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1. Introduction 

Photoplethysmographic Imaging (PPGI) has become a topic of active 
research in recent years. PPGI closely relates to conventional (contact) 
photoplethysmography (PPG) as it captures modulations of light ab-
sorption or reflection due to varying amount of blood [1]. Different from 
conventional PPG, which uses sensors attached to the skin, PPGI uses 
cameras to capture the superficial blood volume filling without any 
contact, thus enabling highly convenient monitoring [2,3]. Most appli-
cations of PPGI focus at pulse rate (PR) measurement [4–6], pulse rate 
variability (PRV) estimation [7–9] or estimation of arterial oxygen 
saturation (SpO2) [10,11]. Even beyond PR, PRV, and SpO2, PPGI bears 

relevant information. Recent works direct at pulse wave analysis from 
PPGI to reveal information regarding blood pressure and vascular state 
[12,13]. Further, several research groups used PPGI to analyse pulse 
wave propagation (pulse transit time (PTT) or pulse wave velocity 
(PWV)), which also relates to blood pressure. Pulse wave propagation 
has been captured by a single camera considering spatially separated 
regions of interest (often face and palm) [14–20] or by a combination of 
PPGI and other biosignal acquisition techniques [21–23]. 

Its wide information content and convenient application conditions 
render PPGI a promising technology. However, PPGI also exhibits 
drawbacks. Even under ideal conditions, PPGI suffers from a low signal- 
to-noise ratio (SNR) compared to the conventional PPG. Subject 
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movements or varying illumination conditions further decrease SNR. 
Moreover, PPGI typically has a limited temporal accuracy. Required 
minimum exposure time and huge amounts of data are responsible for 
frame rates typically being below 60 frames per second (fps), most often 
around 25fps [2,3]. While laboratory settings might allow higher frame 
rates for experimental studies [17,9,19,24], real use cases as home 
monitoring would need to utilize inexpensive standard web cams at 
reduced frame rates. 

Particularly with respect to PRV and analysis of pulse wave propa-
gation, low frame rates pose a seemingly obvious problem. Both tech-
niques rely on an exact estimation of beat-to-beat intervals (BBI). PRV 
requires the temporal difference between sequential beats whereas pulse 
propagation analysis requires the temporal difference between the same 
beat recorded at different measurement sites (the term beat-to-beat in-
tervals refers to both in the following description). While, to the best of 
our knowledge, there are no works investigating the effect of sampling 
rate on the temporal accuracy of obtained BBI with particular focus on 
PPGI, several authors have recently studied the impact of sampling rate 
on conventional PPG signals. The existing studies typically pursue a 
three-stage approach: (1) preprocessing, i.e. downsampling of original 
PPG data and sometimes upsampling/interpolation again (2) extraction 
of features from preprocessed data (BBI extraction and PRV parameters, 
occasionally morphological features), and (3) comparison of features 
from (2) against a reference (features from a PPG without downsampling 
or ECG derived features). Using such approach, Choi et al. proposed 
using at least 25 Hz sampling rate [25] for reliable PRV parameters. 
Beres et al. did find reliable results on PRV accuracy starting at sampling 
rates of 20 Hz [26]. With respect to the accuracy of BBI and pulse 
waveform features, Fujita and Suzuki recommended using at least 30 Hz 
for most parameters [27]. Bent and Dunn as well as Pelaez-Coca et al. 
reported higher minimal sampling rates for PRV analysis: 64 Hz in [28] 
and 100 Hz in [29], respectively, and thus at least seemingly contra-
dicting results. However, according to Pelaez-Coca et al., using a fiducial 
point that combines multiple points from the pulse waveform and 
interpolation allows a reduction to 50 Hz for reliable PRV parameters 
[29]. In line with this finding, Baek et al. showed that the impact of low 
sampling frequencies diminish if interpolation is applied to the sparsely 
sampled signals [30]. They found that a signal sampled at 20 Hz almost 
yields the same results as the original signals at 250 Hz when spline or 
parabolic interpolation is applied. Similarly, Beres et al. emphasize the 
positive effect of interpolation if a low sampling rates is used [26]. With 
respect to the absolute numbers given, it is very important to emphasize 
that the minimum sampling rate depends on the considered parameters. 
Some parameters have a high frequent signature, e.g. root mean square 
of the successive BBI, and require higher sampling rate than others like 
standard deviation of BBI. The given numbers reflect an attempt to 
provide the minimum sampling rate to assess parameters with an 
assumed high frequent signature from the respective papers, which 
typically provide different minimum sampling rates. 

