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Supplementary note 1: Semi-classical model of excimer emission
As described in the main manuscript, the probability of the X-dimer geometry to

adopt the displacement q∗ is given by the probability density |Ψ(q∗)|2 dq which is directly
related to the emission spectrum I(E)dE for a photon energy E by

I (E (q∗)) dE = |Ψ(q∗)|2 dq. (S1)

Furthermore, the spatial coordinate q can be expressed as a function of the photon energy
q(E), and with an appropriate Jacobian for the coordinate transformation the emission
spectrum for a transition from an excited state |X,n⟩ to the electronic ground state reads

In (E) dE = |Ψn (q (E))|2
dq

dE
dE (S2)

with the wave function Ψn as the wave function of the vibrational state |n⟩. This expands
the semi-classical temperature dependent emission spectrum as given by equation (9) in
the manuscript by

I (E, T ) dE =
∑
n

P (n, T ) In (E) dE

=
∑
n

P (n, T ) |Ψn (q (E))|2
dq

dE
dE.

(S3)

To establish an analytical relation between the spatial coordinate and the photon
energy, we use equations (3), (5) and (6) from the main text to calculate the photon
energy and define the respective spatial coordinate for a vibrational X-dimer state |n⟩
defined by equation (4) in the main text to

q̃n (E) =

√
EX,n − E

R0

− qe (S4)

yielding
dq̃n
dE

=
1

2
√
R0 (EX,n − E)

(S5)

as the Jacobian. Using the wave functions of the quantum mechanical harmonic oscillator,
see e.g.1,

ψn (q̃n) =
(α
π

) 1
4 1√

2nn!
Hn

(√
αq̃n

)
exp

(
−1

2
αq̃2n

)
(S6)

with the respective hermite polynome Hn(x) and an oscillator parameter α = µEX,vib/ℏ2
the emission spetrum In (E) dE defined in equation (S2) can be expressed analytically
using equations (S4)-(S6).

Evaluating (S2) for the emission |X,n⟩ → |G⟩ from the first six vibrational levels
n ∈ {0, 1, 2, 3, 4, 5} yields
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I0(E)dE =
1

2

√
α

R0π (EX,0 − E)
exp

(
−αq̃20

)
dE (S7)

I1(E)dE =

√
α

R0π (EX,1 − E)
αq̃21 exp

(
−αq̃21

)
dE (S8)

I2(E)dE =
1

4

√
α

R0π (EX,2 − E)

(
2αq̃22 − 1

)2
exp

(
−αq̃22

)
dE (S9)

I3(E)dE =
1

6

√
α

R0π (EX,3 − E)

(
2αq̃23 − 3

)2
αq̃23 exp

(
−αq̃23

)
dE (S10)

I4(E)dE =
1

48

√
α

R0π (EX,4 − E)

(
4α2q̃44 − 12αq̃24 + 3

)2
exp

(
−αq̃24

)
dE (S11)

I5(E)dE =
1

120

√
α

R0π (EX,5 − E)

((
2αq̃25 − 5

)2 − 10
)2

αq̃25 exp
(
−αq̃25

)
dE (S12)
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Supplementary note 2: Numerical evalution of the quantum-mechanical over-
lap intergral

The ∝ exp (−q2) dependency of the oscillator wave functions (S6) enables a straight-
forward numerical integration applying fixed suitable boundaries as the wave function
only slightly extends beyond the turning points of the classical oscillator at any given
energy. Hence, equation (10) of the main manuscript simplifies to

⟨m |n⟩ =
∫ ∆q

−∆q

Φ∗
m (q)Ψn (q − qe) dq. (S13)

The integration interval [−∆q,∆q] has to be chosen as such, that it almost fully includes
the ground state wave function Φm (q) located around q = 0 and the excited state wave
function Ψn (q − qe) at q = qe. Suitable integration boundaries can be estimated using
the classical turning points of a harmonic oscillator with oscillator constant R as

q =

√
2
(
n+ 1

2

)
Evib

R
(S14)

where Evib represents the vibrational energy quantum. For an exemplary reduced mass
of µ = 350 u and a vibrational energy quantum Evib = 20meV equation(S14) yields
q(n = 5) = 0.1 Å, q(n = 10) = 0.22 Å and q(n = 25) = 0.34 Å. For a common spatial
displacement of qe ≈ 0.2 Å this means that for integration boundaries of ∆q = ±0.5 Å even
excited state wave functions as high as n = 10 are almost completely included while the
ground state wave functions are included even up to n = 25. The numerical integration
is performed using the ”simpson” integration function within the SciPy python package 2.

