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We present in this contribution the distribution of a global multi-input-multi-output system in
a sensor and actuator network. Based on controllability and observability, the global system
is decentralized and the system properties are preserved as a result. This results in multiple
decentralized local single-input-single-output systems with the same system order as the global
system. As these local systems are implemented on decentralized CPUs in the network, the
computational effort of the nodes has to be minimized. This is achieved by approximating the
input and output behavior and reducing the system order of the decentralized local systems.
For this purpose, the two most common techniques, Balanced Truncation and Krylov subspace
methods, are presented. Kalman filters are used for state reconstruction. To approximate
the input/output behavior of the global system, information from all decentralized reduced
local systems is necessary, thus a fully interconnected network is used for communication. By
decentralized fusion algorithms in the network nodes, the Kalman filter algorithm is separated
and distributed in the network.

1 Introduction

This paper is an extension of ”Reduced and Distributed Estimation
in Sensor and Actuator Networks - Automated Design Based on
Controllability and Observability” presented at the IEEE Confer-
ence on Control Technology and Applications (CCTA) 2021 in San
Diego (virtual) and ”Model-Order Reduction and System Distri-
bution Using Krylov Subspaces - An Approach for Efficient State
Estimation in Sensor and Actuator Networks” presented at the IEEE
Conference on Control Technology and Applications (CCTA) 2022
in Trieste [1], [2].

The requirements for the accuracy of mathematical models are
constantly increasing. Also large-scale MIMO1 systems are not pro-
tected from the increasing requirements. These and the increasing
complexity of the systems enhance the system order of the dynamic
large-scale MIMO systems [3], [4]. The use of such complex and
large-scale models in simulation is very cumbersome and sometimes
impossible. Moreover, system analysis and controller design using
known methods is also impossible. For this reason, methods for lin-
ear and nonlinear systems are developed to reduce large models to
a manageable size and to approximate the characteristic properties
related to the input/output behavior [5]. Memory and computational
requirements are reduced by distributing the system so that only

parts of the model are available for local systems [6]. However, this
requires decentralized estimation procedures.

If the internal model relationships (e.g. mechanical and elec-
trical) are known, the distribution into local systems is performed
manually [6]. Furthermore, system digraphs and cut-point sets are
used for model distribution [7]. In [8], a manual method for dis-
tributing large systems is also presented. In this method, reduced
local systems with overlapping state vectors are created. All de-
scribed manual methods share the property that the actual system
order of the global system is preserved in the network despite the
distribution into local systems.

In contrast, we use decentralization for distribution based on
the controllability and observability of the global MIMO system.
By decoupling the inputs and outputs, several local SISO2 systems
are formed from the global MIMO system. These decentralized
local systems are implemented in a fully interconnected network.
Moreover, we use model order reduction techniques, resulting in the
decentralized local systems with much lower order and preserving
the system properties [9]. Further, the computational effort in each
network node is reduced.

Several techniques for reducing the model order are known [10].
The most common techniques for approximating the input and out-
put behavior are Balanced Truncation and Krylov subspace methods.
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In Balanced Truncation, the Hankel singular values are analyzed and
the states with a small impact on the energy transport are neglected
and truncated [11]. In Krylov subspace methods, to approximate the
input and output behavior, the transfer functions of the global and
reduced systems are expanded at an arbitrary development point. In
this process, the first coefficients, also called moments, of the Taylor
series of the transfer function are matched [12], [13].

Therefore, the methods are also called moment matching with
the Padé-type approximation method based on rational interpola-
tion [14], [15]. If only a single development point (several are
also possible) s = 0 is chosen, the reduction is ascribed to an
padé-approximation [16]. A more extensive background on Krylov
subspace methods is given in [10], [17], and [18]. Model order
reduction with Krylov subspaces requires less memory and compu-
tational effort (compared to Balanced Truncation) [19]. Meanwhile,
several algorithms for the Krylov subspaces are known. In this pa-
per, we only use the Arnoldi algorithm with its extension to MIMO
systems [20], [21].

This paper is organized as follows. In Section 2, the systems
under consideration are defined. The methods used to reduce the
model order are presented in Section 3. The distribution and deploy-
ment in a network are demonstrated in Section 4. A demonstrator is
used for detailed real-time experimental evaluation of the presented
methods and the results are presented in Section 5.

2 Preliminaries

In this contribution, we refer to global multi-input-multi-output
linear time-invariant systems of the form

ΣG =

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

Here, A ∈ Rn×n is the system matrix and B ∈ Rn×p is the input
matrix. The matrix C ∈ Rq×n ist the output matrix and x, u as well
as y are the state vector, the inputs and the outputs of the global
continuous-time system ΣG.

3 Model Order Reduction

Precise modeling of technical systems often leads to large systems
of differential equations, requiring a high computational effort. For
this reason, methods are used to reduce the order of the systems.
Thereby the characteristic properties are supposed to be preserved
and the input/output behavior has to be maintained as exactly as
possible. The linear reduction methods can be categorized into three
classes. One class is the modal reduction methods, in which less
dominant eigenvalues and eigenmodes are removed from the sys-
tem representation. The second class of reduction methods, which
is also used in this contribution, are the balanced methods. Here,
energy-oriented analyses are used to remove an unimportant subsys-
tem. The third class describes the Krylov subspace methods. In this
method, certain parameters of the transfer function, the so-called
moments, are preserved in the reduced model. This class is also
used for decentralization and distribution in this contribution.