Though the investigations have common aim and structure, their 
findings differ. Multiple factors (apart from the use of interpolation or 
not) contribute to such differences. First of all, the criterion to decide on 
a sufficient sampling rate differs. Moreover, all aforementioned works 
conducted their studies using real world data. The extent of data was 
naturally limited (typically 60 subjects or less) and the considered 
populations, and thus temporal and morphological signal characteris-
tics, show differences. Further, different recording equipment and non- 
uniform recording protocols were used. Thus, varying (and unspecified) 
signal qualities, amounts of noise and interference were present and 
likely have affected the results of each study. That being the case, none 
of the studies has systematically investigated the impact of such factors. 
In fact, the commonly employed approach, the usage of real data, which 
on the one hand is beneficial, has systematic limitations regarding in-
vestigations on the impact of noise. 

As available results are ambiguous and the common approach has 
systematic limitations, this work complements existing works by 

comprehensive numerical simulations on the temporal accuracy of BBI 
estimation from PPG signals. Our analysis does not only consider the 
impact of sampling rate but, for the first time, systematically takes into 
account both, the effect of signal-to-noise ratio (SNR) and random 
variation in the pulse wave morphology. To that end, we combine a 
pulse de-/recomposition framework and Monte Carlo simulations into a 
versatile simulation environment. To the best of our knowledge, there 
are no comparable works: we are only aware of one study [31] that used 
simulated data. In this study, the PPG signals were modeled as frequency 
modulated cosine waves and thus highly simplified. Also, the study did 
not take varying SNR and beat-to-beat shape variations into consider-
ation. Though PPGI and associated applications motivated our research, 
the presented considerations immediately apply to contact PPG as well. 
Particularly for the rapidly expanding field of PPG in consumer devices 
such as smart watches or optical heart rate monitors our investigation is 
highly relevant, as these devices typically show limited SNR and low 
sampling frequency to prolong battery life and optimize data manage-
ment [28]. Regarding conventional PPG, to which direct most of the 
existing studies on minimum sampling rate, our analyses might help to 
explain reported differences as mentioned above and reveal aspects that 
received little attention so far. In order to enable more and deeper in-
vestigations in this regard, we release our data and all code to the public 
domain https://github.com/KISMED-TUDa/PPG_Sim_SNR_Fs. 

2. Materials and methods 

2.1. Data generation 

The study uses simulated PPG pulse prototypes that are corrupted by 
varying levels of noise and that can undergo random shape variations. 
The following section details the employed procedure, which takes up 
ideas from [12]. 

2.1.1. Prototype pulse generation 
We build up pulse prototypes by a recomposition of kernel functions. 

As proposed in [12,32], we use a combination of one Gamma kernel and 
one Gaussian kernel. Accordingly, a (discrete) pulse x(k, θ) is defined by 

x(k, θ) = gGamma(k, θGamma)+ gGaussian(k, θGaussian) (1) 

where 

gGamma(k, θGamma) = am−mBkmBexp((m − k)B ) (2) 

with 

B =
1

2σ

(
m +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 + 4σ2

√ )
(3) 

and 

gGaussian(k, θGaussian) = aexp

(
−(k − m)

2σ

2
)

. (4) 

The pulse is as a function of sample number k with t = k
fs 

at sampling 
rate fs and a parameter vector θ. Both kernels are parameterized by their 
amplitude a, position m (mode) as well as standard deviation σ. The 
mode m refers to the most common value in a probability distribution, i. 
e. the time of the maximum of the kernel. For a Gaussian kernel, the 
mode equals the mean. The standard deviation controls the kernel 
width. Note that the Gamma distribution originally is defined by 
parameter α and β but can be expressed as a function of mode and 
standard deviation [12]. θ is thus a three-parameter vector, which 
controls the actual pulse shape. To account for intersubject variability, 
we consider the different pulse classes, i.e. pulse shapes, according to 
Dawber et al. [33]. The Dawber classes define four characteristic pulse 
wave shapes that reflect the continuum of possible pulse wave shapes. 
Each class is modelled with prototype values for the parameter vectors 
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of either kernel (see Fig. 1 and Table 1). 