Of course, equation (10) in the main manuscript has to be evaluated for all tran-
sitions |X,n⟩ → |G,m⟩ contributing to the emission spectrum at temperature T and
hence the maximum evaluated vibrational levels of the ground and X-dimer state, M :=
{0, 1, . . . ,mmax} and N = {0, 1, . . . , nmax}, respectively, have to be chosen accordingly.
This results in a total of |N ×M | individual transitions which need to be calculated. To
minimize evaluation time during fit procedures, nmax should be chosen according to the
excepted vibrational energy quantum of the X-dimer state and the highest temperature.
For example, as indicated in note 62 in the main manuscript, for a vibrational energy
quantum of 25meV and a temperature of 400K the population probability of the 5th
vibrationally excited state is 1.4%.
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Supplementary note 3: Computational details for simulated emission spectra
in figure 3

The emission spectra presented in figure 3 in the main manuscript have been generated
by assuming a reduced mass of µ = 288.958 u (corresponding to the reduced mass of a
zinc-phthalocyanine dimer). The constant parameters where chosen as Evib,G = 25meV
for the ground state vibrational energy, De = 2 eV as the energetic offset, qe = 0.1 Å
as the spatial offset and σ = 20meV as the line width parameter of the gaussian line
shape function. For the steep and shallow X-dimer state we set Evib,X = 30meV and
Evib,X = 20meV, respectively. Emission spectra where simulated in 5K steps from 5K to
400K and in 25K steps between 400K and 1000K considering 100 vibrational levels for
the ground state oscillator and 20 vibrational levels for the X-dimer state. The Boltzmann
population has been numercially evaluated assuming z = 100 vibrational states of the X-
dimer. The numerical integration has been performed within ∆Q = ±3 Å.

Figure S1 shows the peak maximum (dots) as well as the asymmetric half-width-half-
maximum (HWHM) towards the low and high energy side of the spectrum (bars) for
selected temperatures between 5K and 400K illustrating the broadening of the spectra
as well as the maximum peak shift with temperature.

Figure S1: Maximum peak position (dots) and the HWHM to the low and high energy
side (bars) with temperature for all three cases. Dotted lines as guide-to-the-eye for the
peak shift.

The evolution of the peak shift with temperature is also shown in figures S2 a) and b)
for different temperature ranges indicating the different trends towards higher and lower
emission energies for all three cases of potential strengths. To provide deeper insight into
the temperature dependence of the asymmetry between high and low energy flank of the
emission spectra figures S2 c) and d) depict the ratio between the HWHM of low and
high energy flank of the simulated emission spectra. The ratio is calculated as

R =
HWHMlow energy

HWHMhigh energy

. (S15)

Hence, a value of R = 1 indicates a symmetric emission profile while values of R < 1 and
R > 1 indicate an asymmetry towards the low and high energy flank, respectively. For
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the case of the weaker excited state potential we see R < 1 over the whole temperature
range showing the asymmetry towards the low energy side, while for the stronger excited
state potential the assymetry changes from the low to the high energy flank with rising
temperature. For the case of the equal ground and excited state potential R converges
towards 1 with rising temperature, which means the spectrum strives towards a symmetric
emission profile.

Figure S2: Maximum peak positions (a, b) as well as ratio of the low and high energy
side HWHM (c,d) as a function of temperature. A ratio of one indicates a symmetric
emission profile, while values smaller/larger than one indicate an asymmetry towards the
low/high energy side.
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Supplementary note 4: Estimation of the zero point energy from the FWHM
temperature of the α-ZnPc emission spectra

The FWHM of the temperature dependent α-ZnPc emission spectra has been extracted
by the abscissa difference between the half-intensity point of the low and high energy flank
of a smoothed spectral curve. The errors are estimated from the noise of the spectral
curve. The data was fitted using equation (14) from the main manuscript yielding the fit

parameters P0 = (147.9± 1.4)meV and T0 =
E0,X

kb
= (171.4± 5.2)K.

Figure S3: ZnPc FWHM with temperature together with fit curve from equation (14).
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Supplementary note 5: ZnPc emission: X-dimer model
Extracted fitting parameters from the quantum mechanical and semi-classical X-dimer

model are shown in figures S4 and S5, respectively. Figures S6 and S7 show the full data
set of the temperature dependent photoluminescence data including the fit curves for the
quantum mechanical and semi-classical approach, respectively.

Figure S4: Temperature dependence of spatial offset qe (orange, left y-axis) and vibra-
tioanl energy of the ground state Evib,G (teal, left y-axis) extracted from the quantum
mechanical X-dimer fit to the ZnPc luminescence data.

Figure S5: Temperature dependence of spatial offset qe (orange, left y-axis) and vibra-
tional energy of the ground state Evib,G (teal, left y-axis) (a) as well as energetic offset
De (b) extracted from the semi-classical X-dimer fit to the ZnPc luminescence data.
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Figure S6: ZnPc emission spectra fitted with quantum mechanical X-dimer model.
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Figure S7: ZnPc emission spectra fitted with semi-classical X-dimer model.
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