3.1 Balanced Truncation

The Balanced Truncation (BT) method is based on the system prop-
erties of controllability and observability. Different methods for de-
termining controllability and observability are known. For balanced
truncation, the Gramian controllability matrix and the Gramian
observability matrix shall be used.
A system (1) is controllable if a control vector u(t) exists that trans-
forms the system from an initial state x(t = 0) = 0 to a final state in
finite time. The controllability Gramian is defined as

Wc =

∫ ∞
0

eAt BBT eAT t dt. (2)

Furthermore, a system (1) is fully observable if the system state
x(t = 0) can be determined by observing the output y(t) over a
finite time interval. The Gramian observability matrix is derived as
follows

Wo =

∫ ∞
0

eAT t CT C eAt dt. (3)

For the transfer of the system (1) from the initial position x0 to the fi-
nal position xe in infinite time, the energy xT

e W−1
c xe must be applied.

In contrast, the energy xT
0 Wox0 is generated when the system (1)

in the initial position x0 can oscillate uninfluenced (u(t) = 0) to its
rest position. This energy-based approach reveals that a difficultly
controllable state requires a high level of energy to achieve.This can
also be observed in the eigenvalues of the matrix W−1

c . The more
energy is needed to reach a specific state, the larger is its eigenvalue.
This analysis can also be used for observability. However, here a
small eigenvalue of the state determines that it is badly observable,
because only a small amount of energy is visible.
By a state transformation the system ΣG with order n is transformed
into a balanced state-space representation, whereby the Gramian
matrices

Wc =Wo =


σ1 0
. . .

0 σn

 (4)

are diagonal and identical [22]. In [23] it was demonstrated that any
complete controllable and observable system can be transformed
into a balanced state-space representation. The diagonal elements
σi of (4) are the Hankel singular values (HSV). The HSV can be
determined by

σi =
√
λiWcWo. (5)

Here, λi represents the eigenvalues of the system ΣG. The HSVs are
invariant to transformations, so small HSVs correspond to badly con-
trollable and observable states [22], [24]. The transformation matrix
to the balanced state-space representation of (1) are determined in
four steps:

1. In [25] it is shown that the controllability (2) and the observ-
ability matrix (3) are also solutions of the Lyapunov equation

AWc +WcAT + BBT = 0 (6)

AT Wo +WoA + CT C = 0 (7)

2. After solving the Lyapunov equation, Gramian matrices are
positive definite and can be decomposed into Cholesky fac-
tors: For the solution of the Lyapunov equation, one positive
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definite solution for Wc and Wo exists for every fully control-
lable and observable system. The Gramian matrices can be
decomposed into Cholesky factors

Wc = ST S (8)

Wo = RT R (9)

3. The product SRT is subjected to a singular value decomposi-
tion (SVD),

SRT = UΣVT , (10)

which yields the orthogonal matrices U and V, and the diago-
nal matrix Σ of HSVs.

4. The matrix T for transformation to balanced state-space rep-
resentation is

T = Σ−
1
2 VT R (11)

and its inverse is
T−1 = ST UΣ−

1
2 (12)

In [26] it is presented that these matrices (11) and (12) transform
a fully controllable and observable system in balanced state-space
representation.

ΣBal =

ẋBal(t) = T−1ATxBal(t) + T−1Bu(t)
y(t) = CTxBal(t)

(13)

The HSVs reveals that not all states are equally well controllable
and observable. If only the states which contributes much to the
energy transfer are used, then only the first r HSVs of Σ and the first
r columns of U as well as V need to be considered. BT can also be
interpreted as a Petrov-Galerkin projection into a reduced subspace
[22]. For this projection, the transformation matrices (11) and (12)
are modified.

WT
BT = Σ

− 1
2 UT RT (14)

VBT = SVΣ−
1
2 (15)

Where WBT ∈ R
r×n and VBT ∈ R

r×n are the biorthogonal projection
matrices. By the projection matrices only the first r columns are
considered, thus the system order r < n is reduced. This truncates
only the HSVs with a small participation in the energy transfer, thus
the input/output behavior is only marginally affected.

3.2 Krylov Subspaces

If numerically robust and efficient computations are required for
model order reduction, the reduction must be performed by Krylov
subspaces. Additionally, this method is used for very large systems.
In [21] and [27] the Krylov subspace is generally defined. Let M be
an arbitrary constant matrix and v a constant vector, called starting
vector, then the Krylov subspace is defined as follows

Kr (M, v) = span
{
v,Mv, . . . ,Mr−1v

}
. (16)

Here, M ∈ Rn×n, v ∈ Rn are the arbitrary matrix and vector as well
as Kr ⊆ R

n is a r-dimensional subspace. For model order reduction
with Krylov subspaces also transformation matrices W and V are
used. The matrices are composed of column vectors, which are also

the basis of the Krylov subspaces.
Referring to the system (1), the transformation matrix V as an
arbitrary basis of the input subspace is determined by

Kr1

(
A−1,A−1B

)
. (17)

In addition, the transformation matrix W is derived as the basis of
the output subspace

Kr2

(
A−T ,A−T CT

)
. (18)

For the reduction, r1 = r2 = r must be required, whereby
it must be ensured that both transformation matrices V and
W have full rank r. The Arnoldi algorithm is used to deter-
mine the transformation matrices V and W. Algorithm 1 shows
the calculation of the transformation matrix V based on (17).

