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1. Introduction 

Sleep stage classification based on polysomnography (PSG) data is an 
essential step in clinical sleep evaluation. PSG based information about 
sleep structure and sleep-related pathological events is mandatory for 
the diagnosis of several sleep disorders. But even though PSG is the gold 
standard for sleep evaluation, it is expensive and uncomfortable to ac-
quire. Innovative approaches focusing on the evaluation of sleep struc-
ture based on frequently and simply collected signals will give us the 
opportunity to facilitate diagnostic and treatment of sleep disorders. 
Moreover, in most countries sleep laboratories are too rare to cover the 
existing and rapidly growing medical need in sleep medicine. These 
disadvantages and the general growth in mobile and unobtrusive tech-
nologies for biosignal acquisition have led to research into sleep staging 

from fewer signals (e.g. Electrocardiogram (ECG) only [1]) and even 
non-contact or unobtrusive sources [2] (e.g. radar [3] or 3D-cameras 
[4]). Using such signals, many works address sleep staging from heart 
rate, mainly by feature extraction from the ECG. Fonseca et al. use 132 
HRV features [5], Li et al. use a combination of deep learning for 
spectrograms and ECG features [6], and Geng et al. compare three 
methods of feature extraction [7], yielding a kappa of 0.60, 0.54 and 
0.65, respectively, for classifying into three to four sleep stages. How-
ever, there is no consensus concerning what aspects of the ECG identify 
specific sleep stages. Some recent approaches skip feature extraction and 
use a signal or time series as input for machine learning models directly. 
Thereby, feature extraction and classification are merged into one 
model, e.g. by using Convolutional Neural Networks (CNNs). Sun et al. 
[8] used a binary sequence from the ECG and the downsampled 
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respiratory effort, with a model consisting of convolutional and gated 
recurrent unit (GRU) layers. Their approach resulted in a Cohen’s kappa 
of 0.65 for classifying into Wakefulness, NREM and REM (W/N/R). 
Korkalainen et al. [9] used the downsampled photoplethysmogram 
(PPG) as input for a model, again consisting of convolutional and GRU 
layers. Their model yielded a Cohen’s kappa of 0.65 for classifying into 
W/N/R. Casal et al. [10] also classified the PPG into Wakefulness and 
Sleep with a GRU-based model, yielding a Cohen’s kappa of 0.74. 
Sridhar et al. [11] classified sleep stages from the instantaneous heart 
rate derived from the ECG with a model consisting of different types of 
convolutional layers. They yielded a Cohen’s kappa of 0.66 for dis-
tinguishing Wakefulness, light sleep (i.e. NREM 1 and NREM 2), deep 
sleep (i.e. NREM 3) and REM. 

These works underline the potential of an end-to-end learning 
approach. However, towards real world usage, we see further re-
quirements, such as a deeper characterization of factors that affect the 
model accuracy like training extent and data quality (particularly 
important with respect to unobtrusive but less reliable sensing tech-
niques [2]), further improvements of classification accuracy, and 
investigation on the clinical suitability of such methods. 

In this work, we propose a two-channel Convolutional Recurrent 
Neural Network (2cCRNN). The network was inspired by Malik et al. [1] 
and is based on our preliminary research [12] but extended in 
complexity. R-peak-to-R-peak intervals (RRIs) and breath-to-breath in-
tervals (BBIs) derived from the ECG and respiratory effort serve as in-
puts. Our aims are threefold: we aim to optimize sleep staging, 
investigate model robustness of cardiorespiratory sleep assessment, and 
assess practical clinical applicability. 

According to such aims, we first determine how good our model’s 
sleep staging can become by different inputs and target labels. Second, 
we survey whether there are significant differences between patient 
groups by comparing the classification quality between subgroups by 
sex, age, apnea hypopnea index (AHI) and body mass index (BMI). 
Third, we examine the clinical applicability by calculating sleep metrics 
from the hypnograms and evaluating their overall reliability. Fourth, we 
study model robustness on variations and errors in the input data. And 
fifth, we investigate how the amount of training data affects the classi-
fication quality to specify data requirements in terms of robustness and 
transferability of our architecture. 