2.1.2. Random pulse shape variations 
Generating pulse prototypes by recomposition of kernels allows us to 

generate pulse shape variations by introducing fluctuations to the kernel 
parameters. Pulse shape variations can reflect both, physiological fac-
tors and intermittent disturbances including subtle movements and su-
perposition of time-dependent effects of blood volume filling and 
ballistocardiography, which are common to IPPG [34,35]. To introduce 
pulse shape variations, we independently varied amplitude a and width 
parameter σ of used kernels by a percentage of its original values pre-
sented in Table 1. The percentage is randomly drawn from a normal 
distribution with the mean equal to zero and a predefined standard 
deviation of 5%. Kernels’ positions m were also varied. However, here 
the variation does not apply to the original positions as this would 
introduce larger variations to later occurring kernels. Instead, we varied 
the kernel position by a predefined percentage of the minimum distance 
to the neighbouring kernel(s)1. Fig. 2 illustrates the effect of random 
variations at the 5% level. 

2.1.3. Noise 
In order to investigate the impact of signal quality, we add pink noise 

to the prototype pulses to yield a predefined signal-to-noise ratio (SNR). 
We define the dimensionless SNR as the ratio of the symbol energy ES to 

the noise power spectral density N0, 

SNR =
ES

N0
. (5) 

The symbol energy ES is the energy of the signal x(k) divided by the 
number of samples NS of the signal, 

ES =
1

NS

∑Ns

k=1
x(k)2

. (6) 

We generate pink noise n(k) by Fourier transforming a signal of 
standard normally distributed random numbers of the same length as 
x(k) and manipulate the spectrum in such a way that the amplitude is 
proportional to 1 ̅̅

f
√ . By applying an inverse Fourier transformation to the 

manipulated signal, ensuring unity standard deviation and a zero mean 
value and multiplying with N0, we obtain n(k) with the desired SNR (see 
https://github.com/cortex-lab/MATLAB-tools/blob/master/pinknoise. 
m). The noisy signal y(k) is defined as the addition of the signal and the 
noise y(k) = x(k) + n(k). Fig. 3 gives a visual impression of four pulses 
from different Dawber classes at four used levels of noise. The shown 
signals cover a reasonable range of signal qualities, particularly 
considering low quality PPGI recordings or PPG signals from wearables. 

2.2. Monte Carlo simulation 

To analyze the influence of sampling rate, SNR, and shape variations 
on BBI estimation error, we conduct a Monte Carlo Simulation. Algo-
rithm 1 provides the complete structure of the simulation. The text 
below details the procedure and used symbols. 

In eachrealization of the random processi, the simulation estimates 

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

Fig. 1. Simulated prototype pulses according to the four Dawber classes [33]. 
Pulses are generated by recomposition using two kernels (in gray) parametrized 
by a predefined parameter vector θ. Table 1 provides the used p.ara-
meter values. 

Table 1 
Initial values of the parameter vectors θ for the Gamma and Gaussian kernel to 
create the four prototype pulses according to Dawber’s classes. 

kernel parameter class 1 class 2 class 3 class 4 

Gamma 
kernel 

amplitude (a)/ a.u.  0.9648 0.9623 0.9670 0.5384 

mode (m)/ s  0.1646 0.1836 0.2106 0.2162 
standard deviation 

(σ)/ s 
0.0712 0.0839 0.1083 0.0924 

Gaussian 
kernel 

amplitude (a)/ a.u.  0.5466 0.4162 0.2563 0.5384 

mode (m)/ s  0.4278 0.4186 0.4290 0.3130 
standard deviation 

(σ)/ s 
0.0924 0.0819 0.0672 0.1321 

Fig. 2. Illustration of random pulse variations in 100 prototype pulses before 
the addition of noise. Here, a Dawber class 1 beat is randomly varied. Distri-
bution parameters were varied with standard deviation of 5% (see text 
for details). 

1 Note that the exact same procedure could be applied to the use of multiple 
kernels. 
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the time delay of two pulses at a certain sampling rate and noise level 
and compares the estimate to the known true delay. Thereto, we first 
generate two prototype pulses xPPG,1(k) and xPPG,2(k) according to Sec-
tion 2.1.1. The sampling rate f↑

s is set to 10000 Hz to emulate quasi- 
continuous signals. Assessing the PPG pulses at the exact same loca-
tions during downsampling (see below) might introduce unwanted (and 
unrealistic) systematic effects. We therefore introduce a random time 
delay to the pulses by convolving them with two impulse signals δ1(k)
and δ2(k) of duration t0 = 4 s. For δ(k) holds 

δ(k) =
{

1 if k = k0
0 otherwise. k =

{
0, 1,…, 4 s⋅f ↑

s

}
(7) 

In δ1, k0 is set to equal the time instant t02 = 2 s, i.e. k0 = t0
2 ⋅f↑

s . In δ2, 
the impulse has a random delay Δ, i.e. k0 = t0

2⋅f↑
s +Δ⋅f↑

s where Δ is nor-
mally distributed with μΔ = 0 and σΔ = 100 ms. Such impulse signals 
are convolved with the prototype PPG pulses xPPG,1(k) and xPPG,2(k) to 
yield the time delayed prototype pulses x1(k) and x2(k) according to 

x1(k) = δ1(k)*xPPG,1(k) and x2(k) = δ2(k)*xPPG,2(k). (8) 

The signals are then truncated to be of the same length as δ1,2, i.e. 4 s. 
Note that the random delay has only relevance to avoid downsampling 
to exact same sample points; otherwise we could work without delay, i.e. 
Δ = 0, and derive the error from delay estimates which typically will not 
be 0 due to the added noise. 