Algorithm 1: MIMO Arnoldi Algorithm [21]
Result: Transformation matrix V
Set v1 =

b1√
bT

1 b1
and b1is the first starting vector;

for i=2,3,. . . do
if i ≤ mi then

Next vector is the i-th starting vector
else

ri = A1vi−m1

end
Set v̂i = ri ▷ Orthogonalization
for j = 1, . . . , i − 1 do

h = v̂T
i v j

v̂i = v̂i − hv j

end
if v̂i = 0 then

Reduce m1 to m1 − 1
m1 is nonzero calculate new ri

else
vi =

v̂i√
v̂T

i v̂i
▷ i-th column of matrix V

end
end

The same algorithm and (18) is used to determine the matrix W.
The columns of the transformation matrices are spanning the corre-
sponding Krylov input and output subspace (Fig. 1). If the model
order reduction is performed based on (17) and (18) with matrices V
and W, the reduction procedure is called two-sided. Obviously, only
one of the two matrices can be used. The remaining transformation
matrix is chosen arbitrarily, but it must have full rank. The reduction
procedure is then called one-sided.

Controllable Subspace Observable Subspace

Global System
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)u(t) y(t)

Figure 1: Controllability and observability are major properties and subspaces of
dynamical control systems.

In Krylov subspace methods, the transfer functions of the original
system and the reduced system are expanded at an arbitrary devel-
opment point s0, thus the first moments (coefficients of the Taylor
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series) match. In this contribution, the development point s0 = 0 is
chosen, whereby the transfer function of (1) is described by a Taylor
series around the developing point. The resulting i-th moment of
the series around s = 0 is

mi = CA−(i+1)B
with i = 0, 1, . . .

(19)

One-sided Krylov reduction methods reduce the original system to
order r. In this case, the first r moments of the original system and
the reduced system are matched. In the case of a two-sided method,
the first 2r moments are matched.
The moment m0 corresponds to the stationary gain and is preserved
in the Krylov-based reduction, so the reduced system is equally
stationary accurate. Two-sided Krylov methods adjust two times as
many moments for the same reduction size compared to one-sided
methods. For this reason, two-sided methods are usually preferable.
In addition, they offer the advantage that the reduction is indepen-
dent of the representation of the original model. In contrast, regular
state transformations and other equivalent transformations of the
original model in one-sided reduction affect the transfer behavior in
the reduced model [28]. Using a projection, the state vector x(t) is
approximated by the reduced state vector xr(t) as follows

x(t) = Vxr(t). (20)

Here, V ∈ Rn×r is the basis of the Krylov input subspace and is
determined using algorithm 1. xr ∈ R

r is the state vector of the
reduced system.
By applying the Arnoldi algorithm twice with different subspaces
(17) or (18), the reduced system with the transformation matrices
can be determined as follows.

Σr =

ẋr(t) =WT AVxr(t) +WT Bu(t)
yr(t) = CVxr(t)

(21)

4 Model Distribution
Decentralization and distribution of global large-scale MIMO sys-
tems in a sensor and actuator network achieve order reduction, as
individual nodes never need to estimate the entire global state vector.
Often, this distribution occurs due to internal system relationships
or due to physical system boundaries. In this section, we present
two approaches for decentralization and distribution, both based on
controllability and observability of the global system. One approach
demonstrates decentralization into local SISO systems based on
the inputs and outputs of the global MIMO system. The order of
the local systems is reduced to further minimize the computational
effort using model order reduction techniques. In a further approach,
the local SISO systems will be generated based on the controllable
and observable subspace. The order reduction resulting from decen-
tralization and distribution is reflected in a reduced computational
effort for each node. As a consequence, the required computational
effort in a local node is lower than in a centralized system.

4.1 Input-/Output-based

By decentralizing the inputs and outputs of (1), m local systems with
an equal number of sensors and actuators are derived. Thereby, the

outputs of the global system (1) are decentralized without further
considerations. To decentralize the inputs, the physical couplings
must be considered. For this purpose, the decoupling method from
[29] can be used. It is assumed that the inputs have a localized
impact in large-scale systems. The inputs of the global system are
decentralized into local systems as in [1]. Decentralization and
distribution provides the ability to distribute the system in a network.
In a fully connected network, minimal non-modeled couplings be-
tween the inputs are considered by communication.
Thus, m local SISO systems are derived from the global system
ΣG. During decentralization, local systems with one input and one
output each are expanded, but the system order n is not reduced (Fig.
2).

... ...

...

Global System ΣG

ẋ(t)=Ax(t) + Bu(t)
y(t)=Cx(t)

ΣL1

ẋ(t) = Ax(t) + B1u1(t)
y1(t) = C1x(t)

ΣLm

ẋ(t) = Ax(t) + Bmum(t)
ym(t) = Cmx(t)

Local System ΣL1 Local System ΣLm

u1(t)

u j(t)

y1(t)

y j(t)

u1(t) y1(t) um(t) ym(t)

Figure 2: Decentralization of the global MIMO system with j inputs and outputs
into m local systems.