2. Methods 

2.1. Data 

We used data from the first part of the Sleep Heart Health Study 
(SHHS1) [13,14]. The database contains one full-night PSG for each 
participant together with sleep stage annotations. From the PSG, we 
only used the ECG, the thoracic respiratory effort and the sleep stage 
annotations. RRIs were extracted from the raw ECG with the filter band 
algorithm proposed by Afonso et al. [15] in its implementation from 
[16]. RRIs were additionally filtered for implausible values according to 
[17], BBIs were extracted by algorithm respdetect implemented in [16]. 
Both time series were linearly interpolated, resampled at 4 Hz, and 
normalized to z-score for each signal and recording. This resulted in an 
interpolated RRI time series (iRRI) and an interpolated BBI times series 
(iBBI). The first and last five minutes from each signal were truncated, 
due to generally poor signal quality in this time windows. All gaps in the 
original time series (e.g. no R-peaks detected for several minutes) were 
linearly interpolated from the previous RRI (resp. BBI) to the next RRI 
(resp. BBI). From the 5804 participants in SHHS1, we were able to 
extract RRIs and BBIs for 5036 participants (the remaining 786 partic-
ipants were sorted out automatically owing to conspicuous data). 

SHHS1 contains sleep stage annotations according to Rechtschaffen 
and Kales. To convert those annotations to AASM sleep stages, we 
combined stages S3 and S4 into one stage analogue to NREM 3 and 
replaced Movement by whatever sleep stage followed in the next epoch. 

Except for these AASM alike combinations of the sleep stage labels, we 
used some more combinations during our experiments: (a) we combined 
NREM 1 and NREM 2 to light sleep (L), in contrast to NREM 3 as deep 
sleep (D) and (b) we combined all NREM stages into one group (N). We 
will further refer to these ground truth groupings as AASM, W/L/D/R 
and W/N/R. This approach of combining sleep stages is similarly used in 
many related publications, e.g., [8–11]. 

For further analysis, we grouped the participants by the criteria sex, 
age, BMI and AHI. The number of participants in each subgroup for both 
training and hold-out test data are listed with the results. We configured 
the bins for the subgroups to avoid bias by underrepresentation in the 
training data and to be comparable to the closest related literature 
[8,11]. 

The data underlying this article was accessed from the National Sleep 
Research Resource, Sleep Heart Health Study Part One, https: 
//sleepdata.org/datasets/shhs. Details on derived data and models 
will be shared on request. 

2.2. Validation strategy 

PSGs from 998 participants served as hold-out test data. They were 
selected to match the AHI distribution of the whole dataset but were 
selected randomly otherwise. This resulted in 4038 participants for 
training and validation. 

We optimized our architecture with an extensive grid search and 
three-fold cross validation, using the ground truth labels W/L/D/R. For 
the final evaluation on the hold-out test data, we performed a ten-fold 
cross validation for all different ground truth groupings and inputs. 
We then classified the hold-out test data by predicting with each of the 
ten cross validation models independently, and afterwards using their 
mode classification for each epoch. In other words, we combined the ten 
models from the cross validation to a simple ensemble classifier with 
majority vote. 

When comparing subgroups of patients, we tested all results for 
significance with Student’s t-test (resp. Welch’s t-test, if necessary). We 
only consider differences with p < 0.05 to be significant. 

2.3. Model architecture and configuration 

As stated previously, we enhanced our CNN architecture [12] as 
following. Firstly, we added the iBBI to the input, yielding two input 
channels with input sequences of 1200 samples (300 s) for each epoch. 
The epoch to be classified is in the middle of that 300 s window. Sec-
ondly, we appended a bidirectional LSTM layer with 40 units to the CNN 
architecture. The model now takes data from 240 epochs as input and 
accordingly generates a series of (240, ns) labels as output, with ns being 
the number of labels in the sleep stage grouping, i.e. (240, 4) for W/L/D/ 
R as in Table 1. See the model summary with additional comments in 
Table 1 for more detailed information. We implemented the model with 
TensorFlow [18] and Keras [19], and selected Adam [20] optimizer with 
learning rate 0.001 and categorical cross-entropy loss function for 
training. Additionally, we applied early stopping by validation loss with 
patience of ten epochs. 