We consider two scenarios for prototype generation: in the first set of 
experiments (scenario 1), we do not introduce beat-to-beat shape vari-
ations to the pulse prototypes, i.e. both prototype pulses are identical 
xPPG,1 = xPPG,2 with parameters as given in Table 1. In the second set of 
experiments (scenario 2), we introduce beat-to-beat shape variations 
according to the aforementioned procedure using a 5% variation of 
kernel parameters. 

Next, the two quasi-continuous time-delayed prototypes are down-
sampled to x↓

1 and x↓
2 with a reduced sampling frequency f↓

s using the 
MATLAB function resample. resample applies a straight-forward FIR 
anti aliasing lowpass filter before performing the actual resampling. 

After downsampling, random noise is added to x↓
1 and x↓

2 to obtain x̃
↓
1 

and x̃
↓
2 having specific SNR. Finally, these signals are resampled to the 

BBI estimation frequency fsest = 1000 Hz to obtain x̂1 and x̂2 using 
resample in MATLAB. The last step takes into account the positive 
effect upsampling described in the literature. 

To estimate the delay Δest, the MATLAB function finddelay is used. 
finddelay calculates the cross-correlation between the two signals up 
to a lag of ±nmax and then determines the shift between two signals by 
finding the lag-value that corresponds to the maximum cross- 
correlation. Here, nmax was set to correspond to one second to reduce 
computational time.One second maximum displacement was chosen as 
the simulated beats’ effective length (i.e. samples that have a relevant 
difference from zero) is 0.75 s. The expected value of shift is zero with a 
Gaussian distribution with σ=100 ms. A displacement > 1 s = 10σ be-
tween beats would mean in any case that there is almost no overlap 
between samples that are different from zero between both beats. Dis-
placements estimated in such a range can, even in real measurements, be 
easily identified as outliers from the mean pulse rate or mean pulse 
transit time (depending on the application).In scenario 2, an additional 
estimation step is introduced. Owing to the shape variations, the cross- 
correlation of pulses would not likely yield the correct Δ even without 
noise, i.e. Δest ∕= Δ. In other words, shape variations introduce an 
additional error in the BBI estimate. To determine the effect of the shape 
variations, we estimated the delay Δ̂ between the two pulses using the 
quasi-continuous, noise-free signal (representing the delay which would 
be expected to be found without noise and thus the best possible result). 
This allows us to consider the impact of noise and shape variations 
separately. If both pulses are the same, Δ equals Δ̂. 

At the end of each iteration i, the absolute error is stored to AE(i) =

|Δest(i) − Δ(i)|. In scenario 2, the compensated error is saved as well, 
AEC(i) = |Δest − Δ̂(i)|. This terminates each iteration, i is increased and 
the next iteration is started with new prototypes, noise, and delay. 

To terminate the Monte Carlo Simulation, the normalized standard 
error of the mean (NSEM) of the absolute estimation error accumulator 
was used. We define NSEM as 

NSEM(i) =
sd(AE)

mean(AE)⋅
̅̅
i

√ (9) 

with “sd” being the standard deviation and “mean” the mean of the 
accumulator. Note that NSEM deviates from the definition of the 
“standard error of the mean” by dividing by the sample mean to allow its 
application for different ranges of AE with one threshold value. Here, the 
simulation is terminated if NSEM falls below 1%. 

To analyze a wide range of parameters, the reduced sampling fre-
quency f↓

s as well as the SNR were varied on a logarithmic scale. For f↓
s , 

the values were 5 Hz, 6 Hz, 8 Hz, 11 Hz, 14 Hz, 18 Hz, 23 Hz, 30 Hz, 39 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Fig. 3. Visual impression of beats at variable SNR for all Dawber classes. As one can see, for an SNR of −3 dB, it is hard to distinguish the pulses from the background 
noise, whereas almost no background noise is visible for an SNR of 30 dB. 
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Hz, and 50 Hz. The SNR was swept from -3 dB to 30 dB in 3 dB 
increments. 