The controllability and observability of the global system were not
modified by decentralization. It can be demonstrated that by su-
perposing the local Gramian controllability matrix Wc j and the
local observability matrix Wo j , the global controllability Wc and
observability Wo are recovered. The local systems are described as
follows

ΣL j =

ẋ(t) = Ax(t) + B ju j(t)
y j(t) = C jx(t)

with j = 1, . . . ,m.

(22)

Where m describes the number of sensors and actuators. The index
j at the input matrix B and at the output matrix C represents the
corresponding column and row of the matrices. This defines local
SISO systems ΣL j with one sensor and actuator each.
The local systems (22) are implemented on different decentralized
CPUs, which communicate through a fieldbus system, and are used
in a network.

4.1.1 Application in a Sensor and Actuator Network

Each local system ΣL j describes a network node where a Kalman
Filter (KF) is used for state reconstruction [30]. The computational
effort in the network nodes is further reduced if the KF algorithm is
separated [1]. In the prediction step the system inputs are used and
in the correction step, the observations are processed. Both filter
steps communicate through a priori and a posteriori estimation x̂(k)
and covariance P(k). As the inputs are only applied in the prediction
step, this part of the algorithm is implemented in the actuator nodes.
In the sensor nodes, the observations are applied and only the cor-
rection step of the KF algorithm is executed. Splitting the Kalman
Filter (SKF) provides the distribution of the local system (22) in a

www.astesj.com 149

http://www.astesj.com


F. Friedrich et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 5, 146-156 (2022)

network of sensor and actuator nodes. Each network node only has
to calculate a part of the KF algorithm. By exchanging the a priori
and a posteriori information, both filtering steps are connected in
the network.
Therefore, the continuous-time dynamics of (22) must be trans-
formed into discrete-time dynamics. To further minimize the com-
putational effort, it is necessary to reduce the order of the discrete
decentralized local systems. For this purpose, the model order
reduction techniques presented in Section 3 are used.

ΣLr, j =

ẋr(t) =WT AVxr(t) +WT B ju j(t)
yr, j(t) = C jVxr(t)

with j = 1, . . . ,m.

(23)

The decentralized reduced local systems (23) can also be used in the
SKF. Depending on the reduction method, the projection matrices
V and W are determined by Section 3.1 or Section 3.2. However,
this turns the SKF into the Splitted Reduced Kalman Filter (SRKF)

Prediction
x̂−r (k) = Ar(k − 1)x̂+r (k − 1) + Br(k − 1)u j(k − 1) (24)
P−r (k) = Ar(k − 1)P+r (k − 1)AT

r (k − 1) +Q(k − 1) (25)
Correction

Kr(k) = P−r (k)CT
r (k)
[
Cr(k)P−r (k)CT

r (k) + R(k)
]−1

(26)

x̂+r (k) = x̂−r (k) +Kr(k)
[
y j(k)− Cr(k)x̂−r (k)

]
(27)

P+r (k) = [I −Kr(k)Cr(k)] P−r (k) [I −Kr(k)Cr(k)]T

+ Kr(k)Rr(k)KT
r (k). (28)

The index r expresses that a reduced model ΣLr, j is used in the de-
centralized local nodes. The index j in (24) and (27) refers to the
corresponding local system.
The distribution of prediction (24), (25) and correction (26),(27) as
well as (28) of the local reduced systems (23) in sensor and actuator
network nodes, is connected by the communication of the reduced
a priori and a posteriori information. A fully connected network
is formed if all m local reduced systems ΣLr, j communicate. This
requires each sensor node to communicate its reduced a posteriori
information to all local actuator nodes. This information is pro-
cessed in the actuator nodes in a fusion step of the SRKF and used
in determining the reduced a priori information. The SRKF becomes
the Decentralized Splitted Reduced Kalman Filter (DSRKF) (Fig.
3). In [31], [32] and [33], a different notation is proposed for the a
posteriori values, as the correction is performed using only the local
observation.

P̃+r, j(k) =

[(
P−r, j(k)

)−1
CT

r, j(k)R−1
r, j (k)Cr, j(k)

]−1
(29)

x̃+r, j = x̂−r, j(k) +Kr, j(k)
[
yi(k) − Cr, j(k)x̂−r, j

]
(30)

For the interaction in the network between each local system, the
information of the reduced covariance error and the reduced state
error are used. These errors are determined in the corresponding
local sensor nodes and transmitted to the actuator nodes. Thus, all
actuator nodes receive the reduced error information of the sensor
nodes. The reduced covariance error and reduced state error for the

decentral reduced local system ΣLr, j is determined by

Er, j(k) =
(
P̃+r, j(k)

)−1
−
(
P−r, j(k)

)−1
(31)

er, j(k) =
(
P̃+r, j(k)

)−1
x̃+r, j(k) −

(
P−r, j(k)

)−1
x̂−r, j(k) (32)

...

