layer between 850 hPa and 500 hPa (thi), geo-
potential height of several pressure levels (hgt), as a common way to describe air pressure distribution 
in upper levels, zonal wind speed (uwnd), meridional wind speed (vwnd), total horizontal wind speed 
(swnd), vertical wind speed (omega), air temperature (air), spezific humidity (shum), relative humidity 
(rhum), zonal and meridional moisture flux (umf and vmf) as well as vorticity (vor) and divergence (div)), 
atmospheric pressure level (level), start and end of the domain given in degrees east (lon) and degrees 
north (lat) for each season (December, January, February (DJF), March, April, May (MAM), June, July, 
 August (JJA) and September, October, November (SON)) and each target variable (precipitation (prc) and 
temperature (tmp) at Zugspitze (Zug) and Hoher Sonnblick (Son)).
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variable and predictors (see Tab. 3). In order to get robust results for each subperiod, the ANN 
for calibration was initialized 15 times. For each of these 15 ensemble members the spearman 
corrleation coefficient between estimated and observed values for the target variable has been 
calculated and aggregated to an ensemble mean for the referring subperiod. The results in Fig. 3 
reveal that in all cases there are so called non-stationarities (Hertig et a. 2015), i. e. the model 
performance is not constant. As expected, temperature estimation works generally better than 
the precipitation models. However, may be most striking is a drop in skill in the middle of the 
20th century for precipitation at the Hoher Sonnblick. Such pronounced slumps are usually in-
dicators for inhomogeneities, i. e. abrupt jumps in measurement time series, often caused by 
a change in the instrumentation or location of the instruments. However, another prominent 
feature, beside that, is a generally increase in skill over time for both variables in both places 
for all four seasons. A possible explanation is an increase in measurement and recording qual-
ity over time. In order to take this into account, the final calibration has been done for the pe-
riod 1970 to 2000.

The skill of the final models, including circulation type classification, neural networks and their 
combination, is shown in Fig. 4. In order to compare the skill for the two main target variables 
precipitation and temperature to subordinated ones, the performance for specific humidity and 
wind at the station Zugspitze is included here. In some cases the RTF method based on circu-
lation type classifications (triangles) is somewhat better than the ANN (circles). However, this 
is true only for the calibration skill (violet) and not for the real skill estimated with the validation 
data (green) which is the relevant one. Regarding the latter, i. e. looking only on the green sym-
bols, the CTC based method is always the worst (except for the wind) and the ANN always the 
best. Further on it is striking that the skill for precipitation and temperature at the Zugspitze is 
always better than the skill for the Hoher Sonnblick throughout all seasons. A possible reason 
is assumed to be the topographical position of the Hoher Sonnblick within the Alpine main ridge 
and associated larger influence from the surface, modifying the direct forcing of the large scale 
predictors to some degree, although the skill for the Sonnblick is still remarkably high. Regard-
ing the skill of the method combination ANN+CTC it turns out, that it is not as performant as 

Fig. 3: Stationarity of the relation between predictors (see Tab. 3) and target variables: ensemble mean 
spearman correlation coefficients (ordinate) between observed values of the target variable and those 
estimated by artificial neural networks in shifting 30-year subperiods between 1901 to 2010 (abscissa) for 
winter (DJF), spring (MAM), summer (JJA) and autumn (SON).



188 Chapter 11

11

ANN alone. The networks in fact do learn faster within the classes, however finally they do not 
reach the skill level of single neural networks trained for a long time (several days up to weeks 
of compute time).

Even though the variance fraction of the target variables that can be explained by the down-
scaling models, as apparent from Fig. 4, is extraordinary high for temperature (ca. 90 %) it is 
rather limited for precipitation, where only roughly 50 % of the variablity can be simulated, 
which is still high compared to other studies where 30 % or 40 % are reached (e. g. Cavazos and 
Hewitson 2005). However, it is still possible to estimate the precipitation changes that are 
caused by changes of the large scale predictors only, even if there might be other tendencies 
due to other factors. Thus the precipitation estimation must not be interpreted as the expected 
real change but only as one impulse for changes among others.