2.4. Model evaluation 

We evaluated the performance of our model by Cohen’s kappa (κ) 
[21] and confusion matrices. Cohen’s kappa is a metric to measure 
interrater agreement, which takes random agreement i.a. due to class 
distribution into account. It is therefore less distorted by non-uniform 
class distributions than e.g. accuracy. Since sleep stages are not uni-
formly distributed, κ became a popular metric for evaluating sleep 
staging performance and is probably the most commonly reported 
metric except for accuracy in sleep staging publications, e.g. [1,5–11]. 
When describing κ, we use the nomenclature by Landis et al.[22], which 
considers κ values greater 0.6 substantial agreement, and values greater 
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0.8 almost perfect agreement. To look into potential biases, we also 
calculated the mean κ for some subgroups, according to age, sex, BMI 
and AHI. 

To evaluate the predicted hypnograms concerning further process-
ing, we calculated sleep metrics according to the Sleep Scoring Data in 
the AASM manual (Section 2, Table B: Sleep Scoring Data) [23]. The 
metrics we use are total sleep time, sleep latency, REM latency, wake 
after sleep onset (WASO), sleep efficiency and percentage of time in each 
stage. The values calculated from the predicted hypnograms are inter-
preted as regression outputs and therefore evaluated by Spearman’s rho 
(ρs) correlation coefficient against the values computed from the 
annotations. 

2.5. Variations on the RRI data 

Since RRIs are harder to acquire with high quality compared to 
respiration, we assume iRRI will be affected more by changes in the 
setting than iBBI. Therefore, we used a version of our model that only 
takes iRRI as input, and investigated the robustness towards changes in 
the data like smoothing, gaps, different filters, and missing values. 

Thus, to investigate robustness and transferability of our approach to 
different data sources, we applied the following modifications to our RRI 
input data: 

- No filtering of RRIs after detection (i.e. different preprocessing) 
- Only using 90%, 80% and 70% of RRIs; in other words, randomly 

dropping 10–30% of RRIs (i.e. different R-peak detector or noisy 
signal) 

- Adding up to 5% of noise to each RRI; to be precise, shifting each RRI 
by a random offset of up to +/- 5% of the RRI’s magnitude (i.e. 
different R-peak detector) 

- Using a 5-, 20-, and 40-sample mean for each sample of the inter-
polated 4 Hz input, resulting in a 1 s-, 5 s and 10 s-mean iRRI (i.e. 
using a device that only gives a mean HR calculated from the last few 
seconds) 

- Random gaps in the iRRI of 5–10 s that make up 30% of the input (i.e. 
noisy signal or device with transmission problems) 

Fig. 1 shows segments of 1200 samples (300 s) of the same data with 
different modifications. 

2.6. Variation of train set size 

To investigate whether there is a saturation in classification quality 
dependent on the train set size, we retrained our model with randomly 
sampled, growing subsets from the complete training data. To reduce 

computing time, we mostly used a three-fold cross validation and only 
increased to five and ten folds to yield larger train sets. 

3. Results 

3.1. General classification quality 

Our model shows high accuracy (κ 0.80, accuracy 88%) for classi-
fying into three sleep stage groupings (W/N/R) and substantial perfor-
mance (κ 0.66, accuracy 76%) for classifying into five stages 
corresponding to AASM staging. The complete results in terms of κ for 
different inputs and stage groupings are summarized in Table 2 and 
detailed results of two models are displayed in Table 3. A hypnogram of 
an average PSG with AASM sleep stages is shown in Fig. 2. Note that 
even some of the short changes are detected correctly, e.g. single epochs 
of wakefulness during REM and frequent changes between wakefulness 
and light sleep. However, especially rapidly repeating stage changes 
between light sleep and deep sleep are often predicted as stable phases of 
either light sleep or deep sleep. 