Local System ΣL1
Actuator node

Fusion of Information
Eq. (36) and (37)

Prediction
Eq. (24) and (25)

Sensor node
Correction

Eq. (26), (27) and (28)

Info Covariance Error
Eq. (31)

State Error
Eq. (32)

u1(k) x̂+r,1(k)

x̂−r,1(k)
P−r,1(k) y1(k)

x̃r,1(k), P̃r,1(k)
Er,1(k), er,1(k)

Er,i(k), er,i(k)

Local System ΣLm
Actuator node

Fusion of Information
Eq. (36) and (37)

Prediction
Eq. (24) and (25)

Sensor node
Correction

Eq. (26), (27) and (28)

Info Covariance Error
Eq. (31)

State Error
Eq. (32)

um(k) x̂+r,m(k)

x̂−r,m(k)

P−r,m(k) ym(k)

x̃r,m(k), P̃r,m(k)

Er,m(k), er,m(k)

Er,m(k), er,m(k)

Figure 3: Splitting the KF algorithm on the actuator and sensor nodes. In all nodes
reduced models are implemented (SRKF).

Each local system is projected by the matrices V and W into its
own reduced subspace. In order to exchange information between
the subspaces, the information, for instance the reduced error co-
variances Er, j and the reduced state error vectors er, j, must be trans-
formed. The transformation from the transmitter subspace to the
receiver subspace is performed in the receiving local actuator node.
For the transformation matrices proposed in [31], we use the matri-
ces already determined by the model order reduction in Section 3.
These matrices are not symmetric, thus the Moore-Penrose inverse
is used and specified by the superscript †. If the projection matrices
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are determined by the method of Section 3.1, the transformation
between the local subspaces are performed as follows

Vr, ji =WBT,iW†

BT, j. (33)

For the state of clarity, the transformation using the methods form
Section 3.2 is identical. As mentioned above, small couplings be-
tween inputs are considered in a fully networked sensor and actuator
network. The error information of local system j are transformed
by

Er, ji(k) =
(
VT

r, ji

)†
Er, j(k)V†r, ji (34)

er, ji(k) =
(
VT

r, ji

)†
er, j(k) (35)

into the subspace of the system i. By adding fusion equations

(
P+r, j(k)

)−1
=
(
P−r,i(k)

)−1
+

m∑
j=1

Er, ji(k) (36)

x̂+r, j(k) = P+r, j(k)

(P−r, j(k)
)−1

x̂−r, j(k) +
m∑

j=1

er, ji(k)

 (37)

to each actuator node, a fully interconnected network can be created.

Another approach uses for fusion all state estimates and covariance
matrices of the decentralized reduced local systems (23). Here, the
estimated a posteriori state vectors x̂+ and a posteriori covariance
matrix P+ are transmitted to a central fusion center. There is no
direct communication between the locally reduced systems.
The fusion is performed in the center by the Generalized Millman’s
Formula (GMF). The GMF combines x̂+ and P+ for multisensor
systems [34], [35]. Assuming that m local systems estimate the
vector x ∈ Rn with x̂, these estimates are applied to determine the
related local error covariance

Pi, j = cov
(
x̃i, x̃ j

)
(38)

x̃i = x − x̂i (39)
i, j = 1, . . . ,m.

The objective of GMF is to find the optimal estimate of x. [35]
presents that this is achieved if the individual ξi are weighted and
summed

x̂ =
m∑

i=1

ξix̂i. (40)

In addition, it is shown that the weighting matrix ξi is found by min-
imizing the mean square error criterion, and that the minimization
leads to linear equations

m−1∑
i=1

ξi
(
Pi,m−1 − Pi,m

)
+ ξm

(
Pm,m−1 − Pm,m

)
= 0 (41)

m∑
i=1

ξi = I. (42)

Therefore, the fusion of two local state vectors is proved to be
equivalent to the well known Bar-Shalom-Campo formula. A more
detailed background is given by [34] and [36].

Each decentralized reduced local system uses a KF for state recon-
struction and communicates the estimated states and covariances to
a fusion center (Fig. 4).

...Local System
Kalman Filter

Eq. (24) to (28)

Local System
Kalman Filter

Eq. (24) to (28)

j = 1, . . . ,m

Fusion
Eq. (43) and (44)

Kalman Filter
Eq. (24) to (28)

x̂e(k) Pe(k)

x̂+(k) P+(k)

x̂+1 (k), P+1 (k) x̂+m(k), P+m(k)

Figure 4: The state reconstruction in the local nodes is performed by a KF with a
reduced model.

For independent estimates, GMF has a simple closed form

x̂e = Pe

m∑
j=1

P+
−1

j x̂+j (43)

P−1
e =

m∑
j=1

P+
−1

j . (44)

Due to decentralization and model order reduction, the decentral-
ized reduced systems are transformed into different subspaces. The
decentralized reduced estimates of the local systems have to be
transformed into a common subspace for fusion. For this purpose,
a reference system is derived from the global system (1). The
reference system is described as follows

ΣRe f =

ẋRe f (t) =WT AVxRe f (t) +WT Bu(t)
yRe f (t) = CVxRe f (t).

(45)

In the model order reduction, the reference system is adapted to
the order of the decentralized reduced local systems. In deriving
the reference system, attention was given only to the stability and
not to the quality of the approximation. At the fusion center, the
transmitted information are considered as uncorrelated as they orig-
inate from different subspaces. After the received information is
transformed into the reference system subspace, it is fused (43) and
(44). Based on the reference model, a KF is implemented in the
fusion center. This interprets the fusion x̂e as an observation and
this improves the fusion result.