Algorithm1:Basic structure of the used Monte Carlo Simulation. θ defines 
the pulse class according to Table 1. If no random pulse shape variations 
are used, θ1 = θ2 = θ and AEC becomes obsolete as AE = AEC. Otherwise, 
θ1 and θ2 are random variations of θ according to Section 2.1.2. See text 
for further symbols’ definitions and explanations. 

Input: θ ▹PPG prototype parameters 
SNR (indB) = { − 3, 0,…, 30} ▹assessed SNR 
F ↓

s (inHz) = {5, 6, 8,11,14,18, 23,30,39, 50} ▹assessed sampling rates 
Output: AE,AEC ▹absolute errors 
1: for SNR ∈ SNR do▹iteration over SNR 
2: for f↓

s ∈ F ↓
s ▹iteration overf↓

s do 
3: initialize empty arrays of AE and AEC 

4: for i = 1,…,∞▹iteration over pairs of prototype pulses do 
5: draw random delay Δ 
6: generate θ1 and θ2 from θ 
7: generate signal x1 from θ1 at t0 

8: generate signal x2 from θ2 at t0 + Δ 
9: estimate Δ̂ from x1 and x2 using finddelay 
10: downsample x1 and x2 at f↓

s to obtain x↓
1 and x↓

2 

11: add noise at SNR to x↓
1 and x↓

2 to obtain x̃
↓
1 and x̃

↓
2 

12: upsample x̃
↓
1 and x̃

↓
2 at fsest = 1000 Hz to obtain x̂1 and x̂2 

13: estimate Δest from x̂1 and x̂2 using finddelay 
14: append estimation errors AE(i) and AEC(i)
15: ifi > 2 and NSEM(i) < 0.01 then 
16: break 
17: end if 
18: end for 
19: save AE and AEC for SNR and f↓

s 
20: end for 
21: end for 

2.3. Error estimation 

In order to quantify the resulting error per SNR and sampling rate, 
we use the root-mean-square error (RMSE) between the estimated BBI 
and the expected BBI. The RMSE is calculated by 

RMSEBBI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(Δest(i) − Δ(i) )2

√
√
√
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(AE(i) )2

√
√
√
√ (10) 

or by 

RMSEBBI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(Δest(i) − Δ̂(i) )2

√
√
√
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1
(AEC(i))2

√
√
√
√ (11) 

if we consider the effect of shape variations on the expected delay 

separately. N is the number of iterations for respective sampling rate and 
SNR. 

3. Results 

Figs. 4 and 5 illustrate one iteration of the Monte Carlo simulation. In 
both figures, class 1 beats are simulated and processed with a reduced 
sampling rate of f↓

s = 14 Hz at an SNR of 30 dB. In Fig. 4, both prototype 
pulses are the same (scenario 1), whereas 5% shape variation in both 
beats is introduced in Fig. 5 (scenario 2). Note that in both cases, the 
pulse shape can be recovered nicely by upsampling the downsampled 
signal. Further note that the subsequent delay estimation produces an 
error of less than 0.25 ms in Fig. 4 whereas the error exceeds 4 ms in 
Fig. 5 if we compare Δest with Δ. If we, however, compare it to Δ̂, we see 
that the difference is again minimal (0.5 ms). The situation is different in 
Fig. 6, where both SNR and f↓

s are lower, 21 dB and 8 Hz respectively. 
Note that the dicrotic notch in the resampled blue curve is far less 
pronounced (bottom right). Also, even if we compare the estimation Δest 

to the corrected Δ̂, the error is 6 ms. 
For NSEM to fall below 1% and the simulation to terminate, a min-

imum/ median/ maximum number of runs of 4,979/ 5,701.5/ 47,770 
were performed (all classes, no random variations). Most simulation 
runs were performed for the low-SNR scenarios with a median value of 
18,655 runs for SNR ⩽3 dB.In Fig. 7, the root-mean-square estimation 
error of the complete Monte Carlo simulation is shown for class 1 beats 
without random variation. With respect to the dependency to SNR, we 
can observe a strong decline of RMSE with an increase of the SNR. We 
also observe that the error is relatively high for f↓

s below 8 Hz. However, 
for f↓

s above 8 Hz, the difference between different sampling frequencies 
is overshadowed by the difference due to SNR.Fig. 7 also shows that the 
error is very large for SNRs below 3 dB.SNR generally dominates over f↓

s . 
In Fig. 8, for better readability, the SNR is fixed at 24 dB while the 

sampling rate is swept from 5 Hz to 50 Hz as described above. In Fig. 9, 
the sampling rate is fixed at f↓

s = 23 Hz while the SNR is swept. In 
addition to the information presented in Fig. 7, the information for all 
Dawber classes, i.e. beat shapes, is added. 