Concerning classification performance by mean κ for participant 
subgroups, we only detected a sex difference in classification quality 
when classifying into W/L/D/R. We generally saw a stable performance 
according to mean κ for participants with any BMI and all sleep stage 
groupings. Only for participants with BMI between 30 and 35, mean κ is 
significantly larger compared to other BMI intervals when classifying 
into W/L/D/R and AASM. Comparing age groups, the results show that 
classification performance according to mean κ significantly decreased 
for participants older than 60 years. Concerning AHI, we find that our 
model generally performs well for all participants with AHI < 30, with 
peak performance by κ for the subgroup with AHI 5–15 and a decrease in 
accuracy for AHI > 30. For a detailed comparison for all these subgroups 
including statistical hypothesis test results, see Table 4. Fig. 3 displays 
boxplots of the results in the subgroups when classifying into AASM 
stages, with significant differences highlighted in the plot. 

3.2. Clinical sleep metrics 

Calculating typical sleep metrics from our predicted hypnograms and 
comparing them to the annotations, we found that total sleep time, sleep 
latency, REM latency and sleep efficiency are predicted with a very 
strong confidence (ρs ≥ 0.8, p < 0.001). Furthermore, WASO, percent-
age of NREM and percentage of REM are predicted with moderate 
confidence (0.8 > ρs ≥ 0.6, p < 0.001). However, percentage of light 
sleep and deep sleep are predicted with only fair confidence (0.6 > ρs ≥

0.3, p < 0.001). See Fig. 4 for graphical illustration by scatter plots and 
detailed results of Spearman’s rho and its significance. 

Table 1 
Model summary. The model has 1,806,356 trainable parameters. Model input: iRRI and iBBI, model output: W/L/D/R. Sleep stage groupings: W: Wakefulness, R: REM, 
L: Light Sleep (NREM 1 + NREM 2), D: Deep Sleep (NREM 3), iRRI: interpolated time series of intervals between subsequent R-peaks in the electrocardiogram, iBBI: 
interpolated time series of intervals between subsequent breathes in the respiratory effort. 

Layer type Output shape Number of parameters Comment 

Input Layer [(None, 240, 1200, 2)] 0 
Conv1D (None, 240, 1185, 64) 2,112 64 filters, kernel size 16, stride 1, activation ReLu 
Conv1D (None, 240, 585, 64) 65,600 64 filters, kernel size 16, stride 2, activation ReLu 
Conv1D (None, 240, 570, 64) 65,600 64 filters, kernel size 16, stride 1, activation ReLu 
Conv1D (None, 240, 278, 64) 65,600 64 filters, kernel size 16, stride 2, activation ReLu 
Conv1D (None, 240, 263, 64) 65,600 64 filters, kernel size 16, stride 1, activation ReLu 
Conv1D (None, 240, 124, 64) 65,600 64 filters, kernel size 16, stride 2, activation ReLu 
Conv1D (None, 240, 109, 64) 65,600 64 filters, kernel size 16, stride 1, activation ReLu 
Conv1D (None, 240, 47, 64) 65,600 64 filters, kernel size 16, stride 2, activation ReLu 
Flatten (None, 240, 3008) 0 
Dropout (None, 240, 3008) 0 Dropout rate 0.3 
Dense (None, 240, 400) 1,203,600 Activation ReLu 
Dropout (None, 240, 400) 0 Dropout rate 0.3 
Bidirectional LSTM (None, 240, 80) 141,120 40 units 
Dense (None, 240, 4) 324 Activation Softmax 
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Fig. 1. Plot of each modification to iRRI time series on the same 300 s of iRRI. iRRI: interpolated time series of intervals between subsequent R-peaks in the 
electrocardiogram. 
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3.3. Robustness 

As displayed in Table 5, we found that our trained model is robust to 
70% missing RRIs or 1s mean. It is less robust for no filtering, inexact R 
detections, 5 s and 10 s mean, and 30% gaps (see first line of Table 5). 
However, training on data that was manipulated in the same way 
resulted in a performance comparable to that of the model trained and 
tested on the original data, according to the mean κ results (see diagonal 
of Table 5). 

When training with increasing fold sizes with random training 

patients, we yield mean κ for classifying W/N/R on the test data as listed 
in Table 6. Note that the classification performance converges around 
2500 PSGs, but still, we yield better results with more data. 