4.2 Subspace based

Using the input subspace Kr1 and the output subspace Kr2 sep-
arately as well as algorithm 1, the global system ΣG is reduced
and distributed. Here, a one-sided method is chosen, thus the con-
trollable subspace is determined only by using the transformation
matrix V [37]. For reduction, W∗ = V is chosen so that W∗ has
maximum rank. Thus, a reduced order model is found,

Σr,C =

ẋr,C(t) = W∗T AVxr,C(t) +W∗T Bu(t)
yr,C(t) = CVxr,C(t)

(46)
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which describes the controllable subspace. The application of algo-
rithm 1 is repeated for the Krylov output space. Thus the matrix W
is determined. For this reduction V∗ =W is chosen, thus also here
the second matrix has maximal rank. The reduced model

Σr,O =

ẋr,O(t) = WT AV∗xr,O(t) +WT Bu(t)
yr,O(t) = CV∗xr,O(t)

(47)

describes the observable subspace. Using (46) and (47), the global
system is approximated over the controllable and observable sub-
space. A reduced system is obtained by the system matrix Ar,C and
the input matrix Br,C , of the controllable subspace, and by the output
matrix Cr,O, of the observable subspace

Ar,C =W∗T AV

Br,C =W∗T B
Cr,O =CV∗

(48)

4.2.1 Application in a Sensor and Actuator Network

A KF is also used for state reconstruction in the subspace-based
distribution. After the transformation from continuous to discrete
time, the system is used in KF. By distributing into the controllable
and observable subspace, this method can also be used in a network.
Appling the SKF presented in Section 4.1, the computational effort
in the decentralized CPUs is reduced because each network node
only needs to determine a part of the KF algorithm. By using the
reduced model (48), the SKF becomes the SRKF as described above
(Fig. 5). However, information from both subspaces is necessary
for a complete approximation. By communicating a priori estimates
x̂−r and covariances matrices P−r as well as a posteriori state vectors
x̂+r and covariance matrices P+r , a interconnected network is created.
To achieve this objective, the orthonormal bases from Section 3 are
used. For communication between the reduced controllable and
reduced observable subspace, the transmitted data must be trans-
formed into the target subspace.

To
c =WV†. (49)

The index of T describes the starting point and the superscript indi-
cates the target point of transformation. Due to the lack of symmetry
of the orthonormal bases, the Moore-Penrose inverse is here also
necessary. As in the previous section, we assume that no packets
are lost and that both nodes operate with the same sampling time.

Controllable Subspace
Prediction

Eq. (24) and (25)

Observable Subspace
Correction

Eq. (26) to (28)

y(k)

x̂−r (k)

P−r (k)

x̂+r (k)

P+r (k)

u(k)

Figure 5: Distribution of the global linear system on the basis of controllability and
observability

5 Experimental Evaluation and Results

SensorSensorSensor

Peltier
element

Peltier
element

Heating
cartridge

Isolation Aluminum
elements

Sensor

Figure 6: Visualization of a large scaled system. The discrete aluminum rod (l = 2m)
is coold on two elements and heated on another.

We have experimentally evaluated the presented methods on an
example published in [1] and [2]. Here we analyzed the temperature
distribution in a discrete heating rod.
The aluminum rod consists of n = 100 elements. The contact
surfaces of the aluminum elements have been thermally insulated,
minimizing the influence of ambient temperature. The heat conduct-
ing rod is cooled by two Peltier elements and heated by a heating
cartridge. In addition, the temperature distribution in the aluminum
elements is monitored by three PT1000 sensors. The global system
of the thermal rod can be described as follows

xq(k + 1) = p1xq−1(k) + (2p2 + p3) xq(k) + p1xq+1(k) + wq

with q = 1, . . . , n
(50)

Where the index q is the number of the aluminum element. The
parameters p1 and p2 represents the element geometry, heat capacity
as well as the heat transfer coefficient. The elements q = 1 and
q = 100 have only one neighboring element, thus the heat emit-
ting surface is larger than for the other elements. For this purpose,
2p2 + p3 =⇒ p2 + p4 is chosen for the elements at the end of the
rod. The parameter p3 and p4 are the product of the heat transfer co-
efficient and the heat emitting surface. wq is a normally distributed
noise, describing uncertainties in the process.
The system order is n = 100 and is determined by the elements
of the rod. Thus the system matrix is A ∈ R100×100. Here, the
system has three actuators and three sensors, so the input matrix is
B ∈ Rn×3 and the output matrix is C ∈ R3×n. The sensors and actua-
tors are placed in the same aluminum element (25, 50, 75). So the
input matrix B is a zero matrix and is only assigned at the positions
B25,1 = −1, B50,2 = 1 and B75,3 = −1 and the output matrix C is also
a zero matrix and is also only assigned at the elements C1,25 = 1,
C2,50 = 1 and C3,75 = 1. The global system can be described as
follows

ΣRod =

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(51)
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5.1 Parameter Identification

The unknown parameters of the global system are determined by
identification in two steps. In the first step, the parameter p2 is
identified by the homogeneous solution of the state space equation.
For this purpose, a single aluminum element is used to determine
the main diagonal of the system matrix A (Fig. 7).

Sensor

Aluminum
Element

Actuator Measurement data
Simulation data

0

20

40

60

80
ΔT
[K
]

0 200 400 600 800
Time [min]

Figure 7: Parameter identification of the main diagonal elements.