Fig. 8 shows that low sampling frequencies (f↓
s < 10 Hz) increase the 

error dramatically. For very low sampling frequencies (f↓
s < 7 Hz), we 

further see that the error is higher for lower pulse-classes (i.e. pulses 
with more high frequency components). For higher sampling rates 
(f↓

s > 15 Hz), however, the estimation error is lower for lower pulse- 
classes. Moreover, we see that the decrease in error is only marginal 
for an increase in sampling rate beyond 15 Hz. For example, the RMSE 

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 4. Illustration of a single iteration of the simulation without beat-to-beat shape variations. Top left: two time delayed pulse prototypes (equal shape); top right: 
downsampled version of the clean pulses; bottom left: downsampled pulses with added noise; bottom right: resampled signals. 
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for class 1 at f↓
s = 15 Hz is approximately 1.5 ms, while it is approxi-

mately 1.3 ms for f↓
s = 50 Hz. 

Finally, Fig. 10 shows the RMSE for the four Dawber classes and in 
three cases where (a) both pulses have the same shape (“exact”), (b) the 
parameters of both pulses were varied by 5% (“5% Variation”) and 
where Δest is compared to the ground truth value Δ, and finally (c) where 
Δest is compared to Δ̂ (“Var. Corrected”). 

First, it becomes obvious that the random variation of beat param-
eters in the range of 5% increases the estimation error by a factor of 
almost 3 to more than 8, depending on the class. This error is notably 
smallest for Dawber class 4, which might be explained by the fact that 
most parts of the two kernels overlap and the pulse shape is thus less 
sensitive to variations in the parameters. At the same time, we can see 
that if we do not compare the estimated interval to the ground truth but 
to the value we achieve by performing cross correlation on the clean, 
continuous signal, we can see that the error returns to the level of two 
equal pulses. Thus, the large increase in error is independent of sampling 
rate and SNR. 

4. Discussion 

4.1. Main findings and relation to other work 

First of all, the found errors should be put in relation to the expected 
temporal variation in PRV and pulse wave propagation to judge on the 
errors’ relevance. Regarding PRV, the root mean square of successive 
differences between normal heartbeats (RMSSD) is a widely used mea-
sure for heart rate variability and pulse rate variability, and is directly 
influenced by the beat-to-beat estimation uncertainty as captured by our 
RMSE. Forpersons beyond the age of 55, RMSSD is on average in the 
range of 30 ms with a standard deviation in similar range [36] or even 
smaller [37]. E.g. infectious diseases usually slightly decreases RMSSD 
[38]. Found errors on the BBI estimation thus clearly are in a relevant 
range with respect to PRV estimation. Similarly, regarding applications 
focusing on analysis of pulse wave propagation, its variations its varia-
tionsare in the order of milliseconds. E.g. (peripheral) PTT was < 60 ms 
in [19,14] with a variation of approx. 20 ms upon blood pressure 
changes of approx. 20mmHg [14]. PTT approaches to zero when close 
regions are considered [19]. Accordingly, even regarding pulse wave 
propagation the found errors are relevant. 

The most important finding of our investigation is the distinguished 
impact of SNR. Previous works acknowledged the importance of SNR. E. 

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 5. Illustration of a single iteration of the simulation with beat-to-beat shape variations. Left, upper row: two time delayed pulse prototypes (unequal shape); 
right, upper row: downsampled version of the clean pulses; left, lower row: downsampled pulses with added noise; right, lower row: resampled signals. 
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0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 6. Illustration of a single iteration of the simulation with beat-to-beat shape variations with lower SNR and sampling rate compated to Fig. 5. Left, upper row: 
two time delayed pulse prototypes (unequal shape); right, upper row: downsampled version of the clean pulses; left, lower row: downsampled pulses with added 
noise; right, lower row: re.sampled signals. 
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g. [29] states “[…] The accuracy of the PRV estimation is highly dependent 
on the possible signal interference or artefacts, and on the morphology of the 
PPG pulse, […]”. Bent and Dunn plan to include recordings under 
physical activity, and thus variable signal quality in future works [28]. 
Our own previous work has also shown that signal quality of PPG 
recorded from patients using wearable devices is quite volatile, and the 
quality of PRV derivation highly depends on both the specific PRV 
parameter and the individual patient [39]. However, none of the 