4. Discussion 

Results from most recent and most comparable state-of-the-art 
publications to complement our results are displayed in Table 2. By 
using a large and diverse dataset, optimizing the model architecture in 
several steps, and combining two promising input signals, we merged 

Table 2 
Mean Cohen’s kappa results on hold-out test data comparing results from the literature with our model for different groupings of sleep stages and different inputs. ECG: 
electrocardiogram, PPG: photoplethysmogram, RE: respiratory effort, sleep stage groupings: W: Wakefulness, N: all NREM, R: REM, L: Light Sleep (NREM 1 + NREM 
2), D: Deep Sleep (NREM 3), S: all Sleep (NREM 1–3 + REM), AASM: W/N1/N2/N3/R. 

This work Sun et al. [8] Korkalainen et al. [9] Casal et al.[10] Sridhar et al. [11] 

Input from W/N/R W/L/D/R AASM W/N/R AASM W/N/R AASM W/S W/L/D/R 

ECG/PPG  0.76  0.65  0.63  0.65  0.49  0.65  0.51  0.74 0.66 
RE  0.68  0.57  0.55   0.69  0.53 
ECG & RE  0.80  0.68  0.66   0.76  0.59 

Table 3 
Detailed results for classification into AASM sleep stages (left) and W/N/R sleep stage grouping (right) on hold-out test data which consists of 955,346 epochs. The 
table states the absolute number of epochs for each combination of true and predicted stages, the corresponding sensitivity and precision for each sleep stage and the 
overall accuracy. Model input: iRRI and iBBI, model output: AASM (left) or W/N/R (right). Sleep stage groupings: W: Wakefulness, N: all NREM, R: REM, AASM: W/ 
N1/N2/N3/R, iRRI: interpolated time series of intervals between subsequent R-peaks in the electrocardiogram, iBBI: interpolated time series of intervals between 
subsequent breathes in the respiratory effort. 

Predicted Sleep Stage True Sleep Stage Precision Predicted Sleep Stage True Sleep Stage Precision 

W R N1 N2 N3 W R N 

W 201,832 3,840 10,182 16,863 1,138 86.31% W 194,122 3,371 20,480 89.06% 
R 5,726 118,417 3,783 15,704 420 82.21% R 5,234 116,124 17,515 83.62% 

N1 1,230 726 2,056 1,151 7 39.77% N 39,062 20,483 538,955 90.05% 
N2 28,545 16,749 20,484 348,406 62,006 73.17% 
N3 1,085 246 61 30,853 63,836 66.44% 

Sensitivity 84.65% 84.60% 5.62% 84.36% 50.10%   81.42% 82.96% 93.41% 
Accuracy 76.89% 88.89% 

Fig. 2. Exemplary hypnogram from true and predicted sleep stages. For this participant and ground truth grouping, our model’s performance by Cohen’s kappa is 
0.63 and the accuracy is 75%. Model input: iRRI and iBBI, model output: AASM. iRRI: interpolated time series of intervals between subsequent R-peaks in the 
electrocardiogram, iBBI: interpolated time series of intervals between subsequent breathes in the respiratory effort. 
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the advantages of several other approaches into one model. Thus, we 
optimized accuracy and κ compared to previous studies for diverse 
groupings of sleep stages. The results by κ, confusion matrices and 
hypnograms draw a coherent picture that our model is capable of dis-
tinguishing Wakefulness, NREM and REM very well by utilizing only 
information derived from tachogram and breathing. However, it is not 
able to reliably differentiate between light sleep and deep sleep or 
identify NREM 1. 

There are only few approaches at time series based sleep stage 
classification that all show some distinct similarities, e.g. using CNNs 
and RNNs, and preprocessing the ECG to an RRI time series. In com-
parison, our model represents are very simple and straightforward ar-
chitecture with a mere combinations of CNN and LSTM layers with 
fewer recurrent units and less filter kernels than others [8,9], even 
though it is more complex than just two layers of GRUs as in [10]. Also, 
we processed the two input signals parallel in one branch, rather than 
creating two parallel branches as in [8]. However, since the models 

process different input signals at different levels of preprocessing, it is 
not possible to compare model complexity with the available informa-
tion. Furthermore, we deliberately chose to process rather long seg-
ments of 120 min (compared to 14 min [8] and 50 min [9]) but not the 
whole night (as in [10,11]) at a time. We assume that by this compro-
mise, we supplied the model with the contextual information of at least a 
whole sleep cycle, but avoided the possible bias of expecting an average 
hypnogram with e.g. wake epochs in the beginning and ending, and 
cyclic structure with more deep sleep in the first cycles and more REM 
sleep in the last cycles. 