This element is equipped with the heating cartridge and a sensor, and
the isolation minimizes the influence of the ambient temperature.
The heating cartridge will heat the temperature in the element to
T=80◦C. When the temperature reaches T=80◦C, the power of the
heating cartridge is switched off and the cooling curve is recorded
until the steady state is reached (Fig. 7).
For the identification procedure, a first-order linear model and a
Nelder-Meat simplex are used in combination with an ode4 solver.
The least squares method is used to evaluate the output error and
the Nelder-Meat simplex minimizes the cost function

min J = min
p̂∈Rn

N∑
k=1

[
y(k) − ŷ(k)

]2 . (52)

so that the behavior of the model is fitted to the real system.
In the second identification step, the secondary diagonal elements
of the system matrix A are determined. For this purpose, seven
aluminum elements are used to reduce the discretization error (Fig.
8). The elements at the edge are equipped with a sensor. The middle
element is also equipped together with the heating cartridge. With
constant heating power, the elements are heated until the steady
state is reached. A seventh order model is used for identification and
least squares is used to evaluate the output error. The cost function
(52) is also minimized using a Nelder-Meat simplex in combination
with an ode4 solver.
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Figure 8: Parameter identification of the secondary diagonal elements.

These identified parameters can be used in the global system

p1 = 4.2812 · 10−4 1
s p2 = 4.3048 · 10−4 1

s

p3 = 1.8067 · 10−4 1
s p4 = 2.2561 · 10−4 1

s

(53)

5.2 Input-/Output-based Distribution

The starting point is a global MIMO system (51) with three actuators
and three sensors and a system order of n = 100. Considering the
controllability and observability of the global system ΣRod, m = 3
local systems are decentralized with one actuator and sensor each.

ΣL1

x(k + 1) = Ax(k) + B ju1(k)
y1(k) = C jx(k)

ΣL2

x(k + 1) = Ax(k) + B ju2(k)
y2(k) = C jx(k)

ΣL3

x(k + 1) = Ax(k) + B ju3(k)
y3(k) = C jx(k)

(54)

The index j = 1, . . . ,m is the corresponding column of the global
input matrix B and the corresponding row of the global output ma-
trix C. The system order is not changed, thus the decentralized local
systems are also n = 100.
Analyzing the HSVs reveals, that order r = 6 is achieved (Fig. 9).
The order r = 6 allows 93.1217% of the energy to be transported
from the inputs to the outputs. Based on the analysis, states with
a small impact on the energy transport are cut off and the system
order is reduced to r = 6. The model order reduction reduces the
computational effort in the network node.
The decentralized reduced local systems are extended by the DSRKF
presented in Section 4, providing communication between the net-
work nodes and generating a fully interconnected network.

Stable modes

20
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4 6
State
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at
e
En
er
gy

8 10 ... 100

Figure 9: Visualization of the state energy of the global system (50). It is illustrated
that the energy decreases strongly with the sixth state. Red bar illustrates the cut-off
system order r.

Fig. 3 illustrates that the sensor nodes communicate with the ac-
tuator nodes by means of the exchanged a priori and a posteriori
information. The full interconnectivity of the network is achieved
by exchanging the error information (31) and (32) between the de-
centralized reduced local systems. This error information is already
used in the prediction, so a fusion step has to be added to the algo-
rithm in the actuator nodes (36) and (37).
By using BT, the physical interpretability of the states is lost, thus,
for an analysis, the reduced state vector has to be transformed back
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to the global state space. For this transformation of the a priori and
a posteriori information, the following equations are used

x̂−(k) = VBT x̂−r (k) (55)
x̂+(k) = VBT x̂+r (k). (56)

The transformation matrix VBT is determined by (15).
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r = 6

c)

r = 6

Figure 10: A priori and a posteriori estimated state vectors of local systems reduced
by BT (3.1) and Krylov (3.2).

Fig. 10 demonstrates that the local SISO systems satisfy the charac-
teristics of the decentralized inputs and outputs of the global system.
Hereby, the global temperature profile (50) is shown in black and
the a priori estimation x̂−r after the reduction by BT/Krylov of the
acutator node, is represented in blue/orange dots as well as the a
posteriori estimation x̂+r in red/green lines of the sensor node. In a),
b) and c) the estimates based on measurement data of the reduced
local systems after the transformation into the original SISO sub-
space (n = 100) are illustrated.
In addition, it is presented that despite the lost interpretability of the
states due to the model order reduction as well as the distribution of
the estimation algorithms in a interconnected network, the control-
lability and observability of the global system is approximated by
the decentralized reduced local systems.
The input-/output-based distribution from Section 4.1 is also ana-
lyzed using the model order reduction method from Section 3.2, the
two-sided Krylov method. Although the model order reduction with
Krylov subspace methods is numerically efficient, the stability of
the reduced system is not guaranteed. Therefore, the stability must
be checked in the preprocessing. Based on the stability analysis of
the decentralized local systems, the reduction with Krylov subspace
methods also yields stable reduced systems for r = 6.
This approach also illustrates that the characteristics of the sensors
and actuators of the global system is approximated by the decentral-
ized reduced local systems (Fig. 10). Furthermore, the described
method for decentralization is used independently of the two model
order reduction methods presented.
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x̂e Measurement data (Krylov)

Figure 11: By BT and Krylov reduced estimated a posteriori state vectors with (57)
and (58) as well as (43) and (44) fused in a center.