comparable works did systematically consider SNR so far. Our in-
vestigations clearly prove a distinct impact of SNR. This finding is highly 
relevant in three regards: first, it can, at least partially, explain the dif-
ferences existing in the literature on required sampling rates as 
recording conditions (hardware, protocols) and thus SNR varies. Sec-
ond, it emphasizes the importance to consider SNR in future in-
vestigations on the sampling rate. Third, it underlines the importance of 
appropriate processing techniques to increase SNR in practical 
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Fig. 7. BBI root-mean-square error of the complete Monte Carlo simulation for class 1 beats without random variation. Note that the SNR has much larger impact 
than the sampling rate. The top left and the bottom panel are clipped at 50 ms for better readability while the top right panel shows the full range of the data (all 
panels show the same information).. 

5 10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

4

4.5

Fig. 8. Root-mean-square error of the Monte Carlo simulation for all classes and a fixed SNR of 24 dB (without random variation). Note that the error plateaus lowest 
for Dawber class 1 followed by class 2. The decrease in error is only marginal for an increase in sampling rate beyond 15 Hz for all classes. 

                    



                                                  

8

applications, particularly PPGI and wearable PPG. 
With respect to the minimum sampling rate, our results are close to 

other investigations, which confirms the validity of our approach for 
signal modelling and error assessment. According to our investigation, 
the reduction in error flattens out at f↓

s > 15 Hz. Other investigations 
with real world data suggest slightly higher sampling frequencies (30 Hz 
[27], 25 Hz [25], 20 Hz [26]). A possible reason are the used pulse 
prototypes. It was shown in [12,32] that using one Gamma and one 
Gaussian kernel matches real pulse shapes very well. Fig. 11 illustrates 
the temporal and spectral similarity between a simulated beat and an 
exemplary real beat. Visually, the waveforms and the time–frequency 
distributions show a highly similar behaviour. The majority of the sig-
nal’s energy is concentrated well below 7 Hz. However, in the time-
–frequency distribution of the real pulse signal, one can see a slightly 
higher frequency content in the upstroke at about 1.3 s compared to the 
simulated pulse. Such subtle difference might explain the difference to 
the aforementioned works. Though there might be a small bias, even the 
visual impression on the error distribution over sampling frequency in 
[40,28], which clearly becomes wider starting at 20 Hz, closely relates 
to our findings. In any case, the subtle differences in frequency contents 
hardly explain why a sampling frequency of 50 Hz to 100 Hz or 64 Hz 
might be necessary as reported in [29,28], respectively. Here, the defi-
nition of acceptable errors might play an essential role. This definition is 
difficult, e.g. owing to a dependence on contained BBI variability [41] 
(see Section 4.2). 

Further, we have shown that variations in beat morphology affect the 
estimation error. This applies to the beat class that affects the expected 
error but even more for beat-to-beat pulse shape variations. Such vari-
ations have a huge impact on the observed error. Our analysis demon-
strates that this effect occurs independently of SNR and sampling rate. 
As with SNR, we are not aware of systematic investigation on this aspect 
so far. One could argue that the way we introduce variations and its 
strength (5% variation of kernel parameters) are coarse approximation 
of reality. However, for example PPGI signals exhibit, owing to different 
measurement locations and locally effective distortions, a variability 
that far exceeds what we show in Fig. 2 and have used in our experi-
ments. As a consequence, we expect large errors in BBI estimations from 
PPGI and our findings need to be examined carefully in the future. 

Taken together, our findings are suited to impact the view on the 
minimal sampling rate and how to study it in the future. At the same 
time, the presented approach differs markedly from a previous simula-
tion study on the topic [31] (the only one we are aware of) and provides 
much more detailed opportunities for signal modelling and error esti-
mation under varying impact factors. 

4.2. Limitations and possible refinements 

In our opinion, three aspects might be considered as limitations of 
our work. First, our experiments are based on a pink noise model. In 
practice, other types of disturbances such as motion artifacts play an 
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important role, too. Nevertheless, we believe that the general tendencies 
that we observe, particularly the SNR to be more relevant than the 
sampling rate, should hold under varied conditions. To support this 
hypothesis, we repeated our analysis using a white Gaussian noise 
model. The same tendencies were observed, with the error levels pla-
teauing at lower levels, for example 0.93 ms for white noise (not shown) 
vs.1.26 ms RMSE for pink noise (Fig. 8) at f↓

s = 50 Hz and SNR = 24 dB. 
Also, for white noise, we observed that the error plateaued at higher 
sampling frequencies: for example, for the error to increase by approx-
imately 10% (1.26 ms to 1.39 ms), the sampling frequency could be 
lowered from f↓

s = 50 Hz to f↓
s = 23 Hz when using pink noise (Fig. 8). 