One probable reason for the low accuracy in distinguishing NREM 
stages is the underrepresentation of NREM 1 samples in the available 
data (only 3.8 % of training epochs). However, there are approximately 
as many samples for REM as for NREM 3 (approx. 14 % of training 
epochs), so with respect to distinguishing between L and D (resp. NREM 
2 and NREM 3), obviously the used features themselves have limitations 
as seen in other models before [8,9,11]. A closer look into the literature 

Table 4 
Mean Cohen’s kappa results on hold-out test data by different ground truth groupings of sleep stages and different patient subgroups for both our model and one from 
the literature. Note, that the number of participants is only from our data. Mean values of Cohen’s kappa that differed significantly from one subgroups to all others 
were marked with * (significant difference by t-test with p < 0.05). Model input: iRRI and iBBI, model output: see column heading. BMI: body mass index, AHI: apnoea 
hypopnoea index, Sleep stage groupings: W: Wakefulness, N: all NREM, R: REM, L: Light Sleep (NREM 1 + NREM 2), D: Deep Sleep (NREM 3), AASM: W/N1/N2/N3/R, 
iRRI: interpolated time series of intervals between subsequent R-peaks in the electrocardiogram, iBBI: interpolated time series of intervals between subsequent 
breathes in the respiratory effort. 

Our model Sun et al. [8] 

Number of participants in set Sleep stage grouping Sleep stage grouping 

Train Test W/N/R W/L/D/R AASM W/N/R AASM 

Sex male 1,887 471  0.78  *0.68  0.66  0.76  0.59 
female 2,151 527  0.79  *0.66  0.65  0.77  0.58 

Age (in years) 39–60 1,681 408  *0.80  *0.69  *0.67  0.77  0.59 
60–90 2,357 590  *0.77  *0.66  *0.64  0.74  0.55 

BMI (in kg/cm2) 18–25 1,001 241  0.78  0.66  0.64  0.76  0.59 
25–30 794 207  0.78  0.67  0.65  0.76  0.59 
30–35 1,154 304  0.80  *0.69  *0.67  0.77  0.59 
35–50 1,089 246  0.77  0.66  0.64  0.76  0.58 

AHI 0–5 1,052 293  0.79  0.67  0.66  0.77  0.59 
5–15 1,726 395  0.80  0.68  0.66  0.76  0.58 
15–30 864 205  *0.77  0.67  0.65  0.75  0.58 
30–108 367 99  *0.72  0.64  *0.61  0.75  0.56 

Fig. 3. Comparison of mean Cohen’s kappa results for different participant subgroups from the hold-out test data. The green line shows the median, the box frames 
the upper and lower quartile, the whiskers extend up to one and a half times the interquartile range, any values outside this range are displayed as outliers (circles). 
All subgroups were tested for significant differences by t-test and the corresponding p-values are coded as: * p < 0.05, ** p < 0.01, *** p < 0.001. Model input: iRRI 
and iBBI, model output: AASM. AHI: healthy: 0–5, mild: 5–15, moderate: 15–30, severe: >30, iRRI: interpolated time series of intervals between subsequent R-peaks 
in the electrocardiogram, iBBI: interpolated time series of intervals between subsequent breathes in the respiratory effort. 
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reveals that models with better performance at detecting NREM 3 use 
downsampled raw signals as input: [8] combines a downsampled 
respiration signal with a QRS detection based time series yielding NREM 
3 sensitivity 0.58 and precision 0.71, and [9] uses merely a down-
sampled PPG yielding NREM 3 sensitivity 0.54 and precision 0.75. In 
contrast, approaches that apply QRS detection and breath cycle detec-
tion first, yield e.g. NREM 3 sensitivity between 0.12 and 0.52 and 
precision between 0.58 and 0.68 [5,6,11,24], similar to our results of 
sensitivity 0.50 and precision 0.66. Therefore, there seems to be some 
general information loss concerning the difference between light sleep 
and deep sleep, when detecting QRS complexes and breath cycles first. 