If the a posteriori information of the decentralized SISO system
reduced by BT is provided to a fusion center, the original ΣRod is
reconstructed. For this purpose, the reduced a posteriori state vector
x̂+r and the a posteriori covariance matrix P+r of the m = 3 local
systems must be transformed into the local model space and fused
by

Pfused(k) =

 m∑
j=1

P−j (k)

−1

(57)

x̂fused(k) = Pfused(k)
m∑

j=1

(
P−j (k)

)−1
x̂−j (k). (58)

For the reconstruction of the global system ΣRod based on the second
method of model order reduction, a reference system (45) is derived.
The stability and the equivalent system order (r = 6) as for the
m = 3 decentralized reduced local systems have to be considered.
Before the decentrally reduced local a posteriori information is used
for fusion, a transformation into a known common subspace is re-
quired. For this purpose, the decentrally reduced local a posteriori
information is transformed into the subspace of the reference system.
For further improvement a KF is used , which achieves an increase
of the reconstruction x̂e of the global system ΣRod with the reference
system and the fusion result as observation.
In contrast to Fig. 10, a fusion center is used in Fig. 11. The global
temperature profile according to (50) with the identified parameters
is shown in black. The decentralized local a posteriori states, re-
duced by BT, are shown in blue after fusion by (57) and (58) and
transformation (n = 100), while the dashed red line represents the
decentralized local a posteriori states, reduced by the method of
Krylov subspaces.
Here, the global system is fully reconstructed despite decentraliza-
tion and distribution in a sensor and actuator network. Additionally,
it is demonstrated that the presented methods are independent of
the model order reduction techniques. The decentralization and
distribution would be implemented for both model order reduc-
tion methods (BT and Krylov subspace methods) on BECKHOFF®

CX6030 CPUs (Intel® CoreTM i7 7700, 3.6GHz) and tested in real-
time approaches.
The deviation of the approximation by Balanced Truncation in the
ranges q = 1, . . . , 25 and q = 75, . . . , 100 is accounted for by the
reduction of the system order. With an increase of the order this
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deviation is minimized.
The communication effort is directly dependent on the system or-
der. For clarification, the system (51) was manually distributed into
several local systems. The order of the local systems is n1 = 35,
n2 = 20 and n3 = 45. If these decentralized local systems are used
to reconstruct the global system without further reduction, all local
systems must communicate with each other. The communication
overhead is significantly higher than in the presented methods with
the reduction methods BT and Krylov subspace methods (Fig. 12).
Thus, the presented methods reduce not only the computational
effort in the network nodes but also the communication effort.
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Figure 12: The information of the covariance error and state error sent by manual
splitting is illustrated as grey and for DSRKF as blue/red bars (logarithmic scale).

5.3 Subspace based Distribution

Without decentralization, the controllable and observable Krylov
subspace is derived directly from the global system (51). For this
purpose, the repeating of the one-sided method for the Krylov input
space and the Krylov output space is proposed in Secton 4.2. The
resulting reduced systems (46) and (47) describe the corresponding
subspace. However, to approximate the global input and output
behavior, information from both subspaces are required. For state
reconstruction in the subspace-based distribution, a SRKF from
Section 4.1.1 is used with the matrices (48). By separating the
controllable and observable subspace, this distribution can also be
used in a network.
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Figure 13: Reconstructing the global temperature profile by communicating the
reduced a priori and a posteriori states according to the distribution of the controlla-
bility and observability subspace in a sensor and actuator network.

The network nodes transmit the a priori and a posteriori state vec-
tors and covariance matrix, so no fusion steps are required in the

algorithms. However, the information received in the subspaces
must be transformed (49). Even when Krylov methods are used
without decentralization, the stability of the reduced system must
be analyzed in preprocessing. Fig. 13 demonstrates that also in this
case, for r = 6, a stable reduced system is present and used.
In contrast to the previous method (Section 5.2), only two network
nodes are used here. One network node uses the complete informa-
tion of the inputs for the prediction of the KF and another network
node uses all observations for the correction step of the reconstruc-
tion of the global system behaviour.
The minimization of the communication effort is not depicted, as
in this distribution only the prediction and correction is separated
(SKF). Using the model order reduction (SRKF), there will be a
lower communication effort with each reduced system order, since
a manual division cannot be performed when separating prediction
and correction.

6 Conclusion
In this paper, we have shown the decentralization into SISO sys-
tems of large-scale MIMO systems. We have also presented an
input/output-based and a subspace-based method for system distri-
bution. Both methods focus on the controllability and observability
of the global MIMO system. By applying the two best known
model order reduction methods (balanced truncation and Krylov
subspaces), the system order of the generated decentralized local
systems was reduced. By adding a DSRKF to the decentralized
reduced local systems, they are used in a network. The reduced
decentralized local systems describe different subspaces, so it is as-
sumed that the reduced information is communicated in the network.
It could be demonstrated that the transformation matrices resulting
from the two presented methods can also be used for communica-
tion. Their distribution in a connected network in combination with
the model order reduction methods significantly reduced the com-
putational and communication effort required for state estimation of
the large-scale linear MIMO system.
In the future, the presented methods will also be applied for de-
centralized distributed control. In future practical approaches, the
methods will also be used in tracking dynamic targets and applied to
the decentralized distributed multi-laser tracker system (DDMLTS)
[38].
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