Keeping this in mind, the models are applied by feeding them with GCM output data for several 
scenarios. A common collection of GCM simulations is available by the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) framework. Tab. 4 contains the models and their realisations for 
the scenarios. The first scenario is called “historical” (hist) and includes the boundary conditions 
for the global climate system since 1850 up to now. Since GCMs, even if they have reached high 
performance in the last few decades, can not simulate the observed climate absolutely perfect 
but sometimes show systematic discrepancies, the historical run of a GCM can serve as a refer-
ence run in order to determine the relative changes of any other scenario. Thus it is assumed, 
that the difference between the reference and the scenario runs can be transferred to the real 
world climate system, even if there is a general bias which is found in all model runs, but not 
relevant if the changes are of interest. This method is sometimes called the delta approach, and 
should be considered for all model interpretations.The future scenarios used in this study are the 
so called RCP4.5 and the RCP8.5 scenarios, the former assuming a global increase of radiative 
forcing by 4.5 W/m2 and the latter by 8.5 W/m2 in the year 2100 relative to the pre-industrial year 
1850. RCP means representative concentration pathway and points out that it reflects not the 
emissions of radiation-relevant trace gases, but their actual concentration and its effect on the 
radiation budget. For the MPI model three realisations were available which helps to increase the 
robustness of the results by running the downscaling models with data from more than one GCM 
run, thus building an ensemble of runs, and calculating the ensemble mean result.

Fig. 4: Comparison of skill of ANN-, CTC- and combined downscaling models for various target variables 
(prc: precipitation, tmp: temperature, rhum: relative humidity and wnd: wind speed), station (zug: 
 Zugspitze, son: Hoher Sonnblick) and season (DJF: winter, MAM: spring, JJA: summer, SON: autumn). 
Circles show the result of artificial neural networks (ANN), triangles those for circulation types (CTC) and 
crosses for the combined method (see text). Violet symbols denote the mean coefficients for 15 calibra-
tion subsamples, green symbols those for 15 validation subsamples in the period 1970 to 2000.
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The time series of annual mean temperatures and annual precipitation sums produced by driv-
ing the downscaling models with the GCM scenario output data for the respective predictor 
variables is shown in Fig. 6. While the thin lines, respesenting the single ensemble members 
result, allow to estimate the spread of the simulated target variables, the ensemble means point 
out their long term evolution. The temperature time series (Fig. 6a and b) show a strong trend 
as expected, which has been positively tested for significance by the trend-noise-ratio using 
the 5 % uncertainty level. According to these results the station annual mean temperatures at 
the Zugspitze summit will approach the freezing point in the year 2100 for the RCP8.5 scenario 
which will have dramatic consequences for the whole environment in this region. At the Sonn-
blick the absolute temperature is generally a bit lower, but the changes are also significant. 

Tab. 4: Overview of the general circulation models and their scenarios used for driving the downscaling models. All model 
 datasets offer a historical run (hist) and those for representative concentration pathways (RCP) for radiation-relevant trace gases 
leading to an increase of 4.5 respectively 8.5 W/m2 in the radiative forcing of the climate system. For the German model three 
 ensemble members are available for the RCP scenarios.