But as these approaches, that apply QRS detection as our model, show a 
very good overall performance for sleep staging, there seems to be some 
gain of information, too. Concluding, a combination of downsampled 
raw signals and feature detection based time series might fuse the ad-
vantages of both approaches and should be investigated further. Still, 
assuming the transition from light to deep sleep is a more continuous 
shift of signal characteristics rather than a series of abrupt changes, then 
these changes in the labels are partly due to thresholds in the scoring 
rules (e.g. amount of delta activity). Therefore, if intermediate epochs 
between light and deep sleep are predicted as stable phases of either 
light or deep sleep, this might reflect the cardiorespiratory state of the 

Fig. 4. Scatterplots for sleep metrics of hold-out test data calculated from true and predicted hypnograms. Spearman’s rho correlation coefficient is printed into each 
graph as r. Model input: iRRI and iBBI, model output: AASM. WASO: wake after sleep onset, sleep stage groupings: W: Wakefulness, R: REM, L: Light Sleep (NREM 1 
+ NREM 2), D: Deep Sleep (NREM 3), iRRI: interpolated time series of intervals between subsequent R-peaks in the electrocardiogram, iBBI: interpolated time series 
of intervals between subsequent breathes in the respiratory effort. 
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subject. Then again, while we can see from our results that we can 
identify changes in cardiorespiratory activity between W, NREM and 
REM, the physiological differences between light and deep sleep might 
be less distinct. 

Concerning differences in classification quality among participant 
subgroups, our model generally shows the same slight influences of sex, 
age, BMI and AHI as stated in the literature. In contrast to the work of 
Sun et al. [8], that shows a constant decrease in performance by 
increasing AHI, our model shows best performance for AHI 5–15 (see 
Table 4 and Fig. 3). However, this is most likely due to imbalanced data 
used for training, as in our dataset participants with AHI 5–15 represent 
43% of the data while in Sun et al.’s data, 39% of participants had AHI 
0–5 [8]. Therefore, the models each performed best on data of partici-
pants that were prevalent in the respective training data. 

As confirmed by ρs in Fig. 4, our model predicts many sleep metrics 
with very strong confidence. However, it is noticeable that WASO and 
the percentage of REM during the night show more general deviation 
from the true values and only moderate correlation, even though κ and 
the confusion matrix suggest that they are distinguished very well. 
Furthermore, confusion matrices that show the misclassification be-
tween L and D as a sum of all patients’ epochs (Table 3) or overall sta-
tistics might be positively interpreted as just over- and underestimating 
L and D equally for each patient. An effect that might compensate in the 
end, or an overall bias that can be taken into account. But when calcu-
lating sleep metrics from the predictions, the scatter plots (Fig. 4) show 
clearly that our model predicts percentages of L and D very differently 
for each patient. There is no general bias of overestimating L and 
underestimating D. All this underlines the need to further evaluate 
classifiers by their application (here, i.e. clinical sleep scoring data) and 
not just generic metrics. 

Investigating sleep metrics and participants’ characteristics, we 
noticed that both, model performance and age, are correlated with time 

in REM. Our model’s performance decreases with decreasing time in 
REM and specifically shorter durations of REM episodes. In our data, 
time in REM and duration of REM episodes also decrease with age. 
Moreover, this should be taken into account when analysing patholog-
ical PSG data, e.g. sleep related breathing disorders which are typically 
accompanied by a selective loss of REM-sleep. Therefore, the hypno-
grams of older participants and patients with severe sleep disorders 
strike a weakness of our model, which needs to be addressed in further 
optimizations steps. 

From Table 5 we conclude that our architecture is applicable to a 
variety of signals, devices and preprocessing to classify sleep stages from 
heart rate, if there is enough training data available. Nevertheless, a 
model trained and tested on the complete filtered iRRI performs best. 
But even though our variations were inspired by real world scenarios, 
like using a different device for signal acquisition or using previously 
preprocessed data, they are still just basic simulations of these scenarios. 
Further experiments on real data will show whether our assumption 
regarding robustness and transferability is correct. Nevertheless, as 
SHHS1 was specifically designed to research risk factors for cardiovas-
cular disease [13], there is a low prevalence for healthy heart patients 
and we infer general robustness towards most common cardiovascular 
diseases. This leaves the prospect that there should be a wide range of 
future applications for this kind of model, and that further research in 
this direction is necessary. 