When white noise was used, however, a smaller decrease to f↓
s = 39 Hz 

yielded the same relative increase in error (0.93 ms to 1.01 ms, not 
shown). These findings might also partly explain why previous works 
with real data came to slightly different findings with respect to minimal 
sampling rate, ranging from 20 Hz to 30 Hz. We would speculate that 
more realistic noise models, e.g. introducing movement artifacts, might 

actually even surpass our finding of SNR’s importance. This assumption 
is further supported by our experiments on beat-to-beat shape varia-
tions: such variations can be interpreted as a specific expression of noise 
and were shown to drastically increase the error as well. 

Second, we do not provide absolute statements on a minimum 
sampling rate as we do not answer the question of “how good is good 
enough”. However, for some applications a BBI estimation error of 5 ms 
might be tolerable while for others, 1 ms might still be too high. Even the 
literature emphasizes different requirements on the sampling rate ac-
cording to the population/pathology [31,41], rendering any generalized 
statement on the minimum sampling rate questionable in our opinion. 
Against that background, we believe that we still demonstrated impor-
tant findings, namely: an increase in sampling rate beyond a certain 
threshold, for example 15 Hz, which might be costly in terms of battery 
life and/or storage space, will only result in limited improvements 
regarding BBI accuracy. At the same time, reducing the noise level, e.g. 
by proper illumination or sophisticated processing techniques, might be 
much more rewarding. We are aware that both parameters might be 
coupled as several samples might be temporally averaged to improve the 
SNR. This fact deserves further investigation: a hypothesis could be that 
storing of a de-noised, down-sampled signal is as beneficial as storing 
the original signal in practice. 

Third, we do not employ any filtering of the noisy signal although it 
is possible that part of the noise energy involved in the SNR is easy to 
filter out. We acknowledge that filtering would be part of every real- 
world interval estimation approach. However, as no universally 
accepted preprocessing pipeline exists, we refrain from further pre-
processing and suggest to interpret the SNR values as “SNR after pre-
processing” as even after processing, some noise will always be left in 
the signal. Along the same lines, our study relies on BBI estimation via 
cross-correlation. Other methods to estimate the BBI - common choices 
would be the detection of local extrema or maximum slopes - might yield 
different results. However, we believe that the correlation method is an 
appropriate choice due to multiple reasons. First, correlation-based 
methods have been used quite successfully in the past to estimate BBI 
of different cardiac signals including PPG signals [42], which renders 
our specific choice reasonable. Second, other methods to estimate BBI 
that invoke multiple points (by curve fitting or temporal averaging) have 
been shown to be beneficial compared to using single points as local 
extrema or maximum slopes [29,43]. A correlation based approach is 
similar in the sense that multiple points determine the delay estimation 
rendering it reasonable again. Third, a widely used group of methods to 
extract spatio-temporal information from PPGI bases on the PPG signals’ 
correlation to harmonic waves [44]. Such close relation to the used 
correlation approach renders its usage again reasonable. These facts, 
combined with our intuition that BBI estimation using single points will 
be even more susceptible to noise, makes us optimistic that our choice is 
reasonable and the general tendency will hold for other methods to es-
timate BBI as well. 

5. Conclusions 

Our investigations prove the SNR to deserve more attention 
regarding accurate BBI estimation in PPG signals. Considering our re-
sults, SNR is even more important than sampling rate. We consider this 
finding as highly relevant as, on the one hand, low SNR is common in 
current PPG applications such as PPGI and wearable PPG (e.g. optical 
heart rate monitors, smartwatches). On the other hand, typical pro-
cedures to investigate the minimum sampling rate do not consider the 
SNR, which might explain different findings to some extent and cause 
misleading conclusions. Therefore, we recommend a joint consideration 
of sampling rate and SNR in future works. In order to support respective 
approaches and own experiments in this regard, we released our data 
and scripts to the public domain (seehttps://github.com/KISMED- 
TUDa/PPG_Sim_SNR_Fs). Our work will also serve as basis for our own 
studies with real PPGI data and data from wearables. As an attempt to 

Fig. 11. Illustration of a simulated and a real pulse (Dawber class 1). Upper 
panels show the time course. Lower panels show the time–frequency distribu-
tion (based on the analytic wavelet transform using the Morlet wavelet). The 
plots examplarily show the high degree of similarity. 
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investigate the impact of SNR using real data, future works might 
include a signal quality estimator as proposed in [45]. 
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