GCM model Responsible Institute Realisations/Scenarios

MPI-ESM-LR Max-Planck-Institute, Germany Hist, RCP4.5 (3 ens. members), 
RCP8.5 (3 ens. members)

HadGEM2-CC Met Office, United Kingdom Hist, RCP4.5, RCP8.5

ACCESS1-0 CSIRO (Commonwealth Scientific and Industrial Research Organisation) 
und BOM (Bureau of Meteorology), Australia

Hist, RCP4.5, RCP8.5

CMCC-CMS CMCC (Centro Euro-Mediterraneo per i Cambiamenti Climatici), Italy Hist, RCP4.5, RCP8.5

IPSL-CM5A-LR IPSL (Institut Pierre Simon Laplace), France Hist, RCP4.5, RCP8.5

Fig. 5: Evolution of target variables temperature and precipitation simulated by downscaling models 
 using circulation type classifications, artificial neural networks and their combination in the period 1970 
to 2100 aggregated to annual values (means of temperature, sums for precipitation). Thin lines denote 
single time series of 15 cross validated model runs for each of the seven GCM runs, while the thick line 
represents the overall ensemble mean. a) Zugspitze temperature, b) Sonnblick temperature, c) Zugspitze 
precipitation, d) Sonnblick precipitation.
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Fig. 6: Precipitation changes for a) Zugspitze and b) Hoher Sonnblick discerned by seasons: Red cross 
shows the mean and boxplots the distribution of seasonal precipitation sums estimated by 15 cross 
 validation runs of neural network downscaling models driven by 7 GCM runs for the historical reference 
period 1971 to 2000 and the RCP4.5 (green) and RCP8.5 (blue) scenarios in the time range 2021 to 2050 
and 2071 to 2100. Red numbers denote the changes in percent compared to the historical reference 
 period. A violet circle indicates a significant difference in the central tendency according to the U-test, a 
violet cross a significant change in variablity according to the Fligner-Killeen-test on the 5 % uncertainty 
significance level.

a)

b)
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Regarding precipitation, no significant trend can be observed for both RCP scenarios if the 
annual sum is considered at both stations (Fig. 6c and d).

However, if the precipitation is analysed separately for each season, different results are appar-
ent. Fig. 6 shows the respective changes for seasonal precipitation sums for the 30-year periods 
2021 to 2050 and 2071 to 2100 compared to the reference period 1971 to 2000 as obtained by 
the ANN models, which give the most reliable results compared to the other methods. Accord-
ing to the U-test there are significant changes for both stations in all seasons. In winter (DJF), 
spring (MAM) and autmn (SON) both, Zugspitze as well as Hoher Sonnblick show a similar 
tendency. In winter precipitation is constantly increasing, stronger for the RCP8.5, somewhat 
slower for the RCP4.5 scenario and somewhat stronger for the Hoher Sonnblick than for the 
Zugspitze. In spring (MAM) and autumn (SON) an initial strong increase in precipitation is 
followed by either constant or even decreasing rates of growth, except for RCP8.5 at the Zug-
spitze and RCP4.5 at Hoher Sonnblick with an accelerating increase. Regarding the summer 
(JJA) Hoher Sonnblick shows a growing decrease in precipitation for both scenarios. The Zug-
spitze, however, is characterized by an initial increase followed by conditions comparable to 
the historical period or even below.

Two antagonistic main processes forcing the moisture budget and precipitation are supposed 
to be responsible for such diverse climate change signals: i) increasing storage capacity for 
water vapor in a warmer troposphere and therefore increased moisture transport into the at-
mosphere with increased precipitation sums and ii) strengthening of the Mediterranean sub-
tropical anticyclonic high pressure cell (Jacobeit et al. 2017) with increased subsidence and 
stable conditions suppressing precipitation. Thus it is fairly likely that at the beginning of a 
global warming period, the moisture storage effect dominates at the Zugspitze in summer 
until the effects of changing circulation dynamics prevail. The difference to Hoher Sonnblick, 
where increasing precipitation reduction prevails in summer, might be explained by its position 
in the interior of the Alpine ridge where air masses already have lost considerable amounts of 
their moisture content due to luv effects at the edge of the mountain ridge. Maybe the effect of 
increased moisture transport is therefore less important in the center of the Alps, a topic for 
further investigations. In any case, high mountain climate is indicated to be changed consider-
ably according to the presented results with strong implications for the whole ecosystem of 
the Alps to be expected.
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