As we see some saturation in the performance with 2500 patients and 
more (Table 6), this is our suggestion for the minimally necessary 
amount of training data (validation and hold-out test data not included). 
This number gives an orientation regarding the necessary data for 
actually transferring the architecture. Nevertheless, further exploration 
into transfer learning from pretrained models might show that even 
much smaller numbers will suffice, as the general patterns learned from 
the data should be similar. 

Concerning imminent clinical application, we see the main use cases 
of our model in pre-screening and home monitoring. Using established 
clinical tools like polygraphy or long-term ECG, our model could 
enhance the standard clinical evaluation by adding hypnogram and 
sleep metrics. 

5. Conclusion 

Main limitations of our work are, firstly, that the model was not 
tested on external test data (i.e. on a different dataset than SHHS1). This 
will be one next step in our research. And secondly, we cannot generally 
assume that other models show the same confidence for calculating 
sleep metrics, as these metrics are rarely reported for models. Therefore, 
the benefits and limitations we found are only first observations and 
need to be considered, assessed and compared by other researchers. 

Concluding, we present a model that was thoroughly tested on PSGs 
from 998 hold-out test patients. It shows high classification quality for 
differentiating W/N/R and only slight common biases by sex, age, AHI 

Table 5 
Mean Cohen’s kappa results on hold-out test data for our model trained on modifications of the data (lines) and tested on those modifications (columns). Model input: 
iRRI (with diverse modifications), model output: W/L/D/R. RRI: interval between two subsequent R-peaks in the electrocardiogram, iRRI: RRI interpolated at 4 Hz. 

Test on 

Modification None no filter 90% RRIs 80% RRIs 70% RRIs 5% Noise 1 s mean 5 s mean 10 s mean 30% gaps 

Train on None  0.64  0.48  0.63  0.63  0.62  0.57  0.64  0.54  0.40  0.52 
no filter  0.61  0.63 
90% RRIs  0.63   0.62 
80% RRIs  0.62    0.62 
70% RRIs  0.62     0.62 
5% Noise  0.55      0.60 
1 s mean  0.63       0.63 
5 s mean  0.53        0.62 
10 s mean  0.50         0.60 
30% gaps  0.61          0.59 

Table 6 
Mean Cohen’s kappa results on hold-out test data for classifying W/N/R from 
different inputs. Results are listed by number of patients used for training in each 
fold. Results are from 3fcv (*5fcv, **10fcv). Model input: see column headings, 
model output: W/N/R. iRRI: interval between two subsequent R-peaks in the 
electrocardiogram interpolated to 4 Hz, iBBI: interval between two subsequent 
breaths in the respiratory effort signal interpolated to 4 Hz. 

Number of participants in each training fold iRRI iBBI iRRI & iBBI 

234 0.62  0.57  0.69 
476 0.66  0.62  0.72 
915 0.70  0.63  0.76 
1346 0.72  0.65  0.77 
1802 0.73  0.66  0.78 
2297 0.74  0.67  0.78 
2692 0.74  0.67  0.79 
3230 *0.75  *0.68  *0.79 
3634 **0.76  **0.68  **0.80 
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or BMI. The sleep stages predicted by this model can be reliably sum-
marized in many sleep metrics like total sleep time, sleep efficiency and 
sleep latency but not as reliably in some others like percentage of light 
sleep and deep sleep. We showed that the architecture is robust to 
different scenarios that include variations and errors in the input data. 
To round off, we explored the dependence on the amount of data that is 
necessary to successfully transfer our architecture and train the model 
from scratch. Prospectively, our model allows for confident classifica-
tion of sleep macrostructure based on ECG signal and respiratory effort 
data that can be collected in a much broader clinical context than PSG- 
data and may significantly improve medical care of patients with sleep 
disorders. 
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